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The order parameter of a finite system with a spontaneously broken continuous global symmetry acts as

a quantum mechanical rotor. Both antiferromagnets with a spontaneously broken SUð2Þs spin symmetry

and massless QCD with a broken SUð2ÞL � SUð2ÞR chiral symmetry have rotor spectra when considered

in a finite volume. When an electron or hole is doped into an antiferromagnet or when a nucleon is

propagating through the QCD vacuum, a Berry phase arises from a monopole field and the angular

momentum of the rotor is quantized in half-integer units.
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Berry phases and monopole fields are familiar from
adiabatic processes in quantum mechanical systems [1,2].
For example, the slow rotation of the nuclei in a diatomic
molecule is influenced by a geometric vector potential
generated by the fast motion of the electrons [3,4]. The
Abelian and non-Abelian monopole content of these vector
potentials was worked out elegantly by Moody, Shapere,
and Wilczek [5]. In this paper we discuss Berry phases and
monopole fields for rotors arising in condensed matter and
particle physics systems with a spontaneously broken con-
tinuous global symmetry.

The undoped precursors of layered cuprate high-
temperature superconductors are antiferromagnets with a
spontaneously broken SUð2Þs spin symmetry. When one
considers an antiferromagnet of finite volume V at very
low temperatures, the dynamics are dominated by the
spatially independent zero-mode of the staggered magne-
tization order parameter

~eðtÞ ¼ ðsin�ðtÞ cos�ðtÞ; sin�ðtÞ sin�ðtÞ; cos�ðtÞÞ; (1)

which represents a slow quantum mechanical rotor gov-
erned by the Lagrangian [6]

L ¼ �

2
@t ~e � @t ~e ¼ �

2
½ð@t�Þ2 þ sin2�ð@t’Þ2�: (2)

Integrating out the fast nonzero modes of the staggered
magnetization at one loop, and assuming a 2-dimensional
quadratic periodic volume, the moment of inertia was
determined by Hasenfratz and Niedermayer [6] as

� ¼ �sV

c2

�
1þ 3:900265

4�

�
c

�sL

�
þO

�
1

L2

��
; (3)

where �s is the spin stiffness and c is the spinwave velocity.
The momenta conjugate to � and � are given by p� ¼
�@t� and p’ ¼ �sin2�@t’, respectively, and the resulting

Hamiltonian

H ¼ � 1

2�

�
1

sin�
@�½sin�@�� þ 1

sin2�
@2’

�
¼ ~L2

2�
(4)

is just the Laplacian on the sphere S2. Correspondingly, the
energy spectrum is that of a quantummechanical rotor with
angular momentum l 2 f0; 1; 2; . . .g, i.e., El ¼ lðlþ
1Þ=ð2�Þ, with each state being ð2lþ 1Þ-fold degenerate.
The rotor features have been verified in numerical simula-
tions of the antiferromagnetic quantum Heisenberg model
[7,8] (or equivalently of the t-J model at half-filling). It
should be noted that a quantum ferromagnet does not
behave as a rotor because its order parameter—the uniform
magnetization—is a conserved quantity.
When a single hole or electron is doped into the anti-

ferromagnet, the spin of the system changes by 1=2 and
thus the angular momentum of the resulting rotor must then
be quantized in half-integer units. As we will see, in the
language of low-energy effective theories, this half-integer
quantization is a result of Berry phases and monopole
fields. Systematic low-energy effective theories for charge
carriers in an antiferromagnet were recently constructed in
[9,10]. The leading terms in the low-energy Lagrangian of
holes or electrons with a small momentum ~p are given by

L ¼�

2
@t ~e �@t ~eþ�y½Eð ~pÞ� i@t þv3

t �3 þ�Vt��: (5)

Here �ðtÞ is a two-component Grassmann valued field
describing fermions with spin parallel or antiparallel to
the local staggered magnetization. It should be noted that
we have suppressed an additional flavor index of the hole
fields in a doped cuprate antiferromagnet [9], which dis-
tinguishes between holes from different pockets in the
Brillouin zone. The fermion energy Eð ~pÞ as well as �
can be determined by integrating out the nonzero momen-
tummodes of the staggered magnetization, e.g. at one loop.
For hole- or electron-doped cuprates as well as for the t-J
model it was predicted that � ¼ 0 [9], while for other
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antiferromagnets in general � � 0 [10]. The Abelian vec-
tor potential v3

t ðtÞ is the diagonal component of the com-
posite vector field

vt ¼ u@tu
y ¼ iva

t �a ¼ iv3
t �3 þ iVt: (6)

Here �a are the Pauli matrices and

u ¼ cos�2 sin�2 expð�i’Þ
� sin�2 expði’Þ cos�2

 !
(7)

represents a transformation which rotates ~eðtÞ into the 3-
direction. One then obtains

v3
t ¼ sin2

�

2
@t’;

Vt ¼ 1

2
sin�ðcos’�1 þ sin’�2Þ@t’

þ 1

2
ðsin’�1 � cos’�2Þ@t�:

(8)

These velocity-dependent terms give rise to a modification
of the canonically conjugate momenta such that

�@t� ¼ p� þ iA�; �@t’ ¼ 1

sin2�
ðp’ þ iA’Þ; (9)

with the non-Abelian vector potential

A� ¼ i
�

2
ðsin’�1 � cos’�2Þ;

A’ ¼ isin2
�

2
�3 þ i

�

2
sin�ðcos’�1 þ sin’�2Þ;

(10)

and the corresponding field strength

F�’ ¼ i
1� �2

2
sin��3: (11)

Remarkably, the resulting geometric Berry gauge field is
exactly the same as for a diatomic molecule [5]. For
cuprates (� ¼ 0) the vector potential is Abelian and de-
scribes a monopole with quantized magnetic flux. The path
~eðtÞ in periodic Euclidean time defines a closed loop C on
S2. The Boltzmann factor in the path integral contains a
Wilson loop along C which manifests itself as a Berry
phase. Using Stokes’s theorem, the Berry phase is given
by the magnetic flux enclosed in C. Since the enclosed flux
is well defined only up to the area 4� of S2, the magnetic
charge is � 1

2 as a consequence of the Dirac quantization

condition. For a general antiferromagnet (� � 0) the vec-
tor potential becomes non-Abelian and the flux is no longer
quantized.

The resulting Hamilton operator takes the form

Hð�Þ ¼ � 1

2�

�
1

sin�
ð@� � A�Þ½sin�ð@� � A�Þ�

þ 1

sin2�
ð@’ � A’Þ2

�
þ Eð ~pÞ: (12)

The solution for the energy spectrum can be obtained along
the lines of [5]. First, one can show that the Hamiltonian
Hð0Þ (with � ¼ 0) commutes with the angular momentum
operators

J� ¼ expð�i’Þ
�
�@� þ i cot�@’ � 1

2
tan

�

2
�3

�
;

J3 ¼ �i@’ � �3

2
; (13)

and is given by

Hð0Þ ¼ 1

2�

�
~J2 � 1

4

�
þ Eð ~pÞ; (14)

such that the energy spectrum takes the form

Ejð0Þ ¼ 1

2�

�
jðjþ 1Þ � 1

4

�
þ Eð ~pÞ: (15)

Here j is a half-integer. In this case, each state is 2ð2jþ
1Þ-fold degenerate because the fermion sectors þ and �
cost the same energy. The corresponding wave functions
with half-integer angular momentum are monopole har-
monics [11,12]. In particular, the ground state wave func-
tions are

Y�
ð1=2Þ;�ð1=2Þð�; ’Þ ¼

1ffiffiffiffiffiffiffi
2�

p sin
�

2
expð�i’Þ;

Y�
ð1=2Þ;�ð1=2Þð�; ’Þ ¼

1ffiffiffiffiffiffiffi
2�

p cos
�

2
:

(16)

It should be noted that Yþ
ð1=2Þ;ð1=2Þð�;’Þ and

Y�
ð1=2Þ;�ð1=2Þð�; ’Þ have coordinate singularities at � ¼ �

related to the Dirac string. Following Wu and Yang [12],
one can avoid the coordinate singularity by introducing
different coordinate patches glued together by gauge
transformations.
The Hamiltonian with � � 0 takes the form

Hð�Þ ¼ Hð0Þ þ 1

2�

�
�Cþ 1

2
�2

�
; (17)

and still commutes with ~J of Eq. (13). Here

C ¼ �i

�
sin’@� þ cos’

sin�
@’ � 1

2
sin’ tan

�

2

�
�1

þ i

�
cos’@� � sin’

sin�
@’ � 1

2
cos’ tan

�

2

�
�2; (18)

and ½C; ~J� ¼ 0. Using C2 ¼ ~J2 þ 1
4 one obtains the energy

spectrum

Ejð�Þ ¼ 1

2�

�
j0ðj0 þ 1Þ þ �2 � 1

4

�
þ Eð ~pÞ; (19)

with j0 ¼ j� �
2 and j again being a half-integer. For � � 0

the fermion sectors þ and � get mixed and the previously
degenerate 2ð2jþ 1Þ states are now split into two groups
of 2jþ 1 degenerate states. Interestingly, for � ¼ �1 the
monopole field strength of Eq. (11) vanishes and Ejð�1Þ ¼
1
2� j0ðj0 þ 1Þ with j0 ¼ j� 1

2 . In that case, the rotor spec-

trum looks like the one of undoped antiferromagnets
although the angular momentum j is now a half-integer.
Let us now consider QCD with two massless flavors and

thus with a spontaneously broken SUð2ÞL � SUð2ÞR chiral
symmetry. When the theory is put in a finite spatial volume
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V, as is the case in numerical simulations of lattice QCD,
the chiral order parameter UðtÞ 2 SUð2Þ describes a quan-
tum rotor with the Lagrangian

L ¼ �

4
Tr½@tUy@tU�: (20)

At tree-level the moment of inertia is given by � ¼ F2
�V

where F� is the pion decay constant. The corresponding
Hamiltonian is the Laplacian on the sphere S3. The QCD
rotor spectrum has been derived by Leutwyler [13] in the
�-expansion of chiral perturbation theory [14] as

El ¼ jLðjL þ 1Þ þ jRðjR þ 1Þ
�

¼ lðlþ 2Þ
2�

: (21)

In this case, jL ¼ jR with l ¼ jL þ jR 2 f0; 1; 2; . . .g and
each state is ð2jL þ 1Þð2jR þ 1Þ ¼ ðlþ 1Þ2-fold degener-
ate. The low-energy dynamics of nucleons and pions is
described by baryon chiral perturbation theory [15–18].
When a nucleon with small momentum ~p ¼ j ~pj ~ep is prop-

agating in the finite volume the Lagrangian reads

L ¼ �

4
Tr½@tUy@tU�

þ�y½Eð ~pÞ � i@t � ivt � i�ð ~� � ~epÞat��: (22)

Here �ðtÞ is a Pauli spinor with a flavor index distinguish-

ing protons and neutrons and ~�
2 is the nucleon spin. At tree-

level Eð ~pÞ ¼ Mþ ~p2=2M and � ¼ gAj ~pj=M, where M is
the mass and gA is the axial vector coupling of the nucleon.
As for the antiferromagnet, the parameters �, Eð ~pÞ, and �
get renormalized by the coupling to nonzero momentum
pion modes. In the QCD case u2 ¼ U and

vt ¼ 1

2
ðu@tuy þ uy@tuÞ; at ¼ 1

2i
ðu@tuy � uy@tuÞ:

(23)

Parametrizing

UðtÞ ¼ cos�ðtÞ þ i sin�ðtÞ ~e�ðtÞ � ~	;
~e�ðtÞ ¼ ðsin�ðtÞ cos’ðtÞ; sin�ðtÞ sin’ðtÞ; cos�ðtÞÞ;
~e�ðtÞ ¼ ðcos�ðtÞ cos’ðtÞ; cos�ðtÞ sin’ðtÞ;� sin�ðtÞÞ;
~e’ðtÞ ¼ ð� sin’ðtÞ; cos’ðtÞ; 0Þ; (24)

one obtains

vt ¼ isin2
�

2
ð@t�~e’ � sin�@t’~e�Þ � ~	;

at ¼
�
@t�

2
~e� þ sin�

@t�

2
~e�þ sin� sin�

@t’

2
~e’

�
� ~	:

(25)

Here ~	 are the Pauli matrices for isospin.
The resulting Hamilton operator takes the form

Hð�Þ ¼ � 1

2�

�
1

sin2�
ð@� � A�Þ½sin2�ð@� � A�Þ�

þ 1

sin2� sin�
ð@� � A�Þ½sin�ð@� � A�Þ�

þ 1

sin2�sin2�
ð@’ � A’Þ2

�
þ Eð ~pÞ; (26)

with the non-Abelian vector potential

A� ¼ i
�

2
ð ~� � ~epÞ ~e� � ~	;

A� ¼ i

�
sin2

�

2
~e’ þ �

2
ð ~� � ~epÞ sin�~e�

�
� ~	;

A’ ¼ i

�
�sin2

�

2
sin�~e� þ �

2
ð ~� � ~epÞ sin� sin�~e’

�
� ~	;
(27)

and the corresponding field strength

F�� ¼ i
1� �2

2
sin�~e’ � ~	;

F�’ ¼ i
1� �2

2
sin2� sin�~e� � ~	;

F’� ¼ i
1� �2

2
sin� sin�~e� � ~	:

(28)

This Berry gauge field is a non-Abelian analog of the
Abelian monopole field we encountered for the antiferro-
magnet. The non-Abelian gauge field again has a coordi-
nate singularity, in this case at � ¼ �, which corresponds
to a Dirac string going through the south pole of S3. This
indicates that there is a non-Abelian magnetic monopole at
the center of S3.
The generators of SUð2ÞL � SUð2ÞR take the form

~JL ¼ 1

2
ð ~J� ~KÞ; ~JR ¼ 1

2
ð ~Jþ ~KÞ; J3 ¼�i@’ þ 	3

2
;

J� ¼ expð�i’Þð�@� þ icot�@’Þþ 	�
2
;

K� ¼ expð�i’Þ
�
i sin�@� þ icot�cos�@�� cot�

sin�
@’

� i

2
tan

�

2
~e� � ~	þ 1

2
tan

�

2
cos�~e’ � ~	

�
;

K3 ¼ iðcos�@� � cot� sin�@�Þ� 1

2
tan

�

2
sin�~e’ � ~	: (29)

The Hamiltonian Hð0Þ (with � ¼ 0) can be written as

Hð0Þ ¼ 1

2�

�
~J2 þ ~K2 � 3

4

�
þ Eð ~pÞ; (30)

such that the energy spectrum takes the form

Ejð0Þ ¼ 1

2�

�
jðjþ 2Þ � 1

2

�
þ Eð ~pÞ: (31)

In this case, jL ¼ jR � 1
2 and j ¼ jL þ jR 2 f12 ; 32 ; . . .g.

Each state is 2ðjþ 1
2Þðjþ 3

2Þ-fold degenerate because the

states with spin up and spin down cost the same energy.
The Hamiltonian with � � 0 can be written as

Hð�Þ ¼ Hð0Þ þ 1

2�

�
�Cþ 3

4
�2

�
; (32)

and it still commutes with ~J and ~K. Here
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C ¼ ið ~� � ~epÞ
�
~e�@� þ 1

sin�
~e�@� þ 1

sin� sin�
~e’@’

� tan
�

2
~e�

�
� ~	; (33)

and ½C; ~J� ¼ ½C; ~K� ¼ 0. Using C2 ¼ ~J2 þ ~K2 þ 3
4 one fi-

nally obtains the energy spectrum

Ejð�Þ ¼ 1

2�

�
j0ðj0 þ 2Þ þ �2 � 1

2

�
þ Eð ~pÞ; (34)

with j0 ¼ j� �
2 , where � refers to the spin eigenstates of

~� � ~ep with eigenvalues�1. Thus we see that for � � 0 the

degeneracy is partly lifted and there are now two groups of
ðjþ 1

2Þðjþ 3
2Þ-fold degenerate states. Remarkably, for � ¼

�1 the non-Abelian field strength of Eq. (28) vanishes and
Ejð�1Þ ¼ 1

2� j0ðj0 þ 2Þ with j0 ¼ j� 1
2 . Just as for an

antiferromagnet with � ¼ �1, the QCD rotor spectrum
then looks like the one of Eq. (21) although the system
now has fermion number one.

The present study in the �-regime complements other
investigations of finite volume effects in the one-nucleon
sector of QCD in the p- [19–21], 
- [22], and 
0-regimes
[23] of chiral perturbation theory. A comparison of nu-
merical lattice QCD data with finite volume predictions of
chiral perturbation theory may lead to an accurate deter-
mination of low-energy parameters including F� and some
of the Gasser-Leutwyler coefficients. Before one can do
this in the �-regime, one must match the volume-
dependent parameters �, Eð ~pÞ, and � of the effective
quantum mechanics to those of the infinite volume effec-
tive theory.

While it is difficult to simulate QCD in the chiral limit,
simulations of a single hole in the t-J model with an exact
SUð2Þs spin symmetry are possible using efficient cluster

algorithms. Again, before one can extract the parameters of
the systematic effective theory of magnons and holes [9]
from a comparison with numerical data, it will be neces-
sary to match the volume-dependent parameters � and
Eð ~pÞ of the effective quantum mechanics to those of the
infinite volume effective theory, e.g. at one loop. However,
even without performing this matching calculation, one
can check if indeed � ¼ 0, as predicted for the t-J model
in [9].
The effects discussed here are not limited to antiferro-

magnets or QCD, but arise for any finite system with a
spontaneously broken continuous global symmetry (unless
the order parameter is conserved). When a symmetry group
G breaks spontaneously to a subgroup H, the correspond-
ing order parameter takes values in the coset spaceG=H. In
a finite volume the symmetry is restored by a slow rotation
of the order parameter. When a single fermion is added to
the system, one expects Berry phases resulting from mono-
pole gauge fields residing on the manifold G=H, with
characteristic effects on the rotor spectrum. It would be
interesting to work out these effects for general G and H
and for an arbitrary fermion representation. A nontrivial
case of physical interest is QCDwith three massless flavors
for which G=H ¼ SUð3Þ and the baryons transform as
flavor octets.
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S. Dürr, C. Haefeli, P. Hasenfratz, and F. Niedermayer.
This work was supported in part by the U.S. Department of
Energy Grant No. DE-FG02-05ER41368 and by the
Schweizerischer Nationalfonds. The ‘‘Center for
Research and Education in Fundamental Physics’’ at
Bern University is supported by the ‘‘Innovations und
Kooperationsprojekt C-13’’ of the Schweizerische
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