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We study the effect of anomalous Wtb couplings on the �B ! Xs� branching ratio. The considered

couplings are introduced as parts of gauge-invariant dimension-six operators that are built out of the

standard model fields only. One-loop contributions from the charged-current vertices are assumed to be of

the same order as the tree-level flavor-changing neutral current ones. Bounds on the corresponding Wilson

coefficients are derived.
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I. INTRODUCTION

The large �tt production cross section at the LHC is
expected to provide an opportunity to study Wtb interac-
tions with high accuracy (see, e.g., [1,2]). When perform-
ing such studies, one should take into account constraints
from the flavor-changing neutral current processes where
loops involving top quarks play a crucial role. In particular,
the inclusive decay �B ! Xs� provides stringent bounds on
the structure of Wtb vertices.

In the present paper, we calculate contributions to the
�B ! Xs� branching ratio from one-loop diagrams involv-
ing several dimension-six effective operators that give rise
to nonstandard Wtb interactions. We work in the frame-
work of an effective theory that is given by the Lagrangian

L¼LSMþ 1

�

X
i

Cð5Þ
i Qð5Þ

i þ 1

�2

X
i

Cð6Þ
i Qð6Þ

i þO
�
1

�3

�
; (1)

where LSM is the standard model (SM) Lagrangian, while

QðnÞ
i denote dimension-n operators that are invariant under

the SM gauge symmetries and are built out of the SM
fields. Such an approach is appropriate for any SM exten-
sion where all the new particles are heavy (Mnew �� �
mt). So long as only processes at momentum scales � �
� are considered, the heavy particles can be decoupled [3],
which leads to the effective theory (1). Recent analyses of
the top-quark anomalous couplings in the same framework
can be found, e.g., in Refs. [4,5].

A complete classification of the operators Qð5Þ
i and Qð6Þ

i

has been given in Ref. [6]. Since Qð5Þ
i involve no quark

fields, we ignore them from now on, and skip the super-
scripts ‘‘(6)’’ at the dimension-six operators and their
Wilson coefficients Ci. Here, we restrict our considerations
to the following dimension-six operators that generate
anomalous Wtb couplings:

QRR¼ �tR�
�bRð ~�yiD��ÞþH:c:;

QLL¼ �qL�
a��qLð�y�aiD��Þ� �qL�

�qLð�yiD��Þ
þH:c:;

QLRt¼ �qL�
���atR ~�Wa

��þH:c:;

QLRb¼ �q0L����abR�Wa
��þH:c:;

(2)

where � denotes the Higgs doublet, ~� ¼ i�2��,

qL ¼ ðtL; VtbbL þ VtssL þ VtddLÞ;
q0L ¼ ðV�

tbtL þ V�
cbcL þ V�

ubuL; bLÞ;
(3)

and V stands for the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. The Wtb interaction vertex

(4)

with PL;R ¼ 1
2 ð1� �5Þ is found by combining the usual

SM interaction with the extra contributions that are ob-
tained by setting the Higgs field in Eq. (2) to its vacuum
expectation value.
Our operators (2) have been adjusted to generate the

vertex (4) in a gauge-invariant manner, without introducing
extra sources of CP-violation or tree-level flavor-changing
neutral current (FCNC) interactions. The absence of tree-
level FCNC in QRR, QLRt, and QLRb is transparent.
Verifying that QLL is also free of tree-level FCNC requires
a short calculation that is most conveniently performed in
the unitary gauge when the pseudo-Goldstone components
of � are absent. The relative sign between the two parts of
QLL causes cancellation of FCNC couplings like
�sL��bLZ

�. We wish to avoid such couplings here because

they would contribute at the tree level to the observed
decay �B ! Xsl

þl�.
Since our goal is testing anomalous couplings of the top

quark without affecting topless physics, the flavor structure
of QRR, QLL, and QLRt has been arranged in such a way
that all the charged-current interactions in these operators
involve the top. The operator QLRb does not fulfill this
requirement. It contains someWcb andWub vertices, too.
Using qL instead of q0L in this operator would cause prob-
lems with tree-level FCNC. Thus, our final �B ! Xs� re-
sults are going to receive contributions not only from the
Wtb vertex (4) but also from the Wcb and Wub parts of
QLRb, from theWts and �tt� parts of QLRt (see Fig. 2 in the
next section), as well as from the Wts part of QLL. The
appearance of non-Wtb interactions is an unavoidable
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consequence of introducing the anomalous Wtb ones in a
gauge-invariant manner.

The dimensionless couplings vL;R and gL;R in Eq. (4) are

related to the Wilson coefficients Ci as follows:

vL ¼ V�
tb þ

CLLV
�
tbffiffiffi

2
p

GF�
2
; vR ¼ CRR

2
ffiffiffi
2

p
GF�

2
;

gL ¼ CLRbV
�
tb

GF�
2

; gR ¼ CLRtV
�
tb

GF�
2
;

(5)

where GF ¼ 2�ð5=2ÞM�2
W g2w is the Fermi constant. The

coefficients Ci are real, which follows from the fact that
the operators in Eq. (2) are self-conjugate. Note that all
these operators become CP-even in the limit when the
CKM matrix in Eq. (3) becomes real.

Constraints from Bð �B ! Xs�Þ on anomalous Wtb cou-
plings have already been studied in Refs. [7,8]. However,
those analyses were restricted to the couplings vL;R in

Eq. (4). Moreover, our results for the branching ratio
dependence on vL are substantially different, because an
operator containing the Wcb and Wub vertices was effec-
tively used there instead of QLL.

II. MATCHING

In the decay �B ! Xs�, all the external momenta are
much smaller than MW . Consequently, it is convenient to
decouple the top-quark and the electroweak gauge bosons
at the scale �0 �mt, MW . At this scale, we match the
effective theory (1) with another one, whose Lagrangian
has precisely the same form as in the SM case [9]

L eff ¼ LQCD�QEDðu; d; s; c; bÞ

þ 4GFffiffiffi
2

p V�
tsVtb

X8
i¼1

Cið�ÞQi; (6)

where Q1; . . . ; Q6 are four-quark operators, and

Q7 ¼ emb

16�2
�sL�

��bRF��;

Q8 ¼ gsmb

16�2
�sL�

��TabRG
a
��:

(7)

The presence of non-SM terms in Eq. (1) causes deviations
of Cið�0Þ in Eq. (6) from their SM values

Cið�0Þ ¼ CSM
i ð�0Þ þ �Cið�0Þ: (8)

So long as vL;R and gL;R are treated as quantities of zeroth

order in the expansion in gw and gs, the deviations
�C7ð�0Þ and �C8ð�0Þ are also of zeroth order, similarly
to CSM

7 ð�0Þ and CSM
8 ð�0Þ. On the other hand, extra con-

tributions to the Wilson coefficients of the four-quark
operators Q1; . . . ; Q6 arise only at higher orders in gw or
gs, and will be neglected here.

Because of ultraviolet renormalization, it would be in-
consistent to assume that no other operators but
QRR; . . . ; QLRb (2) are present in the dimension-six part
of the Lagrangian (1). Instead, we shall make a weaker

assumption, namely, that the MS-renormalized Wilson co-

efficients of all the other relevant operators in Eq. (1) at
scales of order �0 satisfy

Cotherð���0Þ
GF�

2
�OðgnwÞ; n � 2: (9)

Under such an assumption, only tree-level b! s� and b!
sg diagrams with insertions of such operators must be
included in our leading-order calculation of �C7ð�0Þ and
�C8ð�0Þ. Denoting such ‘‘primordial’’ tree-level contribu-

tions by CðpÞ
7 ð�0Þ and CðpÞ

8 ð�0Þ, we can express �C7;8ð�0Þ
as follows

�Cið�0Þ ¼ CðpÞ
i ð�0Þ þ 1

V�
tb

�
�vLf

vL

i ðxÞ þ vR

mt

mb

fvR

i ðxÞ

þ gL
MW

mb

fgLi ðxÞ þ gR
mt

MW

fgRi ðxÞ
�
; (10)

where x¼m2
t =M

2
W and �vL¼vL�V�

tb. It is understood

that the Wilson coefficients in the definitions (5) of vL;R

and gL;R are MS-renormalized at the matching scale �0.

The functions f
vL;R

7;8 ðxÞ and f
gL;R
8 ðxÞ originate from

ultraviolet-finite diagrams, and depend on x only.
However, divergent diagrams occur in the calculation of
f
gL;R
7 ðxÞ. Consequently, logarithms ln�0

MW
are present in these

functions. They remain after applying the MS prescription
for absorbing the divergences into the operators in Eq. (1)

that generate CðpÞ
i ð�0Þ. Several operators can serve as the

corresponding counterterms—see section 4.8 of Ref. [6].
Our final results for f

gL;R
i ðxÞ can be (and are) found without

making any particular choice for the structure of these
operators.
In Eq. (10) and everywhere in the following, nonlinear

terms in vL;R and gL;R have been neglected. Including them
in a consistent manner would require extending the opera-
tor basis (2) to operators of dimension higher than 6.
Consequently, our calculation is valid only for vL;R,

gL;R�1, even though these quantities are formally treated

as being zeroth order in gw.
The functions fvL

i ðxÞ and fvR

i ðxÞ can be found without
performing any new Feynman diagram computation. A
brief inspection into the structure of QLL and QRR (most
conveniently in the unitary gauge) reveals that all the rel-
evant Feynman diagrams are identical to those that have
already occurred either in the SM or in the LR-model [10]
analyses of b! s�. Explicitly (see Eqs. (6) and (11) of
Ref. [11] as well as Eqs. (3.2) and (4.6) of Ref. [10]):

fvL

7 ðxÞ ¼ 3x3 � 2x2

2ðx� 1Þ4 lnxþ 22x3 � 153x2 þ 159x� 46

36ðx� 1Þ3 ;

fvR

7 ðxÞ ¼ �3x2 þ 2x

2ðx� 1Þ3 lnxþ�5x2 þ 31x� 20

12ðx� 1Þ2 ;

fvL

8 ðxÞ ¼ �3x2

2ðx� 1Þ4 lnxþ 5x3 � 9x2 þ 30x� 8

12ðx� 1Þ3 ;

fvR

8 ðxÞ ¼ 3x

2ðx� 1Þ3 lnx� x2 þ xþ 4

4ðx� 1Þ2 : (11)
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As far as f
gL;R
7 ðxÞ are concerned, our calculation of these

functions has been performed in the Feynman-’t Hooft

gauge. The relevant Feynman diagrams with non-SM b !
t vertices are shown in Fig. 1. In addition, analogous six
diagrams with non-SM t ! s vertices and two diagrams
with non-SM �tt� vertices (Fig. 2) occur in the case of
fgR7 ðxÞ. In the case of fgL7 ðxÞ, there are also diagrams where
the intermediate t-quark gets replaced by u or c. The
functions f

gL;R
8 ðxÞ have been found by replacing the exter-

nal photon by the gluon in the diagrams like the ones in the
first row of Fig. 1.
Our final results for f

gL;R
i ðxÞ read:

fgL7 ðxÞ ¼ x

2
ln
�0

MW

þ�3x4 þ 26x3 � 21x2 þ 4x

12ðx� 1Þ3 lnxþ 3x3 � 25x2 þ 16x

12ðx� 1Þ2 ;

fgR7 ðxÞ ¼ � 1

4
ln
�0

MW

þ 3x4 � 12x3 � 27x2 þ 32x� 8

24ðx� 1Þ4 lnxþ�15x3 þ 97x2 � 69xþ 11

48ðx� 1Þ3 ;

fgL8 ðxÞ ¼ 2x3 � 6x2 þ x

2ðx� 1Þ3 lnxþ x2 þ 5x

4ðx� 1Þ2 ; fgR8 ðxÞ ¼ 4x� 1

2ðx� 1Þ4 lnxþ 2x2 � 9xþ 1

4ðx� 1Þ3 :

(12)

The diagrams in Figs. 1 and 2 correspond to an off-shell
calculation in the background-field gauge. Calculating on
shell would bring some one-particle reducible diagrams
into the game. Without the background field method, one
would need to include additional diagrams with W��
couplings, where � stands for the pseudo-Goldstone bo-
son. We have actually performed the calculation using both
methods, which has served as a cross-check of the final
result.

III. NUMERICAL RESULTS

Once the matching conditions are found, the calculation
proceeds precisely as in the SM case. For the purpose of

this section, we shall assume that CðpÞ
7;8ð�0Þ are real and

neglect the imaginary part of Vtb. The �B ! Xs� branching
ratio for arbitrary real values of �C7;8ð�0Þ reads [12,13]
B 	 Bð �B ! Xs�ÞE�>1:6 GeV � 104

¼ ð3:15
 0:23Þ � 8:0�C7ð�0Þ � 1:9�C8ð�0Þ
þO½ð�CiÞ2�; (13)

for the numerical inputs as specified in Appendix A of
Ref. [13], in particular, �0 ¼ 160 GeV. Inserting our re-
sults from Eqs. (10)–(12) into Eq. (13), one finds

B ¼ ð3:15
 0:23Þ � 8:2�vL þ 427vR � 712gL

þ 1:9gR � 8:0CðpÞ
7 ð�0Þ � 1:9CðpÞ

8 ð�0Þ
þO½ð�vL; vR; gL; gR; C

ðpÞ
i Þ2�: (14)

As the reader might have expected, the coefficients at
�vL and gR are of the same order as the first (SM) term,
while the coefficients at vR and gL are substantially larger.
For vR and gL, an enhancement [10,14] by mt=mb takes
place, because the SM chiral suppression factor mb=MW

gets replaced by the order-unity factor mt=MW . This was
already evident in Eq. (10).
The negative coefficient at �vL in Eq. (14) differs from

the positive one in Fig. 1 of Ref. [8] where the leading-
order (LO) expression for CSM

7 ð�0Þwas used instead of our
fvL

7 ðxÞ. The two quantities have different signs due to an
additive constant in the relation

CSM
7 ð�0ÞLO ¼ 1

2f
vL

7 ðxÞ � 23
36: (15)

This constant originates from the SM loops where the top
quark is replaced by the light ones (up and charm). No such
loops are generated by our operator QLL. The flavor struc-
ture of the operators in Refs. [7,8] has not been specified in
sufficient detail.

γ

Wb s

t t

γ

πb s

t t

γ

tb s

W W

γ

tb s

π π

γ

t

W

b s

γ

t

π

b s

FIG. 1. Diagrams with non-SM b ! t vertices that contribute
to f

gL;R
7 ðxÞ. The pseudo-Goldstone boson is denoted by �.

γ

Wb s

t t

γ

πb s

t t

FIG. 2. Diagrams with non-SM �tt� vertices that contribute to
fgR7 ðxÞ.
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The appearance of ln�0=MW in Eq. (12) implies that the
coefficients at gL and gR in Eq. (14) strongly depend on
�0. These coefficients are well approximated by �379�
485 ln�0=MW and �0:87þ 4:04 ln�0=MW , respectively.

Their �0-dependence and the one of C
ðpÞ
i ð�0Þ should com-

pensate each other in Eq. (14), up to residual higher-order
effects.

Taking into account the current world average [15]

B ¼ 3:55
 0:24þ0:09
�0:10 
 0:03; (16)

one finds that a thin layer in the six-dimensional space

ð�vL; vR; gL; gR; C
ðpÞ
7 ð�0Þ; CðpÞ

8 ð�0ÞÞ remains allowed by

b ! s�. When a single parameter at a time is varied
around the origin (with the other ones turned off), quite
narrow 95% C.L. bounds are obtained. They are listed in
Table I. If several parameters are simultaneously turned on
in a correlated manner, their magnitudes are, in principle,
not bound by b ! s� alone. However, the larger they are,
the tighter the necessary correlation is, becoming question-
able at some point.

It is interesting to compare Table I with the sensitivity of
top-quark decay observables to vR, gL and gR. The ATLAS
study in Ref. [1] reveals that their measurements should
allow to put bounds on gR at the level of ða fewÞ � 10�2,
i.e. stronger than the �B ! Xs� ones. On the other hand, the
bounds they expect to set on vR and gL are more than an
order of magnitude weaker than those in Table I, which is
due to the previously mentioned mt=mb enhancement.

As far as �vL is concerned, single top production mea-
surements at the Tevatron imply �vL ¼ 0:3
 0:2 [16].
Around an order of magnitude smaller uncertainty is ex-
pected at the LHC [17], which would definitely overcome
the current �B ! Xs� bounds.

IV. CONCLUSIONS

We have studied the effect of anomalousWtb couplings
on the �B ! Xs� branching ratio. The couplings were in-
troduced via gauge-invariant dimension-six operators. Our
results for the branching ratio dependence on gL and gR are
new. In the case of �vL, we have demonstrated the neces-
sity of precisely defining the flavor structure of the relevant
operators, which has not been previously done in sufficient
detail.
The well-known mt=mb enhancement [10,14] implies

that the �B ! Xs� bounds on vR and gL are much stronger
than what one can possibly hope to obtain from studying
the top-quark production and decay at the LHC. On the
other hand, the future LHC bounds on �vL and gR are
expected to overcome the current �B ! Xs� ones.
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