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We develop a new method for reconstructing cluster-mass profiles and large-scale structure from the

cosmic microwave background (CMB). By analyzing the likelihood of CMB lensing, we analytically

prove that standard quadratic estimators for CMB lensing are unbiased and achieve the optimal condition

only in the limit of no lensing; they become progressively biased and suboptimal, when the lensing effect

is large, especially for clusters that can be found by ongoing Sunyaev-Zel’dovich surveys. Adopting an

alternative approach to the CMB likelihood, we construct a new maximum likelihood estimator that

utilizes delensed CMB temperature fields based on an assumed model. We analytically show that this

estimator asymptotically approaches the optimal condition as our assumed model is refined, and we

numerically show that as we iteratively apply it to CMB maps our estimator quickly converges to the true

model with a factor of 10 less number of clusters than standard quadratic estimators need. For realistic

CMB experiments, we demonstrate the applicability of the maximum likelihood estimator with tests

against numerical simulations in the presence of CMB secondary contaminants. With significant improve-

ment on the signal-to-noise ratio, our new maximum likelihood estimator can be used to measure the

cluster-mass cross-correlation functions at different redshifts, probing the evolution of dark energy.

DOI: 10.1103/PhysRevD.78.083002 PACS numbers: 98.62.Sb, 98.70.Vc, 98.80.Es

I. INTRODUCTION

As the most distant observable sources, the cosmic
microwave background (CMB) anisotropies provide a
unique channel to probe the Universe after the cosmologi-
cal recombination epoch. In particular, weak gravitational
lensing of the CMB can be used to map the matter distri-
bution in the Universe at a higher redshift than weak
lensing of faint background galaxies can ever achieve.
Recent work [1–4] has focused on measuring the lensing
signature in the CMB by large-scale structure between the
last scattering surface and the present Universe, but rela-
tively little attention has been paid to weak lensing of the
CMB by clusters of galaxies.

The abundance of massive clusters is exponentially
sensitive to the growth of the underlying matter distribu-
tion, and hence it has been recognized as a powerful probe
of the evolution of dark energy (e.g., [5]). However, the
constraining power as a cosmological probe can be realized
only if the cluster masses are accurately measured. To
achieve this goal, many cluster surveys are designed to
detect massive clusters and measure their mass using the
Sunyaev-Zel’dovich (SZ) effect, and some of the planned
surveys are already operational using the South Pole
Telescope (SPT) and the Atacama Cosmology Telescope
(ACT). Weak lensing of the CMB can be applied to the
same clusters found in the SZ surveys without additional
observations, providing independent measurements of
their mass. Furthermore, the CMB provides the highest
redshift source plane with precision measurements of its

distance, which can be combined with galaxy weak lensing
measurements of the same lensing clusters to obtain angu-
lar diameter distance ratio estimates that are independent
of the mass distribution, substantially increasing the lever-
age to constrain cosmological parameters [6].
Gravitational lensing by clusters imprints a unique sig-

nature in the CMB anisotropies. On arcminute scales, the
primordial CMB anisotropies decay exponentially due to
the photon diffusion from the baryon-photon fluid around
the recombination epoch [7], and to a good approximation
the CMB can be considered as a pure temperature gradient
on small scales. Based on this approximation, Seljak and
Zaldarriaga [8] showed that clusters create dipolelike wig-
gles in the CMB temperature by remapping the otherwise
smooth gradient field, and this unique feature can be used
to isolate the lensing effect by clusters and to reconstruct
the deflection angle, once the temperature gradient is sepa-
rately measured on large scales. Vale, Amblard, and White
[9] and Holder and Kosowsky [10] used N-body simula-
tions to model realistic lensing clusters, and they found that
the mass reconstruction for individual clusters is compro-
mised, since it is hard to measure the large-scale tempera-
ture gradient accurately and secondary anisotropies in the
CMB can partially mimic the lensing signature.
However, it has been realized that one can apply the

same technique developed for reconstructing large-scale
structure to clusters of galaxies, measuring the statistical
properties of a sample of clusters. Unlike galaxy weak
lensing, CMB anisotropies have no characteristic shape,
even statistically, from which the deviation is a measure of
the lensing effect. Gravitational lensing, however, gives
rise to a deviation of the two-point correlation function*jyoo@cfa.harvard.edu
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of the CMB temperature anisotropies from statistical iso-
tropy. The standard technique is to construct a lensing
estimator that is quadratic in observed temperature anisot-
ropies, measuring the correlation between different Fourier
modes, which is directly proportional to the lensing effect
[11]

This method is easy to implement in analyzing real data
compared to the full likelihood analysis [12], and no
separate measurement is required to obtain the large-scale
temperature gradient. However, Maturi et al. [13] showed
that standard quadratic estimators need a modification to
be an unbiased estimator in a region around massive clus-
ters. Hu, DeDeo, and Vale [14] quantitatively demonstrated
that standard quadratic estimators based on the linear
approximation ignore higher-order terms in the lensing
effect that coherently contribute to the lensing reconstruc-
tion, and hence the reconstruction is biased low when the
lensing effect is large. Furthermore, they proposed modi-
fied quadratic estimators that remove the higher-order
terms in violation of the linear approximation by low-
pass filtering observed temperature fields, and they showed
that the modified quadratic estimators recover cluster-mass
profiles with no significant bias. However, the cutoff scale
of the low-pass filter is somewhat arbitrary and it depends
on the lensing effect, which we want to measure with the
estimators.

Here we develop a new maximum likelihood estimator
for reconstructing cluster-mass profiles and large-scale
structure by analyzing the likelihood of CMB lensing.
Our approach is similar in making full use of the likelihood
information to one advocated by Hirata and Seljak [12].
While they derive an analytic expression for a maximum
likelihood estimator, it is impractical to apply to a realistic
problem, because the solution is too general and computa-
tionally expensive. However, our maximum likelihood
estimator is different from theirs and it is easy to use in
practice, because we adopt an alternative approach to
setting up the likelihood: it takes a similar form of standard
quadratic estimators and it approaches the optimal condi-
tion as it is iteratively applied to CMB maps. Furthermore,
we show that our maximum likelihood estimator can re-
construct cluster-mass profiles with a factor of 10 less
number of clusters than standard or modified quadratic
estimators need.

The rest of the paper is organized as follows. We first
derive a quadratic estimator, accounting for the telescope
beam effect in Sec. II. This consideration makes a differ-
ence compared to the usual practice in the literature, where
quadratic estimators are often applied to beam-
deconvolved CMB maps. In Sec. III we analytically
show that the quadratic estimators are unbiased and opti-
mal only when the lensing effect vanishes, and why the
modified quadratic estimators outperform the standard
quadratic estimators when the lensing effect is large.
Based on this observation, we construct a delensed tem-

perature field and derive a maximum likelihood estimator
using the delensed temperature field. We demonstrate its
applicability to realistic CMB experiments using numeri-
cal simulations in Sec. IV. We discuss the impact of the
telescope beam and instrumental noise in the delensing
process and we conclude in Sec. V.
In this paper we will only consider lensing estimators

based on CMB temperature anisotropies, since the planned
surveys are not yet sensitive to CMB polarization anisot-
ropies on arcminute scales. However, it is straightforward
to extend our formalism to lensing estimators based on
CMB polarization anisotropies. Throughout the paper we
assume a flat �CDM universe with the matter density
parameter �mh

2 ¼ 0:127, the baryon density parameter
�bh

2 ¼ 0:0222, the Hubble constant h ¼ 0:73, the spec-
tral index ns ¼ 0:95, the optical depth to the last scattering
surface � ¼ 0:09, and the primordial curvature perturba-
tion amplitude As ¼ 2:5� 10�9 (corresponding to the
matter power spectrum normalization �8 ¼ 0:75), consis-
tent with the recent cosmological parameter estimation
(e.g., [15–17]).

II. FORMALISM

Here we describe our notations for weak lensing of the
CMB and derive a quadratic estimator for CMB lensing
reconstruction.

A. Weak lensing of the CMB

Gravitational lensing deflects light rays as they propa-
gate through fluctuating gravitational fields, and the de-
flection vector dðn̂Þ at the angular position n̂ on the sky is
related to the line-of-sight projection of the gravitational

potential c as dðn̂Þ ¼ r̂�ðn̂Þ, where the projected poten-
tial is

�ðn̂Þ ¼ �2
Z D?

0
dD

D? �D

DD?

c ðDn̂; DÞ; (1)

r̂ is the derivative with respect to n̂, and D? is the comov-
ing angular diameter distance to the last scattering surface.
Here we have assumed a flat universe and c � 1. The
projected potential is further related to the convergence �

as r̂2�ðn̂Þ ¼ �2�ðn̂Þ.
Since gravitational lensing conserves the surface bright-

ness of diffuse backgrounds, the lensed temperature field
~Tðn̂Þ of the CMB is simply the intrinsic (unlensed) tem-
perature field Tðn̂Þ remapped by the deflection vector:

~Tðn̂Þ ¼ T½n̂þ r̂�ðn̂Þ�: (2)

We will use notation with (or without) a tilde to represent
lensed (or unlensed) quantities. Note that we mainly work
in the Rayleigh-Jeans tail and express the surface bright-
ness in terms of temperature.
In a sufficiently small patch of the sky, it significantly

simplifies the manipulations to work in Fourier space [see
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[18–20] for all-sky formalism]. In Fourier space the lensed
temperature is

~T l ¼
Z

d2n̂ ~Tðn̂Þe�il�n̂

¼ Tl �
Z d2l0

ð2�Þ2 ½ðl� l0Þ � l0�Tl0�l�l0 þ � � � ; (3)

where we Taylor expanded ~Tl to the first order in �l. We
kept the same notation for Fourier components, while the
functional dependence is indicated as a subscript ([e.g.,
Tðn̂Þ and Tl are Fourier counterparts]. The rms deflection

angle hd � di1=2 is a few arcminutes and the deflection
power peaks at a few degree scale, comparable to the
angular sizes of clusters. However, the large-scale deflec-
tion field is coherent over the scales of the temperature
fluctuations, resulting in an unobservable overall shift of
the temperature field [21], and the linear approximation
remains valid. In Sec. III we discuss the limitation of this
approximation when the lensing effect is large in a region
around massive clusters.

Since the intrinsic CMB is Gaussian and isotropic, the
statistical properties of the temperature field can be com-
pletely described by the power spectrum Cl:

hTl1T
�
l2
i ¼ ð2�Þ2�ðl1 � l2ÞCl1 ; (4)

where the asterisk represents complex conjugation and � is
the Dirac delta function. Analogously, we define the pro-

jected potential power spectrum C��
l . Thus the deflection

and the convergence power spectra are Cdd
l ¼ l2C��

l and

C��
l ¼ l4C��

l =4, respectively. Note that C��
l can always

be defined in this way, though it may be an incomplete
description of the statistical properties of the projected
potential when �l is non-Gaussian. Finally, the power
spectrum of the lensed temperature field is

~C l ¼ ½1� l2R�Cl þ
Z d2l0

ð2�Þ2 ½ðl� l0Þ � l0�2Cl�l0C
��
l0 ;

(5)

where R � ð1=4�ÞR d lnll4C��
l is half of the rms deflec-

tion angle [18,22].
In practice, the observed temperature field has two addi-

tional contributions: detector noise independent of the
signal, and a telescope beam convolving the signals from
different patches of the sky. We assume that the detector
noise is white, so that the noise power spectrum is constant:

CN
l � �2

T ¼ �2
pix

4�fsky
Npix

; (6)

where �pix is the rms error in each pixel of the detector in

units of �K, fsky is the fraction of the survey area on the

sky, and Npix is the total number of detector pixels [23].

Convolution is simply a multiplication in Fourier space,
and the beam factor for a simple Gaussian beam we con-

sider is Bl ¼ exp½� 1
2 l

2�2
b�. The beam width �b is related

to the full width at half maximum (FWHM) as �b ¼
�FWHM=

ffiffiffiffiffiffiffiffiffiffi
8 ln2

p
. The observed temperature field and its

power spectrum are then

~T obs
l ¼ ~Tle

�ð1=2Þl2�2
b þ TN

l ; (7)

~C obs
l ¼ ~Cle

�l2�2
b þ CN

l ; (8)

, respectively. In reality, one needs to consider other con-
tributions to ~Tobs, such as residual foregrounds, point radio
sources, and CMB secondary anisotropies. We will only
consider secondary contributions in Sec. IVC.

B. Quadratic estimator

Here we consider a convergence estimator �̂ðn̂Þ that is
quadratic in the observed temperature field, accounting for
the telescope beam and detector noise.1 We require that the
estimator be unbiased when averaged over an ensemble of
CMB maps h�̂ðn̂Þi ¼ �ðn̂Þ. With these conditions, the
estimator takes the general form in Fourier space

�̂ L ¼ NL

2

Z d2l1
ð2�Þ2 Fðl1; l2Þ

~Tobs
l1

~Tobs
l2

; (9)

where l2 ¼ L�l1 and NL is a normalization coefficient,
which only depends on L ¼ jLj. The functional form of
Fðl1; l2Þ can be obtained by minimizing the variance of �̂L

and imposing the normalization condition

Fðl1; l2Þ ¼
½L � l1Cl1 þL � l2Cl2�

2 ~Cobs
l1

~Cobs
l2

e�ð1=2Þl21�2
be�ð1=2Þl22�2

b ;

(10)

and the normalization coefficient is

1

NL

¼ 1

L2

Z d2l1
ð2�Þ2

½L � l1Cl1 þL � l2Cl2�2
2 ~Cobs

l1
~Cobs
l2

e�l2
1
�2
be�l2

2
�2
b :

(11)

Finally, the variance of the estimator is

h�̂L�̂
�
L0 i ¼ ð2�Þ2�ðL�L0ÞðC��

L þ N��
L Þ; (12)

where N��
L ¼ L2NL=4 is the noise power spectrum of �̂L.

One can think of C��
L =N��

L as a signal-to-noise ratio, and
the reconstruction becomes difficult at the angular scale L,
where C��

L ’ N��
L . Given experimental specifications, the

noise power spectrum N��
L , as a function of the intrinsic

CMB power spectrum CL, becomes smallest, when there

1We will use quantities with a hat to represent estimators of the
quantities without a hat; e.g., a convergence estimator is denoted
as �̂ and a true convergence field is denoted as �. However, this
notational convention should not be confused with that used for
temperature fields: T, ~T, ~Tobs, and T̂ represent the intrinsic
(unlensed), the lensed [Eq. (2)], the observed [Eq. (7)], and the
delensed [Eq. (27)] temperature fields, respectively.
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exists substantial power in CL at the scale of interest, with
its shape deviating from the scale invariance (L2CL ¼
constant) [24].

Our estimator recovers the general form of the standard
quadratic estimators as �b ! 0, and NL corresponds to the

noise power spectrum of a deflection estimator d̂L ¼
2L�̂L=L

2 used in the literature [11].
The estimator can be decomposed as twoWiener-filtered

temperature functions in real space, which essentially cor-
relates the gradient of the lensed temperature field with the
unlensed temperature field to isolate the lensing effect,

G ðn̂Þ ¼
Z d2l

ð2�Þ2 il
~Tobs
l

Cl

~Cobs
l

e�ð1=2Þl2�2
b
þil�n̂ (13)

Wðn̂Þ ¼
Z d2l

ð2�Þ2
~Tobs
l

1
~Cobs
l

e�ð1=2Þl2�2
b
þil�n̂; (14)

and the convergence estimator can be expressed in terms of
Gðn̂Þ and Wðn̂Þ as

�̂ L ¼ �NL

2
iL �

Z
d2n̂Gðn̂ÞWðn̂Þe�iL�n̂: (15)

This approach of using the twoWiener-filtered functions is

more convenient for computing �̂L by using fast Fourier
transform (FFT) routines than by directly computing
Eq. (9). Furthermore, it is more physically intuitive than
the general derivation, though the latter has clear advantage
in its transparency and understanding the uniqueness of the
functional form Fðl1; l2Þ. A modified quadratic estimator
can be constructed by removing the signals in Eq. (13) at
l � lcut, while Eq. (14) remains unchanged.
To better understand how quadratic estimators operate,

we Fourier transform and rearrange Eq. (15) as

1

2
r̂ � ½Gðn̂ÞWðn̂Þ� ¼

Z d2L

ð2�Þ2
��̂L

NL

eiL�n̂

¼
Z

d2m̂Hðm̂� n̂Þ�̂ðm̂Þ: (16)

The divergence of the two Wiener-Filtered functions is a
convolution of the convergence estimate �̂ðn̂Þ and the filter

Hðn̂Þ ¼
Z d2L

ð2�Þ2
�1

NL

eiL�n̂: (17)

Figure 1 plots the filter Hð�Þ as a function of separation
� ¼ jn̂j for experiments with �pix ¼ 5 and 10 �K, to

which we apply quadratic estimators in Sec. IV. The filter

FIG. 1. Convolution filter Hð�Þ as a function of separation � ¼ jn̂j for CMB experiments with �pix ¼ 5 and 10 �K in Sec. IV. The
insets show details of Hð�Þ at the center (left) and its tail (right).
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peaks at the center and its width is ’ 30, roughly set by the
scale that the intrinsic CMB and detector noise power
spectra become comparable. While the filter is highly
oscillating at its tail, it is negligible at � � 100 due to the
large weight near the center. A factor of 2 change in �pix

has little impact on the width of the filter, because the
crossing scale is already at the CMB damping tail.

III. MAXIMUM LIKELIHOOD ESTIMATOR

In this section, we analyze the likelihood of CMB lens-
ing by singular isothermal clusters. We first derive a qua-
dratic estimator for singular isothermal clusters and
compare the estimator to the optimal estimator from the
likelihood. With the simple singular isothermal model, our
analysis will be carried out analytically, showing that
(i) the standard quadratic estimators are unbiased and
optimal in the limit of no lensing, (ii) they progressively
become biased and suboptimal when the lensing effect
increases, and (iii) why the modified quadratic estimators
perform better than the standard quadratic estimators.
Finally, we develop a unbiased maximum likelihood esti-
mator to reconstruct cluster-mass profiles as well as large-
scale structure. We demonstrate its applicability to CMB
experiments with tests against numerical simulations using
more realistic cluster models in Sec. IV.

A. Quadratic estimator for a singular isothermal
cluster

A singular isothermal cluster has a density profile 	ðrÞ /
r�2 and its enclosed mass increases with r, which requires
truncation at some radius to be a viable model for real
clusters. However, this model has advantage in its simplic-
ity: its properties are described by one parameter, Einstein
radius

�E ¼ 4��2 D? �DL

D?

; (18)

where� is one-dimensional velocity dispersion of a cluster
and DL is the comoving angular diameter distance to the
lensing cluster. CMB lensing has a well-defined single
plane of the source redshift, and the comoving angular
diameter distance to the last scattering surface D? ¼
14:12 Gpc is now measured with less than 1% uncertainty
[17]. The convergence is �ðn̂Þ ¼ �E=2�, and the deflection
vector is dðn̂Þ ¼ ��En̂ given the angular separation � ¼
jn̂j from the origin in a cluster centric coordinate. When a
virial radius Rvir is defined as the radius inside which the
mean density is 200 times the cosmic mean matter density,
a singular isothermal cluster of mass M ¼ 1014h�1M�
within the virial radius at zL ¼ 1 has an Einstein radius
�E ¼ 800:0 and a velocity dispersion � ¼ 2:0� 10�3ð¼
610 km s�1Þ, and they scale as �E / M2=3 and � / M1=3.

A quadratic estimator �̂QEE for singular isothermal clus-
ters can be readily derived using the method described in

Sec. II B, but here we take an idealized approach for the
purpose of comparison, where we assume �pix ¼ �b ¼ 0.

Under the condition that the estimator is unbiased h�̂QEE i ¼
�E and it has the minimum variance, the quadratic estima-
tor is

�̂ QE
E ¼ 1

F

Z d2l1
ð2�Þ2

Z d2l2
ð2�Þ2

~Tl1
~Tl2

~Cl1
~Cl2

� �ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ
jl1 þ l2j3

; (19)

with the normalization coefficient

F ¼
Z d2l1

ð2�Þ2
Z d2l2

ð2�Þ2
2�2

~Cl1
~Cl2

�
�ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ

jl1 þ l2j3
�
2
: (20)

The variance of the estimator is hð�̂QEE � �EÞð�̂QEE � �EÞi ¼
1=F . Here we Taylor expanded ~Tl and kept terms only to

the first order in �E in deriving �̂QEE .

B. Relation to the optimal estimator

The likelihood function Pð ~Tj�mE Þ simply represents the
probability that a singular isothermal model with �mE can
have the lensed temperature field ~Tðn̂Þ. Since the intrinsic
CMB follows a Gaussian distribution and gravitational
lensing only remaps the intrinsic CMB, the distribution
of ~Tðn̂Þ is also Gaussian and its statistical properties are
fully described by the covariance matrix of ~Tðn̂Þ

~Cðn̂; n̂0Þ ¼ h ~Tðn̂Þ ~Tðn̂0Þi ¼
Z d2l

ð2�Þ2
~Cle

il�ðn̂�n̂0Þ: (21)

For convenience, we take a negative logarithm of Pð ~Tj�mE Þ
and call it likelihood:

L ð ~Tj�mE Þ � � lnPð ~Tj�mE Þ
¼ 1

2
~Tðn̂Þ ~C�1ðn̂; n̂0j�mE Þ ~Tðn̂0Þ þ 1

2 ln det ~Cð�mE Þ;
(22)

where the summation over n̂ and n̂0 is implicitly assumed
and hereafter we will suppress the angular dependence for
simplicity. In general, the likelihood is a functional with its
argument of a scalar field, such as �ðn̂Þ or �ðn̂Þ. However,
in our case it reduces to a function with its argument of a
scalar �mE , substantially simplifying the manipulation.
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We take a derivative of L with respect to �mE :

@L
@�mE

¼ � 1

2
~T ~C�1 @ ~C

@�mE
~C�1 ~T

¼ �
Z d2l1

ð2�Þ2
Z d2l2

ð2�Þ2
~Tl1

~Tl2

~Cl1
~Cl2

� �ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ
jl1 þ l2j3

; (23)

where we computed the derivative to the first order in �mE .
Since gravitational lensing only redistributes the intrinsic
CMB, the last term (log determinant) in Eq. (22) is inde-
pendent of �mE and hence the derivative with respect to �mE
vanishes in Eq. (23). However, in the presence of nonwhite
instrumental noise, and/or other secondary contaminants,
the derivative acquires a nonzero value but it is in general
negligible compared to the quadratic term in Eq. (23). We
will neglect this effect in the remainder of this paper. In the
presence of significant contaminants from secondaries, the
assumption that the likelihood function is Gaussian be-
comes invalid before the log determinant term becomes
non-negligible.

With the derivative of L, we can compute the Fisher
information matrix

F ¼
�
@2L
@�m2

E

�
¼

�
@L
@�mE

@L
@�mE

�
; (24)

where for the second equality we used the normalization

condition of the likelihood function 1 ¼ R
d ~TPð ~Tj�mE Þ ¼R

d ~Te�L. Within the Gaussian approximation, F can be

evaluated at any value of �mE . Note thatF is identical to the
normalization coefficient in Eq. (20).

In statistical parameter estimation, there exists a power-
ful theorem, known as the Cramér-Rao inequality, that
error bars in a parameter estimation have a definite lower

bound �ð�mE Þ � F�1=2 set by the Fisher matrix. Moreover,
this theorem provides a necessary and sufficient condition
for an estimator to saturate the Cramér-Rao inequality, i.e.,

to be an optimal estimator �̂
opt
E [25],

@L
@�mE

¼ F ð�mE � �̂
opt
E Þ: (25)

Now it is apparent that only in the limit of no lensing (the
true Einstein radius �E ¼ �mE ¼ 0) does the quadratic esti-

mator �̂QEE become an optimal estimator �̂
opt
E with the

smallest variance attainable from the data. Conversely,

�̂QEE becomes progressively biased and suboptimal as the
lensing effect increases. This can be also understood by the
validity of the linear approximation: since the quadratic
estimator is constructed to be unbiased and to minimize the
variance when ~Tl is expanded to the linear order in�l, it is
natural to expect that this condition breaks down when
higher-order terms in �l become dominant over the linear

order term. The modified quadratic estimator, on the other
hand, removes the angular modes of the signals at l � lcut
by explicitly setting the integrand zero in Eq. (19), where
the linear approximation breaks down, and this process
helps suppress the contributions from the higher-order
terms in �l because the higher-order terms are related to
multiple integrals over the modes that are suppressed most.
Precisely for this reason could the modified quadratic
estimators be more robust than the standard quadratic
estimators even when the lensing effect is large.
However, the modified quadratic estimator requires a

rather arbitrary choice of the cutoff scale lcut, which de-
pends on the lensing effect, though it may be possible to
calibrate against simulations [14]. Furthermore, the re-
moval of the lensing signals at l � lcut inevitably results
in a lower signal-to-noise ratio, making the reconstruction
noisier. We discuss this issue with numerical simulations in
Sec. IVB.

C. Maximum likelihood estimator

Given the Gaussian probability distribution of the CMB,
the likelihood retains all the information of the observed
data. Even when there exists no optimal estimator, one can
always find an estimator, if not analytically, that maximizes

the likelihood: the maximum likelihood estimator �̂ML
E is

the solution of

@L
@�mE

���������mE¼�̂ML
E

¼ 0: (26)

However, this equation is highly nonlinear in general and
requires approximations to be solved even numerically.
Equations (25) and (26) show that an optimal estimator is
always the maximum likelihood estimator. However, note
that while the converse is not true in general, the maximum
likelihood estimator asymptotically approaches to the op-
timal condition.
Having understood that the quadratic estimator becomes

an optimal (and maximum likelihood) estimator in the
limit of no lensing in Sec. III B, we present an alternative
approach to modeling the likelihood and derive a new
maximum likelihood estimator for singular isothermal
clusters. We then generalize this approach to clusters
with arbitrary mass distributions.
Consider a model with �mE and its deflection field

dmðn̂Þ ¼ ��mE n̂. We construct a delensed temperature field

T̂ðn̂Þ by delensing the observed ~Tðn̂Þ with dmðn̂Þ, and T̂ðn̂Þ
is related to the intrinsic temperature field Tðn̂Þ as
T̂ðn̂Þ � ~Tðn̂� dmÞ ¼ Tðn̂� dm þ dÞ ¼ T½ð1þ�Þn̂�;

(27)

with � ¼ �mE � �E. Now we can write the likelihood in

terms of the delensed temperature field T̂ðn̂Þ
L ðT̂j�mE Þ ¼ 1

2T̂ð�mE ÞC�1T̂ð�mE Þ þ 1
2 ln detC; (28)
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where we emphasized the dependence of T̂ðn̂Þ on �mE , and
C is the covariance matrix of Tðn̂Þ. Taking a derivative of
L with respect to �mE gives

@L
@�mE

¼ 1

2

�
@T̂

@�mE
C�1T̂ þ T̂C�1 @T̂

@�mE

�

¼ �
Z d2l1

ð2�Þ2
Z d2l2

ð2�Þ2
Tl1Tl2

Cl1Cl2

� �ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ
jl1 þ l2j3

: (29)

The second equality is obtained by evaluating the deriva-
tive at � ¼ 0. Assuming that our initial model with �?E is a
good approximation to the true model with �E (�? ¼ �?E �
�E ’ 0), the likelihood can be expanded around �?

L ¼ L? þ
�
@L
@�mE

�
?
ð�� �?Þ þ 1

2

�
@2L
@�m2

E

�
?
ð���?Þ2

þOð�3Þ; (30)

and we can use the standard Newton-Raphson method to
solve Eq. (26) and obtain a maximum likelihood estimator

�̂ML
E :

�ð�̂ML
E Þ � �? ¼ �̂ML

E � �?E ¼ �
�
@L
@�mE

�
?

	�
@2L
@2�m2

E

�
?
:

(31)

It is important to note that the validity of our solution for

�̂ML
E is independent of the linear approximation, but the

convergence of �̂ML
E depends on the goodness of �?E to �E.

Equation (31) still involves computationally intensive
evaluations of the second derivative, or the curvature ma-

trix. We further simplify �̂ML
E by replacing the curvature

matrix with its ensemble average, Fisher matrix

F̂ ¼
Z d2l1

ð2�Þ2
Z d2l2

ð2�Þ2
2�2

Cl1Cl2

�
�ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ

jl1 þ l2j3
�
2
; (32)

and by evaluating the derivatives at �? ¼ 0. Finally, our
new maximum likelihood estimator is

�̂ML
E ¼ �?E þ

1

F̂

Z d2l1
ð2�Þ2

Z d2l2
ð2�Þ2

T̂l1 T̂l2

Cl1Cl2

� �ðl1Cl1 þ l2Cl2Þ � ðl1 þ l2Þ
jl1 þ l2j3

: (33)

This equation is readily recognizable as the standard qua-

dratic estimator in Eq. (19), except ~Cl and ~Tl are replaced

with Cl and T̂l. The resemblance should not be surprising,
and in hindsight one could have expected this outcome
given the result in Sec. III B: the quadratic estimator be-
comes optimal when the lensing effect is vanishingly

small; as we delens ~Tðn̂Þ well enough that T̂ðn̂Þ is close

to Tðn̂Þ, the residual lensing effect in T̂ðn̂Þ is substantially
reduced and therefore the maximum likelihood estimator
takes the form of the quadratic estimator, returning dimin-

ishing change of the second term in Eq. (33), i.e., �̂ML
E ’

�?E ’ �E.
We want to emphasize that this new estimator in the

form of quadratic estimators is derived by iteratively solv-
ing for the maximum likelihood in Eq. (26) and updating
the initial model �?E as in the standard Newton-Raphson
method; i.e., it is a maximum likelihood estimator and is
independent of the linear approximation, to which the
validity of the standard quadratic estimator is limited.
One may be concerned about replacing the curvature ma-
trix with the Fisher matrix in Eq. (33) and obtaining a

solution quadratic in T̂l instead of a solution rational in T̂l

(quadratic in T̂l both in the numerator and in the denomi-
nator). However, both procedures guarantee that the cor-
rect solution of Eq. (26) is iteratively found reaching the
same peak of the likelihood, while the error estimation of
parameters is approximated by using the Fisher matrix,
rather than the full curvature matrix. In Sec. IV we dem-
onstrate that this is a good approximation and the initial
model converges quickly to the true model. Given the
nomenclature of the existing quadratic estimators, now
let us call our new maximum likelihood estimator an
improved quadratic estimator.2

In practice we can use the standard quadratic estimators
to obtain an initial model and then proceed with our
improved quadratic estimator to refine the solution, even
when the lensing effect is large. In general, the reconstruc-
tion of cluster-mass profiles is too noisy to provide a good
initial model. However, we can adopt an initial model for
clusters from other observations (e.g., galaxy weak lensing
and x-ray measurement) or theoretical expectations [e.g.,
Navarro-Frenk-White (NFW) profiles [26]]. As opposed to
the modified quadratic estimators, there is no arbitrary
choice of lcut in our method.
The toy model developed here can be readily general-

ized and our improved quadratic estimator can be used to
reconstruct mass profiles of realistic clusters and large-
scale structure. However, in the presence of the telescope
beam and detector noise, the delensing process becomes
nonoptimal because it does not commute with the beam
smoothing. In the absence of detector noise, one can de-
convolve the beam factor, delens the temperature field, and
convolve the beam again, which can solve the problem of
noncommutativity.

2However, note that since our new estimator takes the result of
the previous iteration as an initial model, another iteration makes
use of T̂ðn̂Þ that is constructed by using the initial model, and this
initial model is also a function of T̂ðn̂Þ in the previous iteration,
which makes the estimator a rational function of temperature,
instead of a quadratic function. Therefore, it is technically
incorrect to call it a quadratic estimator.
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However, in the presence of detector noise, the beam-
deconvolved noise can produce unwanted power on all
scales when it is delensed due to the nonwhite power below
the beam scale. One can in principle filter out or remove
these small scales before delensing to mitigate the problem
[14], which however introduces additional ad hoc scale to
the problem. The impact of telescope beam and detector
noise is small in practice for surveys like the SPT (�T ’
6 �K-arcmin) and the ACT (�T ’ 10 �K-arcmin) as we
numerically demonstrate in Sec. IV. We explicitly show in
the appendix that the delensing process suppresses the
beam effect by a factor of the average magnification by
clusters, since it corresponds to a mapping from the image
plane to the source plane. Nonwhite instrumental noise and
boundary effect of detectors may affect the delensing
process. However, compared to the survey area, the lensing
signals are limited to a relatively small region around
clusters where none of those effects is expected to be
significant.

IV. RECONSTRUCTING CLUSTER-MASS
PROFILES

Here we use numerical simulations of the CMB and
cluster lensing potential to demonstrate the applicability
of our improved quadratic estimator to CMB experiments.
First, we adopt a more realistic model for massive clusters
and investigate the dependence of our improved quadratic
estimator on assumed initial models in Sec. IVA. Then we
reconstruct cluster-mass profiles using the standard, modi-
fied, and improved quadratic estimators, and we compare
their performance in Sec. IVB. Finally, we discuss the
effects of contaminants and investigate the robustness of
our improved quadratic estimators in the presence of the
SZ effects.

A. Improved quadratic estimator

A singular isothermal model used in Sec. III is useful in
developing an analytic solution of the likelihood approach.
However, it is rather an academic model than a realistic
model for massive clusters. Recent numerical simulations
show that there exists a universal mass profile for dark
matter halos, NFW profiles [26]

	ðrÞ ¼ 	s

r=rsð1þ r=rsÞ2
: (34)

The scale radius rs is described by the concentration
parameter c ¼ Rvir=rs, and the normalization coefficient
	s is related to the mass of clusters M ¼ 4�r3s	s½lnð1þ
cÞ � c=ð1þ cÞ�. We now use NFW profiles to model mas-
sive clusters.

The convergence field �ðn̂Þ of NFW profiles can be
obtained by the ratio of the projected mass density �ðrÞ
to the critical surface density �crit of the lensing cluster at
zL:

�

�
� ¼ r

DL

�
¼ �ðrÞ

�crit

¼ 2rs	s

�crit

P

�
r

rs

�
ð1þ zLÞ2; (35)

where the functional form PðxÞ of the projected density is
[27,28]

PðxÞ ¼ 1

x2 � 1

�
1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x

s �
ðx < 1Þ

¼ 1

3
ðx ¼ 1Þ

¼ 1

x2 � 1

�
1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

xþ 1

s �
ðx > 1Þ

(36)

and the critical surface density ��1
crit ¼ 4�GDLðD? �

DLÞ=D?ð1þ zLÞ is only a function of zL given the precise
measurement of D?. Note that the convergence field � of
NFW profiles depends only on the angular separation � ¼
jn̂j due to spherical symmetry. The redshift dependence in
Eq. (35) arises due to our use of comoving coordinates,
reflecting higher densities of the Universe at zL > 0. For
reference, DL ¼ 850h�1 Mpc and 2400h�1 Mpc, and
�crit ¼ 2:8� 103hM�pc�2 and 1:8� 103hM�pc�2 for
zL ¼ 0:3 and 1, respectively. For clusters of M ¼
5� 1014h�1M� and 1� 1014h�1M�, Rvir ¼ 2:1h�1 Mpc
and 1:2h�1 Mpc appear subtended by 3:00 and 4:09 on the
sky at zL ¼ 1 and 0.3, respectively.
We use CMBFAST [29] to generate CMB temperature

maps of 2000 � 2000 (1000� 1000 pixels) and set the pixel
scale 00:2 smaller than detector beam sizes. Given a cluster-
mass M and redshift zL, we first compute the convergence
field �ðn̂Þ using Eq. (35). The lensing potential �ðn̂Þ and
its deflection vector dðn̂Þ of the cluster are then computed
in Fourier space, where their relations to �ðn̂Þ become a
simple multiplication. The lensed temperature field ~Tðn̂Þ is
computed by displacing the intrinsic temperature field
Tðn̂Þ with dðn̂Þ according to Eq. (2). Finally, we smooth
~Tðn̂Þ with a telescope beam and add detector noises to
obtain ~Tobsðn̂Þ. Standard quadratic estimators can be used
to reconstruct a convergence field �̂ðn̂Þ by using Eqs. (13)–
(15) with ~Tobsðn̂Þ and so can modified quadratic estimators
with a choice of lcut, beyond which the integrand in
Eq. (13) is set zero.
Similarly, our new estimation process begins with find-

ing a solution ŝ to the delensing equation ŝ ¼ n̂þ r̂�mðn̂Þ
given the lensing potential �mðn̂Þ of an assumed initial
model. We then construct a delensed temperature field

T̂ðŝÞ ¼ ~Tobsðn̂Þ and use the same equations with ~Tobsðn̂Þ
replaced by T̂ðŝÞ to reconstruct �̂L. Imposing a consistency
condition between the assumed model and the estimation
result can provide a criterion for the iteration convergence
of our improved quadratic estimators.
The ACT and SPT will find 	2� 104 massive clusters

mainly by the spectral distortion of the CMB arising from
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the inverse Compton scattering of hot electrons in clusters,
the so-called SZ effect [30,31], with roughly redshift-
independent threshold mass M � 2� 1014h�1M�. To
test our improved quadratic estimators, we consider a
typical cluster of M ¼ 5� 1014h�1M� and c ¼ 3.
Figure 2 shows the reconstructed �̂ðn̂Þ of a massive cluster
at zL ¼ 1 in an ideal experiment with �T ¼ 0. Here we
simply adopt a NFW profile with fixed concentration c ¼ 3
for our initial model and allow mass Minit of the model to
vary. Even with fixed concentration, rs changes as a func-
tion ofMinit, and hence our assumption allows for changes
in the shape as well as the scaling of initial mass models.
However, note that while we use this parametrized model
of clusters, our reconstruction is general and nonparamet-
ric, such that we recover 2D structure of �ðn̂Þ at each pixel
rather than obtain model parameters M and c (see [32,33]
for reconstructing a parametrized cluster model). We as-
sume that the cluster center is known from other observa-
tions with uncertainty less than our pixel scale 00:2. The
upper panels show the reconstructed �̂ðn̂Þ from our im-
proved quadratic estimator using an initial model of
Minit ¼ 5� 1014h�1M� (left) and 1� 1014h�1M� (right),
and the bottom panels show the residual after the true �ðn̂Þ
is subtracted from the top panels.

With the perfect initial model in the left panels, the

delensed temperature field T̂ðn̂Þ is identical to the intrinsic
Tðn̂Þ, and our improved quadratic estimator returns no
change on average to the initial model (bottom).
However, there exist random noises in �̂ðn̂Þ over the
map, arising from the fluctuations of the intrinsic tempera-
ture gradient, though they are evidently small and discern-
ible from the massive cluster (top). In the right panels, ~Tðn̂Þ
is delensed with the imperfect initial model, so that T̂ðn̂Þ is
not identical to Tðn̂Þ but the lensing effect is significantly
reduced. In this regime, quadratic estimators become
asymptotically optimal and reconstruct �ðn̂Þ unbiased.
The top panel exhibits small anisotropy, and some residual
remains in the bottom panel. In a single patch of the sky,
the CMB anisotropy has a gradient direction and gravita-
tional lensing of the CMB makes no difference orthogonal
to the gradient direction, in which reconstruction is com-
pletely degenerate, resulting in the asymmetry in �̂ðn̂Þ.
However, since the CMB has no preferred direction, this
obstacle can be overcome by stacking clusters in different
patches of the sky. In practice, this stacking process pro-
vides the average �ðn̂Þ of the clusters, or the cluster-mass
cross-correlation function [14]. Hereafter we assume that
identical clusters are stacked for simplicity.
We now quantify the ability to reconstruct �ðn̂Þ with

varying accuracy of assumed models. Figure 3 plots the
reconstructed cluster-mass profiles from 500 clusters (thin
solid line). The mass profiles are obtained by averaging
reconstructed �̂ðn̂Þ over the annulus of each cluster, and the
uncertainties in the mean mass profile are shown as shaded
regions. Figure 3(a) shows that our improved quadratic
estimator is unbiased when our assumed model is perfect;
it recovers the true model (thick solid line) with no bias. If
an assumed initial model is significantly different from the
true model in Fig. 3(b), the improved quadratic estimator
suffers from the same problem that the standard quadratic
estimators have, and the reconstruction is again biased low
when the residual lensing effect is large. However, the
reconstructed �̂ðn̂Þ is inconsistent with our assumed model
(dashed line), implying that it has not converged to the
correct solution. In Fig. 3(c) we take the reconstructed �̂ðn̂Þ
as a new initial model and apply our improved quadratic
estimator to the same clusters. The reconstructed �̂ðn̂Þ is
now close to the true �ðn̂Þ, but still inconsistent with the
assumed model. We iterate once more in Fig. 3(d), and the
reconstructed �̂ðn̂Þ is identical to the true �ðn̂Þ. One more
iteration results in no further change, and the estimate is
consistent with the assumed and also the true models,
indicating the convergence of our estimates.
Even with the imperfect initial model, the reconstruction

quickly converges to the true �ðn̂Þ and no significant bias
develops even beyond Rvir (dotted line). When the recon-
structed �̂ðn̂Þ is inconsistent with the assumed model, one
can in principle adopt a different initial model for a faster
convergence before applying the estimator iteratively. Note

FIG. 2 (color online). Reconstructed convergence fields of a
300 � 300 region around a cluster at zL ¼ 1 from an ideal
experiment with �T ¼ 0. Cluster mass is set M ¼ 5�
1014h�1M�. Improved quadratic estimators are applied once
with initial mass models of Minit ¼ 5� 1014h�1M� (left) and
Minit ¼ 1� 1014h�1M� (right) to a single patch of sky. The
bottom panels show the residual after the true cluster conver-
gence field is subtracted from the top panels.
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that the asymmetry seen in Fig. 2 disappears and the
reconstructed �̂ðn̂Þ restores symmetry, once many clusters
are stacked. Furthermore, the uncertainties in the mean
profile decrease as our assumed model converges to the
true model, because it solely results from the intrinsic
fluctuations of the CMB in the case of perfect delensing.

B. Performance comparison

Before we assess the performance of the three lensing
estimators in realistic experiments, we first compare our
improved quadratic estimator to the standard quadratic
estimator, when the lensing effect is small. Figure 4 plots
the reconstructed cluster-mass profiles in the same format
as Fig. 3. For clusters of M ¼ 1� 1014h�1M� at zL ¼ 0:3
(� 
 1), the improved quadratic estimator recovers the
true mass profile with no detectable bias after two itera-
tions. With signals smaller by a factor of 5 than in Fig. 3,
1000 clusters are stacked to obtain the mean mass profile,
while 10 000 clusters are required for the standard qua-
dratic estimator. As we quantify the difference in the

signal-to-noise ratio below, the standard quadratic estima-
tor needs approximately 10 times as many clusters as the

improved quadratic estimator needs to achieve the same
accuracy, but we show the mean profile (dotted-dashed
line) obtained by applying the standard quadratic estimator
to 1000 clusters for comparison. Once enough clusters are
stacked, the standard quadratic estimator works well
within Rvir, though it shows some hint of deviation at the
core. Thus, the standard quadratic estimator may be safely
used to reconstruct mass profiles of clusters withM< 1�
1014h�1M� at zL ¼ 0:3. However, given the source of the
CMB at z? ¼ 1090, the lensing effect becomes larger as zL
increases, until �crit reaches the minimum at zL ’ 2:5,
where DL becomes half of D?. Therefore, the standard
quadratic estimator cannot be used to reconstruct unbiased
mass profiles of clusters that are either at zL � 0:3 or
massive M � 1� 1014h�1M�. Since the ACT and SPT

will find clusters of M � 2� 1014h�1M� at higher red-
shift, modified or improved quadratic estimators are pre-
ferred to the standard quadratic estimator.

FIG. 3. Dependence of reconstructed mass profiles on an initial mass model Minit. Thick and thin solid lines represent the true
cluster-mass profile and the mean of reconstructed mass profiles from 500 clusters, respectively. The mass profiles are obtained by
averaging reconstructed convergence over the annulus of each cluster. The uncertainties in the mean profile are shown as shaded
regions. Dashed lines show an assumed initial mass model, and the cluster virial radius is shown as vertical dotted lines. In panels (c)
and (d), the initial mass models are taken as the mean mass profile from the previous iteration. The reconstruction quickly converges to
the true mass profile in two iterations even with an incorrect choice of Minit ¼ 1� 1014h�1M�, exhibiting no detectable bias in an
ideal experiment.
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Now we consider realistic experiments with �pix ¼
5 �K and compare the performance of the lensing estima-
tors in Fig. 5. Since the reconstruction becomes noisier in
the presence of detector noise and the telescope beam,
10 000 clusters are stacked for the mean mass profiles
when the standard or modified quadratic estimator is

used, while the improved quadratic estimator is iteratively
applied to only 1000 clusters. For clusters of M ¼ 5�
1014h�1M� at zL ¼ 1, Fig. 5(a) shows that the standard
quadratic estimators become substantially biased in a re-
gion around massive clusters, consistent with the previous
results [13,14]. Quadratic terms in �l ignored in the linear

FIG. 5. Comparison of reconstructed mass profiles from standard (sQE), modified (mQE), and improved (iQE) quadratic estimators
in realistic experiments with �pix ¼ 5 �K. The reconstruction is more difficult in the presence of detector noise and the telescope

beam. For the mean of reconstructed mass profiles, 10 000 clusters ofM ¼ 5� 1014h�1M� at zL ¼ 1 are stacked when sQE or mQE is
used, while iQE is iteratively applied to only 1000 clusters. The shaded regions show the uncertainties in the mean profile. The dotted-
dashed line [panel (d)] shows the shape distortion in �̂ðn̂Þ when mQE is applied after beam deconvolution, and the line is displaced to
avoid confusion (see the text). With �FWHM ¼ 10 [panel (f)], iQE can recover the mean mass profile with small bias below the beam
scale. For comparison, we plot the reconstructed mass profile (dotted-dashed line) using mQE in panel (f).

FIG. 4. Mass profile reconstruction for low mass clusters of M ¼ 1� 1014h�1M� at zL ¼ 0:3 from standard (sQE) and improved
(iQE) quadratic estimators (in the same format as in Fig. 3). 10 000 (left) and 1000 (right) clusters are used to obtain the mean profile,
and the shaded region shows the uncertainties in the mean profile. Both estimators recover the true mass profiles within Rvir in the low
mass regime. Approximately 10 times more clusters are needed for sQE to achieve the same accuracy than for iQE. However, for
comparison we plot the mean profile from 1000 clusters as the dotted-dashed line in the left panel.
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approximation coherently contribute to �̂l, and hence the
reconstructed �̂ðn̂Þ is biased low where the linear approxi-
mation is violated [14].

Next we consider a modified quadratic estimator in
Fig. 5(b) and adopt lcut ¼ 1500. The modified quadratic
estimator recovers the true mass profile within Rvir but with
a small deviation beyond Rvir. The modified quadratic
estimators operate in the same way as the standard qua-
dratic estimators, except signals are removed on small
scales (l � lcut), where the linear approximation is vio-
lated. However, the choice of lcut is rather arbitrary and
should be calibrated against simulations: lower lcut is
needed for more massive clusters. Note that the modified
quadratic estimator with lcut ! 1 exactly reduces to the
standard quadratic estimator (in practice lcut * 104 can
achieve this limit because of the Silk damping). In other
words, a modified quadratic estimator with lcut ’ 104 fails
to reconstruct the mass profile [borne out by Fig. 5(a)].
Moreover, we had to adopt lcut ¼ 1500 to reconstruct the
mass profile in Figs. 5(b) and 5(d), a more aggressive
choice than lcut ¼ 2000 proposed in [14], with which we
cannot recover the mass profile. This reflects the sensitivity
of the modified quadratic estimator to lcut as a function of
cluster mass. Larger numbers of clusters are also required
to reconstruct the true mean mass profile due to the reduc-
tion in the signal-to-noise ratio.

Figure 5(c) shows the reconstruction by our improved
quadratic estimator with Minit ¼ 1� 1014h�1M�. The im-
proved quadratic estimator recovers the true mass profile
with no significant bias in the presence of detector noise.
After a few iterations, the estimates quickly converge to the
true model and the scatter around the mean is greatly
reduced compared to Fig. 5(b). Note that we iteratively
applied the improved quadratic estimator to the same
1000 clusters.

In Figs. 5(d) and 5(e), we consider the effect of the
telescope beam with �FWHM ¼ 0:05. Both estimators in
Figs. 5(d) and 5(e) recover the true mass profile unbiased
in the presence of detector beam, while there exist some
deviations in both cases. However, note that we explicitly
account for the beam effect using the formulas developed
in Sec. II B, rather than deconvolve the beam before apply-
ing the lensing estimators. The latter approach often used
in the literature suffers from deconvolved detector noise
exponentiating on small scales. This problem requires a
low-pass filtering of reconstructed �̂ðn̂Þ, additionally re-
moving the signals below the beam scale, which results in a
distortion of its shape of �̂ðn̂Þ, making it hard to compare
directly to theoretical predictions. However, in reality,
beam convolution suppresses detector noises (of course
lensing signals as well), and it simply makes the recon-
struction noisy below the beam scale. The dotted-dashed
line in Fig. 5(d) contrasts the reconstruction when we
explicitly remove �̂ðn̂Þ at l � 1=�b, where �̂ðn̂Þ is ob-
tained by applying the modified quadratic estimator with

beam-deconvolved data (the line is displaced to avoid
confusion with other lines). Significant shape distortion
in �̂ðn̂Þ complicates the interpretation.
For a larger beam size comparable to the scale radius of

the clusters (�FWHM ’ 10), the reconstruction becomes
more challenging: modified quadratic estimators cannot
recover the cluster-mass profile without significant shape
distortion (dotted-dashed line). The improved quadratic
estimator in Fig. 5(f) recovers the true mass profile beyond
Rvir, while it develops small bias below the beam scale.
Figure 6 plots the fractional difference between the

lensing estimates and the true cluster-mass profile in
Fig. 5, comparing their uncertainty in the mean profile.
The difference (lines) is computed from the mean mass
profiles by stacking 10 000 clusters for both estimators,
while the statistical uncertainty (gray bands) in the differ-
ence is scaled for 500 clusters for comparison. The left
panel shows that both estimators recover the cluster-mass
profile at the 5% level or better in the absence of the
telescope beam, while the modified quadratic estimator
may need fine-tuning of lcut to achieve better accuracy.
However, the difference in their measurement uncertainty
is in stark contrast: the improved quadratic estimator has a
significantly higher signal-to-noise ratio than the modified
quadratic estimator. While the reconstruction becomes
harder especially beyond Rvir in the presence of the tele-
scope beam shown in the right panel, this trend of signal-
to-noise ratio difference persists. Note that due to the beam
smoothing effect the uncertainty in the estimates at � �
�FWHM is reduced while it is highly correlated among
adjacent bins.
So far we have numerically demonstrated the perform-

ance of the lensing estimators in Figs. 5 and 6: standard
quadratic estimators are significantly biased; modified and
improved quadratic estimators recover the cluster-mass
profile with no bias, while they show substantial difference
in the number of clusters that is required to obtain the mean
mass profile. To quantify this difference, we evaluate �
2

of each lensing estimator:

�
2 ¼ X
�;�0

�ð�ÞC�1
�̂ ð�; �0Þ�ð�0Þ; (37)

where the covariance matrix of �̂ð�Þ is
C�̂ð�; �0Þ ¼ h½�̂ð�Þ � �ð�Þ�½�̂ð�0Þ � �ð�0Þ�i: (38)

Since �̂ðn̂Þ is computed from the two Wiener-filtered
functions of the CMB temperature anisotropies, the covari-
ance matrix is nondiagonal. The finite width of the con-
volution filterHðn̂Þ in Eq. (17) also reflects that the lensing
estimators are a nonlocal function of the CMB temperature
anisotropies, and hence nonzero C�̂ when � � �0.
In the absence of the telescope beam in Figs. 5(b), 5(c),

and 6(a), the ratio of �
2 for the modified quadratic
estimator relative to the improved quadratic estimator is
8.1: a factor of 8 larger number of clusters is required for
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the modified quadratic estimator to achieve the same level
of accuracy as that for the improved quadratic estimator. In
the presence of the telescope beam in Figs. 5(d), 5(e), and 6
(b), beam smoothing substantially degrades the ability to
recover the true cluster-mass profile for both estimators,
and its effect is relatively larger for the modified quadratic
estimator, increasing the ratio to 10.4.

C. Sunyaev-Zel’dovich effects

On small scales (l > 2000), the primordial CMB tem-
perature anisotropies decay exponentially due to the Silk
damping [7] and the dominant source of secondary anisot-
ropies is the thermal Sunyaev-Zel’dovich (tSZ) effect,
arising from scattering off hot electrons in massive clus-
ters. However, the tSZ effect imprints a unique frequency
dependence in the CMB temperature anisotropies, which
in principle can be used to remove the tSZ signals. The
same Compton scattering process also gives rise to a
Doppler effect in the CMB temperature anisotropies due
to the bulk motion of electron gas, or the kinetic Sunyaev-
Zel’dovich (kSZ) effect (see [34,35] for recent reviews).
These kSZ signals, albeit smaller than tSZ signals, are
spectrally indistinguishable from the intrinsic CMB tem-
perature anisotropies, introducing an artifact in the lensing
reconstruction. Here we assume that the tSZ signals can be
cleaned perfectly, and we investigate how the kSZ signals
deteriorate the lensing reconstruction.

For simplicity, we assume that the gas density traces the
dark matter distribution in a massive cluster, with the same
NFW profile. Given the line-of-sight velocity vlos of the
cluster, the kSZ effect results in temperature anisotropies

�Tð�Þ ¼ �vlos�ð�ÞTCMB � ��TkSZ

�ð�Þ
�ð0Þ ; (39)

where �ð�Þ is the Thompson scattering optical depth, pro-

portional to the projected density �ðr ¼ DL�Þ. We pa-
rametrized the product of vlos and �ð0Þ as �TkSZ. Note
that since the intrinsic CMB and kSZ induced anisotropies
dilute in the same way as the Universe expands, there is no
(1þ zL) factor in Eq. (39) and TCMB ¼ 2:725 K is the
CMB temperature today.
For a typical cluster with electron number density

	0:01 cm�3 and core radius 	100 kpc, the Thompson
scattering optical depth is �ð0Þ ¼ 2� 10�3 at the core.
The rms velocity dispersion in linear theory is �v ¼ 1:3�
10�3ð¼ 390 km s�1Þ at zL ¼ 1, and this results in the rms
temperature fluctuation �TkSZ ¼ 3:7 �K at the core. We
randomly draw �Tð0Þ from a Gaussian distribution with
zero mean and dispersion � ¼ �TkSZ, and then we add
�Tðn̂Þ to ~Tðn̂Þ for observations of each cluster.
First, we compare the cluster lensing and kSZ effects on

the CMB temperature field. Figure 7 plots a 60 � 60 region
of CMB maps around a cluster of M ¼ 5� 1014h�1M�
(�vir ¼ 30:0) at zL ¼ 1. The top panels show the lensed
temperature field (left) and the difference from the intrinsic
temperature field (right). Gravitational lensing imprints
dipolelike wiggles in the CMB map on top of the smooth
large-scale gradient field. Perpendicular to the gradient
direction there exists no temperature change, and hence
lensing reconstruction is degenerate along the direction.
The bottom panels show the kSZ effect with �TkSZ ¼ 3
(left) and 15 �K (right). We assume that the cluster is
moving toward the observer. With the small optical depth
in the left panel, the kSZ effect is relatively small com-
pared to the lensing effect. Larger optical depth in the right
panel substantially enhances the kSZ effect, dominating
over the lensing effect at the center. However, since the
lensing effect is much less concentrated than the kSZ effect
as the dipolelike wiggles peak at a few scale radii (top
right), the reconstruction is still possible.

FIG. 6. Fractional difference between the lensing estimates and the true cluster-mass profile in Fig. 5. The difference (lines) is
computed from the mean mass profiles obtained by stacking 10 000 clusters for both estimators, while the statistical uncertainty (gray
bands) in the difference is scaled for 500 clusters. The vertical dotted lines show the cluster virial radius.
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Figure 8 shows the impact of the kSZ effect on recon-
structing mass profiles. For clusters of M ¼ 5�
1014h�1M� at zL ¼ 1 in an experiment with �FWHM ¼ 10
and �pix ¼ 5�K, we iteratively use improved quadratic

estimators with Minit ¼ 1� 1014h�1M�. The mean and
the uncertainties are computed from 1000 clusters.
Figure 8(a) shows that the kSZ effect with �TkSZ ¼ 3�K
has relatively little impact on the reconstruction: the kSZ
effect becomes negligible beyond rs because the density
profile declines r�3 (the gas density in reality would be
steeper and more confined to the center than we assumed
here). The lensing effect, on the other hand, is sensitive to
the deflection field and remains strong beyond rs, declining
less rapidly than the kSZ effect [29]. In Fig. 8(b), we
consider a larger kSZ effect with �TkSZ ¼ 15 �K, ex-
pected either from higher electron number density or
from higher matter fluctuation normalization �8 / �v.
With the temperature anisotropies comparable to the lens-
ing effect, the reconstruction becomes difficult and it starts
to develop bias around Rvir as �TkSZ increases. Note that
the bias at the center is largely due to the telescope beam
effect.
In the presence of contaminants such as residual fore-

ground or the tSZ effect, radio point sources, and the large
kSZ effect, the lensing estimators based on temperature
anisotropies need to be complemented by using lensing
estimators based on combination of temperature and E-
and B-mode polarization [19], since there exists no signifi-
cant source of contamination that mimics the intrinsic
CMB polarization. Furthermore, the unique relation be-
tween the E- and B-mode polarization signals [36,37] can
be used to provide a robust consistency check. However,
measurements of the lensed polarization fields would re-
quire an experiment with higher angular resolution and
sensitive detectors than experiments that are currently
available.

FIG. 8. Impact of kSZ effects on the mass profile reconstruction. Assuming that the gas distribution traces the dark matter
distribution in clusters, the kSZ effect is computed by assigning a Gaussian random velocity to each cluster with rms temperature
change �TkSZ ¼ 3 (left) and 15 �K (right) at the center, respectively.

FIG. 7 (color online). Cluster lensing and kSZ effects on the
CMB. For comparison, we plot 60 � 60 regions of CMB tem-
perature maps around a cluster of M ¼ 5� 1014h�1M� (�vir ¼
30:0) at zL ¼ 1. Upper panels: Lensed temperature map (left) and
its difference from the intrinsic temperature map (right). Bottom
panels: Assuming that the cluster is moving toward an observer,
the kSZ effect is set �TkSZ ¼ 3 (left) and 15 �K (right) at the
center. The color scales in each panel represent the same
temperature except in the upper right panel, where the color
represents the difference ranging from �5 to 5 �K.

JAIYUL YOO AND MATIAS ZALDARRIAGA PHYSICAL REVIEW D 78, 083002 (2008)

083002-14



V. DISCUSSION

Weak gravitational lensing of the CMB gives rise to a
deviation of the two-point correlation function of the CMB
temperature anisotropies from an otherwise statistically
isotropic function. Quadratic estimators [11] have been
widely used to reconstruct cluster-mass profiles and
large-scale structure by measuring the induced anisotro-
pies in the two-point correlation function. We have shown
that standard quadratic estimators become optimal in the
limit of no lensing, saturating the Cramér-Rao bound,
while they become progressively biased and suboptimal
as the lensing effect increases. Especially for clusters that
can be found by the ongoing SZ surveys like the ACT and
SPT, the standard quadratic estimators start to be biased at
zL ’ 0:3, and at higher redshift, where the lensing effect is
larger, other estimators should be used to reconstruct
cluster-mass profiles.

It was recently proposed [14] that this obstacle in the
standard quadratic estimators can be overcome by explic-
itly removing the signals in the CMB temperature gradient
field at l � lcut, where the lensing effect is large in viola-
tion of the linear approximation. However, although these
modified quadratic estimators recover cluster-mass profiles
with no significant bias, the choice of lcut is somewhat
arbitrary and it depends on the lensing effect, which re-
quires prior calibrations against numerical simulations
before one can apply the modified quadratic estimators to
CMB maps.

We have developed a new maximum likelihood estima-
tor for reconstructing cluster-mass profiles and large-scale
structure. We first construct a CMB temperature field by
delensing the observed temperature field based on an as-
sumed mass model. We have proved that the delensed
temperature field is close to the unlensed temperature field
with a telescope beam smoothed and detector noise added,
if the assumed mass model is a good approximation to the
true mass model. The delensed temperature field can then
be used to set up the likelihood of the CMB, and our new
estimator that maximizes this likelihood takes a similar
form as the standard quadratic estimators, because it ap-
proaches to an optimal estimator as the assumed model
becomes the true model. Our maximum likelihood estima-
tor can be iteratively applied as we update the assumed
mass model, until it converges (to the true model) and the
estimate is consistent with the assumed model. Our maxi-
mum likelihood estimator, named as an improved qua-
dratic estimator, is easy to implement in practice and it
has no free parameter.

Our improved quadratic estimators quickly converge to
the true mass model after a few iterations, even when an
assumed initial model is significantly different from the
true model. When the estimate is inconsistent with the
assumed model, one can adopt another initial model for
iterations for faster convergence of the improved quadratic
estimators. The telescope beam and detector noise render

the reconstruction harder, but we have demonstrated that
the improved quadratic estimators recover cluster-mass
profiles with a beam size comparable to the cluster scale
radius. Furthermore, our new estimator significantly im-
proves the signal-to-noise ratio over the standard or modi-
fied quadratic estimators by a factor of 10 in number of
clusters, because when an assumed model is close to the
true mass model, the only source of noise for our estimator
is the intrinsic fluctuations of the CMB temperature
gradient.
We have tested the robustness of the improved quadratic

estimators in the presence of the kSZ effect. The kSZ
distortion �TkSZ � 15 �K at the center results in rela-
tively small bias in the reconstructed cluster-mass profiles.
However, since the optical depth is a function of electron
number density in the clusters, it is related to the true mass
profile. Therefore, we could take a more aggressive ap-
proach to modeling kSZ signals from an assumed initial
mass model and subtract the kSZ contributions before
applying improved quadratic estimators. Furthermore,
this template for kSZ signals can also be iteratively refined
as we update our assumed mass model.
Since the reconstruction is nonparametric, it is not lim-

ited to spherical clusters, while stacking many clusters
ensures that irregular shapes of individual clusters become
irrelevant. Similar arguments can be applied to projection
effects: each cluster can be located at a line of sight with
overdense or underdense regions, but projection effects
become negligible once many lines of sight are combined.
Given a sample of clusters from SZ surveys, the average
mass profile of stacked clusters would provide a cluster-
mass cross-correlation function, which can be used to
measure the growth rate of structure, probing the evolution
of dark energy, instead of individual cluster-mass profiles.
However, in reality it would be harder to reconstruct

cluster-mass profiles than considered here, because there
exist other contaminants such as point radio sources and
residual foreground and/or the tSZ effect, and other com-
plications such as nonisolated clusters and internal bulk
motion of gas in clusters. However, additional information
from polarization measurements may be used to overcome
some of the difficulties, given the unique relation between
the E- and B-mode polarization signals and relatively
negligible primary and secondary contaminants. Finally
we mention that our improved quadratic estimators can
be applied to reconstruct large-scale structure, while in this
regime standard quadratic estimators can be used without
significant bias.
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APPENDIX: DELENSED TEMPERATURE FIELD

Here we derive a relation T̂l ’ Tle
�ð1=2Þl2�2

b þ TN
l in the

presence of the telescope beam and detector noise. Given
the lensing potential�mðn̂Þ of an assumed mass model, the
lensing equation relates an image position n̂ to a source

position ŝm ¼ n̂þ r̂�mðn̂Þ. Here we keep the superscript
m to indicate the relation to the assumed model. The true

source position is then ŝ ¼ n̂þ r̂�ðn̂Þ, where �ðn̂Þ is the
true lensing potential. Now we construct a delensed tem-
perature field

T̂ðŝmÞ ¼ ~Tobsðn̂Þ ¼
Z

d2m̂Bðm̂� n̂Þ ~Tðm̂Þ þ TNðn̂Þ;
(A1)

where Bðm̂Þ is the telescope beam function. Since the
lensing equation is not analytically invertible in general,
we keep both ŝm and n̂, but note that they are not indepen-
dent variables. In Fourier space, the delensed temperature
field is

T̂ l ¼
Z

d2ŝmT̂ðŝmÞe�il�ŝm � T̂S
l þ T̂N

l ; (A2)

with a contribution from the CMB

T̂ S
l ¼

Z
d2ŝm

Z
d2m̂Bðm̂� n̂Þ ~Tðm̂Þe�il�ŝm

¼
Z

d2l1Bl1
~Tl1

Z d2ŝm

ð2�Þ2 e
il1�n̂�il�ŝm (A3)

and a contribution from the detector noise

T̂ N
l ¼

Z
d2ŝmTNðn̂Þe�il�ŝm

¼
Z

d2l1T
N
l1

Z d2ŝm

ð2�Þ2 e
il1�n̂�il�ŝm : (A4)

The lensed temperature is ~Tðn̂Þ ¼ TðŝÞ and its Fourier
mode is

~T l ¼
Z

d2l1Tl1

Z d2n̂

ð2�Þ2 e
�il1�n̂þil�ŝ: (A5)

With the linear approximation, one can expand the expo-
nential term to the first order in �l and this equation
reduces to Eq. (3). However, we keep the equation as
general as possible to be valid, even when the lensing
effect is large. Substituting ~Tl1 in Eq. (A3) and changing

the integration variable n̂ to ŝm gives

T̂S
l ¼

Z
d2l1

Z
d2l2Bl1Tl2

Z d2n̂

ð2�Þ2
Z d2n̂2

ð2�Þ2
��������d

2ŝm

dn̂2

��������
� eil1�ðn̂�n̂2Þeiðl2�n̂2�l�n̂Þei½l2�r̂�ðn̂2Þ�l�r̂�mðn̂Þ�: (A6)

Given the lensing potential �ðn̂Þ [analogously for �mðn̂Þ],
the Jacobian is related to the distortion matrix

��������d2ŝ

dn̂2

��������¼ jM�1j ¼ jIþ r̂ r̂�j

¼ j½1� �ðn̂Þ�2 � �2ðn̂Þj; (A7)

and its inverse is the lensing magnification.
For a Gaussian beam Bl ¼ exp½� 1

2 l
2�2

b�, we can inte-

grate over the beam factor

T̂S
l ¼

Z
d2l2Tl2

Z d2n̂

ð2�Þ2
Z d2n̂2

ð2�Þ2
��������d

2ŝm

dn̂2

��������
� 2�

�2
b

e�ððjn̂�n̂2j2Þ=2�2
b
Þeiðl2�n̂2�l�n̂Þei½l2�r̂�ðn̂2Þ�l�r̂�mðn̂Þ�:

(A8)

Now we parametrize n̂2 by a dimensionless displacement

vector �̂ centered at n̂ (i.e., n̂2 ¼ n̂þ �b�̂). The
Gaussian beam factor guarantees that the integrand is non-

vanishing only when� ¼ j�̂j is small. In order to get more

intuition, we expand �ðn̂2Þ ’ �ðn̂Þ þ r̂�ðn̂Þ � �b�̂ to the

linear order in �, and integrating over �̂ gives

T̂S
l ¼

Z
d2l2Tl2

Z d2n̂

ð2�Þ2
��������d

2ŝm

dn̂2

��������
� eiðl2�ŝ�l�ŝmÞe�ð1=2Þ�2

b
jM�1�l2j2 : (A9)

This is the final expression for the delensed temperature
field. The first exponential term of the integrand controls
the delensing process: when the assumed model is close to
the true model after a few iterations [�mðn̂Þ ’ �ðn̂Þ, ŝm ’
ŝ], the integral becomes a Dirac delta function and T̂S

l ¼
Tl, when the beam smoothing is negligible. The distortion

matrix is close to the identity matrix beyond Rvir and T̂S
l ’

Tle
�ð1=2Þl2�2

b . Around massive clusters, the distortion ma-
trix deviates from the identity matrix and its determinant
becomes smaller than 1, making the exponential factor
unity. This reflects that the beam size is reduced by a
mapping from the image plane to the source plane, and

practically T̂S
l ’ Tle

�ð1=2Þl2 ~�2
b , with ~�b < �b.

For a white detector noise, the delensed detector noise is
simply the redistributed white noise. However, since the
delensing process alters the unit area on the sky, it becomes
nonwhite but its deviation is confined to relatively small
region; the noise power spectrum is
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hT̂N
l T̂

N�
l0 i ¼

Z
d2l1

Z
d2l2hTN

l1
TN�
l2
i
Z d2ŝm1

ð2�Þ2

�
Z d2ŝm2

ð2�Þ2 e
il1�n̂1�il�ŝm

1 e�il2�n̂2þil0�ŝm
2

¼ CN
Z

d2ŝm1

Z
d2ŝm2 �ðn̂1 � n̂2Þe�il�ŝm

1
þil0�ŝm

2

¼ CN
Z

d2ŝm1

��������d2ŝm1
dn̂2

1

��������e�iðl�l0Þ�ŝm
1 : (A10)

It is the Jacobian of the distortion matrix that makes white
noise nonwhite in a region around massive clusters.
Outside Rvir, where the Jacobian is near unity, the integral
becomes a Dirac delta function and the noise is again
white.

Figure 9 compares our delensing (T̂l: thin line) and

perfect delensing (Tle
�ð1=2Þl2�2

b þ TN
l : thick line) processes

in terms of their power spectrum. In the absence of detector

noise (dashed line), T̂S
l starts to deviate from Tle

�ð1=2Þl2�2
b

around the beam scale l ’ 1=�b (vertical dotted line),
declining less rapidly. On scales below the beam scale,
our approximation (� 
 1) breaks down and M�1ðn̂Þ
differs from the identity matrix, leading to the excess
power. However, at this scale, signals are dominated
by the detector noise (solid line). Since detector noises
are unaffected by the beam distortion when delensed,

the deviation of T̂N
l from TN

l is relatively mild and it is

solely due to the (inverse) magnification effect of the
mapping from the image plane to the source plane.
The noise only case (dotted line) is largely obscured by
the solid line. In summary, the telescope beam and detector
noise has little impact on our delensing process at scales
larger than the beam scale, where most of the information
is contained.

FIG. 9. Effects of the telescope beam and detector noise on the delensing process. The top panel compares T̂l (thin line) with
Tle

�ð1=2Þl2�2
b þ TN

l (thick line) in terms of their power spectrum, and the bottom panel shows the fractional deviations. The vertical

dotted line represents the beam scale l ¼ 1=�b. CMB experiments with �FWHM ¼ 10 and �pix ¼ 5 �K are considered for clusters of

M ¼ 5� 1014h�1M� at zL ¼ 1. The noise only case is largely obscured by the solid line.
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