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It has been found recently that propagators, e.g. the cross correlation spectra of the cosmic fields with

the initial density field, decay exponentially at large k in an Eulerian description of the dynamics. We

explore here similar quantities defined for a Lagrangian space description. We find that propagators in

Lagrangian space do not exhibit the same properties: they are found not to be monotonic functions of time,

and to track back the linear growth rate at late time (but with a renormalized amplitude). These results

have been obtained with a novel method which we describe alongside. It allows the formal resummation

of the same set of diagrams as those that led to the known results in Eulerian space. We provide a tentative

explanation for the marked differences seen between the Eulerian and the Lagrangian cases, and we point

out the role played by the vorticity degrees of freedom that are specific to the Lagrangian formalism. This

provides us with new insights into the late-time behavior of the propagators.
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I. INTRODUCTION

Although the details of the evolution of the large-scale
structure of the Universe are probably affected by the
presence of baryonic matter, in the context of a dark matter
dominated cosmic fluid, it is thought that the global prop-
erties of the matter distribution at cosmological scales are
essentially determined by those of a self-gravitating dust
fluid.

A complete understanding of the development of gravi-
tational instabilities in such a fluid is still however an open
problem. It is one of the central issues for the study of
structure formation in observational cosmology and this is
for instance what pure N-body cosmological simulations
attempt to solve. The Vlasov equation, that is, the fluid
limit of the Boltzmann equation, entirely describes this
system (see [1] or [2] for details). This equation of motion
applies to the so-called Eulerian description of the dynam-
ics, where the fluid properties are described through func-
tions of fixed space-time coordinates (such as density and
velocity fields). However, there exists an alternative de-
scription where the system is defined by the trajectories of
particles, labeled as a function of their initial positions.
This is the Lagrangian formalism, which takes advantage
of the particle description of the fluid. While this may not
be a convenient description of the dynamics in the fully
developed nonlinear regime, it gives good insights of the
dynamics in the early stages of the development of the
gravitational clustering. The widely used Zel’dovich ap-
proximation [3] corresponds for instance to a description of
the displacement field based on its linear approximation.

There exists a standard perturbative approach to study
the development of gravitational instabilities beyond the
linear approximation. This approach, and the main results
it led to, is described to a large extent in [2]. While it can be
useful for some specific observables, it fails to provide
effective tools for describing the evolution of quantities
such as the density power spectrum beyond the linear
regime. Then, one still needs to use semianalytic prescrip-
tions. The ones that are mostly used now, e.g. the so-called
Peacock and Dodds formula [4] or the Smith et al. formula
[5], originate either from the near universal transform
advocated in [6], or are based on an even more empirical
construction, the halo model (see [7]). It is to be noted
though that these prescriptions offer predictions for the
power spectrum with relatively low accuracy, at the level
of 10%, and are insecure in cases of nonstandard cosmo-
logical models. Clearly there is a need to do better!
Recently there has been a revival of perturbation theory

techniques (see [8–11] and also [12] for an overview of
these ideas). In particular the renormalized perturbation
theory (RPT) formalism introduced in [8] suggests a new
scheme for the construction of perturbation theory expan-
sions. It has been successfully applied to the shape of the
two-point propagator, [13], and consequently to the two-
point density power spectrum [14]. One of the core objects
of this approach are the so-called propagators. They can be
viewed as the cross correlation between the cosmic fluids
(that can either be the local density contrast or the peculiar
velocity divergence) and the initial density field. In par-
ticular, it has been found that these correlators decay ex-
ponentially in the large-k limit (where k is the Fourier
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mode of interest). This result has been obtained analyti-
cally from a partial resummation of diagrams—in a per-
turbation theory point of view—that are thought to be the
leading contributors of the high-k behavior of this quantity.
It has been furthermore confirmed in numerical
simulations.

The aim of this paper is to consider similar quantities in
the Lagrangian description of the dynamics. Although the
quantities we will define could not be directly observed,
they could serve as building blocks of resummation pro-
cedures applied to genuine observable quantities.
Propagators in Lagrangian space could also be measured
in N-body simulations enriching our insights into the
development of gravitational instabilities. Thus, our goal
is not to reconstruct the real space power spectrum from
Lagrangian variables (as done in [15]) but to extend, to
other objects of interest that arise in the Lagrangian frame-
work, exact perturbation theory results. We first recall in
Sec. II the basic ingredients of this description. To compute
the high-k limit of the propagators we then assume
Gaussian initial conditions and that the same set of dia-
grams will provide us with the leading contributions. To be
more specific, those diagrams are those in which all loops
are connected to the principal line. As shown in [16], and
explained in details here, this approximation amounts to
linearize the motion equation for a mode evolution while
the low-k modes act as a random stochastic background.
As we show in Sec. III for the 2D dynamics and in Sec. IV
for the 3D, although the modes of this stochastic back-
ground—assumed to be of Gaussian statistics—are in in-
finite number, their effects can be recast as those of a finite
number of Gaussian random variables. This method turned
out extremely powerful. We explicitly show the results it
leads to for the 2D- and 3D-Lagrangian propagators. We
summarize in the last section what we have learned from
these calculations.

II. LAGRANGIAN APPROACH

A. Equations of motion

In Lagrangian approaches the global properties of the
fluid are reconstructed from the individual particle trajec-
tories, xðq; tÞ, labeled by their initial Lagrangian coordi-
nate q. Thus, the Eulerian comoving position x at time t
reads as

x ¼ qþ�ðq; tÞ; (1)

where�ðq; tÞ is the displacement field. Note that in Eq. (1)
we use the property that in standard cosmological scenar-
ios the cold dark matter has a negligible initial velocity
dispersion (as opposed to ‘‘hot’’ dark matter scenarios).
This allows us to fully define the particles by their initial
Lagrangian coordinate q with a unique initial peculiar
velocity vðqÞ. Then, the equation of motion for each par-
ticle reads as (once the homogeneous expansion of the

Universe has been taken into account)

@2xðqÞ
@�2

þH
@xðqÞ
@�

¼ �rx�ðqÞ; (2)

where � ¼ R
dt=a is the conformal time (and a is the scale

factor) and H ¼ d lna=d� is the conformal expansion
rate. The gravitational potential � is given by Poisson’s
equation

�x� ¼ 3
2�mH 2�ðqÞ; (3)

where �m is the matter density cosmological parameter
and �ðqÞ ¼ ð�� ��Þ= �� the matter density contrast. It is to
be noted that in this expression the Laplacian is taken with
respect to the x coordinates while the fields are naturally
given as a function of q through the expression of the
displacement field. We assume here that the density con-
trasts vanish at initial time. The conservation of matter then
implies that

1þ �ðqÞ ¼ 1

JðqÞ with JðqÞ ¼
��������det

�
@x

@q

���������: (4)

Then, by taking the divergence with respect to the Eulerian
coordinate x of the equation of motion (2) we obtain

JðqÞrx:

�
@2�ðqÞ
@�2

þH
@�ðqÞ
@�

�
¼ 3

2
�mH 2ðJðqÞ � 1Þ

(5)

where we used Poisson’s equation. As in the Eulerian case,
it is convenient to introduce the time coordinate � and the
function fð�Þ defined from the linear growth rateDþð�Þ as,

� ¼ lnDþð�Þ; f ¼ d lnDþ
d lna

¼ d lnDþ
H d�

: (6)

The linear growth rate Dþð�Þ is the growing solution of

d2Dþ
d�2

þH
dDþ
d�

¼ 3

2
�mH 2Dþ; (7)

which we normalize asDþ0 ¼ 1 today. Then, Eq. (5) reads
as

JðqÞrx:

�
�00ðqÞ þ

�
3�m

2f2
� 1

�
�0ðqÞ

�
¼ 3�m

2f2
ðJðqÞ � 1Þ;

(8)

where we note with a prime the partial derivative with
respect to time �.
In the following, we will restrict the calculations to the

Einstein-de Sitter case for which �m=f
2 ¼ 1. It is to be

noted however that for all models of cosmological interest
we have �m=f

2 ’ 1 so that this assumption is very mildly
restrictive [2]. Thus, up to a good approximation, our
results can be extended to the cosmological concordant
model cosmologies by substituting for the appropriate
linear growth rate Dþð�Þ. Then, the dependence on the
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cosmological parameters is fully contained in the time-
redshift relation �ðzÞ.

Equation (8) can be written in matrix form as

Tr

��
com

�
@x

@q

��
T
:

�
@�00

@q
þ 1

2

@�0

@q

��
¼ 3

2
ðJðqÞ � 1Þ; (9)

where comð@x@qÞ is the comatrix of ð@x=@qÞ. It is also given

by �
@q

@x

�
¼

�
@x

@q

��1 ¼
�
com

�
@x

@q

��
T
= det

�
@x

@q

�
: (10)

Thus, Eq. (9) is the form of the equation of motion (2)
written in terms of the Lagrangian displacement field �
alone. However, it is not sufficient to fully determine the
dynamics as can be noticed from the fact that we only used
the potential part of Eq. (2) when we took the divergence in
Eq. (5). Thus, we must supplement Eq. (9) with the rota-
tional part:

rx �
�
@2�ðqÞ
@�2

þH
@�ðqÞ
@�

�
¼ 0: (11)

As is well known from the Eulerian perturbation theory, the
rotational part of the Eulerian peculiar velocity field v
decays in the linear regime and a curl-free initial velocity
field remains potential to any order in perturbation theory
[1,2] (but vorticity will be generated by shell crossings; see
[17] for an estimation of this effect). Then, one usually
restricts the dynamics to the case of irrotational initial
velocity fields, rx � v ¼ 0, so that Eq. (11) simplifies to

rx ��0ðqÞ ¼ 0; hence
@�0

iðqÞ
@xj

¼ @�0
jðqÞ
@xi

; (12)

which is of first order over time. In matrix form, this
constraint implies that [18]

�
@�0ðqÞ
@q

�
:

�
com

�
@x

@q

��
T
is a symmetric matrix: (13)

In three-dimensional space, Eqs. (13) are cubic in� and
�0 (in general, they are of the order of the number of space
dimensions). However, it is possible to derive equivalent
equations that are quadratic in � whatever the dimension-
ality of space. They can be obtained through the introduc-
tion of the velocity potential �, which the velocity field is
assumed to derive from  0

iðqÞ � @�=@xi in x coordinates.
Expressing � in term of� and imposing that @2�=@qi@qj
is symmetric leads to an equivalent set of equations of
lower order in  [19]. These equations can also be derived
explicitly from Eq. (12) by multiplying it by ð@xi=@qmÞ�
ð@xj=@q‘Þ,

@xi
@qm

@�0
iðqÞ

@q‘
¼ @xj
@q‘

@�0
jðqÞ

@qm
; (14)

a constraint that in matrix form states that

�
@x

@q

�
T
:

�
@�0ðqÞ
@q

�
is symmetric matrix: (15)

Equations (14) and (15) are quadratic over �, hence they
are more convenient to use than Eqs. (12) and (13) in three
(or more) dimensions [20].

B. Linear regime

The first stages of the dynamics take place at a time
when the deviations from the Hubble flow are small. Then,
the equations of motion can be linearized over the dis-
placement field �. From Eq. (4) the Jacobian JðqÞ then
reads up to linear order,

JLðqÞ ¼ 1þ Tr

�
@�LðqÞ
@q

�
¼ 1þX

i

�Li;i ¼ 1� �L;

(16)

where we note with a subscript L all linear quantities. Note
also that hereafter we define�i;j as the partial derivative of

the displacement field with respect to Lagrangian coordi-
nates,

�i;jðqÞ ¼ @�i

@qj
; (17)

and we introduced its divergence ��,

�ðqÞ ¼ �rq:�ðqÞ ¼ �X
i

@�iðqÞ
@qi

: (18)

It is to be noted that at linear order � is nothing but the
density contrast. Its time derivative is proportional to the
velocity divergence. The motion Eq. (9) naturally reads at
linear order

�00
LðqÞ þ 1

2�
0
LðqÞ ¼ 3

2�LðqÞ; (19)

where we recover the two well-known growing and decay-
ing linear modes:

�þ ¼ e� and �� ¼ e�3�=2: (20)

In the following, we shall assume that the initial con-
ditions are such that only the linear growing mode is
present (but it would be possible to set different initial
conditions):

�Lðq; �Þ ¼ e��0ðqÞ; hence �Lðq; �Þ ¼ e��0ðqÞ:
(21)

Note then that at this order the constraint, Eq. (13), implies
that�0

LðqÞ is curl-free in q coordinates, rq ��0
LðqÞ ¼ 0,

and so is the linear displacement field. It is then entirely
determined by its divergence �.

C. Correlators and propagators

Because of the mathematical structure of the theory, it is
obviously very convenient to rewrite the motion equations
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in Fourier space. The Fourier components of the field are
defined as

�ðkÞ ¼
Z dnq

ð2�Þn e
�ik:q�ðqÞ; (22)

where dnq is the n-dimensional volume element. The
Fourier components of the linear displacement field can
be easily written in terms of the Fourier modes of the
divergence field,

�LðkÞ ¼ i
k

k2
�LðkÞ: (23)

Note that because of the assumed statistical homogene-
ity and isotropy of space, ensemble average of products of
two Fourier modes vanish for modes that do not sum to
zero. This property holds for equal as well as unequal time
correlators. In the following, we furthermore consider
Gaussian initial conditions. As it will turn out, this is a
crucial property. It indeed determines the diagrammatic
structure and the contributions to the quantities of interest.
Within this assumption the entire statistical properties of
the initial density field are defined by its power spectrum,
P0ðkÞ, such that

h�0ðk1Þ�0ðk2Þi ¼ �Dðk1 þ k2ÞP0ðk1Þ; (24)

where h:i represents ensemble averages over the statistical
process at the origin of the large-scale structure.

If the notion of power spectrum has been widely used in
theoretical and observational cosmology since the early
1980s, the notion of propagator is relatively new. It has
been introduced in [8] (see also [21] for the more general
notion of response functions). By definition it represents
the ensemble average of the functional derivative of a given
cosmic field component with respect to the initial field
value. What we will be interested in here is the propagator
between an initial convergence mode �0ðkÞ and the final
convergence mode �ðk0; �Þ (the one defined with respect
to the rotational parts vanishes for parity reasons in case of
rotational-free initial conditions). As �ðk0; �Þ is the result
of a complex nonlinear process, it is formally a functional
of the whole set of the initial density modes (only in the
linear regime does it only depend on the same kmode). We
can then introduce the functional derivative of �ðk0; �Þ
with respect to �0ðkÞ: @�ðk0; �Þ=@�0ðkÞ. This is a stochas-
tic quantity whose ensemble average does not vanish for
k ¼ k0. It defines the propagator [22],

�
@�ðk0; �Þ
@�0ðkÞ

�
¼ �Dðk� k0ÞGðk; �Þ: (25)

The goal of this paper is precisely to investigate the be-
havior of the propagator Gðk; �Þ. In the linear regime the
functional �½�0� is trivial and given by Eq. (21) which
implies that

GLðk; �Þ ¼ e�: (26)

From a perturbation theory point of view, the functional
�½�0� can be expanded in terms of the initial convergence
field,

�ðk; �Þ ¼ X1
p¼1

Z
dnw1 . . . d

nwp�D

�
k�Xp

i¼1

wi

�

�F ðpÞðw1; . . . ;wn;�Þ�0ðw1Þ . . .�0ðwpÞ; (27)

where the kernels F ðpÞ are symmetric functions of wave
modes. They are determined by the motion equations for �
and !. Then we have

Gðk;�Þ ¼X
p

Z
dnw1 . . . d

nwp�1pF ðpÞðw1; . . . ;wp�1;k;�Þ

� h�0ðw1Þ . . .�0ðwp�1Þi (28)

(the ensemble average of the right-hand side of this equa-

tion ensures that
Pp�1
i¼1 wi ¼ 0 so that �Dðk�Pp

i¼1 wiÞ is
transformed into �Dðk� k0Þ). Such an expansion can be
represented in a diagrammatic way by taking advantage of
the Gaussian initial conditions. This can serve as a basis for
resummation schemes. We shall illustrate this construction
for the 2D Lagrangian dynamics first.

III. 2D DYNAMICS

The aim of this section is to derive explicitly the motion
equations for the Lagrangian 2D dynamics and to explore
the resulting propagator properties. Since its mathematical
structure is simpler than for the 3D case, it serves to
illustrate the method we develop here to compute the
propagators.

A. Decomposition over curl-free and divergenceless
parts

We investigate in this section the simpler case of a two-
dimensional dynamics. This corresponds to perturbations
with�3 ¼ 0 that do not depend on the third coordinate, q3
or x3. Therefore, the nonlinear dynamics is restricted to the
plane ðe1; e2Þ and particles exactly follow the Hubble
expansion along the third axis e3. Then, it is convenient
to decompose the Lagrangian displacement field over a
curl-free part � and a divergenceless part 	 as

� ¼
�1

�2

0

0
@

1
A ¼

@�
@q1

þ @	
@q2

@�
@q2

� @	
@q1

0

0
B@

1
CA ¼ rq:�þrq � ð	e3Þ:

(29)

Here and in the following we note� the three-dimensional
vector product. Then, the divergence �� reads

� ¼ �r2
q�; �ðkÞ ¼ k2�ðkÞ: (30)

In a similar fashion, we define the vorticity as

! ¼ �r2
q	; !ðkÞ ¼ k2	ðkÞ: (31)
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Then, the equation of motion (9) reads in Fourier space as

�00 þ 1

2
�0 � 3

2
� ¼

Z
dk1dk2�Dðk1 þ k2 � kÞ

�

ðk1;k2Þ

�
�1

�
�00
2 þ

1

2
�0
2 �

3

4
�2

�
þ!1

�
!00

2 þ
1

2
!0

2 �
3

4
!2

��

þ �ðk1;k2Þ
�
!1

�
�00
2 þ

1

2
�0
2

�
� �1

�
!00

2 þ
1

2
!0

2

�
þ 3

2
�1!2

�	
; (32)

where we noted �i ¼ �ðkiÞ, !i ¼ !ðkiÞ, and we intro-
duced the symmetric kernels


ðk1;k2Þ ¼ detðk1;k2Þ2
k21k

2
2

; (33)

�ðk1;k2Þ ¼ ðk1:k2Þ detðk1;k2Þ
k21k

2
2

; (34)

with

detðk1;k2Þ ¼ k1;1k2;2 � k1;2k2;1 ¼ e3:ðk1 � k2Þ: (35)

It is to be noted that, unlike their Eulerian counterparts,
these kernels only depend on the relative angle between the
wave modes.

Equation (32) can be written in integral form by using
the Green’s function Gð�;�0Þ that is solution of

�
d2

d�2
þ 1

2

d

d�
� 3

2

�
Gð�;�0Þ ¼ �Dð�� �0Þ: (36)

It reads as

G ð�;�0Þ ¼ �ð�� �0Þ25½eð���
0Þ � e�3ð���0Þ=2�; (37)

where �ð�� �0Þ is the Heaviside factor which enforces
causality. This constraint fully determines Gð�;�0Þ
[whereas Eq. (36) alone does not select between advanced
and retarded propagators or combinations of both]. Of
course, in Eq. (37) we recognize the two linear modes of
Eq. (20). Thus, we can write the solution of Eq. (32) as

� ¼ �L þ
Z �

�1
d�0Gð�;�0Þ

Z
dk1dk2�Dðk1 þ k2 � kÞ

�
�

ðk1;k2Þ

�
�1

�
�00
2 þ

1

2
�0
2 �

3

4
�2

�

þ!1

�
!00

2 þ
1

2
!0

2 �
3

4
!2

��

þ �ðk1;k2Þ
�
!1

�
�00
2 þ

1

2
�0
2

�
� �1

�
!00

2 þ
1

2
!0

2

�

þ 3

2
�1!2

�	
; (38)

where all terms in the brackets are taken at time �0 in the
past.

On the other hand, the curl-free Eulerian velocity con-
straint (13) reads as

!0 ¼
Z

dk1dk2�Dðk1 þ k2 � kÞf
ðk1;k2Þ
� ½�1!

0
2 �!1�

0
2� þ �ðk1;k2Þ½�1�

0
2 þ!1!

0
2�g:

(39)

From Sec. II B, we can see that the linear vorticity van-
ishes, !L ¼ 0, and Eq. (39) can be integrated as

! ¼
Z �

�1
d�0 Z dk1dk2�Dðk1 þ k2 � kÞf
ðk1;k2Þ

� ½�1!
0
2 �!1�

0
2� þ �ðk1;k2Þ½�1�

0
2 þ!1!

0
2�g:
(40)

In Eqs. (38) and (40), we have set up the initial conditions
at time �I ! �1. It would be possible to keep �I finite,
but this introduces extra terms in the perturbative series for
� and! that involve the decaying mode �� of Eq. (20). By
contrast, from Eqs. (38) and (40), the nonlinear quantities �
and! can be written as a perturbative series over powers of
the linear growing mode e��0, such that the term of order

p factorizes as ep��ðpÞðkÞ, as in the standard perturbation
theory.
The kernels 
ðk1;k2Þ and �ðk1;k2Þ obey the symme-

tries


ðk1;k2Þ ¼ 
ðk2;k1Þ; �ðk1;k2Þ ¼ ��ðk2;k1Þ;
(41)

as seen from Eqs. (33)–(35). This is consistent with the fact
that � and � are scalars whereas ! and 	 are pseudosca-
lars, as seen from Eq. (29) [so that rq � ð	e3Þ is a vector
like �]. Then, under parity P we have

P :�! �; !! �!; 
! 
; �! ��:
(42)

Equation (42) actually implies that the kernels 
,�, satisfy
Eq. (41), since the exchange of basis vectors e1 $ e2 can
be written as a rotation followed by a reflection. Then, the
symmetry (42) directly determines which kernel 
 or � is
associated with a factor such as �� or �! in Eqs. (32) and
(39).

B. Diagrammatic representation

The Eqs. (38) and (40) have a simple diagrammatic
representation which illustrates the fact that the functions

F ðpÞ are obtained from successive quadratic interactions.
A diagrammatic expansion of Eqs. (38) and (40) is pre-
sented in Fig. 1. Each open circle stands for a linear
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growing mode doublet f�L;!Lg ¼ fe�j�0ðkjÞ; 0g, whereas
the vertex points represent the interaction operators that
can be read out from Eqs. (38) and (40). For instance, its
first component (the one that represents f�ðk1; �1Þ;
�ðk2; �2Þg ! �ðk; �Þ) is
111ðk; �;k1; �1;k2; �2Þ
¼

Z
d�0Gð�;�0Þ�Dðk� k1 � k2Þ�Dð�1 � �0Þ

� �Dð�2 � �0Þ
�
@2

@�2
2

þ 1

2

@

@�2

� 3

4

�
: (43)

Then, one must integrate over the coordinates ðkj; �jÞ of
the incoming modes at each vertex.

As noted in [13], each of these diagrams exhibits one
and only one ‘‘principal line’’: a line that runs from the
initial time to the final time without crossing a circle. It is
then possible to sort the loop terms with respect to the
number of vertices that are attached to this line. It is then
expected that in the high-k limit the dominant contribution
comes from the diagrams whose number of such vertices
are larger (see [13] for details). As seen in [16] and recalled
below, this can be justified in a certain regime if it is
possible to have a large separation of scales. In the follow-
ing, we will restrict our calculations to this subset of
contributions. For instance, for the terms up to two-loop
order, they correspond to the first row of Fig. 2. It is
important to note that these diagrams are such that the
incoming waves are always in the linear regime. In [13],
the authors were able to resum these loop contributions
(basically by properly counting them). In a Lagrangian
description, things are made more difficult because of the
complex nature of the vertices and it is not always possible
to obtain an explicit analytical formula for this resummed
propagator.

However, as shown in [16], the propagator defined by
this partial series of diagrams can be seen as the exact
propagator of a simpler dynamics (that only gives rise to
these diagrams). The latter can be derived by linearizing
the equations of motion in a certain fashion. Then, we can
compute the propagator Gðk; �Þ by solving exactly this
second dynamics and next performing the average over
the initial conditions. This can be made numerically with-
out performing diagrammatic resummations. We first illus-
trate this alternative method for the 2D-Lagrangian
dynamics.

C. High-k approximation

1. Resummation of dominant diagrams

As stated above, the dominant diagrams are expected to
be those where all incoming lines to the principal path are
in the linear regime. Following [16], such a system is
described by motion equations similar to (38) and (40),
where in the terms in the right hand sides we replace all
terms except one by their linear values �L and !L (the
latter vanishes here) and sum over all possible choices.
These equations correspond to a physical system where it
is legitimate to separate scales, for instance if there exists
an upper wave number � so that most of the power is
associated with small wave numbers w<�. Then, in the
limit k� �, the evolution of a given mode k is governed
by the contributions of small wave numbers, k1 <�
(whence k2 ’ k) or k2 <� (whence k1 ’ k), in the right
hand sides of Eqs. (32) and (39), that are further assumed to
be in the linear regime.
The motion equations for the high-k modes then form a

set of linear equations in presence of a random background
described by the collection of the low-wj modes. This still

leaves us with a complicated system of equations to solve.

FIG. 1. Diagrammatic expression of the expansion of the convergence-vorticity doublet, f�ðk; �Þ; !ðk; �Þg, in 2D dynamics. See
text for details.

FIG. 2. Diagrammatic expression of the expansion of the propagator Gðk; �Þ in 2D dynamics. All the contribution up to 2 loops are
included. Note that the last two rows correspond to loop configurations that do not all connect to the principal line (shown here as a
straight horizontal line). These are the contributions we assume to be subdominant. See text for details.
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A dramatic simplification can further be made because of
the high-k limit. Indeed, since k� wj, wj denoting the

incoming linear wave modes, the wave mode k is almost
left unchanged along the principal line (in other words one
is entitled to replace �Dðk0 þ wj � kÞ in each vertex point
by �Dðk0 � kÞ). In this context, the motion equations that
describe the mode evolution, Eqs. (32) and (39), can by
approximated by,

�00ðk; �Þ þ 1

2
�0ðk; �Þ � 3

2
�ðk; �Þ

¼
Z

dw�Lðw; �Þ
�

ðk;wÞ

�
�00ðk; �Þ þ 1

2
�0ðk; �Þ

�

þ �ðk;wÞ
�
!00ðk; �Þ þ 1

2
!0ðk; �Þ

�	
; (44)

!0ðk; �Þ ¼
Z

dw�Lðw; �Þf
ðk;wÞ½!0ðk; �Þ �!ðk; �Þ�
þ �ðk;wÞ½�ðk; �Þ � �0ðk; �Þ�g; (45)

so that high-k modes now evolve independently on one
another. One can easily check that the solution of Eqs. (44)
and (45), written as a perturbative series over �0, gives
back the principal-path diagrams described above (here
with the approximation k0 ¼ k).

Of course, we could apply the same procedure to the
equations of motion (38) and (40), written in the integral
form [12,16]. This is equivalent to the differential form
used above, but it is less convenient for practical purposes.
For instance, it is easier to solve numerically the differen-
tial Eqs. (44) and (45) than their integral equivalents which
require the computation of an integral over all past values
to advance to the next time step.

Then, we note from Eqs. (44) and (45) that all contribu-
tions from the incoming waves �LðwjÞ can be factorized

out and resummed in two distinct bundles of waves, 
̂ and

�̂, defined as


̂ðkÞ ¼
Z

dw�0ðwÞ
ðk;wÞ;

�̂ðkÞ ¼
Z

dw�0ðwÞ�ðk;wÞ;
(46)

such that Eqs. (44) and (45) now read,

�00ðk; �Þ þ 1
2�

0ðk; �Þ � 3
2�ðk; �Þ

¼ e�
̂ðkÞ
�
�00ðk; �Þ þ 1

2�
0ðk; �Þ

�

þ e��̂ðkÞ
�
!00ðk; �Þ þ 1

2!
0ðk; �Þ

�
; (47)

!0ðk; �Þ ¼ �e��̂ðkÞð�0ðk; �Þ � �ðk; �ÞÞ
þ e�
̂ðkÞð!0ðk; �Þ �!ðk; �ÞÞ: (48)

In other words, the fields �ðkÞ and !ðkÞ depend on the

linear modes only through the combinations 
̂ and �̂. This
introduces a dramatic simplification because then the en-
semble average of Eq. (25) can be performed through a

simple average over the two variables 
̂ and �̂. Since
Eqs. (47) and (48) are linear, the solution is proportional
to �0ðkÞ. It is convenient to write it as

�ðk; �Þ ¼ e��0ðkÞ�̂ð�Þ; (49)

!ðk; �Þ ¼ e��0ðkÞ!̂ð�Þ: (50)

As a consequence, we have

Gðk; �Þ ¼ e�Ĝð�Þ with Ĝð�Þ ¼ h�̂ð�Þi: (51)

We can already note that because 
̂ and �̂ depend on the

direction of k only, Ĝð�Þ will be completely independent
of k (since a priori it could only depend on its norm).
In the last Eq. (51), the ensemble average now reduces to

the computation of the expectation value of �̂ð�Þ with

respect to the distribution of 
̂ and �̂. We then need to

explore a bit more the statistical properties of 
̂ and �̂.
Using the fact that the linear density field �LðqÞ ¼ �LðqÞ is
real, hence �0ðwÞ� ¼ �0ð�wÞ, it can be easily checked that

̂ and �̂ are real numbers. Moreover, we can see from
Eqs. (46) that they are independent Gaussian random var-
iables with

h
̂2i ¼ 3�2
2; h�̂2i ¼ �2

2; h
̂ �̂i ¼ 0; (52)

with

�2
2 ¼

�

4

Z 1

0
dwwP0ðwÞ: (53)

Note that 8�2
2 is also the variance of the density contrast

h�ðxÞ2i. The joint distribution function of 
̂ and �̂ is then

P ð
̂; �̂Þd
̂d�̂ ¼ d
̂d�̂ffiffiffi
3

p
2��2

2

exp

�
� 
̂2

6�2
2

� �̂2

2�2
2

�
: (54)

As a result we simply have,

Ĝð�Þ ¼
Z 1

�1
�̂ð�; 
̂; �̂ÞP ð
̂; �̂Þd
̂d�̂; (55)

where �̂ð�; 
̂; �̂Þ is the solution of the system (47) and
(48), written in terms of �̂ and !̂, parameterized by the

coefficients 
̂, �̂. The calculation of the propagator can
take advantage of the symmetries (42). In particular, we
have

�̂ð�; 
̂; �̂Þ ¼ �̂ð�; 
̂;��̂Þ;
!̂ð�; 
̂; �̂Þ ¼ �!̂ð�; 
̂;��̂Þ:

(56)

We can also note that for �> 0,

�̂ð�;�
̂;��̂Þ ¼ �̂ð�þ ln�; 
̂; �̂Þ; (57)
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!̂ð�;�
̂;��̂Þ ¼ !̂ð�þ ln�; 
̂; �̂Þ: (58)

2. Behavior of the propagator Gðk; �Þ
The asymptotic behavior of Gðk; �Þ is intimately related

to the behavior of the solutions of (47) and (48) for finite

values of the parameters 
̂ and �̂. This can be inferred by
inspection of these differential equations. Thus, looking for
an asymptotic power-law solution, �̂� �̂1e�� and !̂�
!̂1e��, in the limit of large � where the right hand side
dominates in Eqs. (47) and (48), we obtain the condition�������� 
̂ð�þ 1Þð�þ 3

2Þ �̂ð�þ 1Þð�þ 3
2Þ

��̂� 
̂�

��������
¼ ð
̂2 þ �̂2Þ�ð�þ 1Þ

�
�þ 3

2

�
¼ 0; (59)

which gives the asymptotic modes:

�1 ¼ 0; �2 ¼ �1; �3 ¼ � 3

2
: (60)

In fact, the mode �2 can be removed since Eq. (47) can be
integrated once, as shown in Eq. (A4) in the appendix.
Therefore, when �� 1, �̂ and !̂ are expected to be
constant (their value depending on the parameters 
̂ and

�̂ in a complicated way) because of the mode �1. This

implies that the propagator Ĝ obtained from the Gaussian
integration (55) must also be constant at late time. This
expected behavior assumes that the differential Eqs. (47)
and (48) do not encounter a singularity at a finite time �.
We can check that Eqs. (47) and (48) do not show explicit
singularities associated with zeros of the coefficient of the
higher-order terms. Indeed, the determinant of the coeffi-
cients of highest-order derivatives reads as�������� 1� 
̂e� ��̂e�

�̂e� 1� 
̂e�

��������¼ ð1� 
̂e�Þ2 þ ð�̂e�Þ2 (61)

which never vanishes if �̂ � 0. We have checked numeri-

cally that the system of differential Eqs. (47) and (48)
obeys the behavior described above, with no singularity
and a constant asymptote a late time. This is depicted in

Fig. 3 with a 2D plot of �̂ð�; 
̂; �̂Þ over the plane ð
̂; �̂Þ at
time � ¼ 0 [this 2D plot is sufficient to fully determine the

behavior of �̂ð�; 
̂; �̂Þ thanks to the scaling law (57)].

We show, in Fig. 4, our results for the propagator Ĝð�Þ
obtained from the numerical integration of Eq. (55). We
can see that it first grows until it reaches a maximum at

�� 0 and next decreases to converge to a constant Ĝð� ¼
1Þ � 0:8, a behavior qualitatively in agreement with the

discussion above. Note that at early times the rise of Ĝ
means that the propagator Gðk; �Þ grows faster than the
linear prediction (26), until �� 1.
The 2D case described above illustrates the power of the

method based on associating the series of principal-path
diagrams with a linear dynamics as in Eqs. (47) and (48).
Indeed, in the high-k limit the dependence on initial con-
ditions is reduced to a few random parameters (here 
̂ and

�̂), as can also be read from the diagrams of Fig. 1. Then,
the ensemble average is reduced to ordinary integrals (55)

0
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β
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2

4

0
2
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2
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1
2
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5

ω 0,α,β

0
2

4

FIG. 3 (color online). The divergence �̂ð� ¼ 0; 
̂; �̂Þ (left panel) and the vorticity (right panel) as a function of 
̂, �̂. The divergence
reaches a constant at large radius,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

̂2 þ �̂2

q
! 1, for a fixed polar angle. The divergence is found to be continuous and even with

respect to �̂; the vorticity is found to be discontinuous along the critical half-line e�
̂ > 1, �̂ ¼ 0, and odd with respect to �̂.

2. 0. 2. 4. 6.
η

0.7

0.8

0.9

1.

1.1

G k,η Exp η

FIG. 4. The propagator Ĝð�Þ as a function of �. It is obtained
from Eq. (55) for a variance �2 ¼ 1. Note that Ĝð�Þ depends
only on the reduced variable �þ ln�2 as a consequence of (57)
and (58).
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[instead of path integrals over the field �0ðkÞ] and the
resummation associated with the infinite series of diagrams
is obtained by computing the exact solution of the differ-
ential equations (47) and (48). Both steps can be performed
numerically, as above, since they only involve ordinary
integrals and differential equations (instead of functionals
of fields). This allows us to compute the propagatorGðk; �Þ
even when the diagrammatic series cannot be exactly
resummed by analytical formulae [which corresponds to
the case when the differential equations (47) and (48) have
no known explicit solutions]. Moreover, even in this case,
we can obtain exact analytical results for the late-time
nonperturbative behavior of the propagator, as in
Eqs. (60), by direct inspection of the effective linear equa-
tions of motion (47) and (48).

We further discuss the properties of the system (47) and
(48) in the appendix. In particular, we show that taking into

account the vorticity (i.e. �̂ � 0 and !̂ � 0) is necessary to
obtain a well-behaved propagator at late times (otherwise a
divergence appears), and that the perturbative series over
powers of �0 is probably only asymptotic (i.e. with zero
radius of convergence).

IV. 3D DYNAMICS

We now consider the case of the full 3D dynamics. This
leads to slightly more intricate expressions as we have a

few more degrees of freedom but we can still follow the
analysis described in Sec. III for the simpler 2D dynamics.
Moreover, we shall find that the results obtained in Sec. III
remain valid.
First, as in Eq. (29), we can decompose the displacement

field over a curl-free part � and a divergenceless part ~	 as

� ¼
@�
@q1

þ @	3
@q2

� @	2
@q3

@�
@q2

þ @	1
@q3

� @	3
@q1

@�
@q3

þ @	2
@q1

� @	1
@q2

0
BB@

1
CCA ¼ rq:�þrq � ~	: (62)

Thus, the rotational part ~	 has now 2 degrees of freedom:
there are three components 	1, 	2, 	3, but the divergence

of ~	 does not contribute and can be set to zero. As in
Eqs. (30) and (31) we define the divergence �� and the
vorticity ~! by

� ¼ �r2
q�; ~! ¼ �r2

q
~	: (63)

Then, the spatial derivatives of the displacement field read
in Fourier space as

@�i

@qj
¼ �i;jðkÞ ¼ � kikj

k2
�ðkÞ � �ilm

kjkl

k2
!mðkÞ; (64)

where �ilm is the Levi-Cività symbol. Then, the equation of
motion (9) reads in Fourier space as

�00 þ 1

2
�0 � 3

2
� ¼

Z
dk1dk2�Dðk1 þ k2 � kÞ

�
k21k

2
2 � ðk1:k2Þ2
k21k

2
2

�1

�
�00
2 þ

1

2
�0
2 �

3

4
�2

�

� ðk1:k2Þ
k21k

2
2

½k2:ðk1 � ~!1Þ�
�
�00
2 þ

1

2
�0
2 �

3

2
�2

�
� ðk1:k2Þ

k21k
2
2

�1

�
k1:

�
k2 �

�
~!00
2 þ

1

2
~!0
2

���	

�
Z

dk1dk2dk3�Dðk1 þ k2 þ k3 � kÞ
�
detðk1;k2;k3Þ2

2k21k
2
2k

2
3

�1�2

�
�00
3 þ

1

2
�0
3 �

1

2
�3

�

þ detðk1;k2;k3Þ
k21k

2
2k

2
3

½ðk2 � k3Þ:ðk1 � ~!1Þ��2

�
�00
3 þ

1

2
�0
3 �

3

4
�3

�

þ detðk1;k2;k3Þ
2k21k

2
2k

2
3

�1�2

�
ðk1 � k2Þ:

�
k3 �

�
~!00
3 þ

1

2
~!0
3

���	
þ ::; (65)

where the dots stand for terms of order !2 and !3. We do
not write these terms here since they will not contribute to
the high-k approximation. The determinant detðk1;k2;k3Þ
introduced in Eq. (65) is the determinant of the 3� 3
matrix obtained by putting the coordinates of the vectors
k1, k2, and k3, in the three columns. It is also given by

detðk1;k2;k3Þ ¼ ðk1 � k2Þ:k3; (66)

Note that Eq. (65) is now cubic over �, hence over �, !.
For the constraints associated with the curl-free condition
(12) we can use Eq. (15) which is still quadratic. This gives

ðk� ~!0Þ � k

k2
¼

Z
dk1dk2�Dðk1 þ k2 � kÞk1 � k2

k21k
2
2

� fðk1:k2Þ�1�
0
2 þ �1½k1:ðk2 � ~!0

2Þ�
þ ½k2:ðk1 � ~!1Þ��0

2g þ ::; (67)

where the dots stand for terms of order !2. We can check
that only the combination k� ~! appears in Eqs. (65)–
(67). Moreover, as in the 2D case where Eqs. (32)–(39)
obeyed the parity symmetry (42), we can check that
Eqs. (65)–(67) are consistent with the parity symmetry
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P :�! �; ~!! ~!: (68)

In agreement with Eq. (62), ~	 and ~! are pseudovectors.
As in Sec. III C 1, the resummation associated with principal-path diagrams can be read from Eqs. (65)–(67) by

linearizing over �, ~!. This yields

�00 þ 1

2
�0 � 3

2
� ¼

Z
dwe��0ðwÞ

�
k2w2 � ðk:wÞ2

k2w2

�
�00 þ 1

2
�0
�
� ðk:wÞ
k2w2

�
w:

�
k�

�
~!00 þ 1

2
~!0
���	

�
Z

dwdue2��0ðwÞ�0ðuÞ
�
detðk;w;uÞ2
2k2w2u2

�
�00 þ 1

2
�0 þ 3

2
�

�

þ detðk;w;uÞ
2k2w2u2

�
ðw� uÞ:

�
k�

�
~!00 þ 1

2
~!0 þ 3

2
~!

���	
(69)

and

ðk� ~!0Þ � k

k2
¼

Z
dwe��0ðwÞw� k

k2w2
fðk:wÞð�0 � �Þ þ ½w:ðk� ð ~!0 � ~!ÞÞ�g: (70)

As for the 2D case, each mode �ðkÞ, ~!ðkÞ evolves independently of other high-k modes and the dependence on the initial
field �0 is reduced to a few random parameters that can be written as integrals over �0. In order to make further progress, it
is convenient to write Eqs. (69) and (70) in terms of coordinates. Without any loss of generality, we can choose k along the
axis e1, and ~! in the plane ðe2; e3Þ. Then, Eqs. (69) and (70) read as

�00 þ 1

2
�0 � 3

2
� ¼ e�ð�22 þ �33Þ

�
�00 þ 1

2
�0
�
� e��13

�
!00

2 þ
1

2
!0

2

�
þ e��12ð!00

3 þ
1

2
!0

3

�

� e2�ð�22�33 � �223Þ
�
�00 þ 1

2
�0 þ 3

2
�

�
� e2�ð�12�23 � �22�13Þ

�
!00

2 þ
1

2
!0

2 þ
3

2
!2

�

þ e2�ð�13�23 � �33�12Þ
�
!00

3 þ
1

2
!0

3 þ
3

2
!3

�
; (71)

and

!0
2 ¼ e��13ð�0 � �Þ þ e��33ð!0

2 �!2Þ
� e��23ð!0

3 �!3Þ; (72)

!0
3 ¼ �e��12ð�0 � �Þ � e��23ð!0

2 �!2Þ
þ e��22ð!0

3 �!3Þ: (73)

Here we introduced the symmetric parameters �ij defined
by

�ij ¼
Z

dw�0ðwÞ
wiwj

w2
: (74)

Using the property �0ðwÞ� ¼ �0ð�wÞ, we can see that the
coefficients �ij are real random numbers. We recover the
two-dimensional case (47) and (48) for

�i3 ¼ 0; !2 ¼ 0; 
̂ ¼ �22; �̂ ¼ �12; (75)

or

�i2 ¼ 0; !3 ¼ 0; 
̂ ¼ �33; �̂ ¼ ��13:
(76)

Note that there are several symmetry properties. Two
symmetries extend the property (56) obtained for the 2D

case. They read as

�13 ! ��13; �23 ! ��23; !2 ! �!2; (77)

and

�12 ! ��12; �23 ! ��23; !3 ! �!3; (78)

where we only write the quantities that change under these
two symmetries. A further symmetry comes from the
invariance over a coordinate rotation in the ðe2; e3Þ plane.
To express it, we can define the following quantities,

� ¼ �22 þ �33
2

; (79)

v ¼ vei�v ¼ �12 þ i�13; (80)

~ ¼ e2i� ¼ �22 � �33
2

þ i�23; (81)

which behave, respectively, like spin 0, 1, and 2 complex
numbers with respect to coordinate rotations in the ðe2; e3Þ
plane. The ensemble average of those quantities can be
expressed in terms of �2

3 defined as

�2
3 ¼

8�

15

Z
dww2P0ðwÞ; (82)
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with

h�2i ¼ hjvj2i ¼ hj ~j2i ¼ �2
3; (83)

while cross correlations between these quantities vanish.
We also define the complex vorticity ! as

! ¼ �!3 þ i!2; (84)

which is of spin 1 like v. Here we use the fact that, as in the
2D case, Eqs. (71)–(73) are linear so that we can factorize a

factor �0ðkÞ, as in Eqs. (49) and (50). Then, the reduced
quantities �=�0, !i=�0, are real [since the coefficients �ij
of Eq. (74) are real] so that the complex vorticity (84) fully
determines the doublet f!2; !3g. Then, the two Eqs. (72)
and (73) can be gathered into

!0 ¼ e�vð�0 � �Þ þ e��ð!0 �!Þ þ e� ~ð!0 �!Þ�;
(85)

whereas Eq. (71) reads as

�00 þ 1

2
�0 � 3

2
� ¼ e�2�

�
�00 þ 1

2
�0
�
� e�

v�

2

�
!00 þ 1

2
!0

�
� e�

v

2

�
!00 þ 1

2
!0

�� � e2�ð�2 � ~ ~�Þ
�
�00 þ 1

2
�0 þ 3

2
�

�

� e2�
v ~� � �v�

2

�
!00 þ 1

2
!0 þ 3

2
!

�
� e2�

v� ~� �v

2

�
!00 þ 1

2
!0 þ 3

2
!

��
: (86)

We can see that all terms in Eq. (85) are of spin 1, whereas
all terms in Eq. (86) are of spin 0. This clearly shows that
these equations are invariant through rotations in the
ðe2; e3Þ plane. Moreover, we can check that both sides in
Eq. (86) are real. Obviously, the results depend only on the
angle difference �v � �.

Finally, the scaling laws (57) and (58) also extend to the
3D case as

�> 0: �ij ! ��ij; �! �� ln�: (87)

As for the 2D case analyzed in Sec. III C 2, we can look
for singularities associated with zeros of the determinant of
the coefficients of higher-order derivatives. This gives from
Eqs. (85) and (86)

� ¼ ½ð1� e��Þ2 � e2�j ~j2�2 þ je�vþ e2�ðv� ~� �vÞj2:
(88)

The determinant � can only vanish if j ~j ¼ 0, jvj ¼ 0, or
�v � � ¼ n�=2 with n integer, which is a region of zero

measure in the space spanned by the coefficients �, v, and
~. We have checked numerically that the differential sys-
tem is otherwise well behaved and the ensemble averages
lead to well-defined quantities. As in Eqs. (59) and (60),
the asymptotic behavior of the solutions �, !2, !3, can be
read from the differential Eqs. (71)–(73) by looking for
asymptotic power laws. This yields for the reduced varia-
bles �̂, !̂2, !̂3, defined as in Eqs. (49) and (50), the three
asymptotic modes:

�1 ¼ 0; �2 ¼ �5� i
ffiffiffiffiffiffi
23

p
4

; �3 ¼ �5þ i
ffiffiffiffiffiffi
23

p
4

:

(89)

Therefore, the reduced propagator Ĝð�Þ must go to a

constant at late times, as for the 2D case. Our numerical
results are shown in Fig. 5 and we can see that they agree
with this analysis. Thus, it appears that the 3D propagator
exhibits the same features as the 2D case, with an early rise
that is faster than the linear prediction and a late-time
behavior that follows the linear power law Gð�Þ � e�

(with a ‘‘renormalized’’ amplitude that is smaller than
unity).
As for the 2D case [see Eq. (53)], the key quantity �2

3

that measures the amplitude of the fluctuations and the
state of gravitational clustering [see Eqs. (82) and (83)]
is proportional to the variance of the density field h�ðxÞ2i.
Therefore, for our results to apply, the high-k cutoff of the
linear power spectrum needs a priori to be such that �2

3 is

finite [23]. However, since the fluid description does not
hold beyond shell crossing it could be argued that integrals
such as (82) should be cut at the scale associated with the
transition to nonlinearity in any case.
On the other hand, within the high-k approximation

studied in this article, the quantity �3 of Eq. (82) should
be interpreted as the variance of the larger-scale density
contrast, rather than the variance of the one-point density

2. 0. 2. 4. 6.
η

1.

1.1

1.2

1.3

G k,η Exp η

FIG. 5. The propagator Ĝð�Þ as a function of � for the 3D
dynamics. It is obtained for a variance �3 ¼ 1.
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contrast. Indeed, we can see from Eq. (74) that the quantity
which governs the coefficients �ij is the density contrast at

the origin �ðx ¼ 0Þ (discarding the angular dependence
associated with wiwj=w

2). This in turn gives rise to

Eq. (82). Mathematically, the specific role played by the
origin is related to the breakdown of the invariance through
translations entailed by the approximation �Dðk1 þ k2 �
kÞ ’ �Dðk1 � kÞ discussed in Sec. III C 1. However, it is
clear that within this approximation, based on a separation
of scales between low wave numbersw<� and high wave
numbers k� �, any point located at a distance below 1=�
from the origin could as well be chosen as a reference. In
other words, within this high-k approximation, �2

3 should

be understood as the variance of the largest-scale density
contrast, associated with wave numbers w<� (and �<
k). Then, in Eq. (82) we relaxed the cutoff�, which is valid
for linear power spectra with small high-k power so that the
integral converges (and the high-k approximation dis-
cussed in Sec. III C 1 can make sense). Then the results
can only apply to wave numbers much larger than the scale
of convergence. We can see that cold dark matter (CDM)
power spectra are at the limit of applicability of this
approximation.

We can note that the same features apply to the Eulerian
description, except that instead of the larger-scale density
contrast the key quantity is the larger-scale velocity. Then,
it happens that CDM power spectra are fully within the
range where the velocity integral analogous to Eq. (82)
converges.

V. DISCUSSIONS

We have applied to the Lagrangian formalism a resum-
mation scheme developed in [13] within the Eulerian
description. This is based on the resummation of a certain
type of diagrams, called ‘‘principal-path diagrams’’ in
[13], that may be expected to dominate the dynamics in a
high-k limit. In the Eulerian case, these diagrams can be
explicitly computed, order by order, and resummed, as one
can recognize the exponential function in the series expan-
sion obtained in this manner. This leads to a Gaussian

decay of the form e�e2�k2�2
v=2 at high k.

It is more difficult to apply the same method to the
Lagrangian formalism, as the diagrams have a slightly
more intricate expression and one cannot identify from
the series a well-known mathematical function. However,
as shown in [16], it is possible to identify this resummation
with the solution of an effective linear dynamics. Then,
instead of computing explicitly all diagrams and next
resumming their contributions, one can directly solve for
this simpler dynamics. In this article, we have applied this
technique to the Lagrangian description. We have shown
that it is very powerful as it can be used even when no
explicit analytical solutions can be found (but one can still
solve numerically the relevant differential equations).
Moreover, even in such cases, it is possible to obtain the

exact exponents (as defined by this partial resummation) of
the late-time regime, by looking for the asymptotic modes
of the linear differential equations. Then, we have found a
late-time power-law behavior for the propagator, which
actually simply follows the linear growth e� albeit with a
renormalized amplitude slightly smaller than unity. This is
quite different from the Gaussian decay obtained in the
Eulerian case.
For comparison, let us briefly recall how this method

applies to the Eulerian case [16]. In this case, the solution
to the effective linear dynamics can be derived explicitly
and it reads as

�ðk; �Þ ¼ e��0ðkÞee�
̂EðkÞ; (90)

with


̂ EðkÞ ¼
Z

dnw
k:w

w2
�0ðwÞ; (91)

(using notations that straightforwardly extend those used
throughout the paper). For Gaussian initial conditions the
ensemble average of this expression can be easily com-
puted. It leads to the following propagator:

GEðk; �Þ ¼ e�ee
2�h
̂EðkÞ2i=2: (92)

Because of the k dependence of 
̂EðkÞ, one obtains a

Gaussian damping of the form e�e2�k2�2
v=2 at high k, with

�2
v ¼ 1=n

Rðdnw=w2ÞP0ðwÞ (n is here the number of space

dimensions). As discussed above and shown in details in
previous sections, our calculations in Lagrangian space do
not give a closed form for the propagator but allow none-
theless to describe its properties exhaustively.
Eulerian and Lagrangian calculations prove to lead to

quantitatively very different results. Whereas the decay
found for the Eulerian case exhibits a Gaussian tail with
a strong k dependence, in Lagrangian variables the propa-
gators are essentially k independent with no significant
decay at late time. After a stage of accelerated growth,
followed by a transitory slowing-down, the high-k modes
growth is indeed found to be simply slightly retarded and
still growing as e� as the linear growth rate. The situation is
the same in 2D and 3D cases. The delay is only slightly less
important for the 3D case. The independence on wave
number k in the Lagrangian case directly follows from
the fact that the kernels 
 and � of Eqs. (33) and (34)
that appear in the 2D equations of motion (32) and (39), are
homogeneous functions of their two arguments k1 and k2:
they only depend on relative angles. This also holds for the
3D dynamics, as can be checked in Eqs. (65)–(67).
Therefore, this property is not restricted to the partial
resummation associated with principal-path diagrams. In
a similar fashion, the dependence on k obtained in the
Eulerian case is due to the nonhomogeneous character of
the kernels 
 and � that appear in this framework, which
can also be seen in Eq. (91).
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As seen in the previous sections, another distinctive
feature of the Lagrangian description is the important
role played by parity symmetries. Indeed, whereas in the
Eulerian framework the two quantities of interest, the
density and the velocity divergence, are true scalars, in
the Lagrangian framework we must take into account both
curl-free and rotational parts of the displacement field (in
Lagrangian space q), as a curl-free Eulerian velocity field
does not translate into a Lagrangian curl-free displacement
field beyond second order. We have shown that keeping
track of the vorticity degrees of freedom is necessary to
obtain a well-defined propagator in the nonlinear regime.

How to reconcile these results? Although Eulerian and
Lagrangian descriptions are ultimately equivalent, the ob-
jects we have computed are clearly distinct. In the non-
linear regime, modes in Lagrangian space cannot be
directly mapped to those in Eulerian space. One should
then not be too surprised to find quantitatively different
results. What we have computed here is in essence the
leading effect of a random background on the growth of
structures, assuming scales can be well separated (e.g. that
the wavelength of the background modes are much larger
than the modes of interest). It turns out that the Eulerian
modes are sensitive to the large-scale displacement field at
leading order, whereas the Lagrangian modes are not.
These large-scale displacement fields are responsible for
the decay of the Eulerian correlators at large time separa-
tions. Indeed, the modes behave as if they were randomly
advected by the large-scale displacements [13,16].
Basically, everything happens as if small-scale structures
were moved around; and because they occupy a different
location in real space, their correlation with the initial field
decay. In Lagrangian space, modes are not affected by such
displacements (by construction, the convergence � and the
vorticity ! are not sensitive to a uniform translation, being
related to derivatives of the displacement field taken as a
function of the initial conditions). They are more directly
sensitive to the density field. Thus, as discussed in Sec. IV,
whereas the Eulerian propagator is governed by the ampli-
tude of the larger-scale velocity, the Lagrangian propagator
is governed by the amplitude of the larger-scale density.
Then, the leading effect resembles more a tidal effect.
What we have found is that modes are not disrupted by
the accumulation of those tidal effects, at this order of the
calculation, e.g. the results displayed in Figs. 4 and 5
suggest that there is no true loss of memory nor efficient
relaxation associated with the gravitational dynamics. It is
not clear then how this loss of memory—which is expected
to happen eventually in the nonlinear regime—could take
place. Whether it can be described with the help of addi-
tional diagrams [24], from terms beyond the high-k limit,
or whether we have to go beyond shell-crossing (which
breaks the analyticity of the Jacobian) to capture possible
relaxation effects, is yet unclear. Comparisons with N-
body simulation might clarify those issues.
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APPENDIX A: ALTERNATIVE EQUATIONS FOR
THE 2D DYNAMICS

Here we explore in a more details the properties of
system (47) and (48). With the change of variable D ¼
e� it yields

D2 d
2�̂

dD2
þ 7

2
D

d�̂

dD
¼ 
̂D

�
D2 d

2�̂

dD2
þ 7

2
D

d�̂

dD
þ 3

2
�̂

�

þ �̂D

�
D2 d

2!̂

dD2
þ 7

2
D
d!̂

dD
þ 3

2
!̂

�
;

(A1)

D
d!̂

dD
þ !̂ ¼ ��̂D2 d�̂

dD
þ 
̂D2 d!̂

dD
; (A2)

with the initial conditions:

D! 0: �̂ ¼ 1þ 3

7

̂D; !̂ ¼ 0: (A3)

Equation (A1) can be integrated once to give

D
d�̂

dD
þ 5

2
�̂� 5

2
¼ 
̂D

�
D

d�̂

dD
þ 3

2
�̂

�

þ �̂D

�
D
d!̂

dD
þ 3

2
!̂

�
: (A4)

Then, eliminating !̂ from Eqs. (A2)–(A4) gives the
second-order equation for �̂:

2ð1� 3
̂DÞD2 d
2�̂

dD2
þ ð7� 15
̂DÞD d�̂

dD

þ 
̂Dð1� 
̂DÞ
ð1� 
̂DÞ2 þ ð�̂DÞ2 ½12�̂� 15� ¼ 0: (A5)

We can note that for �̂ ¼ 0 the divergent part �̂ decou-
ples from the vorticity !̂ and the solution of Eq. (A1) can
be written as

�̂ðD; 
̂; 0Þ ¼ 2F1ð1; 3=2; 7=2; 
̂DÞ: (A6)

It exhibits a singularity at the point D ¼ 1=
̂ (for 
̂ > 0),
in agreement with Eq. (61), but it actually remains finite at
this point and has a well-behaved analytic continuation
beyond, as seen in Fig. 3.
Here we can note that writing the high-k resummation in

terms of the differential equations (44) and (45), and the
propagator with the integral representation (55), is a key
ingredient to obtain the asymptotic behaviors. Indeed,
computing Gðk; �Þ from its diagrammatic expansion,
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which amounts to expand the integrand in Eq. (55) over

powers of 
̂ and �̂, leads to an asymptotic series with zero

radius of convergence. For instance, for �̂ ¼ 0 we directly
obtain from Eq. (A6)

�̂ðD; 
̂; 0Þ ¼ X1
p¼0

15

ð2pþ 3Þð2pþ 5Þ 
̂
pDp; (A7)

which gives, after we average over 
̂,

h�̂ðD; 
̂; 0Þi
̂ ¼ X1
p¼0

15ð2p� 1Þ!!
ð4pþ 3Þð4pþ 5Þ ð3�

2
2Þ2pD2p: (A8)

This asymptotic series describes the early rise of Ĝ, but it
cannot give (without ambiguities) the late-time relaxation
to a constant.

This behavior emerges because of the existence of the

second degree of freedom associated with the vorticity, �̂.
To take it into account, one may look for a solution of
Eqs. (A2)–(A4) as a perturbative series over powers of D,
as in Eq. (A7). Then, computing the first few terms or
looking at simplified cases suggests that the nonzero vari-

ance of �̂ decreases somewhat the coefficients of Eq. (A8)
but they remain positive and fastly growing [it typically
modifies Eq. (A8) by changing the factor ð3�2

2Þ2p into

ð2�2
2Þ2p, because of Eq. (52)]. Thus, as expected the vor-

ticity slows down the rise of the propagator Gðk; �Þ but its
magnitude is not sufficient to make it decay with respect to
the linear propagator at early times. Nevertheless, it is
necessary to take into account the vorticity to obtain the
late-time behavior of Gðk; �Þ.
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