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We report the results of a recent search for the lowest value of thermal noise that can be achieved in

LIGO by changing the shape of mirrors, while fixing the mirror radius and maintaining a low diffractional

loss. The result of this minimization is a beam with thermal noise a factor of 2.32 (in power) lower than

previously considered Mesa Beams and a factor of 5.45 (in power) lower than the Gaussian beams

employed in the current baseline design. Mirrors that confine these beams have been found to be roughly

conical in shape, with an average slope approximately equal to the mirror radius divided by arm length,

and with mild corrections varying at the Fresnel scale. Such a mirror system, if built, would impact the

sensitivity of LIGO, increasing the event rate of observing gravitational waves in the frequency range of

maximum sensitivity roughly by a factor of 3 compared to an Advanced LIGO using Mesa beams

(assuming all other noises remain unchanged). We discuss the resulting beam and mirror properties and

study requirements on mirror tilt, displacement, and figure error, in order for this beam to be used in LIGO

detectors.
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I. INTRODUCTION

First-generation laser interferometer gravitational-wave
detectors, such as initial LIGO [1], VIRGO [2], GEO 600
[3] and TAMA 300 [4], have either reached or approached
their respective design sensitivities, and have taken a first
round of coordinated scientific data. While a detection in
the near future is possible with these first data, or with
upcoming data from Enhanced LIGO, a moderate upgrade
of LIGO detectors, the construction of second generation
detectors, e.g., Advanced LIGO, which are at least 100
times more sensitive than first-generation detectors (in
power), has already started.

Advanced LIGO reaches its maximum sensitivity in the
frequency range 50–300 Hz. In this band, the internal
thermal noise, i.e., thermal fluctuation in the mean location
of the mirror’s surface of reflection, relative to the mirror’s
center of mass, is the dominant noise source. Depending on
location, internal thermal noise can be divided into coating
thermal noise and substrate thermal noise; while from the
physical origin, noise that arises from internal friction
(viscosity) is called Brownian noise, while noise that cor-
responds to thermal damping is called thermoelastic noise.
The dominant component of internal thermal noise in fused
silica mirrors, the leading choice for Advanced LIGO, is
the noise contributed by the mirror coating [5].

Lowering internal thermal noise will not only directly
increase LIGO’s event rate and thus our chances of seeing
gravitational waves [6], but it may also help bring
Advanced LIGO sensitivity beyond the standard quantum
Limit. Thus, for the first time, LIGO can study quantum
effects as experienced by 40-kilogram objects [7]. (Initial
LIGO will not benefit from lowering internal thermal

noise, because in this frequency band it will be limited
by shot noise and suspension thermal noise.) Other ad-
vanced ground-based detectors as well as quantum non-
demolition experiments [7,8] will also benefit from
implementing the research described here when battling
mirror internal thermal noise.
Advanced LIGO’s present design (baseline design) uses

arm cavities with Gaussian light beams supported by
spherical mirrors—with waist-size of Gaussian beams
chosen to maintain a �1 ppm per bounce diffractional
loss. As proposed by Vinet [9] and O’Shaughnessy
et al. [10], wider beams supported by nonspherical mirrors
can average better over thermal fluctuations throughout the
mirror surface, and therefore give less thermal noise than
conventional cavities with spherical mirrors and Gaussian
beams. As a straightforward example, O’Shaughnessy et
al. proposed the so-called Mesa beam, which can lower
coating noise by a factor of 2.35 [10].
In this work, we aim to search for the beam/mirror

configuration with the minimum possible thermal noise.
In order to do so, a systematic search over all possible
freely propagating beams will be performed. More pre-
cisely, to ensure the completeness of the search, we expand
the fundamental optical mode of the cavity using a Gauss-
Laguerre basis (with real-valued coefficients) at the center
of the cavity, while defining mirror shapes by the beam’s
phase front at the locations of the mirrors. We then use a
gradient-flow minimization method to numerically search
for the beam profile that corresponds to the minimum
thermal noise, subject to the constraint of constant diffrac-
tion loss. While diffractional loss for any beam/mirror
configuration will be determined from the clipping ap-
proximation, thermal noise will be calculated from so-
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called scaling laws, which state that thermal noise spectral
density is proportional to a simple spatial-frequency-
domain integral over the Fourier representation of the
beam’s intensity distribution profile on the mirror surface,
weighted by a power of the radial wave number. These
scaling laws apply when the mirrors are approximated as
half infinite (i.e., filling half of the entire space). Their
existence has been proposed by various authors
(O’Shaughnessy, Strigin, and Vyatchanin [10] and Vinet
[9] for substrate thermoelastic noise, Vyatchanin [11] for
coating Brownian noise, and O’Shaughnessy [12] for all
four types of noises), while Lovelace [13] clearly presented
and verified the scaling laws for all four types of noises.

The rest of this paper is organized as follows. Section II
reminds the reader of the fluctuation-dissipation-theorem
(FDT)-based approach to internal thermal noise due to
Levin, and summarizes its application to the characteriza-
tion of spectral density of coating and substrate noises.
Section III outlines the minimization problem. Section IV
describes the results of this minimization—we discuss the
mirror profile and the light beam that correspond to the
minimum of substrate and coating noise. Section V ex-
pands on this discussion and addresses the issues of toler-
ance to imperfections and compatibility with LIGO.
Conclusions are drawn in Section VI.

While we were working on this paper and after most
results were published in the thesis of Bondarescu [14], it
came to our attention that a theoretical lower limit for the
coating noise in an Advanced LIGO detector was derived
in [15], but it was not proven that it can be reached. In this
paper we construct an actual beam that approximately
achieves this limit.

II. NOISE CHARACTERIZATION

This section briefly reviews the main results of Levin
and Lovelace, which will be the basis of our work.
Lovelace assumes half-infinite mirrors, i.e. he neglects all
effects arising from a mirror’s finite thickness as well as
mirror edge effects, and also ignores the dynamics of the
mirror, e.g., by using the quasistatic approximation.

LIGO extracts the gravitational-wave signal by measur-
ing the position of the mirrors. The position information is
read as qðtÞ, a weighted average of the mirror’s longitudi-
nal position, which depends on Zðr; �; tÞ, as follows:

qðtÞ �
Z 2�

0
d�

Z R

0
drrpðrÞZðr;�; tÞ; (1)

where Z is the displacement of the mass element at ðr; �Þ
of the mirror surface, R is the mirror radius, and pðrÞ is the
light intensity of the axisymmetric beam at distance r from
the optical axis, which satisfies the normalization of

Z R

0
pðrÞrdr ¼ 1: (2)

Internal thermal noise will cause small fluctuations in
the longitudinal position of the mirror surface, Zðr; �; tÞ.
This noise can be divided into two different types:
Brownian and thermoelastic. Brownian thermal noise is
due to imperfections in the substrate or coating material
that couple normal modes of vibration to each other.
Thermoelastic noise is due to random heat flow in the
mirror that causes some regions to expand and some to
contract. Both noises arise from the substrate as well as
from the mirror coating. Thus, we have to deal with four
types of noise: coating Brownian noise, coating thermo-
elastic noise, substrate Brownian noise, and substrate ther-
moelastic noise.
The spectral density, S, of the fluctuations in the mea-

sured mirror position, q, is derived from the fluctuation-
dissipation theorem using Levin’s thought experiment
[16]:

S ¼ 2kBTWdiss

�2fF2
; (3)

where kB is Boltzmann’s constant, T is the mirror tempera-
ture, and Wdiss is the dissipated power if a longitudinal
force F is applied to the mirror surface with frequency f
and pressure profile pðrÞ, identical to light intensity profile.
In initial LIGO, to keep diffraction losses under 1 ppm per
bounce, the beam radius over which 95% of the signal is
collected is kept significantly smaller than the mirror ra-
dius R and mirror thickness H. Lovelace was forced to use
infinite test-mass approximation because the noninfinite
case is too difficult to solve analytically and will not give
a simple scaling law. He later showed that the infinite test-
mass approximation holds reasonably well for beams con-
siderably larger than in initial LIGO. Fused silica is found
to be significantly less susceptible to the mirror edge
effects and finite effects due to the finite thickness of the
mirror than sapphire substrate. By using his results, we
make the same assumptions in computing the noise. As we
will see below, the condition that 95% of the signal is
collected from a mirror area smaller than R is very true
in the case of Gaussian beam, almost true in the case of
Mesa beams, and almost false in the case of the conical
beams proposed here.
Now, because the resonant frequencies of the mirror are

of order 105 Hz, far higher than the 40–200 range in
question, the hypothetical force, F, can be idealized as
quasistatic when computing the resulting strain of the
mirror. Advanced LIGO will measure from 10 Hz to
10 kHz; however, thermal noise is dominant only from
40 to 200 Hz.
Thus, to compute the noise S, Lovelace [13] substitutes

in Eq. (3) the Brownian and thermoelastic dissipated
power, Wdiss, due to a mirror deformation with the same
pressure distribution as pðrÞ, the light intensity. This entire
procedure is based on Levin’s thought experiment [16,17].
This results in the following relationships [Eq. (3.1) of
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Lovelace [13]]:

Sn ¼ A
Z 1

0
dkknj~pðkÞj2; (4)

where n ¼ 1 for coating Brownian and coating thermo-
elastic noise, n ¼ 0 for substrate Brownian noise, n ¼ 2
for substrate thermoelastic noise, A is a constant that
depends on the noise type and instrumental setup but
does not change with the beam shape, and ~pðkÞ is the
two-dimensional Fourier transform of the power distribu-
tion over the mirror surface, pðrÞ:

~pðkÞ ¼
Z 1

0
drrJ0ðkrÞpðrÞ (5)

pðrÞ ¼
Z 1

0
dkkJ0ðkrÞ~pðkÞ: (6)

In the above, J0ðxÞ is the 0th order Bessel function of the
first kind. This makes numerical evaluation of these noises
easiest in the context of a minimization code that requires
noise to be computed for a large number of different power
profiles. In the case of coating Brownian and thermoelastic
noises, we have n ¼ 1, which converts directly to

S1 �
Z 1

0
drrjpðrÞj2 (7)

according to the Parseval theorem.
Before moving on, we mention that the thermally in-

duced gravitational-wave strain noise power, ShðfÞ, is
related to S by

Sh ¼ 4

L2
S (8)

because the interferometer measures

h ¼ ðq1 � q2Þ � ðq3 � q4Þ
L

; (9)

where qi is the measured position of the ith mirror and L ¼
4 km, the arm cavity length.

III. THE MINIMIZATION PROBLEM

Within the paraxial approximation, Gauss-Laguerre
beams provide a complete set of orthonormal basis vectors
in the space of all possible LIGO beams propagating along
the �z direction, supported by cavities with axisymmetry
around the z axis. If we choose to center the cavity at z ¼
0, and place mirrors at z ¼ �L=2, then for infinite cavities,
because of time-reversal symmetry, the eigenmodes will
have real-valued amplitude on the z ¼ 0 plane, i.e.,
Uðr; zÞ 2 R. In this way, all possibleU can be expanded as

Uðr; zÞ ¼ X1
n¼0

An�nðr; zÞ; (10)

with An 2 R, and �nðr; zÞ the nth Gauss-Laguerre mode
with waist located at z ¼ 0 (and angular quantum number
equal to 0):

�nðr; zÞ ¼ e�ð2nþ1Þi arctanðz=z0Þ

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð zz0Þ2

q  n

� ffiffiffi
2

p
r=w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð zz0Þ2
q

�
; (11)

where w0 is the waist size of the Gauss-Laguerre mode,

z0 ¼ �w2
0=�,  nðrÞ ¼ Ce�r2=2Lnðr2Þ, and Ln the nth

Laguerre polynomial. The Gauss-Laguerre modes satisfy
the following normalization:

Z þ1

0
�jðr; zÞ�kðr; zÞrdr ¼ �kj; 8 z: (12)

Note that there is a freedom in choosing Gauss-Laguerre
modes with different waist sizes, but we choose the mini-
mal Gauss-Laguerre mode (which has the minimum waist
size at the mirror location), with z0 ¼ L=2.
The infinite mirrors that support this as the fundamental

mode are determined by the constant-phase surface of
Uðr; zÞ around the mirror locations (z ¼ �L=2). The light
intensity on the mirror surface is simply given by [18]

pðrÞ / jUðr; z ¼ L=2Þj2: (13)

In the clipping approximation, the mirrors are simply taken
as finite portions of the phase front, with r � R, and the
corresponding diffraction loss is

� ¼
R1
R pðrÞrdrR1
0 pðrÞrdr

¼
P1
i;j¼0 AiAj

R1
R �iðr; z0Þ��

j ðr; z0ÞrdrP1
i¼0 A

2
i

;

(14)

where R ¼ 17 cm is the mirror radius in Advanced LIGO.
Based on this, and the aforementioned scaling law for

S1, the coating thermal noise (7) can thus be written as a
quartic function of Am:

S1 /
X1

i;j;k;l¼0

AiAjAkAl
Z R

0
�i�

�
j�k�

�
l rdr; (15)

while the normalization of pðrÞ requires [assuming small
diffraction loss, cf. Equation (2)]

X1
i¼0

A2
i ¼ 1: (16)

Fixing an optical loss of � per bounce adds another con-
straint:

X1
i;j¼0

AiAj
Z 1

R
�iðr; z0Þ��

j ðr; z0Þrdr ¼ �: (17)

Here we choose to have � ¼ 10�6.
The minimization is carried out on constraint-satisfying

submanifold of the space of linear combinations of Gauss-
Laguerre basis functions. Thus, the gradient generally
points out of the submanifold. To correct for this, at every
step of the minimization after moving along the gradient of
the coating noise (15), we return to the constraint-
satisfying manifold by moving along the gradient of the
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diffraction loss until (17) is satisfied. The last step is
renormalizing so that (16) is maintained as well.

Numerically, we found that when minimizing (15) sub-
ject to the constraints (16) and (17) in a space with a large
number of dimensions, one runs into local minima. A good
way [19] to avoid them was to start in a space with few
dimensions (low number of Gauss-Laguerre coefficients)
and increase the dimensionality one by one, always using
the result of the previous step as initial guess.

IV. RESULTS

The minimization code discussed in the previous section
converges to a beam much wider than Mesa shown in
Fig. 1, while maintaining the same diffraction loss and
total power. Switching to a wider beam naturally leads to
an overall decrease in all types of thermal noise, even
though only the coating noise is actively minimized. This
is illustrated in Table I and Fig. 2. The mirror profile that
should be used to support this beam is shown in Fig. 3.
Since the mirrors are approximately conical in shape, we
will name our beam the conical beam. Interestingly, we
note that the mean slope of the cone is roughly R=L �
4:3� 10�5 � 0:4�=cm. We also note that the mild devia-
tions from a perfect cone oscillates spatially at the Fresnel

scale of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L=ð2�Þp � 2:6 cm.

In Fig. 1, when we compare the intensity profile of the
conical beam with those of Mesa and Gaussian beams, we
found that the intensity of the conical beam extends more

towards the mirror boundaries than Mesa and Gaussian
beams—which increases the level of averaging, and is
critical in achieving a significantly lower thermal noise.
This extension does not bring a heightened optical loss,
because the conical beam cuts off more sharply at the edge
of the mirror than Gaussian and Mesa beams, as illustrated
in Fig. 4. Instead of a Gaussian-like smooth falloff, power
cutoff of the conical beam is characterized by oscillations
outside the mirror radius. We attribute such an oscillatory
cutoff to the mild oscillations of mirror surface shown in
Fig. 3. Overall, because of extending to larger radii, given
the same optical power, the light intensity of a conical
beam everywhere is less than the central area of the base-
line Gaussian, while only in the central peak does the
conical beam slightly surpasses the Mesa plateau value.

FIG. 3 (color online). Mirror height, plotted in units of � ¼
1:06 �m, for the nearly conical (solid blue line) mirror com-
pared with the its nearly concentric (dashed red line) and nearly
flat (dotted green line) Mesa counterparts.

FIG. 1 (color online). The power distribution of the lowest-
noise 35 coefficient beam found using our minimization algo-
rithm, compared with the previously published Mesa beam.

TABLE I. Ratio of Mesa and baseline Gaussian cavity noise to
conical cavity noise for different types of noises.

Noise Mesa Gaussian

Coating 2.32 5.45

Substrate thermoelastic 3.32 11.38

Substrate Brownian 1.53 2.33

FIG. 2 (color online). The three types of thermal noise for the
Gaussian, conical, and Mesa beams normalized so that the
conical beam noise is 1 in each category.
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As a consequence, our beam should be comparable toMesa
in terms of field-strength tolerability by coating materials.

It is worth mentioning that conical cavities similar to
ours have been proposed for the generation of Bessel-
Gauss beams [20]. However, our beam cuts off more
sharply than Bessel-Gauss beams at the edge of the mir-
rors. This must also be due to our mirrors’ oscillatory
deviations from perfect cones.

A. Convergence and conical cavities with fewer
coefficients

The results presented throughout most of this paper are
based on our 35 coefficient minimization result. Low-noise
cavities may however be found that employ fewer Gauss-
Laguerre coefficients. They are not as good as our final
result, but still much better than Mesa. Employing fewer
Gauss-Laguerre modes may lead to a cavity that is more
desirable for reasons other than thermal noise. Another

reason for showing this figure is to demonstrate
convergence.
When using fewer Gauss-Laguerre modes in the beam

expansion, the beam does not extend all the way out to the
end of the mirror. In Fig. 5, we show the intensity profile at
the mirror for beams obtained by minimizing the coating
noise over the lowest 7, 14, 21, 27, and 35 Gauss-Laguerre
modes. To illustrate convergence, the difference between
the profiles shown in Fig. 5 and our final result is shown in
Fig. 6. As seen in Fig. 7, there is little qualitative difference
in the mirror shapes, depending on the number of coeffi-
cients used.

B. Optical modes supported by finite nearly conical
mirrors and their diffraction loss

We designed our mirrors to have diffraction losses of
1 ppm in the clipping approximation in order to agree with
Mesa and the baseline Gaussian designs previously con-
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FIG. 5 (color online). Power distribution at the mirror as a
function of the number of Gauss-Laguerre coefficients employed
in the minimization code. When fewer coefficients are used, the
beam is spread over a smaller area of the mirror.
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FIG. 6 (color online). The difference in the power distribution
at the mirror between the 35 coefficient mode and several other
modes with a different number of Gauss-Laguerre coefficients
employed in the minimization code.
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FIG. 7 (color online). Mirrors supporting the 7, 12, and 30
coefficients modes. The mirror height is measured in units of �,
where � ¼ 1:06 �m is the wavelength of the light used in the
interferometer.
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FIG. 4 (color online). The power distribution of the 35 coef-
ficient lowest-noise beam outside the mirror compared to the
theoretical prediction for Mesa. In the clipping approximation,
the integral of this power is assumed to be the diffraction loss.
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sidered [21]. Here we need to verify that the fundamental
mode supported by a finite conical cavity with radius R is
indeed close to the beam we constructed, with a diffraction
loss close to 1 ppm.We are also interested in the diffraction
loss of higher modes.

Following [22], for modes with angular quantum num-
ber n, we construct a 1D radial propagator from one mirror
to the other:

Knðr1; r2Þ ¼ inþ1k

L
Jn

�
kr1r2
L

�
eik½h1ðr1Þþh2ðr2Þ�L�ððr2

1
þr2

2
Þ=2LÞ	;

(18)

where JmðzÞ is the mth order Bessel function of the first
kind given by

JnðzÞ ¼ 1

2�in

Z 2�

0
eiz cos�ein�d�: (19)

L is the length of the arm cavity, k is the wave number k ¼
2�
� , and h1;2ðrÞ are the mirror heights and are assumed to be

equal. For the conical mirror shape obtained from the
previous section, we then computed the eigenvalues of
the axisymmetric propagator and obtained only one that
was close to 1. All other higher eigenmodes had high
diffraction losses. In Fig. 8 we show the absolute values
of the eigenvalues, for modes with n ¼ 0 (axisymmetric), 1
and 2. The mode with minimum loss has j�1j ¼
1� 1:45� 10�6 corresponding to a per-bounce diffraction
loss of

1� j�2
1j ¼ 2:9 ppm: (20)

This is much more than the 1 ppmwe find in the clipping
approximation and illustrates the limitations of that
method. However, this does not invalidate our configura-
tion because 3 ppm is still reasonable for use in Advanced
LIGO, and when the per-bounce losses of Gaussian and
Mesa beams are relaxed to 3 ppm, their thermal noises only
change by a very small amount.

V. TOLERANCE TO IMPERFECTIONS AND
COMPATIBILITY WITH LIGO

To investigate the effects of mirror perturbations on the
conical cavity, we simulated the 2D propagation of the
light from one mirror of the cavity to the other, using an
FFT code [23], without assuming any symmetry. We used
this tool to study the effects of mirror tilt, mirror displace-
ment, and mirror figure errors as well as checking the
diffraction losses of the conical cavity. During light propa-
gation in the cavity, we note that reflection from the mirror
is a diagonal operator in position space, while propagation
in free space from one plane to the other is diagonal in
spatial-frequency domain. Therefore the most efficient
means of propagation is as follows. When propagating
between planes at the mirror locations, use spatial-
frequency domain, and when reflecting from mirror sur-
faces, use position domain—and insert 2D FFT between
these processes (and hence the name FFT code). For a
given cavity, we propagate and initial field multiple times
in order to obtain the mode with the lowest loss. As a test,
we first used the code on the calculated conical mirror
shape, and obtained a beam very close to the theoretical
prediction. The diffraction loss per bounce is 3.03 ppm,
which agrees well with (20). In the following, we use the
FFT code in various situations of imperfection, namely,
mirror tilt, translation and mirror figure error, and estimate
the requirement on these imperfections, if the conical
cavity is to be used in LIGO.

A. Sensitivity to mirror tilt

Our numerical simulation shows Mesa cavities to in-
crease the diffraction loss to about 3 ppm when perturbed
symmetrically by a 10�8 radians mirror tilt. The same tilt
induces a diffraction loss of about 70 ppm in the conical
cavity. (Antisymmetric tilt can be treated as translation of
one mirror, which will be considered next.) The diffraction
loss depends quadratically on the tilt angle as shown in
Fig. 9. The interpolating function, when x is the tilt in

2.5 5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1

FIG. 8 (color online). Absolute value of eigenvalues of the
one-way propagator. The blue dots represent n ¼ 0 or axisym-
metric modes, the green n ¼ 1, and the red n ¼ 2.

10 20 30 40
10 9 rad
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FIG. 9. Diffraction loss in a conical cavity as a function of the
tilt, when its mirrors are symmetrically tilted.
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radians, is given by

loss ¼
�
3:03þ 0:646

x2

nrad2

�
ppm: (21)

The conical mirrors proposed here respond to tilt perturba-
tion more strongly than Mesa does. As a consequence, in
order for diffraction loss not to increase significantly due to
tilt error, the suspension and mirror control system would
need to be engineered to control the mirror direction better.
If LIGO is to use conical mirrors, the tilt needs to be
controlled at the level of about 3 nanoradians, in order
for diffraction loss due to tilt error not to exceed 10 ppm.

B. Sensitivity to mirror translation

Simulations show that a conical cavity with a mirror
translated by 10 �m from its ideal position will have a
diffraction loss of 57.61 ppm. A similar diffraction loss is
seen in a Mesa cavity with a 4 mm error in the mirror
positioning. Thus the conical cavity is far more sensitive to
mirror translation than Mesa. A quadratic function can be
fit well to the data as seen in Fig. 10. The diffraction loss in
parts per bounce per million of a conical cavity perturbed
by moving one of the mirrors a distance x parallel to itself
in a direction orthogonal to the optic axis is thus approxi-
mately given by the formula

loss ¼
�
3:03þ 0:542

x2

�m2

�
ppm: (22)

As a consequence, if Advanced LIGO is to use conical
mirrors, mirror position needs to be controlled to about
4 �m, in order for diffraction loss due to displacement
error not to exceed 10 ppm. If one uses antisymmetric
mirror tilt to compensate errors in mirror location, the tilt
would need to be controlled to about 4 �m=4 km ¼
1 nrad.

C. Mirror figure error and contribution from different
scales

The mirror figure errors are deviations of the mirror
surface heights from their theoretical values. Figure errors
have been measured experimentally for the LIGO-I mirrors
currently used in the experiment. We used the real mea-
sured data from [24]. Since LIGO-I and Advanced LIGO
have different mirror sizes, we interpolated the data and
stretched it from 12.5 cm (LIGO-I) to 17 cm (Advanced
LIGO), in the same way as Ref. [12]. (This will not be very
realistic, because the length scale of the perturbations will
make a difference in the losses.) After numerically solving
for the lowest-loss mode using the FFT code, we found that
conical cavities are much more sensitive to this type of
figure error, by giving a loss of 405 ppm, than Mesa
cavities which gives a loss of 5 ppm. Nevertheless, if we
demand a figure error of 1=10 that of the LIGO-I stretched
error, we would recover a loss of 5 ppm, which then
becomes reasonable.
In order to guide further development of mirror manu-

facturing, it is interesting to study the contribution to
optical loss from figure errors at different scales. Large-
scale, or low-spatial-frequency errors cause light to slightly
deviate from the cavity axis, while small-scale, or high-
spatial-frequency errors will cause light to deviate more
significantly from the axis. In this way, for both Mesa and
conical cavities, errors at high spatial frequencies will
generate loss anyway, while for Mesa cavities, low-spa-
tial-frequency errors can be less dangerous, since Mesa
beam does not cut off so sharply at the edges of the mirrors.
The other way to look at it is that, unlike the conical cavity,
the Mesa cavity has more than one low-diffraction-loss
modes, which provides a ‘‘reserve’’ to maintain a low-
loss fundamental mode. The conical cavity’s sensitivity
to tilt and displacement agrees with this argument, because
tilt and displacement can be considered as low-frequency
imperfections. Following this argument, we also note that
since the LIGO-I error is stretched, it tends to decrease the
spatial frequency of the figure error, therefore will be
biased against conical cavities.
Now we numerically study contributions from different

spatial scales by applying high-pass spatial filters to the
stretched LIGO-I noise, and then compute diffraction loss
of the resulting fundamental optical mode. As we see from
Table II, as we gradually allow low-spatial-frequency er-
rors to enter, the conical and Mesa losses initially trace
each other—until a particular spatial scale (in our case ��
R), when conical loss increases dramatically, eventually
climbing up to 100 times that of the Mesa loss, while Mesa
loss first increases only mildly, and then even decreases,
probably due to particular characteristics of this data set.
This means that, in order to make a conical mirror within
the LIGO specification, we only need to focus on large-
scale errors (� * R)—while roughness at smaller scales at
LIGO-I level is already acceptable for conical cavities.

10 20 30 40
µm

200

400

600

800

D.L. ppm

FIG. 10. Dots represent the diffraction loss in ppm for a
conical cavity perturbed by moving one mirror away from the
optic axis as a function of this displacement. The continuous line
is a quadratic function fit to the data.
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VI. CONCLUSIONS AND FURTHER DISCUSSIONS

We developed and implemented a simple minimization
algorithm and used it for finding the LIGO-compatible
beam with the lowest thermal noise. The result of this
minimization is a beam with thermal noise a factor of
2.32 (in power) lower than previously considered Mesa
Beams and a factor of 5.45 (in power) lower than the
Gaussian beams employed in the current baseline design.
The mirror that supports this mode is found to have nearly
conical shape. Using an axisymmetric 1D propagator, we
found that contrary to spherical and Mesa cavities, the
conical cavity only has one eigenmode with very low
diffraction loss (the fundamental mode), while higher
modes have much higher optical losses.

By using an FFT propagation code, we have analyzed
the conical cavity’s tolerance to practical imperfections.
Qualitatively, the conical cavity is much more susceptible
than Mesa cavities, to imperfections with low spatial fre-
quencies—including tilt and mirror translation. At higher
spatial frequencies, the conical cavity is comparable to
Mesa cavities. This behavior can be explained by the fact
that the presence of additional low-loss modes allows the
Mesa cavity to continue having low diffraction loss when
lower-spatial-frequency perturbations are made to the
mirrors.

Recently, parametric instability was shown to be a seri-
ous problem in advanced gravitational-wave detectors [25–
28]. It arises when the beat frequency of two optical modes
is close to the mechanical frequency of an acoustic mode of
the mirror. We believe conical beams exhibit lower para-
metric instability than Mesa because our higher order
modes are very lossy and little power is available to excite
the mechanical modes. The topic needs to be thoroughly
researched in the future.

Our numerical simulations show that, in order to achieve
diffraction losses close to Mesa on a conical cavity, the
mirror needs to be manufactured or corrected with a CO2

laser such that its large-scale deviations from the desired
shape are roughly 10 times lower than in the case of initial

LIGO. The mirror orientation needs to be controlled to
about 1 nanoradian which corresponds to controlling the
mirror displacement to the accuracy of several microns.
Even though the conical beam attains the lowest possible

coating thermal noise, compromise configurations like
those considered in [29] will be found to provide a reason-
able noise level while being easier to implement.
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TABLE II. Optical losses in ppm of conical and mesa cavities,
with LIGO-I mirror figure error stretched and high-pass filtered.
When bandwidth of the filter is increased, including more low-
frequency (i.e., long length-scale) fluctuations, the loss of the
conical cavity increases monotonically, while that of the mesa
cavity first increases and then slightly decreases.

Maximum � included Cone Mesa

R=16 3.16 2.68

R=8 4.71 3.83

R=4 6.34 5.24

R=2 12.47 7.96

R 56.28 5.63

2R 184.13 5.03

4R 404.83 4.86

FIG. 11 (color online). Advanced LIGO noise budget for the
baseline design compared to a hypothetical situation when the
conical mirror is used and it only impacts coating thermal noise.
This situation is not real because some other noises do change
for better or for worse when one switches to the conical beam. In
order to get the true noise curve of a LIGO-type instrument using
conical mirrors, one would have to do a much more detailed
analysis, well beyond the scope of this paper.
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