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We revisit here the recent proposal for overspinning a nearly extreme black hole by means of a quantum

tunneling process. We show that electrically neutral massless fermions evade possible backreaction effects

related to superradiance, confirming the view that it would be indeed possible to form a naked singularity

due to quantum effects.
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I. INTRODUCTION

The weak cosmic censorship conjecture (WCCC) states
basically that any spacetime singularity originated after a
gravitational collapse must be hidden inside an event hori-
zon [1]. The conjecture, which is believed to be true at the
classical level, is one of the most important open problems
in general relativity. We remind that, without a full de-
scription of spacetime singularities, the WCCC must be
true in order to assure the predictability of the laws of
physics [2]. Gravitational collapse and gedanken experi-
ments trying to destroy the event horizons of black holes
are common theoretical tests of WCCC. According to well-
known no-hair theorems [3], all stationary black hole
solutions of Einstein-Maxwell equations are uniquely de-
termined by three parameters: the mass M, the electrical
charge Q, and the angular momentum J, which satisfy

M2 � Q2 þ ðJ=MÞ2; (1)

with the equality corresponding to the case of an extreme
black hole (we adopt here natural units in which G ¼ @ ¼
c ¼ 1). Solutions for which M2 <Q2 þ ðJ=MÞ2 have no
event horizon; their central singularities are exposed and
they are named naked singularities [4]. Many classical
results [5] have established that it is impossible for a
physical process to increase Q (to overcharge) or J (to
overspin) a black hole in order to violate (1). Such results
have strongly supported the belief that the WCCC is true at
classical level.

Quantum effects, on the other hand, have already altered
our understanding of the classical laws of black holes in the
past. Hawking radiation [6], for instance, implies the de-
creasing of the black hole area, a process known to be
classically forbidden [4]. This was precisely the main
motivation behind the recent work of Matsas and Silva
[7], where a quantum tunneling process leading to the
overspinning of a black hole is proposed. They consider

a nearly extreme Reissner-Nordstrom black hole (Q=M �
1 and J ¼ 0) and show that the probability of absorbing
low energy massless scalar particles with high angular
momentum is nonvanishing. By conservation of energy
and angular momentum, they conclude that (1) could be
violated after the absorption. In particular, they show that
for a black hole withM ¼ 100 Planck mass units and Q ¼
M� e, e ¼ 1=

ffiffiffiffi
�

p � 1=
ffiffiffiffiffiffiffiffi
137

p
being the elementary charge

in Planck charge units, a particle with very low energy and

total angular momentum L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

, with ‘ ¼ 413,
would be enough to overspin the black hole and produce
a naked singularity. Larger nearly extreme Reissner-
Nordstrom black holes would require larger total angular
momentums in order to produce naked singularities. In

fact, ‘�M3=2 for large M.
AsMatsas and Silva stress in their paper, the transfer of a

high amount of angular momentum to an initially static
black hole raises some doubts about the role of possible
backreaction effects in such a kind of process. This is the
central point of Hod’s contribution [8] to Matsas and
Silva’s process: when a wave (or particle) with large an-
gular momentum approaches a black hole, higher order
backreaction interactions could trigger the rotation of the
black hole before the tunneling. Hod shows then that
superradiance effects would imply that only those modes
with frequency ! and azimuthal number m such that

!>m�; (2)

where� is the angular velocity of the black hole, could be
really absorbed by the black hole, leading eventually to the
conclusion that it is impossible for such a process to
increase J without increasing M simultaneously, preserv-
ing (1) and saving the WCCC. We remind that superra-
diance was proposed by Misner as a version for waves of
the Penrose process to extract energy from a rotating black
hole. Superradiance is known to affect in similar ways
(bosonic) fields of spins s ¼ 0 (scalar), s ¼ 1 (photons),
and s ¼ 2 (gravitons) [9]. Besides, there is an equivalent of
the superradiance effect for charged situations [10], imply-
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ing that it is also impossible to overcharge a black hole by
the absorption of low energy scalar charged particles.

In this paper, we go a step further in this problem by
showing that it is possible to reduce arbitrarily the back-
reaction effects raised by Hod [8] by considering the
quantum tunneling of neutral fermions into nearly extreme
rotating black holes, implying that quantum effects could
indeed lead to the appearance of naked singularities.
Physically, the validity of the process presented here rests
on the well-known fact that there is no superradiance effect
for electrically neutral massless fermions [11]. We notice
also that some recent observations suggest that rapidly
spinning black holes could be rather common in the uni-
verse [12].

II. FERMIONS AROUND BLACK HOLES

The Dirac equation is known to be separable in a Kerr-
Newman spacetime [13]. By using Boyer-Lindquist coor-
dinates, a neutral massless Dirac fermion can be separated
in terms of the modes

us!‘mðt; r; �; �Þ ¼ e�i!tRs!‘mðrÞSs!‘mð�Þeim�; (3)

where the radial Rs!‘mðrÞ ¼ R and angular Ss!‘mð�Þ ¼ S
functions satisfy the (spin weight s ¼ � 1

2 ) Teukolsky

equations [13]

��s d

dr

�
�sþ1 dR

dr

�
þ

�
K2 � 2isðr�MÞK

�
þ 4is!r

þ 2am!� a2!2 � �

�
R ¼ 0; (4)

1

sin�

d

d�

�
sin�

dS

d�

�
þ

�
ða! cos�� sÞ2 �

�
s cos�þm

sin�

�
2

� sðs� 1Þ þ �

�
S ¼ 0; (5)

with � ¼ r2 � 2Mrþ a2 þQ2, a ¼ J=M, and K ¼
ðr2 þ a2Þ!� am, where !, ‘ � 1

2 , and �‘ � m � ‘

are, respectively, the frequency of the mode and the sphe-
roidal and azimuthal spin-weighted harmonic indexes. In
the limit a! � 1, the angular dependence of (3) reduces to
the spin-weighted spherical harmonic sY

m
‘ ð�;�Þ ¼

Ss!‘mð�Þeim�, with corresponding eigenvalues � ¼ ð‘�
sÞð‘þ sþ 1Þ.

The low energy sectorM! � 1 of the modes (3) can be
considered analogously to the scalar case [9,14]. The field
configuration associated to the tunneling of fermions into
the black hole corresponds to the physical boundary con-

ditions of purely ingoing modes at the event horizon rþ ¼
Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � a2 �Q2
p

,

Rr!rþ � ��se�ið!�m�Þr� ; (6)

and a mixture of both ingoing and outgoing modes at
infinity

Rr!1 � YðsÞ
in e

�i!r�r�1 þ YðsÞ
oute

i!r�r�ð2sþ1Þ; (7)

where r� is the usual tortoise coordinate, defined as dr� ¼
ðr2 þ a2Þdr=�. In contrast to the scalar (s ¼ 0) case, the
calculation of the transmission T s!‘m and reflection
Rs!‘m coefficients, which obey jT s!‘mj2 þ jRs!‘mj2 ¼
1, is rather tricky since it involves s-dependent normaliza-
tion factors which are different for ingoing and outgoing

modes. In particular, we do not have simply jT s!‘mj2 ¼
1� jYðsÞ

out=Y
ðsÞ
in j2 ¼ 1=jYðsÞ

in j2 as we do for the s ¼ 0 case.

However, a property of the solutions of (4) and (5) discov-
ered by Teukolsky and Press [15] leads to

jT s!‘mj2 ¼ 1�
��������Y

ðsÞ
outY

ð�sÞ
out

YðsÞ
in Y

ð�sÞ
in

��������; (8)

facilitating our task considerably.
Incidentally, the transmission coefficient (8) has been

already calculated by Page [16] in the limit of low fre-
quency modes (M! � 1) for the case Q ¼ 0 in the con-
text of particle emission by black holes. We have

jT s!‘mj2 ¼
�ð‘� sÞ!ð‘þ sÞ!
ð2‘Þ!ð2‘þ 1Þ!!

�
2

	 Y‘þ1=2

n¼1

�
1þ

�
!�m�

n�� 1
2�

�
2
��

A�

2�
!

�
2‘þ1

; (9)

for s ¼ � 1
2 , where A stands for the black hole area and �

to its surface gravity. The quantity (9) corresponds to the
probability that a mode (3) with a (low) frequency !,
spheroidal and azimuthal numbers ‘ and m, respectively,
be absorbed by the black hole. As one can see, it is positive
for arbitrary small values of !, in contrast to the bosonic
cases where superradiance effects are present [17].

III. OVERSPINNING THE BLACK HOLE

Now, we can finally show how to overspin a black hole
by means of the quantum tunneling of fermions, evading
Hod’s back-reaction issues [8]. Let us suppose, first, we
have the ‘‘nearest extreme’’ possible Kerr black hole: mass
M (in Planck units), angular momentum J ¼ M2 � 1, and
electrical charge Q ¼ 0. This black hole can absorb a
mode with arbitrarily small frequency ! and ‘ ¼ m ¼
3=2. The nonvanishing probability for this process is

jT ð1=2Þ!ð3=2Þð3=2Þj2 ¼ ðM!Þ4
36

�
1þ 8

a2

M2

�
; (10)

valid in the limit M! � 1. From the conservation laws,
after the tunneling the black hole will have mass Mf ¼
Mþ!, angular momentum Jf ¼ J þm ¼ M2 þ 1=2,

and electrical charge Qf ¼ 0. It would be enough to

choose
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!<M

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2M2

s
� 1

�
� 1

4M
(11)

in order to violate (1) and induce the formation of a naked
singularity. The last term in (11) corresponds to the domi-
nant term for large M. In contrast with Matsas and Silva’s
original process [7], the total amount of angular momen-
tum that must be transferred to the black hole in order to
form a naked singularity does not depend onM and, more-
over, is small. A rotating black hole with large massM and
large angular momentum J ¼ M2 � 1 is not expected to be
significatively disturbed by an infalling wave with very
small frequency ! and ‘ ¼ m ¼ 3=2. By choosing large
values of M, and consequently large values of J, we can
reduce arbitrarily any issue related to rotation higher order
interactions raised by Hod in [8]. By dealing with large
black holes we can also avoid any complication due to
possible interactions between the infalling wave and the
emitted Hawking radiation [6].

Nevertheless, we can improve even more our result by
considering a slightly charged nearly extreme rotating
black hole. Let us add, for instance, a charge of Q ¼ 1
Planck unit (corresponding to about 12e) to the black hole
with large mass M and angular momentum J ¼ M2 � 1.
Such a black hole, which will not be discharged by
Schwinger pair production processes [18], can be con-
verted into a naked singularity by absorbing a single low
energy fermion with minimal angular momentum. Since
electrically neutral fermions do not couple directly to the
black hole electric field, the transmission coefficient for
low frequencies modes in a Kerr-Newman black hole is
given essentially by the same Page’s formula (9), leading to
the following nonvanishing probability for the tunneling of
a neutral massless fermion with low frequency ! and ‘ ¼
m ¼ 1=2

jT ð1=2Þ!ð1=2Þð1=2Þj2 ¼ ðM2 �Q2Þ!2; (12)

valid in the limit M! � 1. Because of the conservation
laws, after the absorption the black hole will have mass
Mf ¼ Mþ!, angular momentum Jf ¼ M2 � 1=2, and

chargeQf ¼ 1. In order to violate (1) and produce a naked

singularity, ! must be chosen as

!<M

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðM2 � 1

2Þ2
q

2M2

vuut � 1

�
� 1

16M3
; (13)

where the last term also corresponds to the dominant term

for large M. This process could lead to the formation of a
naked singularity by the tunneling of a single neutral
fermion with minimal angular momentum into a slightly
charged nearly extreme rotating black hole with arbitrary
mass M. Again, by considering large black hole masses
one can minimize all the backreaction effects raised by
Hod.
There is, nevertheless, a remaining possible source of

backreaction effects in our scenario: the sudden disappear-
ance of the event horizon due to the particle tunneling. A
complete description of these effects would certainly re-
quire a full quantum gravity theory. In spite of that, some
string theoretical results do indeed suggest that the disap-
pearance of the event horizon could be a smooth process
without, consequently, any sudden backreaction effect that
could alter significantly our conclusions. In the D-brane
picture used by Maldacena to describe near extremal black
holes [19] the (essentially nonperturbative) vanishing of
the event horizon is mapped into a well-defined perturba-
tive process of a low energy effective string model. In
particular, the absorption and emission rates of photons
and fermions by nearly extreme black holes do not show
any evidence of sudden phenomena [20].
Although the probabilities of the absorption for both

cases considered here are extremely small, we have shown
that it would be indeed possible in principle to overspin a
nearly extreme black hole through the quantum tunneling
of low energy fermions. Moreover, we have shown that the
process proposed here, in contrast to Matsas and Silva’s
original one [7], involves the transfer of a minimal amount
of angular momentum from the quantum field to the black
hole. Since we deal with neutral fermion fields, which are
known to be free from superradiance effects, and manipu-
late only minimal amounts of energy and angular momen-
tum, we can evade all the backreaction issues pointed out
by Hod [8], rendering the overspinning of a black hole by
quantum effects a quite robust conclusion.
Spacetime singularities belong naturally to the realm of

quantum gravity. We believe that only a complete quantum
gravity theory will be able to describe naked singularities
properly, dissecting them conclusively or even restoring
the WCCC in a more fundamental level.
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