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We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singu-

larities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the

weak deflection limit we study analytically the position of the two weak field images, the corresponding

signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there

are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical

curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens

angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for

the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away

from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation,

we compute numerically the position of the relativistic images and their separability for weakly naked

singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr

black holes as well as Janis-Newman-Winicour naked singularities.
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I. INTRODUCTION

If a naked singularity exists or not, is probably one of the
most important unsolved problems in general relativity.
According to the standpoint of the cosmic censorship con-
jecture, the spacetime singularities of gravitational col-
lapse are hidden within black holes [1,2] and therefore
cannot be observed. In this work, we model the massive,
dark, radio object Sgr A* in the center of the Galaxy as
a rotating generalization of the Janis-Newman-Winicour
(JNW) naked singularity. Using the predictions of the
gravitational lensing caused by the spacetime under con-
sideration, we obtain the physical parameters of the rotat-
ing gravitational lens, which uncover the rotating naked
singularities concealed in the black holes.

In the past decades the gravitational lensing attracted
more and more the interest of the science community. As a
result the theory has developed in two frames. The former
examines the problem for the distribution of a photon on a
radial distance much larger than the gravitational radius of
the lens. In this case the light ray has a small deflection
angle; therefore we are speaking about the gravitational
lensing in the weak deflection limit. Then two weak field
images on each side of the lens appear. The latter dis-
cusses the photons winding many times closely around
the lens before reaching the observer. This process is also
known as gravitational lensing in the strong deflection
limit. In this case, an infinite series of highly demagnified
relativistic images on both sides of the lens shadow should
appear.

It is known that the lensing observables might be suc-
cessfully described by perturbation theory applied to gen-
eral relativity. The theory of gravitational lensing in the
weak deflection limit approximation has been developed
for a Schwarzschild point-mass lens [3,4]. The rotational
case has been studied for the first time up to a post-
Newtonian expansion by Epstein and Shapiro [5] and after
that by Richter and Matzner [6]. Later on, Bray [7] inves-
tigated the multi-imaging aspect of Kerr black hole (BH)
lensing resolving the equations of motion for a light ray up
to and including second order terms in scaled black hole
mass m=rmin and angular momentum a=rmin, where rmin is
the distance of closest approach. Gravitational lensing by
rotating stars has been considered by Glinstein [8] and later
on by Sereno [9]. The weak field Reissner-Nordstrom
black hole lensing has been done by Sereno [10]. The
gravitational-magnetic effect in the propagation of light
in the field of self-gravitating bodies has been investigated
by Kopeikin et al. [11]. Asada and Kasai [12] have found
that, up to the first order in the gravitational constant G, a
ro-
tating lens is not distinguishable from a not-rotating one.
They have found that because of the global translation of
the center of lens mass the Kerr lens is observationally
equivalent to the Schwarzschild one at linear order in mass
m and the specific lens angular momentum a. Later on,
Asada, Kasai, and Yamamoto have shown [13] that the
nonlinear coupling breaks the degeneracy so that the rota-
tional effect becomes in principle separable for multiple
images or a single source. After that, Sereno [14] consid-
ered gravitational lensing in metric theories of gravity in
post-post-Newtonian order with gravitomagnetic field. Re-
cently, Keeton and Petters [15] have developed a general
formalism for lensing by spherically symmetric lenses up
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to post-post-Newtonian order. Sereno and De Luca [16]
extended their approach to the case of Kerr black hole.
Finally, Werner and Petters [17] applied a simpler method
based on the analysis by Asada, Kasai, and Yamamoto to
derive image positions and magnifications up to post-
Newtonian order. Using the degeneracy in the case of
Kerr black hole lensing in the weak deflection limit, they
presented lensing observables for the two weak field im-
ages in post-Newtonian terms with scaled lens angular
momentum a=m.

In 1959 Darwin [18] examined photon trajectories pass-
ing in the vicinity of black hole and showed the larger
deflection, which a light ray suffers without falling into the
event horizon. This effect was considered again in [19].
After that Frittelli, Kling, and Newman [20] as well as
Virbhadra and Ellis [21] developed this idea and worked
out a definition of an exact lens equation. Later Virbhadra,
Nirasimha, and Chitre [22] as well as Virbhadra and Ellis
[23] studied numerically the lensing by static and spheri-
cally symmetric naked singularity and showed the influ-
ence of the scalar field to the lensing observables. In
contrast to this, Perlick [24] considered lensing in a spheri-
cally symmetric and static spacetime, based on the light-
like geodesic equation without approximations. Bozza [25]
developed an analytical technique based on the larger
deflection of the light ray and showed that the deflection
angle diverges logarithmically as light rays approach the
photon sphere of a Schwarzschild black hole. The expec-
tation that the relativistic images should test the gravity in
the strong deflection limit has lead to application of this
method to various metrics from the general relativity,
string, and alternative theories [26–30]. Kerr black hole
lensing was also studied analytically in Ref. [31] and
extended to Kerr-Sen black hole lensing [32]. The time
delay calculation for higher order images has been done by
Bozza and Mancini [33] and Bozza and Sereno [34]. After
that Vibhadra and Keeton [35] have examined numerically
the time delay and magnification centroid due to gravita-
tional lensing by black holes and naked singularities. Out
of the assumption for very distant source position, Bozza
and Scarpetta [36] have considered black hole gravitational
lensing with arbitrary source distances with respect to the
black hole. Recently, Bozza [37] has made a profound nu-
merical investigation of the optical caustics in gravitational
lensing by Kerr black hole for an observer at infinity.

In our desire to bridge the gap between the weak and the
strong deflection limit analysis of gravitational lensing, we
can refer to Amore and Arceo [38]. They present a method
which can be used to obtain arbitrarily accurate analytical
expressions for the deflection angle of light propagating in
a given metric. An effective analytical formalism for the
Schwarzschild deflection angle which describes with sat-
isfactory accuracy both weak and strong deflection series
has also been developed by Iyer and Petters [39].

The purpose of this paper is to consider the gravitational
lensing by rotating naked singularities and to explore how

it differs from Kerr black hole lensing. The weak gravita-
tional lensing allows us to describe the light ray trajectory,
where the closest approach distance r0 and the impact
parameter J both lie outside the gravitational radius rg ¼
2M. Besides, the strong gravitational lensing could provide
profound examination of the spacetime around different
kinds of black holes and naked singularities. Therefore,
following [17,25] in the present work we wish to study
gravitational lensing in the weak and strong deflection limit
due to a stationary, axially symmetric weakly naked sin-
gularities and to compare the results to rotating strongly
naked singularities with the aim of investigating the influ-
ence of the scalar field on the behavior of the bending
angle, on the position of the images and on their magnifi-
cation as well as on the critical curves and caustics.
The outline of this paper is as follows. The Sec. II con-

tains a description of a Kerr-like solution of the Einstein-
massless scalar field equations. In Sec. III we discuss the
full lens equation. In Sec. IV gravitational lensing in weak
deflection limit by Kerr black hole, weakly and strongly
naked singularity is investigated and the critical curves and
the caustic structure are considered. In Sec. V the deflec-
tion angle is computed numerically in the equatorial plane
and its dependence from the scalar charge and the lens
angular momentum is shown. In Sec. VI we discuss the
equatorial lensing by Kerr black hole, weakly naked sin-
gularity and marginally strongly naked singularity in the
strong deflection limit, and compute the positions of the
relativistic images and their separability. A discussion of
the results is given in Sec. VII.

II. ROTATING SINGULARITY SPACETIME

We consider a Kerr-like solution [40] to the Einstein-
massless scalar equations (Rij ¼ 8’;i’;j with ’;i

;i ¼ 0,
where Rij is the Ricci tensor and ’ is the massless scalar

field). This solution is a rotating generalization of the
Janis-Newman-Winicour (see for example [41]) solution
and is given by the line element

ds2 ¼
�
1� 2Mr

��

�
�ðdt� wd�Þ2 �

�
1� 2Mr

��

�
1��

�

�
dr2

�

þ d#2 þ sin2#d�2

�
þ 2wðdt� wd�Þd�; (1)

and the scalar field

’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
4

ln

�
1� 2Mr

��

�
; (2)

where

� ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p ; w ¼ asin2#;

� ¼ r2 þ a2cos2#; � ¼ r2 þ a2 � 2Mr

�
:

(3)
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M and q, the Arnowitt-Deser-Misner (ADM) mass and
scalar charge, are constant real parameters in this solution.
a ¼ L=M is the angular momentum of the rotating object
in units of mass. Hereafter we will not consider the mass-
less scalar field case (i.e. � ¼ 0 or q=M ¼ 1). For a ¼ 0
and q � 0 this solution reduces to the Janis-Newman-
Winicour solution, for a � 0 and q ¼ 0 to Kerr black
hole, while in the particular case a ¼ 0 and q ¼ 0 it
reconstructs the Schwarzschild solution. The above solu-
tion is in fact the Einstein-frame version of the original
Jordan-frame solution to the Brans-Dicke equations found
in [40].

In the case � ¼ 1 (q ¼ 0), when the Kerr black hole
solution is recovered, there is an event horizon with spheri-
cal topology, which is the biggest root of the equation � ¼
0 and is given by

rH ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
(4)

for jaj � M. Beyond this critical value of the spin there is
no event horizon and causality violations are present in the
whole spacetime, with the appearance of a naked singu-
larity. The ergosphere is defined as the surface on which
the Killing vector @

@t is isotropic, i.e. gtt ¼ 0. So the ergo-
sphere lies at

res ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos2#

p
: (5)

For 0<�< 1 the metric (1) describes rotating naked
singularities with mass M and angular momentum Ma.
In order to see that the solution is singular for 0<�< 1
we calculate the Ricci scalar curvature and find

R ¼ 2ð�2 � 1ÞM2

�2�5

�
1� 2Mr

��

�
��3½�ðr2 � a2cos2#Þ2

þ ðra2sin22#Þ2�: (6)

As it is seen, the scalar curvature diverges where gtt ¼ 0
which shows the presence of a curvature singularity at

rcs ¼ 1

�
½Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � �2a2cos2#

q
�; (7)

as the domain of variation of # depends on the ratio
�2a2=M2. One can show that there is at least one equatorial
null geodesic with one end on the singularity and the other
on the future null infinity; i.e. the singularity is indeed
naked. The global naked singularity nature of the static
JNW solution for 0 � � < 1 was first shown in [42] (see
also the Seifert conjecture for naked singularities [43]).

III. EQUATION OF THE GRAVITATIONAL LENS

The equation of the gravitational lens, which allows
small as well as large bending of the light ray, is [21]

tanB ¼ tan�� DLS

DOS

½tan�þ tanð ~���Þ�; (8)

where DLS and DOS are the lens-source and the observer-
source angular diameter distances, respectively. The opti-
cal axis of the gravitational lens systems connects the
origins of Cartesian angular coordinates B ¼ ðB1;B2Þ,
jBj ¼ B and � ¼ ð�1;�2Þ, j�j ¼ � of the source plane
and the lens plane, respectively. Given a source positionB,
the values of �, that solve this equation, give the position
of the observed images measured from the optical axis.
The projections of the deflection angles into the lens plane
are denoted by ~� ¼ ð~�1; ~�2Þ, j ~�j ¼ ~�. For the impact
parameter of the light ray we have J ¼ DOL sin�, where
DOL is the observer-lens angular diameter distance. For
small angles, Eq. (8) reduces to the well-known in the
literature weak field lens equation, as well as to the strong
deflection limit lens equation [44]. For spherically sym-
metric lenses we refer to [45], where the most general lens
equation is constructed.
As we shall see below, we will solve the lens equation in

the weak deflection limit in the cases of presence and
absence of the photon sphere in order to explore the dif-
ferences in the gravitational lensing by various naked
singularities. Moreover, since the strong deflection limit
allows a simple analytical investigation of the gravitational
lensing properties, after calculating ~� for the rotating
singularity spacetime in this approximation, we will solve
the lens equation in order to derive the relativistic images
when a photon sphere exists [44].

IV. GRAVITATIONAL LENSING BY ROTATING
NAKED SINGULARITIES IN THE WEAK

DEFLECTION LIMIT

A. Image positions

In this part we will study the gravitational lensing by
rotating naked singularities in the weak field regime up to
the post-Newtonian order. Wewill distribute the source and
the observer in such a way that the source is situated
beyond the lens plane and is close to the optical axis. In
our inspiration to solve the lens equation, we choose the
scaling commonly used in the astrophysical lensing litera-
ture, namely, the weak deflection angular Einstein ring of
Schwarzschild black hole. Following the scheme exposed
in [46] up to the post-Newtonian limit, we express the
angular coordinates of the source and the image in the
following way:

B ¼ �E� ¼ �Eð�ð0Þ þ �ð1Þ�þOð�2ÞÞ; (9)

� ¼ �E� ¼ �Eð�ð0Þ þ �ð1Þ�þOð�2ÞÞ; (10)

where the angular radii of the Einstein ring and the expan-
sion parameter, respectively, are

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MDLS

DOLDOS

s
; � ¼ �EDOS

4DLS

: (11)
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We assume that the parameter � is small enough. We have
based the expansion scheme on the Schwarzschild Einstein
ring angle since the Schwarzschild black hole solution can
be obtained as a particular case from rotating naked singu-
larity solution (1) for scalar charge q ¼ 0 and lens angular
momentum a ¼ 0.

The Janis-Newman-Winicour deflection angle is

~� ¼ 4M

J
þ 4M2

J2

�
1� 1

16�2

�
�þO

�
M3

J3

�
: (12)

In terms of different physical quantities the deflection
angle (12) was first derived in [22,35].

Then up to the post-Newtonian order the weak field
Janis-Newman-Winicour lens equation gets the form

� ¼ �� 1

�
�

�
1� 1

16�2

�
�

�

�2
: (13)

Hence, we can advance to the image positions. Let
us orient lens coordinates such that the axis �2 is along
the projected lens angular momentum and the axis �1 is
perpendicular to the optical axis. Following [12,13,16],
one can show that up to the post-Newtonian order lensing
by rotating naked singularities under consideration is
equivalent to lensing by Janis-Newman-Winicour lens
but shifted by

	� ¼ �Eð	�1; 0Þ ¼ �Eð	�1ð1Þ�; 0Þ;

	�1ð1Þ ¼ a sin#O

M
:

(14)

Then we can use the lens equation (13) to describe the
image properties [46]. Because of this shift (14) the image
position �1 of a direct photon (a > 0) translates to position
�1 � 	�1. By analogy the retrograde image position (a <
0) is �1 þ 	�1. Based on this, allowing positive and nega-
tive angular momenta via the substitution �1 � �1 � 	�1
for the two kinds of photons, one can compute the deflec-
tion angle ~� ¼ ~�ð�Þ again and rewrite the lens equation.
Thereby, the rotating singularity lens equations are

�1 ¼ �1 � �1 � 	�1
ð�1 � 	�1Þ2 þ �22

�
�
1� 1

16�2

�
�

�1 � 	�1

ðð�1 � 	�1Þ2 þ �22Þ3=2
�þOð�2Þ;

�2 ¼ �2 � �2
ð�1 � 	�1Þ2 þ �22

�
�
1� 1

16�2

�
�

�2

ðð�1 � 	�1Þ2 þ �22Þ3=2
�þOð�2Þ:

(15)

At Newtonian order [� ¼ 0, 	�1 ¼ Oð�Þ] Eq. (15) re-
duces to the Janis-Newman-Winicour lens equation (13).
The solution can be expanded in a series by �,

�1 ¼ �1ð0Þ þ �1ð1Þ�þOð�2Þ;
�2 ¼ �2ð0Þ þ �2ð1Þ�þOð�2Þ: (16)

The square of the solution of Newtonian order lens equa-
tion is �2ð0Þ ¼ �21ð0Þ þ �22ð0Þ, where

��1ð0Þ ¼
�1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�2

s �
;

��2ð0Þ ¼
�2

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�2

s �
:

(17)

The square of the scaled angular source position is �2 ¼
�2

1 þ �2
2. After deriving the post-Newtonian order correc-

tion of the lens equations (15), we find the second terms of
the image positions:

�1ð1Þ ¼
�
1� 1

16�2

�
��1ð0Þ

ð1þ �2ð0ÞÞ�ð0Þ

þ ð1� �21ð0Þ þ �22ð0ÞÞ	�1ð1Þ
1� �4ð0Þ

;

�2ð1Þ ¼
�
1� 1

16�2

�
��2ð0Þ

ð1þ �2ð0ÞÞ�ð0Þ
� 2�1ð0Þ�2ð0Þ	�1ð1Þ

1� �4ð0Þ
;

(18)

which reduce to the correction terms expected for rotat-
ing lenses [46] in the case of Kerr black hole (� ¼ 1).
The post-Newtonian corrections of the positive and nega-
tive parity images can be found since we already know
��1ð0Þ, �

�
2ð0Þ.

B. Critical curves and caustics

The critical curves separate the regions in the lens plane
where the Jacobian determinant ~J of the lens map has
opposite sign. For a point lens at these curves, the magni-
fication factor of the images 
 diverges. Formally looking,
the critical curves are the solution to the equation:

~J ¼ @�1

@�1

@�2

@�2
� @�1

@�2

@�2

@�1
¼ 0: (19)

According to the lens equations (15) and (19) up to the
post-Newtonian order the Jacobian is

~J ¼ 1� 1

�4ð0Þ
þ

��
1� 1

16�2

� �ð1� �2ð0ÞÞ2
ð1þ �2ð0ÞÞ�5ð0Þ

� 4�1ð0Þ	�1ð1Þ
ð1þ �2ð0ÞÞ�4ð0Þ

�
�þOð�2Þ; (20)

which reduces to the correction terms expected for the Kerr
black hole [16] up to post-Newtonian order.
We look for a parametric solution up to the post-

Newtonian order in the form
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�cr1 ¼ �cr
1

�E
¼ cos’f1þ 	�Eð’Þ�þOð�2Þg;

�cr2 ¼ �cr
2

�E
¼ sin’f1þ 	�Eð’Þ�þOð�2Þg;

(21)

where ’ is an angle in a polar coordinate system taken
in the lens plane with origin at the lens. In that system

tan’ ¼ tan�1= tan�2. The first term of (21) gives the
Schwarzschild black hole Einstein ring with radius �E.
Solving Eq. (19) we obtain the deviation coefficient

	�E ¼
�
1� 1

16�2

�
�

2
þ a sin#O

M
cos’þOð�2Þ: (22)

For Kerr black hole lensing (� ¼ 1), (22) reduces to the

FIG. 1 (color online). Critical curves in the plane ftan�1; tan�2g for an observer-lens position DOL ¼ 7:62 kpc and lens-source
position DLS ¼ 4:85� 10�5 pc. The Schwarzschild (a ¼ 0M and q ¼ 0M) and the extremal Kerr black hole lens (a ¼ 1M and
q ¼ 0M) as well as the Janis-Newman-Winicour (a ¼ 0M and q ¼ 6M, 12M) and the rotating naked singularity lenses (a ¼ 2M, 4M
and q ¼ 6M, 12M) are considered. The observer is polar #O ¼ 0 and equatorial #O ¼ �=2. Axis lengths are in units of the tangent of
the Einstein angle, �E ’ 157 
arcsec.
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result of Sereno and Luca [16]. Then, for an observer set in
position #O and fixed values of a and �, a critical curve in
the ftan�1; tan�2g plane exists. The positions of the equa-
torial cross sections of the critical curves are shifted with
respect to the static case by

tan	�cr ’ a sin#O

DOL

þOð�2Þ: (23)

In order to calculate the caustics we have to find the
corresponding source positions. Through lens equa-
tions (15) and (21), up to Oð�3Þ order, the caustics are
pointlike and are positioned at

ftanBcau
1 ; tanBcau

2 g ’
�
a sin#O

DOL

þOð�3Þ; 0
�
: (24)

Our results for the critical curves shift (23) and the caustic
positions (24) coincide with those found in [16] up to the
post-Newtonian order.
Critical curves are plotted in Fig. 1 for some values of

the scalar charge, the lens angular momentum, and the
observer’s positions. We model the massive dark object
Sgr A* in the center of our Galaxy as a Kerr black hole and
as a rotating generalization of the JNW naked singularities.
We assume a point source and set the lens between the

FIG. 2 (color online). The magnification of the positive parity image 
þ and the value of that of the negative parity image 
� as a
function of the scaled angular coordinate �1 of the source for different scaled angular coordinate �2. The Schwarzschild black hole
(solid line) and the Janis-Newman-Winicour naked singularity lenses (dashed line; dash-dotted line) are considered. The observer is
equatorial #O ¼ �=2 at position DOL ¼ 7:62 kpc and the source is at position DLS ¼ 4:85� 10�5 pc. The abscissa is in units of
Einstein angle, �E ’ 157 
arcsec.
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source and the observer assuming that Sgr A* is located at
a distance of DOL ¼ 7:62 kpc from Earth. Studying the
influence of the lens parameters over the critical curves, as
an illustration we made all graphics for a source positioned
at a distance of DLS ¼ 4:85� 10�5 pc from Sgr A*, so
that it is outside the accretion disk. According to [47], the
lens has a mass M ¼ 3:61� 106M�. In this situation the
expansion parameter � ¼ 0:029 846 679.

C. Magnification

In the approximation of geometrical optics gravitational
lensing causes a change in the cross section of a bundle of
light rays, such that the surface brightness is conserved.
Therefore, the ratio between the angular area element of
the image in the celestial sky, d�1d�2, and the angular
area element of the source in absence of the lens, dB1dB2,
gives the signed magnification,


 ¼ ~J�1 ¼
�
@�1

@�1

@�2

@�2
� @�1

@�2

@�2

@�1

��1
: (25)

Using the lens equations (15) we obtain


 ¼ �4ð0Þ
�4ð0Þ � 1

�
��

1� 1

16�2

� ��3ð0Þ
ð1þ �2ð0ÞÞ3

� 4�4ð0Þ�1ð0Þ	�1ð1Þ
ð1� �2ð0ÞÞ2ð1þ �2ð0ÞÞ3

�
�þOð�2Þ; (26)

which describes the signed magnification for both images.
Equation (26) reduces to the signed magnification of the
Kerr black hole images [46], when � ¼ 1.
The individual magnifications of the positive and the

negative parity image can be calculated using (17) and (26)
up to post-Newtonian order. They are respectively


þ ¼ ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4

p Þ4
ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4
p Þ4 � 16

� 1

ð4þ �2Þ3=2

�
��

1� 1

16�2

�
�� 4�1	�1ð1Þ

�3

�
�þOð�2Þ;


� ¼ ð�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4

p Þ4
ð�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4
p Þ4 � 16

� 1

ð4þ �2Þ3=2

�
��

1� 1

16�2

�
�þ 4�1	�1ð1Þ

�3

�
�þOð�2Þ:

(27)

FIG. 3 (color online). The magnification of the negative parity image 
� as a function of the scaled angular coordinate �1 of the
source for different scaled angular coordinate �2. The Janis-Newman-Winicour naked singularity (solid line) and the rotating naked
singularity lenses (dashed line; dash-dotted line) are considered. The observer is equatorial #O ¼ �=2 at positionDOL ¼ 7:62 kpc and
the source is at position DLS ¼ 4:85� 10�5 pc. The abscissa is in units of Einstein angle, �E ’ 157 
arcsec.
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Then the sum of the signed magnification for the rotating
singularity lens, which has the form


þ þ
� ¼ 1� 2�

ð4þ �2Þ3=2
�
1� 1

16�2

�
�þOð�2Þ;

(28)

does not depend on the specific angular momentum a
and is equivalent to the result for Janis-Newman-
Winicour lens to post-Newtonian order. At order Oð�Þ,
the deviations from the magnification invariant for the
Janis-Newman-Winicour lens and the lens under consid-
eration are the same.

In the vicinity of the caustics (or the critical curves), the
power series (26) does not work properly and describes the
image magnifications exactly for scaled source angular
positions �1 � �cau

1 (or �1 � �cr1 ). Therefore, in order to
disentangle the influence of the scalar charge and the lens
angular momentum over the signed magnifications, in
Figs. 2–4 we have plotted the reciprocal values of the
Jacobian corresponding to 
þ and 
� according to the
current estimates for the massive dark object in the center
of our Galaxy [47] as we assume that the observer is
equatorial.

In the static case of the Janis-Newman-Winicour lens for
all values of the scaled source angular positions �1 and �2,
the magnification of the positive parity
þ and the value of
that of the negative parity image 
� increases with the
increase of the scalar charge. Let us set the source on the
equatorial plane (i.e. �2 ¼ 0) and move it to the optical
axis. Then two weak field images will appear, one on each
side of the optical axis. The signed image magnifications
start to grow from 
þ ¼ 1 and 
� ¼ 0 for the positive
and negative parity images, respectively, when the absolute
value of the source scaled angular coordinate is at infin-
ity. In the case when the source is on the optical axis
[ð�1; �2Þ ¼ ð0; 0Þ], the signed magnifications diverge and
infinitely bright Einstein rings appear. Removing the
source from the optical axis (i.e. �2 � 0) and keeping
�1 ¼ 0, we will see two weak field images situated, re-
spectively, on each side of the optical axis in the directions
perpendicular to the equatorial plane. Their magnifications
decrease with the increase of �2 and approach the limit
values 
þ ¼ 1 and 
� ¼ 0 for the positive and negative
parity image, respectively, when the source scaled angular
coordinate goes to infinity. In all of these cases the pres-
ence of the scalar charge leads to an increment of the
signed magnifications.

FIG. 4 (color online). The magnification of the positive parity 
þ as a function of the scaled angular coordinate �1 of the source for
different scaled angular coordinate �2. The Janis-Newman-Winicour naked singularity (solid line) and the rotating naked singularity
lenses (dashed line; dash-dotted line) are considered. The observer is equatorial #O ¼ �=2 at position DOL ¼ 7:62 kpc and the source
is at position DLS ¼ 4:85� 10�5 pc. The abscissa is in units of Einstein angle, �E ’ 157 
arcsec.

GALIN N. GYULCHEVAND STOYTCHO S. YAZADJIEV PHYSICAL REVIEW D 78, 083004 (2008)

083004-8



When the lens is rotating and the source is equatorial
(�2 ¼ 0), the angular momentum of the lens decreases the
signed magnification of the negative parity image and
increases the value of that of the positive parity image
for every value of �1 and scalar charge q. For the source
position�1 <�cau

1 , the negative parity image is outside the

critical curve while the positive parity image is inside.
Moving the source from infinity to the left-hand side of
the optical axis, the negative parity image magnification

starts to grow from
� ¼ 1while the positive parity image
magnification starts to decrease from 
þ ¼ 0. Passing
through the optical axis the source reaches the pointlike
caustic ð�cau

1 ; 0Þ ¼ ða=ð�EDOLÞ þOð�3Þ; 0Þ, then the value
of the signed image magnifications diverges and infinitely
bright critical curves appear. Drawing back the equatorial
source from the left-hand side of the caustic point the
negative signed magnification increases, while the positive
signed magnification decreases with the increase of �1

FIG. 5 (color online). The total magnification 
tot as a function of the scaled angular coordinate �1 of the source for different scaled
angular coordinate �2. The Schwarzschild (a ¼ 0M and q ¼ 0M) and the extremal Kerr black hole lens (a ¼ 1M and q ¼ 0M) as
well as the Janis-Newman-Winicour (a ¼ 0M and q ¼ 12M, 24M) and the rotating naked singularity lenses (a ¼ 1M and q ¼ 12M,
24M) are considered. The observer is equatorial #O ¼ �=2 at position DOL ¼ 7:62 kpc and the source is at position DLS ¼
4:85� 10�5 pc. The abscissa is in units of Einstein angle, �E ’ 157 
arcsec.
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and approaches respectively 
� ¼ 0 and 
þ ¼ 1 when
�1 ! 1. When we remove the source from the equatorial
plane for every�2 and�1 < 0, the lens angular momentum
leads to an increase in the negative parity magnification
and to a decrease in the positive parity magnification in
comparison to the magnification of the static case. When
�1 > 0 the negative parity magnification decreases, while
the positive parity magnification increases. The signed
magnifications coincide for a source in the point ð0; �2Þ
where the static signed magnifications have a maximum.
When �2 � 0 nonequatorial motion of the source leads to
occurrence of the positive parity image outside the critical
curve and to rising of the negative parity image inside the
critical curve. For fixed value of scaled angular coordinate
�1 and lens angular momentum a as well as for all values
of �2, the values of the positive and the negative parity
image magnifications increase with the increase of the
scalar charge q.

D. Total magnification and centroid

When the twoweak field images are not resolved and are
packed together, the main observables become the total
magnification and magnification-weighted centroid posi-
tion. Taking into account that the image parities give
for the absolute magnifications j
þj ¼ 
þ and j
�j ¼
�
�, then the total absolute magnification for the rotating
singularities spacetime is


tot ¼ j
þj þ j
�j

¼ 2þ �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p þ 8�1

�3ð4þ �2Þ3=2
a sin#O

M
�þOð�2Þ;

(29)

and up to terms Oð�2Þ does not differ from the result for
Kerr lensing [46]. When the observer is on the rotational

axis or in the particular case of the circularly symmetric
lens (a ¼ 0), the term Oð�Þ vanishes.
The magnification centroid position is defined by [48]

� cent ¼ �þj
þj þ ��j
�j
j
þj þ j
�j : (30)

Using (17), (18), and (27) we obtain the same expressions
as those for Kerr black hole lensing up to post-Newtonian
order [46]:

�cent
1 ¼ �E

�ð3þ �2Þ�1

2þ �2
þ ð�2

1 � �2
2 � 2Þ

ð2þ �2Þ2
a sin#O

M
�

þOð�2Þ
�
;

�cent
2 ¼ �E

�ð3þ �2Þ�2

2þ �2
þ 2�1�2

ð2þ �2Þ2
a sin#O

M
�

þOð�2Þ
�
: (31)

For the case a ¼ 0 or #O ¼ 0, the magnification centroid
for the rotating singularity spacetime coincides with the
result by Keeton and Petters [49].
Since the total magnification is the difference of the

reciprocal values of the Jacobi determinant related to the
positive and the negative parity images, we have plotted it
in Fig. 5 as a function of the source scaled angular coor-
dinates �1 and �2 for different values of the lens angular
momentum and the scalar charge. The magnification cen-
troid is plotted also in Figs. 6 and 7. 
tot has a similar
behavior as the positive parity magnification, with the
difference that for fixed a the total magnification increases
for �1 > 0 and decreases for �1 < 0 with the increase of
the scalar charge. For the equatorial source (i.e. �2 ¼ 0)
the magnification centroid �cent ¼ �cent

1 grows with an
increase of �1. The magnification centroid�cent

1 decreases
more than the static case when the lens angular momentum
grows as the decrease is biggest in the vicinity of �1 ¼ 0

FIG. 6 (color online). The magnification centroid components�cent
1 and�cent

2 as a function of the scaled angular coordinate �1 of the
source for different scaled angular coordinate �2. The Schwarzschild black hole (solid line) and the extremal Kerr black hole (dashed
line) as well as the Kerr naked singularity lenses (dash-dotted line) lens are considered. The observer is equatorial #O ¼ �=2 at
position DOL ¼ 7:62 kpc and the source is at position DLS ¼ 4:85� 10�5 pc. The abscissa is in units of Einstein angle, �E ’
157 
arcsec. �cent

1 and �cent
2 are expressed in arcseconds.
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and insignificant for the bigger values of �1. When the
source drifts away from the equatorial plane (i.e. �2 � 0)
the dependence of�cent

1 on a decreases for bigger values of
�2. The second magnification centroid coordinate �cent

2

increases when �2 grows and has a maximum for �1 ¼ 0.
As the lens angular momentum a increases, �2 first de-
creases for the source on the left-hand side of the optical
axis and then increases for a source on the opposite side of
the axis. When the source is at the point ð0; �2Þ the mag-
nification centroid curves �2 coincide with those for the
static case. The magnification centroid �cent is plotted in
Fig. 7 over the image plane ftan�1; tan�2g. For different
values of the lens parameters a and q and also for the
scaled angular coordinates of the source �1 and �2 the
graphics resemble the behavior of �cent

2 .

V. EXACT NUMERICAL INVESTIGATION
OF THE DEFLECTION ANGLE

Let us impose the condition � ¼ �=2 and set the light
ray on the equatorial plane. In this case, if we substitute
x ¼ r=2M as a new radial coordinate and measure all
distances in units 2M ¼ 1, we obtain the reduced metric
in the form

ds2 ¼ AðxÞdt2 � BðxÞdx2 � CðxÞd�2 þDðxÞdtd�:

(32)

The metric components are

AðxÞ ¼
�
1� 1

�x

�
�
; (33)

BðxÞ ¼ x2

½x2 þ a2 � x
��
�
1� 1

�x

�
1��

; (34)

CðxÞ ¼ a2
�
2�

�
1� 1

�x

�
�
�
þ x2

�
1� 1

�x

�
1��

; (35)

DðxÞ ¼ 2a

�
1�

�
1� 1

�x

�
�
�
: (36)

The relation between the impact parameter (the perpen-
dicular distance from the lens to the tangent to the null
geodesic of the source) and the distance of closest ap-
proach of the light ray x0 can be obtained from the con-
servation of the angular momentum of the scattering
process, and it is given by

Jðx0Þ ¼
að1� 1

�x0
Þ� � aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ a2 � x0

�

q
ð1� 1

�x0
Þ� : (37)

The sign in front of the square root is chosen to be posi-
tive when the light ray is winding counterclockwise. For
a > 0 the black hole rotates counterclockwise, while for
a < 0 the black hole and the photons rotate in converse
directions.
A starting point of the strong field limit expansion is

the photon sphere, which has been defined by Virbhadra
and Ellis [21] (and has subsequently been investigated by
Claudel, Virbhadra, and Ellis [50]) as a timelike hypersur-
face fx ¼ xpsg on which the light bending angle becomes

unboundedly large when the closest distance of approach
x0 tends to xps. The photon sphere equation for a stationary,

axially symmetric metric is

A0C
0
0 � A0

0C0 þ JðA0
0D0 � A0D

0
0Þ ¼ 0; (38)

for which we require to admit at least one positive solution.
For the Kerr-like metric the photon sphere equation takes
the form

4�3x4 � 8ð1þ�Þ�2x3 þ�ð1þ 2�Þð5þ 2�Þx2
�½ð1þ 2�Þ2 þ 8a2�3�xþ 4a2�2ð1þ�Þ ¼ 0: (39)

The biggest real root of this equation external to the outer
Kerr black hole horizon or to the curvature singularity de-
fines the radius of the photon sphere xps ¼ rps=2M. The

radius of the photon sphere is computed numerically and is
plotted in Fig. 8 for different values of the scalar charge q.
The analytical investigation of the fourth order algebraic
equation (39) shows the kind of the naked singularity.
Depending on whether or not the naked singularity is cov-
ered within a photon sphere, Virbhadra and Ellis [23] clas-
sify the naked singularity as weakly naked (WNS) (those
contained within at least one photon sphere) and strongly
naked (SNS) (those not contained within any photon
sphere). In the particular case of � ¼ 1 when the Kerr
black hole is recovered, the photon sphere exists for angu-
lar momentum�1 � 2a � 1. In the case of rotating naked
singularities when 1=2< �< 1, the photon sphere exists
for angular momentum�1< a � am, while for 0< � �
1=2 the naked singularity allows a photon sphere for
angular momentum �1< a< 0. Here am is defined by

FIG. 7 (color online). The magnification centroid �cent is
plotted in the plane ftan�1; tan�2g for source scaled angular
coordinate �1 2 ½�2; 2� and different scaled angular coordinate
�2. The Schwarzschild black hole (solid line) and the extremal
Kerr black hole (dashed line) as well as the Kerr naked singu-
larity (dash-dotted line) lenses are considered. The observer is
equatorial #O ¼ �=2 at positionDOL ¼ 7:62 kpc and the source
is at position DLS ¼ 4:85� 10�5 pc. Axis lengths are in units of
tangent of Einstein angle, �E ’ 157 
arcsec.
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am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð9�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45�2 � 192�6 þ 144�4 þ 3
p Þ

q
12�2

: (40)

An intermediate position takes the static case � ¼ 1=2 and
a ¼ 0, when the so-called marginally strongly naked sin-
gularity is realized. In this case there is no photon sphere,
but the gravitational lensing leads to the appearing of
relativistic images. We do not show the numerical inves-
tigation to this situation, which is qualitatively similar to
the static WNS.
The Kerr black hole and WNS photon spheres de-

crease with the increase in jaj and have a similar behav-
ior for different scalar charges. In the case of Kerr black
hole (q ¼ 0M) when a reaches its extremal value, the
photon sphere coincides with the black hole horizon.
With the increase of the scalar charge q, the photon sphere
xps and the curvature singularity xcs increase as xps > xcs
for a � am when the singularities are weakly naked and
meet at q2 ¼ 3M2 and a ¼ 0. Moreover, for the bigger
values of the scalar charge the photon sphere xps � xcs in

the static case a ¼ 0 and therefore in this case the singu-
larity is strongly naked. The different values of the upper
limit of WNS angular momentum, for which a photon
sphere exists, and the limits of the photon sphere corre-
sponding to them can be seen on Fig. 8 and are also written
in Table I.
The bending angle of a light ray in a stationary, axially

symmetric spacetime, described by the line element (32) is
given by

~�ðx0Þ ¼ �fðx0Þ � �; �fðx0Þ ¼ 2
Z 1

x0

d�

dx
dx;

d�

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
BjA0j

p ðDþ 2JAÞffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ACþD2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðA0Þ½A0 � AC0

C þ J
C ðAD0 � A0DÞ�

q ;
(41)

where �fðx0Þ is the total azimuthal angle. With the de-
crease of the distance of closest approach x0 the deflection
angle increases, and for a certain value of x0 the deflection
angle becomes 2�, so that the light makes a complete loop
around the lens. Let x0 decrease further, then the light ray
will wind several times around the lens before reaching the
observer and finally when x0 becomes equal to the radius of
the photon sphere xps the deflection angle will become
unboundedly large and the photon will be captured by
the lens object. Let us discuss the behavior of the bending

angle ~� for Kerr black hole, WNS and SNS. One has
limx0!1 ~�ðx0Þ ¼ 0 for all values of � and the angular
momentum a, limx0!xps ~�ðx0Þ ¼ 1 for � ¼ 1,�1 � 2a �
1 (Kerr black hole) and 0<� � 1=2, �1< a< 0 and
1=2< �< 1, �1< a � am (weakly naked singularities)
and limx0!xcs ~�ðx0Þ ¼ ~�min for 0<� � 1=2, 0 � a <1
and 1=2< �< 1, am < a <1 (strongly naked singular-
ities). ~�min is the minimum of the deflection angle for SNS,
which is a function of the angular momentum a and the
scalar charge q and is given by

FIG. 8 (color online). The radius of the photon sphere as a
function of the lens angular momentum a for a scalar charge q ¼
0M (solid line) to a scalar charge q ¼ 2:2M (short, dash-dotted
line) by q ¼ 0:2M. The scalar charge q is expressed in terms of
the ADM mass M.

TABLE I. Upper limit of the lens angular momentum still holding up a photon sphere.

Kerr BH WNS

q=M 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

� 1 0.981 0.928 0.857 0.781 0.707 0.640 0.581 0.530 0.486 0.447 0.414

amax=2M 0.5 0.294 0.238 0.187 0.139 0.097 0.060 0.029 0.007 ! 0 ! 0 ! 0
lima!amax

xps 0.5 1.068 1.154 1.256 1.371 1.496 1.627 1.764 1.905 2.059 2.236 2.417
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lim
x0!xcs

~�ðx0Þ ¼ ��þ 2a�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2�2

p ln

��������1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2�2

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2�2
p ��������; 4a2�2 < 1; (42)

¼ ��þ 4a�; 4a2�2 ¼ 1; (43)

¼ ��þ 2a�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2�2 � 1

p �
�� 2 arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2�2 � 1

p �
; 4a2�2 > 1: (44)

In Fig. 9 we plot the behavior of the bending angle ~�
against the impact parameter J (scaled in terms of 2M)
for different values of the scalar charges q and the lens
angular momentum a. In the top left, top middle, and
middle left figures we plot the curves, respectively, for

a ¼ �0:5 and a scalar charge q ¼ 0M� 1:6M (WNS)
with a step q ¼ 0:4M, a ¼ 0 and a scalar charge q ¼
0M� 1:6M (WNS) with a step q ¼ 0:4M and for a ¼
�0:5 and a scalar charge q ¼ 2:2M� 3:8M (WNS) with a
step q ¼ 0:4M. It is obvious that they have similar quali-

FIG. 9 (color online). Deflection angle ~�ðJÞ as the function of impact parameter J for angular momentum a ¼ �0:5 (left column),
a ¼ 0 (central column) and a ¼ 0:5 (right column) and for different scalar charges q ¼ 0M� 1:6M by charge q ¼ 0:4M (first row),
q ¼ 2:2M� 3:8M by charge q ¼ 0:4M (second row) and q ¼ 4M� 12M by charge q ¼ 2:0M (third row). The scalar charge q is
expressed in terms of the ADM mass M.

GRAVITATIONAL LENSING BY ROTATING NAKED . . . PHYSICAL REVIEW D 78, 083004 (2008)

083004-13



tative behavior for the different scalar charges; the bending
angle strictly increases with the decreases of the impact
parameter and becomes unboundedly large as the impact
parameter approaches the respective value it has on the
photon spheres (i.e. J ! Jps). In Fig. 9 (bottom left) we
plot the curves for a ¼ �0:5 and scalar charge q ¼ 4M�
12M (WNS) with a step q ¼ 2:0M; for all curves except
the uppermost (q ¼ 4M) the deflection angle changes its
sign as it first increases up to its maximum with a decrease
in the impact parameter, after that becomes null with the
further decrease of the impact parameter and finally, after
reaching its minimum ~� becomes unboundedly large as
J ! Jps. In Fig. 9 (top right) we plot curves for positive
angular momentum a ¼ 0:5 and a scalar charge q ¼ 0M�
1:6M with a step q ¼ 0:4M and without the uppermost
(WNS) these are for SNS. ~� first increases with the de-
crease of the impact parameter and further decreases to the
minimum value ~�min as the impact parameter approaches
the impact parameter for their respective xcs (i.e. J ! Jcs).
As there are no photon spheres for SNS, the deflection
angle for these cases is never unboundedly large. Therefore
the gravitational lensing by SNS would not give rise to
relativistic images. In Fig. 9 (center, middle right, bottom
middle, bottom right) we plot the deflection angle for some
other values of the angular momentum a and the scalar
charge q for SNS. The maximum of ~� translates at bigger
impact parameters and decreases with the increase of the
angular momentum a or of the scalar charge q.

VI. GRAVITATIONAL LENSING BY KERR
BLACK HOLE AND ROTATING WEAKLY
NAKED SINGULARITIES IN STRONG

DEFLECTION LIMIT

In this section we study the gravitational lensing by Kerr
black hole and weakly naked singularities which have a
photon sphere. We find the logarithmic behavior of the
deflection angle around the photon sphere in the spacetime
under consideration and discuss the lensing observables.

A. Deflection angle in the strong deflection limit

Considering equatorial light ray trajectory, we can find
the behavior of the deflection angle very close to the
photon sphere following the evaluation technique for the
integral (41) developed by Bozza [25]. The divergent in-
tegral is first split into two parts, one of which �D

f ðx0Þ
contains the divergence and the other �R

f ðx0Þ is regular.

Both pieces are expanded around x0 ¼ xps and with suffi-

cient accuracy are approximated with the leading terms. At
first, we express the integrand of (41) as a function of the
two new variables y and z which are defined by

y ¼ AðxÞ; (45)

z ¼ y� y0
1� y0

; (46)

where y0 ¼ A0.
The whole azimuthal angle then takes the form

�fðx0Þ ¼
Z 1

0
Rðz; x0Þfðz; x0Þdz; (47)

where the functions are defined as follows:

Rðz; x0Þ ¼ 2
ð1� y0Þ

A0

ffiffiffiffiffiffiffiffiffiffiffiffi
BjA0j

p ðDþ 2JAÞffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ACþD2

p ; (48)

fðz; x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðA0Þ½A0 � AC0

C þ J
C ðAD0 � A0DÞ�

q : (49)

All functions in (48) and (49) without the subscript ‘‘0’’ are
evaluated at x ¼ A�1½ð1� y0Þzþ y0�. The function
Rðz; x0Þ is regular for all values of z and x0 but fðz; x0Þ
diverges when z ! 0, i.e. as one approaches the photon
sphere. The integral (47) is then separated in two parts:

�fðx0Þ ¼ �D
f ðx0Þ þ�R

f ðx0Þ; (50)

where

�D
f ðx0Þ ¼

Z 1

0
Rð0; xpsÞf0ðz; x0Þ (51)

contains the divergence and

�R
f ðx0Þ ¼

Z 1

0
gðz; x0Þdz (52)

is a regular integral in z and x0. To find the order of di-
vergence of the integrand, we expand the argument of the
square root of fðz; x0Þ to second order in z and get the
function f0ðz; x0Þ:

f0ðz; x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ �z2

p ; (53)

where

� ¼ sgnðA0Þ ð1� y0Þ
A0
0C0

½A0C
0
0 � A0

0C0 þ JðA0
0D0 � A0D

0
0Þ�;
(54)

� ¼ sgnðA0Þ ð1� y0Þ2
2C2

0A
03
0

f2C0C
0
0A

02
0 þ ðC0C

00
0 � 2C02

0 Þy0A0
0

� C0C
0
0y0A

00 þ J½A0C0ðA00
0D

0
0 � A0

0D
00
0 Þ

þ 2A0
0C

0
0ðA0D

0
0 � A0

0D0Þ�g: (55)

The function gðz; x0Þ is the difference between the origi-
nal integrand and the divergent integrand

gðz; x0Þ ¼ Rðz; x0Þfðz; x0Þ � Rð0; xpsÞf0ðz; x0Þ: (56)
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When x0 becomes equal to xps, the equation of photon

sphere holds. Then, the coefficient � vanishes and the
leading term of the divergence in f0 is z

�1. Therefore the
integral diverges logarithmically. The coefficient � takes
the form

�ps ¼ sgnðApsÞ
ð1� ApsÞ2
2CpsA

0
ps

2
½ApsC

00
ps � A00

psCps

þ JðA00
psDps � ApsD

00
psÞ�: (57)

Bozza [25] obtained the analytical expression for the de-
flection angle close to the divergence expanding the two
parts of the original integral (41) around x0 ¼ xps and

approximating the leading terms. The result is

�ð�Þ ¼ � �a ln

�
�DOL

Jps
� 1

�
þ �bþOðJ � JpsÞ; (58)

where the coefficients �a, �b, and Jps depend on the met-
ric function evaluated numerically at xps. � ¼ J=DOL is

the angular separation between the lens and the image.
The strong deflection limit coefficients of the expansion
(58) are

JðxpsÞ ¼
að1� 1

�xps
Þ� � aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ps þ a2 � xps

�

q
ð1� 1

�xps
Þ� ; (59)

�a ¼ Rð0; xpsÞ
2

ffiffiffiffiffiffiffi
�ps

p ; (60)

�b ¼ ��þ bR þ �a ln

�
2�ps

yps

�
; (61)

where bR is the regular integral �R
f ðx0Þ evaluated at the

point xps as follows

bR ¼
Z 1

0
gðz; xpsÞdz: (62)

For the same metrics the coefficient bR cannot be ob-
tained analytically. In such cases it must be evaluated
numerically.
Figure 10 shows the strong deflection limit coefficients

as functions of a. The minimum impact parameter has a
similar behavior for different scalar charges and decreases
with the increase of jaj. �a grows, while �b decreases for
1=2 � � < 1 and all values of angular momentum. In the
cases 0<�< 1=2 the coefficients �a and �b grow with the
increase of �1< a< 0 as in the vicinity of the upper
limit the angular momentum �a vanishes and �b becomes
��. Both coefficients diverge in the vicinity of the upper
limit of the Kerr black hole and WNS angular momentum,
where the strong deflection limit approximation fails. The
divergence of the coefficients of the expansion means that
the bending angle in the strong deflection limit (58) no

FIG. 10 (color online). Strong deflection limit coefficients as a function of the lens angular momentum for scalar charge q ¼ 0M
(solid line) to charge q ¼ 2:2M (short, dash-dotted line) by scalar charge q ¼ 0:2M.
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longer represents a reliable description in the regime of
high a.

B. Observables in the strong deflection limit

As already was marked the lens equation (8) can be
reduced to a lens equation describing the large deflection
angle of the light ray when the image measured by the
observer and the source angles are small with respect to the
optical axis. Taking the general lens geometry into consid-
eration, and using the strong deflection limit lens equation,

� ¼ DOL þDLS

DLS

�� �ð�Þmod 2�; (63)

�ð�Þ ¼ � �a ln

�
�DOL

Jps
� 1

�
þ �b; (64)

one can show [44] that the angular separation between the
lens and the nth relativistic image is

��n ’ ��0n

�
1� Jpse

�
n ðDOL þDLSÞ
�aDOLDLS

�
; (65)

where

� �0n ¼
Jps
DOL

ð1þ e�n Þ; e�n ¼ eð �b�j�j�2�nÞ= �a: (66)

Here � is the angular separation between the source and
the optical axis, as seen from the lens. According to the
past oriented light ray which starts from the observer and
finishes at the source, the resulting relativistic images �þn
stand on the eastern side of the black hole for direct
photons (a > 0) and are described by positive �. Ret-
rograde photons (a < 0) have relativistic images ��n on
the western side of the black hole and are described by
negative values of �. n is the number of loops done by the
photon around the lens object. For each n, we have an
image on each side of the lens, according to the chosen
sign. We have expressed the position of the relativistic
images in terms of the coefficients �a, �b, and Jps. If we

manage to determine these coefficients from the observa-
tion of the relativistic images, we can obtain information
about the parameters of the lens object stored in them.
To obtain the coefficients �a, �b, we need to separate at

least the outermost image from all the others. If we con-
sider the simplest situation where only the outermost im-
age �1 is resolved as a single image, while all the
remaining ones are packed together at �1, our observables
will thus be [25]

s ¼ �1 � �1 ¼ �1e
�b= �a�2�= �a; (67)

which represents the separation between the first image
and the others. The innermost relativistic images and the
separability are computed numerically for different values
of the scalar charge q=M and the lens angular momentum

FIG. 11 (color online). The innermost relativistic image �in ¼
�njn!1 � �1 for scalar charge q ¼ 0M (solid line) to charge
q ¼ 2:2M (short, dash-dotted line) by scalar charge q ¼ 0:2M.

FIG. 12 (color online). The separation between the outermost relativistic image �1 and all the remaining ones packed together at �1
for scalar charge from q ¼ 1:2M (short, dotted line) to q ¼ 2:2M (short, dash-dotted line) (on the left) and from scalar charge q ¼ 0M
(solid line) to q ¼ 1:0M (short, dashed line) (on the right).
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and are plotted in Figs. 11 and 12 for the massive compact
object in the center of our Galaxy [47].

The gap between the outermost relativistic image and
the remaining ones packed together at the inner image
position increases with the increase of jaj for all values
of the scalar charge. It is obvious that in the vicinity at a ¼
0, where the SDL approximation works sufficiently, the
WNS separability s exceeds the Kerr black hole separabil-
ity. While for bigger positive angular momentum the de-
pendence is the same, for negative angular momentum a
value �a exists after which the image separability is lower in
comparison to the Kerr black hole separability. The
graphics are truncated in the vicinity of the separable point
where the SDL approximation fails.

Because of the nonexistence of separation of the varia-
bles in the rotating singularity spacetime, we have not
examined the magnification of the strongly demagnified
relativistic images.

VII. DISCUSSION AND CONCLUSION

In this work we discussed the features of light propaga-
tion in the spacetime of a stationary, axially symmetric
black hole and naked singularities. Modeling the massive
compact object in the center of the galaxy as a rotating
generalization of the Janis-Newman-Winicour naked sin-
gularity, we estimated the numerical values of the deflec-
tion angle of the light ray for Kerr black hole, WNS and
SNS. Provoked by the weak deflection limit analysis, based
on the degeneracy of a rotating singularity lens and a
displaced Janis-Newman-Winicour lens we derived ana-
lytical descriptions for the two weak field images, the
critical curves, the caustic points, the signed magnifica-
tions and the total magnification, as well as the magnifica-
tion centroid up to post-Newtonian order. Moreover, in our
striving to study the gravitational lensing in the strong
deflection limit, we evaluated the strong deflection limit
coefficients of the deflection angle for the WNS, and the
lensing observables following from them. Comparing the
results to the corresponding quantities for a rotating naked
singularity and Kerr black hole, we find that there are
rotation and scalar field effects present in the behavior of
the bending angle of the light ray, as well as the lensing
observables.

The analytical results show that there are static post-
Newtonian corrections to the two weak field image posi-
tions, to the signed magnification and to their sum as well
as to the critical curves, which are a function of the scalar
charge. The shift of the critical curves as a function of the
lens angular momentum is found, and it is shown that they
decrease slightly for the weakly naked and vastly for the
strongly naked singularities with the increase of the scalar
charge. The pointlike caustics drift away from the optical
axis and do not depend on the scalar charge. In the static
case of Janis-Newman-Winicour lensing, the scalar charge

leads to an increase of the signed magnifications for arbi-
trary source position. However, when the source is equa-
torial (i.e. �2 ¼ 0), with the increase of the scalar charge
the total magnification 
tot decreases for a source on the
right-hand side of the optical axis (i.e. �1 > 0) and in-
creases when the source is on the left-hand side (i.e. �1 <
0). The nonequatorial source position leads only to an
increase of the total magnification for fixed q=M.
In the case of rotating naked singularity lensing, the

pointlike caustic �cau
1 drifts away from the optical axis

and some corrections with respect to Janis-Newman-
Winicour lensing arise. When the source is equatorial,
for every value of �1, the positive parity 
þ and negative
parity 
� magnifications increase or decrease, respec-
tively, with the increase of q with respect to the signed
magnifications in the static case. The nonequatorial source
position leads to an increase of 
þ for �1 > 0 and to
decrease of it for �1 < 0 with respect to the static case.

� has an opposite behavior with respect to 
þ. In this
case the scalar charge increases the signed magnifications
for all values of lens angular momentum a and source
positions ð�1; �2Þ. The total magnification reminds the
behavior of positive parity magnification 
þ, with the
difference that for a fixed a with the increase of the scalar
charge 
tot increases for �1 > 0 and decreases for �1 < 0.
Looking from the observer’s position the magnification
centroid �cent looks like a bell-like curve for an nonequa-
torial source and like a straight line for a equatorial source.
The lens angular momentum a leads to an increase of the
centroid for �1 > 0 and to decrease of it for �1 < 0.
Let us resume the strong deflection limit results. Be-

cause of the existence of the photon sphere in the case of
the Kerr black hole and rotating WNS, gravitational lens-
ing gives rise to a sequence of an infinite number of highly
demagnified relativistic images distributed, respectively,
on each side of the optical axis. In the case of Janis-
Newman-Winicour SNS when a ¼ 0 and q2 	 3M2, the
gravitational lensing does not give relativistic images be-
cause of the nonexistence of a photon sphere. In the rota-
tional case of WNS, the position of the relativistic images
decreases with the increase of jaj for all values of the scalar
charge and all of the images are closer to the center of the
lens in comparison to the Kerr images. For all values of
q=M, the relativistic images are closer to the optical axis
for positive a in the case of direct photons and further from
the optical axis for negative a when we consider opposite
photons. For the static case when Janis-Newman-Winicour
WNS are realized, the relativistic images are not shifted.
Therefore as seen from the side of the observer the rela-
tivistic images are shifted towards the western side, if north
is the direction of the spin. The gap between the outermost
relativistic image and the remaining ones packed together
at the inner image position increases with the increase of
jaj for all values of the scalar charge. In the vicinity at a ¼
0, where the SDL approximation works sufficiently, the
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WNS separability s exceeds the Kerr black hole separabil-
ity. While for bigger positive angular momentum the de-
pendence is the same, for negative angular momentum a
value �a exists, after which the image separability is lower
in comparison to the Kerr black hole separability.

According to the results, the gravitational lensing in the
weak and the strong deflection limit would allow us to
distinguish the Kerr black hole from rotating weakly naked
singularities. Hence, detecting the weak field or/and the
relativistic images, which might be possible in the near fu-
ture, we will be able to determine the nature of the lensing
galactic massive dark object.
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