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We propose a measurement of the elastic �� scattering phase-shift difference �0
0 � �2

0 through the

�0 ! J=��þ�� process in the future high statistics BES-III experiment. The decay amplitude is

constructed with seven Lorentz invariant form factors and is compared with their theoretical estimation.

Based on a Monte Carlo study, it is found that the phase-shift difference can be indeed recovered and,

hence, it is expected to be measured in the energy region between 350 and 550 MeV at future BES-III.
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I. INTRODUCTION

In recent years, a number of high precision, high statis-
tics experimental machines, varying from fixed target ex-
periments to B factories, has opened a new era of precision
hadronic experiments. Based on that, both experimental
and theoretical studies on low energy �� and �K system
from production processes have also received revived in-
terest. The importance of these studies follows from the
fact that when the final state theorem applies, one can
extract low energy elastic scattering phase shifts in the
related channels through a partial-wave analysis. The in-
formation on the �� and �K phase shifts then provides a
crucial ingredient for understanding the dynamics of the
Goldstone bosons and the spontaneous breaking of chiral
symmetry.

The experimental and theoretical activities in the last
few years have been mainly focused on semileptonic and
hadronic D decays (see, for example, Refs. [1–4]). It is
known that in D semileptonic decays the p wave domi-
nates, and the more interesting s-wave component is small.
In this paper we reinvestigate the �� final state interac-
tions in the �0 ! J=��þ�� process. Here the s wave
dominates and the next contribution comes from the tiny d
wave. The existence of the latter is, however, crucial for
exploring the s-wave phase motion through interference
effects. The decay product under concern is a three body
final state. The J=� particle is, however, irrelevant to any
final state interactions here. Because of color transparency,
the effect from rescatterings between the J=� and one of
the pions is expected to be negligible. Another important
fact is that, in the kinematic region under concern, between
the initial �0 and the final J=��� there is no other on-
shell intermediate hadronic state available (or it is doubly
the Okubo-Zweig-Iizuka suppressed and, hence, negli-
gible). Thus, the final state theorem is applicable to the
�� system in the �0 ! J=��þ�� process.

This decay has been the subject of a number of previous
publications [5–7]. In Ref. [8], the author proposed a
method to extract the �� phase shift from

�0 ! J=��þ��—similar to the Pais-Treiman method
[9] for obtaining the �� phase shifts from Kl4 decays—
but only three partial-wave amplitudes were considered in
order to reduce the difficulty of the analysis. A similar
method [10] was also proposed for the �ð3SÞ ! �ð1SÞ��
process but only the lowest order in the pion momentum
expansion was considered. In this work we are able to
provide a more general parametrization to the decay am-
plitude and compare it with previous works. Our parame-
trization will be discussed in Sec. II. Furthermore we will
also provide a Monte Carlo study in Sec. III to test the
stability and reliability of our parametrization in order to
extract the phase-shift difference.

II. GENERAL STRUCTURE OF THE
�0 ! J=��þ�� DECAYAMPLITUDE

A. The Lorentz invariant form factors

There are 3 independent momenta p�þ , p�� , pJ=� ¼
p3, which can be reexpressed in 3 variables q ¼ p�þ þ
p�� , p ¼ p�þ � p�� , and p3. The three independent mo-
menta can form 2 independent Lorentz invariant products,
chosen as q2 and p � p3 here. Then,

q2 ¼ s; (1)

p2 ¼ �s�2 ¼ 4m2
� � s; (2)

p2
3 ¼ M2

�; (3)

q � p ¼ 0; (4)

q � p3 ¼ 1

2
ðM2

�0 �M2
� � sÞ; (5)

with the kinematical factor of the di-pion system � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

q
, and the J=� energy and three-momentum

in the lab frame (the �0 rest frame), respectively

E3 ¼ ðM2
�0 þM2

� � sÞ=ð2M�0 Þ and j ~p3j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 �M2

�

q
,

PHYSICAL REVIEW D 78, 076010 (2008)

1550-7998=2008=78(7)=076010(8) 076010-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.076010


being functions of q2. Moreover, p � p3 can be expressed in
the �0 rest frame in terms of variables of the di-pion rest
frame,

p � p3 ¼ 2�j ~p�
��j cos���ð�E3 þ j ~p3jÞ; (6)

where j ~p�
��j ¼ �

ffiffiffi
s

p
=2 is the pion three momentum in the

di-pion rest frame and ��� is the angle between the direction
of�þ and direction opposite to the final J=� in the di-pion

rest frame (see Fig. 1 for illustration). � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�2

q
is the

boost factor from the di-pion rest frame to the lab frame
with � ¼ ðM2

�0 �M2
� þ sÞ=ð2M�0

ffiffiffi
s

p Þ.
Denoting the polarization vector of �0 and J=� by �0

and � respectively, we can form five invariants bilinear in
�0��:

ð� � �0Þ; ð� � qÞð�0 � qÞ; ð� � pÞð�0 � pÞ;
ð� � qÞð�0 � pÞ; ð� � pÞð�0 � qÞ:

Hence, the amplitude have five independent structure:

T ¼ ð� � �0ÞF0 þ ð� � qÞð�0 � qÞF1 þ ð� � pÞð�0 � pÞF2

þ ð� � qÞð�0 � pÞF3 þ ð� � pÞð�0 � qÞF4: (7)

The Fi are functions of s and p � p3, allowing us to do a
partial-wave decomposition in terms of the angle ���.

B. Partial-wave decomposition

From Ref. [11], we obtain the basis of tensors

~t ð0Þ ¼ 1; (8)

~t ð1Þ ¼ p�; (9)

~t ð2Þ ¼ p�p	 � 1

3
p2~g�	; with ~g�	 ¼ g�	 � q�q	

q2
;

(10)

where every tensor ~tðLÞ transforms irreducibly as a tensor of
spin L. In the present problem we have the four vectors,
q�, p

�
3 , �

0� and ��, which are independent on ���. We can

build the independent Lorentz scalars:

q2; q � �; q � �0 and � � �0:

The available Lorentz vectors would be

q�; p�
3 ; �0�; ��:

With these ingredients we build first the L ¼ 0 quantities.

This can only be obtained through ~tð0Þ and taking into
account that the polarization vectors �0 and � must be
always contracted at the end of the day,

S ¼ ~tð0Þ � fIð0Þ1 ðsÞð�0 � �Þ þ Ið0Þ2 ðsÞð�0 � qÞð� � qÞg; (11)

which can be expressed through S ¼ �0��	S�	, with

S�	 ¼ I1ðsÞg�	 þ I2ðsÞq�q	=s.
The d wave is more complicated, since we have to use

~t�	
ð2Þ and the number of contractions gets larger. The avail-

able four-vectors, q�, p�
3 , �

0�, ��, are then contracted with
~t�	
ð2Þ in all the different possible ways:

D ¼ ~t�	
ð2Þ � fIð0Þ3 ðsÞð�0 � �Þq�q	 þ Ið0Þ4 ðsÞð�0 � �Þp�

3 p
	
3 þ Ið0Þ5 ðsÞð�0 � �Þðp�

3 q
	 þ q�p	

3Þ þ Ið0Þ6 ðsÞð�0 � qÞð� � qÞq�q	

þ Ið0Þ7 ðsÞð�0 � qÞð� � qÞp�
3 p

	
3 þ Ið0Þ8 ðsÞð�0 � qÞð� � qÞðp�

3 q
	 þ q�p	

3Þ þ Ið0Þ9 ðsÞð� � qÞð�0�q	 þ q��0	Þ
þ Ið0Þ10 ðsÞð� � qÞð�0�p	

3 þ p�
3 �

0	Þ þ Ið0Þ11 ðsÞðð�0 � qÞð��q	 þ q��	ÞÞ þ Ið0Þ12 ðsÞð�0 � qÞð��p	
3 þ p�

3 �
	Þ

þ Ið0Þ13 ðsÞð�0��	 þ ���0	Þg: (12)

It is not difficult to realize that there are not actually so many independent Lorentz structure. Thus, it can be rewritten in a
more compact way through D ¼ �0��	D0

�	, with

J/

3

+

  -
*

FIG. 1. �3 is the angle between the beam and J=� in the �0
rest frame. ��� is the angle between the J=� direction and the �þ
in the di-pion rest frame, 
 is the azimuthal angle between the
beam J=� plane and �þ�� plane in the �0 rest frame (not
drawn in the figure).
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D0�	 ¼ I03ðsÞ
1

s2
g�	

�
ðp3 � pÞ2 � 1

3
p2ð~p3Þ2

�
þ I04ðsÞ

1

s3
q�q	

�
ðp3 � pÞ2 � 1

3
p2ð~p2

3Þ
�

þ I05ðsÞ
1

s2

�
q�p	ðp3 � pÞ � 1

3
p2q� ~p	

3

�
þ I06ðsÞ

1

s2

�
p�q	ðp3 � pÞ � 1

3
p2 ~p

�
3 q

	

�
þ I07ðsÞ

1

s

�
p�p	 � 1

3
p2~g�	

�
:

(13)

In order to avoid that any form factor becomes artificially large or small, we extract Lorentz structures that are
numerically order one. The amplitudes are then given by

S�	 ¼ I1ðsÞg�	 þ I2ðsÞ 1s q
�q	; (14)

D�	 ¼ I3ðsÞg�	

�
cos2��� � 1

3

�
þ I4ðsÞ 1s q

�q	
�
cos2��� � 1

3

�
þ I5ðsÞ 1

s3=2M�

�
q�p	ðp3 � pÞ � 1

3
p2q� ~p	

3

�

þ I6ðsÞ 1

s3=2M�

�
p�q	ðp3 � pÞ � 1

3
p2 ~p�

3 q
	

�
þ I7ðsÞ 1s

�
p�p	 � 1

3
p2~g�	

�
: (15)

Until this point the derivation is completely general.
Now, we are going to make the main assumption: we will
consider that no further rescattering occurs between the
J=� and the �� system. Hence, the phase shift of the
amplitude is due to the �� final state interaction. This
allows us to use the Watson theorem for the elastic scat-
tering region (from the practical point of view, up to the
K �K threshold). The decay amplitude can be then decom-
posed into partial waves ðS;D . . .Þ with their phase shifts
equal to those in �� scattering (respectively, �0; �2 . . . ):

T ¼ �0��	½S�	e
i�0 þD�	e

i�2�: (16)

The D wave is supposed to be suppressed with respect to
the J ¼ 0 component and higher partial waves are
neglected.

C. Theoretical estimation to the leading contributions

Starting from the effective Lagrangian in Ref. [12],
based on chiral and heavy quark symmetries, for soft
pion momenta the amplitude shows the form,

Að�0 ! ��þ��Þ ¼ � 4

F2
0

��
g

2
ðq2 � 2m2

�Þ

þ g1E�þE��

�
�0 � �

þ g2½p�

�þp	
�� þ p

�
��p	

�þ��0��	
�
;

(17)

where p�� ¼ ðE�� ; ~p��Þ in the�0 rest frame. We can then
calculate the leading contributions to our form factors IiðsÞ:

I1ðsÞ ¼ � 4

F2
0

�
g

2
ðs� 2m2

�Þ þ sg1�
2

4

�
1� �ðsÞ2

3
�2

�

þ g2
s�ðsÞ2

6

�
; (18)

I2ðsÞ ¼ � 2s

F2
0

g2

�
1� �ðsÞ2

3

�
; (19)

I3ðsÞ ¼ 1

F2
0

g1�ðsÞ2s�2�2; (20)

I7ðsÞ ¼ 2s

F2
0

g2; (21)

with the remaining ones vanishing at leading order. This
calculation suggests that the form factors I4ðsÞ, I5ðsÞ, I6ðsÞ
are small quantities. This theoretical prediction can be
checked in future experiments as, in principle, the data
can also determine the IiðsÞ.

D. Expressions for angular distribution

For three body decays, one has the differential decay rate
[13],

d� ¼ 1

ð2�Þ5
1

16M2
jMj2j ~p�

��jj ~p3jdsd��
��d�J=�; (22)

where ð ~p�
��;�

�
��Þ is the �þ momentum and angle in the

di-pion rest frame, and �J=� is the J=� angle in the �0
rest frame. It can be expressed in the form

d�

dsd cos���d cos�3d
�
�

/ X
klm

GklmðsÞcosk
�
�cos

l�3cos
m��� þ cos
�

� sin�3 cos�3 sin�
�
� cos���ð ~G0ðsÞ þ ~G2ðsÞcos2���Þ;

(23)
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where k, l ¼ 0, 2, and m ¼ 0, 2, 4. The GklmðsÞ are known
functions of the IiðsÞ and cosð�0 � �2Þ.1

If one can determine GklmðsÞ experimentally, then it is
possible to extract both the IiðsÞ and the phase-shift differ-
ence �0 � �2.

Alternatively, this information can be found in the par-
tial distributions,

d2�

dsd cos���
¼ A0ðsÞ þ A2ðsÞcos2��� þ A4ðsÞcos4���; (24)

d2�

dsd cos�3
¼ B0ðsÞ þ B2ðsÞcos2�3; (25)

d2�

dsd cos

¼ C0ðsÞ þ C2ðsÞcos2
; (26)

and another weighted distribution,

W½s; cos���� ¼
Z þ�

��
d
�

�

Z 1

�1
d cos�3

d�

dsd cos���d cos�3d
�
�

cos
�
� cos�3

/
Z þ�

��
d
�

�

Z 1

�1
d cos�3cos

2
�
� sin�3cos

2�3 sin�
�
� cos���ð ~G0ðsÞ þ ~G2ðsÞcos2���Þ

¼ sin��� cos���ð ~G0ðsÞ þ ~G2ðsÞcos2���Þ
Z þ�

��
d
�

�

Z 1

�1
d cos�3cos

2
�
� sin�3cos

2�3

¼ �2

4
sin��� cos���ð ~G0ðsÞ þ ~G2ðsÞcos2���Þ: (27)

AiðsÞ, BiðsÞ, CiðsÞ and ~Gi are functions of IiðsÞ and
cosð�0ðsÞ � �2ðsÞÞ. If those are fitted precisely, it is not
be difficult to recover the values of the Ii and �0 � �2 at a
given energy.

The AiðsÞ, BiðsÞ, CiðsÞ can also be written as combina-
tions of Gklm:

A0 ¼ 2�

3
ð6G000 þ 2G020 þ 3G200 þG220Þ; (28)

A2 ¼ 2�

3
ð6G002 þ 2G022 þ 3G202 þG222Þ; (29)

A4 ¼ 2�

3
ð6G004 þ 2G024 þ 3G204 þG224Þ; (30)

B0 ¼ 2�

15
ð30G000 þ 10G002 þ 6G004 þ 15G200 þ 5G202

þ 3G204Þ; (31)

B2 ¼ 2�

15
ð30G020 þ 10G022 þ 6G024 þ 15G220 þ 5G222

þ 3G224Þ; (32)

C0 ¼ 4

45
ð45G000 þ 15G002 þ 9G004 þ 15G020 þ 5G022

þ 3G024Þ; (33)

C2 ¼ 4

45
ð45G200 þ 15G202 þ 9G204 þ 15G220 þ 5G222

þ 3G224Þ: (34)

III. EFFICIENCY CORRECTIONS

The partial and weighted distributions in Eqs. (24)–(27)
were based on a theoretical integration of the partial decay
rate over different angular variables. However, the experi-
mental situation is slightly different from this. In general,
the detector is not able to cover the whole solid angle and,
moreover, the detection efficiency is not the same in all
directions but it is a rather complicate function wð�Þ.2 The
partial decay rate detected in the experimental analysis is
not that in Eq. (23) but the efficiency corrected one,

d�

dsd cos���d cos�3d
�
�

��������det
¼ wð�Þ

� d�

dsd cos���d cos�3d
�
�

:

(35)

The calculation of the corrected functions corresponding
to the distributions in Eqs. (24)–(27) is more tedious but
it does not introduce any important complication. In order
to ease the understanding of the procedure, we present
a detailed calculation for d2�=dsd cos���. We integrate
the detected partial rate in Eq. (35) over �3 and 
�

�

and we integrate separately every monomial

1The Mathematica notebook and fortran programs can be
obtained from zxzhang@mail.ihep.ac.cn, xiaoly@pku.edu.cn
and cillero@ifae.es. Detailed formula can be found in
arXiv:0805.2780v1.

2Although a priori we will assume wð�Þ ¼ wð���;
�
�; �3Þ,

notice that for asymmetric detectors the efficiency could also
depend on the azimuth angle 
3
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cosk
�
�cos

l�3cos
m���:

d2�

dsd cos���

��������det
¼ X

k;l;m

GklmðsÞ
Z

d cos�3d

�
�wð�Þcosk
�

�cos
l�3cos

m���

þ ~G0ðsÞ
Z

d cos�3d

�
�wð�Þ cos
�

� sin�3 cos�3 sin�
�
� cos���

þ ~G2ðsÞ
Z

d cos�3d

�
�wð�Þ cos
�

� sin�3 cos�3 sin�
�
�cos

3���: (36)

Since the integral is on �3 and 
�
�, it is possible to reex-

press it in the form

d2�

dsd cos���

��������det
¼ X

m¼0;2;4

Amcos
m���

þ sin��� cos���½ ~A0 þ ~A2cos
2����; (37)

where we have defined a new set of coefficients Ai, ~Aj

given by

Am ¼ X
k;l¼0;2

GklmðsÞ
Z

d cos�3d

�
�wð�Þcosk
�

�cos
l�3;

(38)

~A 0 ¼ ~G0ðsÞ
Z

d cos�3d

�
�wð�Þ cos
�

� sin�3 cos�3;

(39)

~A 2 ¼ ~G2ðsÞ
Z

d cos�3d

�
�wð�Þ cos
�

� sin�3 cos�3:

(40)

In the case of perfect efficiency, wð�Þ ¼ 1, one finds
~A0 ¼ ~A2 ¼ 0 and the different Ai become those provided
in Eqs. (28)–(34). The dependence on s is implicitly as-
sumed. Furthermore, if the efficiency depends on ��� then

the coefficients Ai, ~Aj are also functions of this angle. In

this case, when analyzing the experimental data one should
compute these integrals for every ���. The simplest proce-
dure to evaluate these integrals is through the Monte Carlo
method, where we have for instance

Z
d cos�3d


�
�wð�Þcosk
�

�cos
l�3

’ 1

Ntot

XNMC

a¼1

cosk
�
�;acos

l�3;a: (41)

In the case of a ���-dependent efficiency, this integral also
depends on this angle and it must be repeated for every
point in the fit analysis.

Through a similar procedure, one also recovers the
detected distributions corresponding to those in
Eqs. (25)–(27):

d2�

dsd cos�3

��������det
¼ X

l¼0;2

Blcos
l�3 þ ~B sin�3 cos�3; (42)

d2�

dsd cos
�
�

��������det
¼ X

k¼0;2

Ckcos
k
�

� þ ~C cos
�
�; (43)

W½s; ����jdet ¼
X

m¼0;2;4

Wkcos
m���

þ sin��� cos���½ ~W0 þ ~W2cos
2����; (44)

with the coefficients

Bl ¼
X
k¼0;2

X
m¼0;2;4

GklmðsÞ

�
Z

d cos���d
�
�wð�Þcosk
�

�cos
m���; (45)

~B ¼
Z

d cos���d
�
�wð�Þ cos
�

� sin���

� cos���½ ~G0ðsÞ þ ~G2ðsÞcos2����; (46)

Ck ¼
X
l¼0;2

X
m¼0;2;4

GklmðsÞ

�
Z

d cos���d cos�3wð�Þcosl�3cosm���; (47)

~C ¼
Z

d cos���d cos�3wð�Þ
� sin�3 cos�3 sin�

�
� cos���½ ~G0ðsÞ þ ~G2ðsÞcos2����;

(48)

Wm ¼ X
k;l¼0;2

GklmðsÞ

�
Z

d cos�3d

�
�wð�Þcoskþ1
�

�cos
lþ1�3; (49)
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~W 0 ¼ ~G0ðsÞ
Z

d cos�3d

�
�wð�Þcos2
�

� sin�3cos
2�3;

(50)

~W 2 ¼ ~G2ðsÞ
Z

d cos�3d

�
�wð�Þ cos
�

� sin�3cos
2�3:

(51)

As it happened before, for a general efficiency wð�Þ, these
coefficients are not simply functions of the energy but they
also have a residual dependence on the corresponding
angle.

IV. MONTE CARLO STUDY

Clear signals of � and � have been found in Beijing
spectrometer (BES) data [6,14,15]. These studies have
tried to measure the ��=�K S-wave phase shift but, due
to the limited statistics, no meaningful results were ob-
tained. In the J=� ! !�� channel, there are resonances
in the !� spectrum, which affect the S-wave phase in the
�� spectrum. Its contribution to the �� S-wave phase
shift is hard to be estimated theoretically, making the
measurement of the �� S-wave phase shift in the J=� !
!�� channel problematic. However, all these troubles do
not exist in the�0 ! ��J=� channel, as the energy of the
�J=� system is too low and no resonances exist in the
�J=� spectrum. The channel �0 ! ��J=�, where
J=� ! �þ��, has been studied by BES-II [6], and a
global partial-wave analysis has been performed. After
introducing a wide 0þþ background which strongly inter-
fered destructively with � particle, the �� spectrum could
be well fitted. The pole position measured in this channel is
consistent with that measured in the J=� ! !�� chan-
nel. Though a global partial-wave analysis fit obtained
reasonable results on the � particle, the �� S-wave phase
shift could not be well determined. The reason is that the
statistics in BES-II data is too low to perform a reasonable
fit on the phase shift, which is studied in this paper. Thus,
we will use Monte Carlo techniques to generate data with
differentD-wave components and different statistics. Then
the method proposed in this paper will be used to fit the
data.

It is expected that BES-III will collect a huge number of
�0 events. The statistics of BES-III data will be about 200
times that of BES-II data. For example, the statistics of

�0 ! ��J=� in a 10 MeV bin at 500 MeV in the ��
spectrum is about 1000 for BES-II. If BES-III statistics is
200 times larger, wewill have around 200 000 statistics in a
10 MeV bin. Hence, about 200 000 Monte Carlo events are
generated in our simulation. The method proposed in this
paper is used to fit the data to check whether the phase shift
can be reasonably recovered or not. The S-wave phase
motion is a known input of the Monte Carlo, so we can
test the above method by comparing the fitted results with
the original value in the simulation.
In the Monte Carlo simulation, we need first to fix the

amount of D-wave component, or the percentage of
D-wave component in the total Monte Carlo data sample.
According to literature [5], the ratios of D-wave compo-
nent to S-wave component in the m�� range from
340 MeV to 600 MeV are in the range from 4.7% to
31.9%, and the ratio decreases as m�� increases. In order
to simplify the problem, we generate Monte Carlo data in
the energy range between 500 and 510 MeV with different
D-wave components. Five independent Monte Carlo data
samples are generated with D-component 2%, 4%, 8%,
20%, and 45%, respectively. In our Monte Carlo, we first
generate the �0 ! ��J=� events and then we perform
the BES-III detector simulation. After this, the number of
events for each Monte Carlo is NMC, which is listed for
each case in Table I. For each data sample, the method
proposed in this paper is used to fit the data. A scan on the
phase shift is performed. For each data sample, the pa-
rameters IiðsÞ and (�0 � �2) are fitted. For that, in a first
step, we fix (�0 � �2) to a value and fit the parameters
IiðsÞ, where the best fit yields a 
2 value. Repeating this
procedure several times, one obtains a curve that shows the
variation of the 
2 with (�0 � �2). This procedure is called
a phase scan. The results for each Monte Carlo data sample
are shown in Fig. 2. Observing these figures, one can see
that there is a minimum in the smooth curve of the scan.
The value of the phase at the minimum is the output phase
of each fit. In general, except for the 45% case, the input
phases are 1.17 (which corresponds to 67�). In the 45%
case the input phase is taken as 1.03 radians. The fit results
are listed in Table I. It can be seen that the fit results are
quite close to the Monte Carlo inputs and the phase-shift
determinations obtained by the method in this paper are
then reasonable.
The amount of statistics in the data samples is crucial for

the study of the phase difference. In the analysis above, the
statistics of the Monte Carlo simulations were, respec-

TABLE I. Scan results on �0
0 � �2

0 for different D-wave components. Errors are only statistical. The input phase difference of
Monte Carlo data are 1.03 for the 45% case and 1.17 for the rest. NMC is the number of MC events used in the fit.

Ratio of D wave 2% 4% 8% 20% 45%

�0
0 � �2

0 1:28� 0:08 1:52� 0:04 1:10� 0:16 1:24� 0:08 1:18� 0:04 1:04� 0:04
NMC 6� 105 2:5� 105 2� 105 2� 105 1:5� 104
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tively, 600 000, 250 000, 200 000, 200 000, and 15 000 for
theD-wave component 2%, 4%, 8%, 20%, and 45%.When
the ratio of D-wave component is small, we need much
higher statistics. Otherwise the likelihood function be-
comes not sensitive to the change of S-wave phase. In
the BES-II data, there are only around 1000 events in a
10 MeV bin when m�� ¼ 500 MeV and the fit is not
sensitive at all to the phase-shift difference. In the
Monte Carlo study, we found similar results, that is,
when the D-wave component was 4% and the amount of
statistics of the Monte Carlo data was below 10 000, the
likelihood function remained essentially unchanged when
we changed the S-wave phase to another value. Therefore,
the reason why we could not obtain a reasonable result for

the S-wave phase shift is that the statistics of the BES-II
data was indeed too low. It is expected that BES-III will
collect 200 times more c 0 data in the near future. And the
BES-III detector has much higher selection efficiency than
that of the BES-II detector. So, we will have more than
400 000 events in a 10 MeV bin when m�� is at 500 MeV.
Our Monte Carlo study shows that, if the ratio of D-wave
component is above 2%, a reasonable S-wave phase shift
can be obtained based on BES-III data. In the lower m��

mass region, such as in the 350 MeV region, the amount of
statistics is about a 3.3% of that in the 500 MeV range. In
order to achieve enough statistics in the 350 MeV region,
more running on�0 data will be needed. If, for any reason,
we were not able to obtain enough statistics in the
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FIG. 2 (color online). Scan results for the I, J ¼ 0, 0 phase. (a), (b), (c), (d), and (e) correspond, respectively, to the D-components
2%, 4%, 8%, 20%, and 45%. The value at minimum of the curve is the output phase shown in Table I. The number of events for each
cases can be found in Table I.
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350 MeV region, it would be still possible to select a wider
bin for this energy range in order to increase the statistics.
For instance, the width of the bin could be increased from
10 to 30 MeV.

V. CONCLUSIONS

A method is proposed in this paper to measure the ��
phase shift. It is tested by means of a Monte Carlo simu-
lation, finding that if the D-wave component is above 2%
and the statistics in one 10 MeV bin is above roughly
200 000, a reasonable determination of the �� phase shift
can be performed. It is expected that BES-III will collect
enough data and, based on them, we expect to be able to
measure the �� phase-shift difference in the mass region
from 350 to 550 MeV.
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APPENDIX: KINEMATICS

�0 and � denote the polarizations of�0 and J=� respec-
tively. Here we choose

�
�
0 ¼ 1

M
ðj ~p3j; 0; 0;�E3Þ; �

�
� ¼

ffiffiffi
2

p
2

ð0; 1;�i; 0Þ;
and

�0�1 ¼ ð0;� cos�3 cos
;� cos�3 sin
;� sin�3Þ;
�
0�
2 ¼ ð0;� sin
; cos
; 0Þ;

p3 � q ¼ ffiffiffi
s

p ðE3 þ j ~p3j�Þ;
p3 � �01 ¼ �j ~p3j sin�3;
p � �01 ¼ 2j ~p�

��jðcos�3 cos
 sin��� þ � cos��� sin�3Þ;
q � �01 ¼

ffiffiffi
s

p
�� sin�3;

p3 � �02 ¼ 0;

p � �02 ¼ 2j ~p�
��j sin��� sin
;

q � �02 ¼ 0;

p � �þ ¼ � ffiffiffi
2

p j ~p�
��j sin���;

p � �� ¼ � ffiffiffi
2

p j ~p�
��j sin���;

p � �0 ¼ 2j ~p�
��j cos����ðE3 þ j ~p3j�Þ 1

M�

;

q � �þ ¼ 0;

q � �� ¼ 0;

q � �0 ¼ s�ðj ~p3j þ E3�Þ 1

M�

�01 � �þ
¼ cos�3ðcos
þ i sin
Þ= ffiffiffi

2
p

;

�01 � �� ¼ cos�3ðcos
� i sin
Þ= ffiffiffi
2

p
;

�01 � �0 ¼ �E3 sin�3=M�;

�02 � �þ ¼ ð�i cos
þ sin
Þ= ffiffiffi
2

p
;

�02 � �� ¼ ði cos
þ sin
Þ= ffiffiffi
2

p
;

�02 � �0 ¼ 0:
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