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We study the thermodynamics of massless �4-theory using screened perturbation theory. In this

method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in

the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in

m=T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at

order g7 and the loop expansion is shown to have better convergence properties than the weak-coupling

expansion. The free energy at order g6 involves the four-loop triangle sum-integral evaluated by Gynther,

Laine, Schröder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation

of the free energy at order g7 requires the evaluation of a nontrivial three-loop sum-integral, which we

calculate by the same methods.
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I. INTRODUCTION

In recent years there has been significant progress in the
understanding of thermal field theories in equilibrium [1–
4]. For example, the thermodynamic functions can be
calculated as power series in the coupling constant g at
weak coupling and advanced calculational techniques have
been developed in order to go beyond the first few correc-
tions. The pressure has been calculated through order g5

for massless �4-theory [5,6], massless QED [7–9], and
massless non-Abelian gauge theories [10–12]. Very re-
cently, the calculation frontier has been pushed to order
g6 in massless �4-theory by Gynther, Laine, Schröder,
Torrero, and Vuorinen [13]. The calculation in Ref. [13]
involves the computation of complicated four-loop vacuum
diagrams and was motivated by the corresponding problem
in non-Abelian gauge theories: There are three momentum
scales—hard momenta of order T, soft momenta of order
gT, and supersoft momenta of order g2T, which give
contributions to the free energy. The contribution from
the hard scale T to the free energy can be calculated as a
power series in g2 using naı̈ve perturbation theory without
resummed propagators. The order g6 is the first order at
which all three momentum scales in QCD contribute to the
free energy and so it is important to calculate the full g6

term. Such a calculation involves the evaluation of four-
loop vacuum diagrams in four dimensions.

However, it is well-known that the weak-coupling ex-
pansion is very sensitive to the renormalization scale, and it
is furthermore convergent only if the coupling constant is
tiny. The physical origin of this instability does not seem to
be related to the magnetic mass problem in QCD, as it
appears in �4-theory and QED as well. Rather, it seems to
be associated with screening effects and quasiparticles.

In recent years there have been large efforts to reorgan-
ize the perturbative series such that it has improved con-
vergence properties. Several of these methods are
variational in nature, in which the thermodynamic poten-
tial � depends on one or more variational parameters mi.
The pressure and other thermodynamic quantities are then
found by evaluating� and its derivatives at the variational
point where ��=�mi ¼ 0.
One of these methods is screened perturbation theory

(SPT) which in the context of hot �4-theory was intro-
duced by Karsch, Patkós, and Petreczky [14] (see also
Refs. [15–17]). In this approach, one introduces a single
variational parameter m2 which is added to and subtracted
from the original Lagrangian. The added piece is kept as a
part of the free Lagrangian and the subtracted piece is
treated as an interaction. The parameter m2 has a simple
interpretation of a thermal mass and satisfies a variational
equation. SPT has been applied to calculate the pressure to
three-loop order [18] and the convergence properties of the
successive approximations are dramatically improved as
compared to the weak-coupling expansion. The mass pa-
rameter is of order g and so it might be reasonable to carry
out an additional expansion of the Feynman diagrams in
powers of m=T, and truncate at the appropriate order. This
was done in Ref. [19] and it was demonstrated that the
double expansion in m=T and g converges quickly to the
numerically exact result even for large values of the
coupling.
The generalization of SPT to gauge theories cannot

simply be made by adding and subtracting a local mass
term as this would violate gauge invariance. Instead one
adds and subtracts to the Lagrangian a hard thermal loop
(HTL) improvement term [20]. The free piece of the
Lagrangian includes the HTL self-energies, while the re-
maining terms are treated as perturbations. Hard thermal
loop perturbation theory is a manifestly gauge invariant
approach that can be used to calculate static as well as
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dynamic quantities in a systematic expansion. HTL pertur-
bation theory has been applied to calculate the pressure to
two-loop order [21–25] in an m=T expansion and the
convergence properties of the successive approximations
are again improved as compared to the weak-coupling
expansion.

Another variational method in which the propagator is a
variational function was constructed by Luttinger and
Ward [26] and by Baym [27] for nonrelativistic fermions
in the early 1960s. Later, it was generalized to relativistic
quantum field theories by Cornwall, Jackiw, and
Tomboulis [28]. The approach is based on the fact that
the thermodynamic potential � can be written in terms of
the two-particle irreducible (2PI) vacuum diagrams. The
propagator D satisfies the variational equation ��=�D ¼
0. The 2PI effective action formalism is also referred to as
�-derivable approximations.

Since the 2PI effective action formalism involves an
effective propagator, a truncated calculation in the loop
expansion or 1=N-expansion involves a selective resum-
mation of diagrams from all orders of perturbation theory.
This fact makes renormalization of �-derivable approxi-
mations highly nontrivial. In recent years, there have been
large efforts to prove renormalizability in the loop expan-
sion, 1=N-expansion, or the Hartree approximation, and, in
particular, to prove that the counterterms are medium
independent, i.e. independent of temperature and chemical
potential [29–32].

The second issue is that of gauge-fixing dependence.
While the exact 2PI effective action is gauge independent
at the stationary point, this property is often lost in approx-
imations. The problem has been examined by Arrizabalaga
and Smit [33] as well as Carrington et al. [34]. In Ref. [33],
it was shown that the n-loop �-derivable approximation,
which is defined by the truncation of the action functional
after n loops, has a gauge dependence that shows up at
order g2n. Furthermore, if the nth order solution to the gap
equation is used to evaluate the complete effective action,
the gauge dependence first shows up at order g4n. Explicit
examples of the gauge dependence of the three-loop
�-derivable approximation can be found in Ref. [35].

The �-derivable approach has been used by Blaizot,
Iancu, and Rebhan [36–38] and by Peshier [39] to calculate
the thermodynamic quantities at the two-loop level in
scalar field theory as well as in gauge theories. The calcu-
lations are based on the fact that the solution to the gap
equation for the propagator for soft momenta is given by
the HTL self-energies. Three-loop calculations have been
performed in scalar field theory by Braaten and Petitgirard
[40], and in QED in Ref. [35] using an m=T expansion
similar to that employed in SPT in Ref. [19]. The conver-
gence of the successive approximations to the pressure is
improved significantly compared to the weak-coupling
expansion and the sensitivity to the renormalization scale
is also reduced. In Ref. [41], the authors carried out a

numerically exact three-loop calculation of the pressure
in �4-theory. Similarly, numerically exact two-loop calcu-
lations of the pressure in QED including an analysis of the
gauge dependence of the results can be found in Ref. [42].
In these calculations no attempts to compare with the m=T
expansions of Refs. [35,40] were made.
Finally, we mention other related resummation methods

that have been applied in recent years, namely, the 2-
particle point irreducible (2PPI) method [43,44] as well
as the linear delta-expansion [45–48]. These methods are
also variational in spirit. Moreover, it has been shown that
they correctly predict a second-order phase transition when
applied to �4-theory. In the case of the linear delta-
expansion, the successive approximations of e.g. the pres-
sure are remarkably stable as compared to the weak-
coupling expansion.
The article is organized as follows. In Sec. II, we briefly

discuss the systematics of screened perturbation theory. In
Sec. III, we calculate the pressure to four-loop order in a
double expansion in m=T and g2. In Sec. IV, we discuss
different gap equations that are used to determine the mass
parameter in screened perturbation theory. We also present
our numerical results and compare them with the weak-
coupling expansion. In Sec. V, we summarize. In
Appendix A and B, we list the sum-integrals and the
integrals that we need. In Appendix C, we discuss the
m=T expansion of typical sum-integrals that appear in
the calculation. In Appendix D , we calculate explicitly a
new three-loop sum-integral that contributes to order g7 in
the m=T expansion.

II. SCREENED PERTURBATION THEORY

The Lagrangian density for a massless scalar field with a
�4 interaction is

L ¼ 1

2
@��@��� g2

24
�4 þ �L; (1)

where g is the coupling constant and �L includes counter-
terms. Renormalizability guarantees that�L is of the form

�L ¼ 1

2
�Z@��@��� 1

24
�g2�4: (2)

Screened perturbation theory, which was introduced in
thermal field theory by Karsch, Patkós, and Petreczky [14],
is simply a reorganization of the perturbation series for
thermal field theory. It can be made more systematic by
using a framework called ‘‘optimized perturbation theory’’
that Chiku and Hatsuda [49] have applied to a spontane-
ously broken scalar field theory. The Lagrangian density is
written as

LSPT ¼ �E0 þ 1

2
@��@��� 1

2
ðm2 �m2

1Þ�2 � g2

24
�4

þ �Lþ�LSPT: (3)
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Here, E0 is the vacuum energy density term, and we have
added and subtracted mass terms. If we set E0 ¼ 0 and
m2

1 ¼ m2, we recover the original Lagrangian Eq. (1).
Screened perturbation theory is defined by taking m2 to
be of order unity and m2

1 to be of order g2, expanding
systematically in powers of g2 and setting m2

1 ¼ m2 at the
end of the calculation. This defines a reorganization of the
perturbative series in which the expansion is about the free
field theory defined by

L free ¼ �E0 þ 1

2
@��@��� 1

2
m2�2: (4)

The interacting term is

L int ¼ 1

2
m2

1�
2 � g2

24
�4 þ �Lþ�LSPT: (5)

Screened perturbation theory generates new ultraviolet
divergences, but they can be canceled by the additional
counterterm in �LSPT. If we use dimensional regulariza-
tion and minimal subtraction, the coefficients of these
operators are polynomials in g2 and (m2 �m2

1). The coun-
terterm �L is

�L ¼ ��g2

24
�4: (6)

The additional counterterms required to remove the new
divergences are

�LSPT ¼ ��E0 � 1

2
ð�m2 ��m2

1Þ�2: (7)

Several terms in the power series expansions of the coun-
terterms are known from previous calculations at zero
temperature. The counterterms �g2 and �m2 are known
to order �5, where � ¼ g2=ð4�Þ2 [50]. We will need the
coupling constant counterterm to next-to-leading order in
�:

�g2 ¼
�
3

2�
�þ

�
9

4�2
� 17

12�

�
�2 þ � � �

�
g2: (8)

We need the mass counterterms �m2 and �m2
1 to next-to-

leading order in �:

�m2 ¼
�
1

2�
�þ

�
1

2�2
� 5

24�

�
�2 þ � � �

�
m2; (9)

�m2
1 ¼

�
1

2�
�þ

�
1

2�2
� 5

24�

�
�2 þ � � �

�
m2

1: (10)

The counterterm for �E0 has been calculated to order �4

[51]. We will need its expansion only to first order in � and
second order in m2

1:

ð4�Þ2�E0 ¼
�
1

4�
þ 1

8�2
�

�
m4 � 2

�
1

4�
þ 1

8�2
�

�
m2

1m
2

þ
�
1

4�
þ 1

8�2
�

�
m4

1: (11)

III. FREE ENERGY TO FOUR LOOPS

In this section, we calculate the m=T expansions of the
pressure to four loops in screened perturbation theory. In
performing the truncation, m is treated as a quantity that is
OðgÞ and we include all terms which contribute to order g7.

A. One-loop free energy

The free energy at leading order in g2 is

F 0 ¼ E0 þF 0a þ�0E0; (12)

where �0E0 is the term of order g0 in the vacuum energy
counterterm Eq. (11).
The expression for diagram F 0a in Fig. 1 is

F 0a ¼ 1

2

ZX
P
log½P2 þm2�; (13)

where the symbol
RP

P is defined in Appendix A.

Treating m as OðgTÞ and including all terms which
contribute through Oðg7Þ, we obtain

F 0a ¼ 1

2
I 0
0 þ

1

2
m2I1 þ 1

2
TI00 �

1

4
m4I2 þ 1

6
m6I3;

(14)

where the sum-integrals I 0
0 and In are defined in

Appendix A and the integral I00 is defined in Appendix B.

In Appendix C, we illustrate the m=T expansion of simple
one-loop sum-integrals such as the one appearing in
Eq. (13). We also note that most of the multiloop diagrams
are products of simple one-loop sum-integrals.
The term I2 is logarithmically divergent and the pole in

� is canceled by the zeroth-order term �0E0 in Eq. (11).
The final result for the truncated one-loop free energy is

F 0 ¼ ��2T4

90

�
1� 15m̂2 þ 60m̂3 þ 45ðLþ �EÞm̂4

� 15

2
�ð3Þm̂6

�
; (15)

where m̂ ¼ m
2�T and L ¼ log �

4�T .

B. Two-loop free energy

The contribution to the free energy at two loops is given
by

F 1 ¼ F 1a þF 1b þ �1E0 þ @F 0a

@m2
�1m

2; (16)

where �1E0 and �1m
2 are the vacuum and mass counter-

FIG. 1. One-loop vacuum diagram.

FOUR-LOOP SCREENED PERTURBATION THEORY PHYSICAL REVIEW D 78, 076008 (2008)

076008-3



terms of order g2, respectively. The expressions for the
diagrams F 1a and F 1b in Fig. 2 are

F 1a ¼ 1

8
g2
�ZX

P

1

P2 þm2

�
2
; (17)

F 1b ¼ � 1

2
m2

1

ZX
P

1

P2 þm2
: (18)

Expanding the sum-integrals in Eqs. (17) and (18) to order
Oðg7Þ yields
F 1a ¼ 1

8
g2½I2

1 þ 2TI1I1 � 2m2I1I2 þ T2I21

� 2m2I1TI2 þ 2m4I1I3 þm4I2
2 þ 2m4TI1I3�;

(19)

F 1b ¼ � 1

2
m2

1½I1 þ TI1 �m2I2 þm4I3�; (20)

where the integral In is defined in Appendix B.
The poles in � in Eqs. (19) and (20) are canceled by the

counterterms in Eq. (16). The final result for the two-loop
contribution to the free energy is

F 1 ¼�2T4

90
�

�
5

4
� 15m̂� 15ðLþ�E � 3Þm̂2

þ 90ðLþ�EÞm̂3 þ 45

�
ðLþ�EÞ2 þ 1

12
�ð3Þ

�
m̂4

� 45

2
�ð3Þm̂5

�

��2T4

90
15m̂2

1

�
1� 6m̂� 6ðLþ�EÞm̂2 þ 3

2
�ð3Þm̂4

�
:

(21)

Note that we here and in the following have pulled out a
factor of F ideal ¼ ��2T4=90.

C. Three-loop free energy

The contribution to the free energy at three loops is

F 2 ¼ F 2a þF 2b þF 2c þF 2d þ�2E0 þ @F 0a

@m2
�2m

2

þ 1

2

@2F 0a

ð@m2Þ2 ð�1m
2Þ2 þ

�
@F 1a

@m2
þ @F 1b

@m2

�
�1m

2

þF 1a

g2
�1g

2 þF 1b

m2
1

�1m
2
1; (22)

where we have included all necessary counterterms. The
expressions for the diagrams F 2a, F 2b, F 2c, and F 2d in
Fig. 3 are

F 2a ¼ � 1

16
g4
�ZX

P

1

P2 þm2

�
2ZX

Q

1

ðQ2 þm2Þ2 ; (23)

F 2b ¼ � 1

48
g4

ZX
PQR

1

P2 þm2

1

Q2 þm2

1

R2 þm2

� 1

ðPþQþ RÞ2 þm2
; (24)

F 2c ¼ 1

4
g2m2

1

ZX
P

1

P2 þm2

ZX
Q

1

ðQ2 þm2Þ2 ; (25)

F 2d ¼ � 1

4
m4

1

ZX
P

1

ðP2 þm2Þ2 : (26)

Expanding in powers of m2 to the appropriate order gives1

F 2a ¼ � 1

16
g4½TI2

1I2 þ I2
1I2 þ 2T2I1I1I2 þ T3I21I2

þ 2TI1I1I2 � 2m2TI1I2I2 þ T2I2I
2
1 � 2m2I2

1I3

� 2m2T2I2I1I2 � 2m2I1I2
2 � 4m2TI1I1I3

� 2m2TI1I2
2 þm4TI2I2

2 þ 2m4TI2I1I3�; (27)

F 2b ¼ � 1

48
g4
�
Iball þ T3Iball þ 4TI1I sun þ 6T2I2I

2
1

� 4m2I 0
ball � 8m2TI1

ZX
QR

Q2 þ ð2=dÞq2

Q6R2ðQþ RÞ2
�
;

(28)

FIG. 2. Two-loop vacuum diagrams. The cross denotes a mass
insertion.

FIG. 3. Three-loop vacuum diagrams.

1Notice that the term TI1I sun in F 2b in Eq. (28) vanishes.
However, we include this term because it gives rise to a finite
term at four loops when renormalizing the coupling constant g.
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F 2c ¼ 1

4
g2m2

1½TI1I2 þ I1I2 þ T2I1I2 þ TI2I1

�m2TI2I2 �m2I2
2 � 2m2I1I3 � 2m2TI1I3

þm4TI2I3�; (29)

F 2d ¼ � 1

4
m4

1½TI2 þ I2 � 2m2I3�; (30)

where I sun, Iball, and I 0
ball are defined in Appendix A, and

Iball is defined in Appendix B.
The poles in � in Eqs. (27)–(30) are canceled by the

counterterms in Eq. (22).
The final result for the three-loop contribution to the free

energy is

F 2 ¼ ��2T4

90

5

8

1

m̂
�2

�
1� 2

�
59

15
� �E � 3L� 4

� 0ð�1Þ
�ð�1Þ þ 2

� 0ð�3Þ
�ð�3Þ

�
m̂

� 12m̂2

�
5þ 7Lþ 3�E � 8 logm̂� 8 log2� 4

� 0ð�1Þ
�ð�1Þ

�

þ
�
268ðLþ �EÞ � 48ðLþ �EÞ2 þ � 0ð�1Þ

�ð�1Þ ð34þ 12�EÞ þ 12
� 00ð�1Þ
�ð�1Þ þ �Eð17� 21�EÞ þ 34þ 9�2

2
� 48�1

� �ð3Þ � 6C0
ball

�
m̂3 þ ð89þ 120ðLþ �EÞ þ ½18ðLþ �EÞ�2 þ 15�ð3ÞÞm̂4

�

þ �2T4

90

15

2

m̂2
1

m̂
�

�
1þ 2ðLþ �E � 3Þm̂� 18ðLþ �EÞm̂2 � ð12ðLþ �EÞ2 þ �ð3ÞÞm̂3 þ 15

2
�ð3Þm̂4

�

� �2T4

90

45

2

m̂4
1

m̂
½1þ 2ðLþ �EÞm̂� �ð3Þm̂3�: (31)

Here C0
ball ¼ 48:7976 is the numerical constant in I 0

ball [13].

D. Four-loop free energy

The contributions to the free energy at four loops are

F 3 ¼ F 3a þF 3b þF 3c þF 3d þF 3e þF 3f þF 3g þF 3h þF 3i þF 3j þ�3E0 þ @F 0a

@m2
�3m

2 þ 1

6

@3F 0a

ð@m2Þ3 ð�1m
2Þ3

þ @2F 0a

ð@m2Þ2 ð�1m
2Þð�2m

2Þ þ
�
@F 1a

@m2
þ @F 1b

@m2

�
�2m

2 þF 1a

g2
�2g

2 þ
�
2
F 2a

g2
þ 2

F 2b

g2
þF 2c

g2

�
�1g

2

þ 1

2

�
@F 2

1a

ð@m2Þ2 þ
@F 2

1b

ð@m2Þ2
�
ð�1m

2Þ2 þF 1b

m2
1

�2m
2
1 þ

@F 1b

m2
1@m

2
ð�1m

2Þð�1m
2
1Þ þ

1

g2
@F 1a

@m2
ð�1g

2Þð�1m
2Þ

þ
�
F 2c

m2
1

þ 2
F 2d

m2
1

�
�1m

2
1 þ

�
@F 2a

@m2
þ @F 2b

@m2
þ @F 2c

@m2
þ @F 2d

@m2

�
�1m

2: (32)

Note that some of the terms first contribute at order g8 or
higher. For example, the vacuum counterterm �3E0 first
contributes at order m4�2 � g8.

The expressions for the diagrams F 3a–F 3j, in Fig. 4 are

F 3a ¼ 1

32
g6
�ZX

P

1

P2 þm2

�
2
�ZX

Q

1

ðQ2 þm2Þ2
�
2
; (33)

F 3b ¼ 1

48
g6
�ZX

P

1

P2 þm2

�
3ZX

Q

1

ðQ2 þm2Þ3 ; (34)

F 3c ¼ 1

24
g6

ZX
PQR

1

ðP2 þm2Þ2
1

Q2 þm2

1

R2 þm2

� 1

ðPþQþ RÞ2 þm2

ZX
S

1

S2 þm2
(35)

F 3d ¼ 1

48
g6

ZX
PQRS

1

Q2 þm2

1

ðPþQÞ2 þm2

1

R2 þm2

� 1

ðPþ RÞ2 þm2

1

S2 þm2

1

ðPþ SÞ2 þm2
;

(36)
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F 3e ¼ � 1

8
g4m2

1

ZX
P

1

P2 þm2

�ZX
Q

1

ðQ2 þm2Þ2
�
2
;

(37)

F 3f ¼ � 1

8
g4m2

1

�ZX
P

1

P2 þm2

�
2ZX

Q

1

ðQ2 þm2Þ3 ;
(38)

F 3g ¼ � 1

12
g4m2

1

ZX
PQR

1

ðP2 þm2Þ2
1

Q2 þm2

1

R2 þm2

� 1

ðPþQþ RÞ2 þm2
(39)

F 3h ¼ 1

4
g2m4

1

ZX
P

1

P2 þm2

ZX
Q

1

ðQ2 þm2Þ3 ; (40)

F 3i ¼ 1

8
g2m4

1

�ZX
P

1

ðP2 þm2Þ2
�
2
; (41)

F 3j ¼ � 1

6
m6

1

ZX
P

1

ðP2 þm2Þ3 : (42)

Expanding the sum-integrals in powers of m2 to the
appropriate order gives

F 3a ¼ 1

32
g6½T2I22I

2
1 þ 2T3I1I

2
2I1 þ 2TI2I2

1I2 þ I2
1I

2
2

þ T4I21I
2
2 þ 2TI1I1I2

2 � 2m2T2I22I1I2

� 2m2T3I1I
2
2I2 þ 4T2I1I2I1I2 � 4m2TI2I1I2

2

þ 2T3I21I2I2 � 4m2TI2I2
1I3�; (43)

F 3b ¼ 1

48
g6½TI3I3

1 þ 3T2I1I3I2
1 þ 3T3I3I

2
1I1

� 3m2TI3I2
1I2 þ I3I3

1 þ T4I31I3

� 6m2T2I1I3I1I2 þ 3TI1I2
1I3 � 3m2T3I21I3I2

þ 3m4TI3I2
1I3 þ 3m4TI3I1I2

2�; (44)

F 3c ¼ 1

24
g6
�
ðI1 þ TI1 �m2I2ÞT3I0ball þ ðI1 þ TI1ÞI 0

ball

þ 3T2I1I2I1I2 �m2TI2I2I sun þ 3T3I21I2I2

þ 2I1ðTI1 �m2TI2Þ
ZX

QR

Q2 þ ð2=dÞq2

Q6R2ðQþ RÞ2
�
; (45)

F 3d ¼ 1

48
g6
�ZX

P
½�ðPÞ�3 þ T4Itriangle

þ 6TI1
ZX

P

1

P2
½�ðPÞ�2 þ 3T3I2Iball

�
; (46)

F 3e ¼ � 1

8
g4m2

1½T2I22I1 þ T3I1I
2
2 þ 2TI2I1I2

� 2m2TI2I2
2 þ I1I2

2 þ 2T2I1I2I2 �m2T2I22I2

þ TI1I2
2 � 4m2TI2I1I3�; (47)

F 3f ¼ � 1

8
g4m2

1½TI3I2
1 þ 2T2I3I1I1 þ T3I3I

2
1

� 2m2TI3I1I2 þ I3I2
1 � 2T2m2I3I1I2

þ 2TI1I1I3 þ 2m4TI3I1I3 þm4TI3I2
2�; (48)

F 3g ¼ � 1

12
g4m2

1

�
T3I0ball þ I 0

ball þþ3T2I1I2I2

þ 2ðTI1 �m2TI2Þ
ZX

QR

Q2 þ ð2=dÞq2

Q6R2ðQþ RÞ2
�
; (49)

FIG. 4. Four-loop vacuum diagrams.
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F 3h ¼ 1

4
g2m4

1½TI3I1 þ T2I1I3 þ TI1I3 �m2TI2I3

þ I1I3 þm4TI3I3�; (50)

F 3i ¼ 1

8
g2m4

1½T2I22 þ 2TI2I2 þ I2
2 � 4m2TI2I3�; (51)

F 3j ¼ � 1

6
m6

1½TI3 þ I3�; (52)

where the self-energy �ðPÞ is defined in Eq. (D2) and the
integrals I0ball and Itriangle are defined in Appendix B. The

poles in Eqs. (43)–(52) are canceled by the counterterms in
Eq. (32). The final result for the four-loop contribution to
the free energy is

F 3 ¼ �2T4

90

5

288

�3

m̂3

�
1þ 18

�
11Lþ 3�E � 6� 16 log2� 16 logm̂� 8

� 0ð�1Þ
�ð�1Þ

�
m̂2

þ
�
1236þ 108Ca

triangle þ 36C0
ball þ 288�1 � 9198

5
�E þ 450�2

E � 6456

5
Lþ 432�ELþ 648L2 þ 135�2

� 54�2Cb
triangle � 216�2�E þ ð2100� 72�E þ 1728LÞ �

0ð�1Þ
�ð�1Þ þ 432

�
� 0ð�1Þ
�ð�1Þ

�
2 � 432ð�E þ 2LÞ �

0ð�3Þ
�ð�3Þ

þ 360
� 00ð�1Þ
�ð�1Þ þ 1728 log2þ 216�2 log2þ 432ð4� �2Þ logm̂� 4534�ð3Þ

�
m̂3

þ 9

2

�
3742� 288CI � 48C0

ball � 8064�1 � 6072�E � 2544�2
E � 3904L� 1872�EL� 2184L2 þ 900�2

þ ð1808þ 1824�E þ 2496LÞ �
0ð�1Þ
�ð�1Þ � 288

� 00ð�1Þ
�ð�1Þ þ 2688�E log2þ 4992L log2þ 4992ð�E þ LÞ logm̂

� 2304�E log�þ 2304log2ð2�Þ � 15�ð3Þ
�
m̂4

�

� �2T4

90

5

16

�2m̂2
1

m̂3

�
1þ

�
84Lþ 36�E � 96 logm̂� 36� 96 log2� 48

� 0ð�1Þ
�ð�1Þ

�
m̂2

þ 2

�
48ðLþ �EÞ2 � 268ðLþ �EÞ � �Eð17� 21�EÞ þ 48�1 � 34� 9�2

2
� � 0ð�1Þ

�ð�1Þ ð34þ 12�EÞ

� 12
� 00ð�1Þ
�ð�1Þ þ �ð3Þ þ 6C0

ball

�
m̂3 � 3ð89þ 120ðLþ �EÞ þ ½18ðLþ �EÞ�2 þ 15�ð3ÞÞm̂4

�

þ �2T4

90

15

8

�m̂4
1

m̂3

�
1þ 18ðLþ �EÞm̂2 þ ½24ðLþ �EÞ2 þ 2�ð3Þ�m̂3 � 45

2
�ð3Þm̂4

�
� �2T4

90

15

4

m̂6
1

m̂3
½1þ 2�ð3Þm̂3�;

(53)

where the constants are

C0
ball ¼ 48:7976; (54)

Ca
triangle ¼ �25:7055; (55)

Cb
triangle ¼ 28:9250; (56)

CI ¼ �38:5309: (57)

There are a couple of calculational details that are worth-
while pointing out. The g6 contribution arising from dia-
gram F 3d when all momenta are hard (h) reads

F ðhhhhÞ
3d ¼

ZX
P
½�ðPÞ�3: (58)

This term can be combined with the g6 term arising from

the counterterm F 2b�1g
2 ¼ �g4Iball�1g

2=48 and gives

ZX
P

�
½�ðPÞ�3 � 3

ð4�Þ2� ½�ðPÞ�2
�
: (59)

This particular combination was first calculated by
Gynther et al. [13] using the methods of Arnold and
Zhai. Similarly, we combine the g7 term from F 3d with
the term TI1I sun from F 2b�1g

2, which gives

ZX
P

1

P2

�
½�ðPÞ�2 � 2

ð4�Þ2� ½�ðPÞ�
�
: (60)

We calculate this sum-integral in Appendix D. Finally, the
term from F 2b�1m

2 which involves I sun can be combined
with the term �m2I2I2I sun arising from F 3c to give

1

24
g6m2I2

�
1

ð4�Þ2
1

�
� I2

�
I sun: (61)
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Since I sun vanishes at order �0 and the term inside the
parenthesis is finite, the particular combination (61) van-
ishes in the limit � ! 0.

E. Pressure to four loops

The pressureP is given by�F . The contributions to the
pressure of zeroth, first, second order, and third order in g2

are given by Eqs. (15), (21), (31), and (53), respectively.
Adding these contributions and setting E0 ¼ 0 and m2

1 ¼
m2, we obtain approximations to the pressure in screened
perturbation theory which are accurate to Oðg7Þ.

The one-loop approximation to the pressure is

P 0 ¼ P ideal

�
1� 15m̂2 þ 60m̂3 þ 45m̂4ðLþ �EÞ

� 15

2
�ð3Þm̂6

�
; (62)

where P ideal ¼ �2T4=90 is the pressure of an ideal gas of
massless particles.
The two-loop approximation to the pressure is obtained

by adding Eq. (21) with m2
1 ¼ m2:

P 0þ1 ¼ P ideal

�
1� 5

4
�þ 15m̂�þ 15m̂2ðLþ �E � 3Þ�

� 30m̂3½1þ 3ðLþ �EÞ��
� 45m̂4

�
ðLþ �EÞ þ

�
ðLþ �EÞ2 þ 1

12
�ð3Þ

�
�

�

þ 45

2
�ð3Þm̂5�þ 15�ð3Þm̂6

�
: (63)

The three-loop approximation to the pressure is obtained
by adding Eq. (31) with m2

1 ¼ m2:

P 0þ1þ2 ¼ P ideal

�
1þ 5

8m̂
�2 � 5

4
�þ

�
� 59

12
þ 15

4
Lþ 5

4
�E þ 5

� 0ð�1Þ
�ð�1Þ �

5

2

� 0ð�3Þ
�ð�3Þ

�
�2

þ 15

2
m̂

�
1�

�
5þ 3�E þ 7L� 8 logm̂� 8 log2� 4

� 0ð�1Þ
�ð�1Þ

�
�

�
�

þ 5

8
m̂2

�
268ðLþ �EÞ � 48ðLþ �EÞ2 þ � 0ð�1Þ

�ð�1Þ ð34þ 12�EÞ þ 12
� 00ð�1Þ
�ð�1Þ þ �Eð17� 21�EÞ þ 34

þ 9�2

2
� 48�1 � �ð3Þ � 6C0

ball

�
�2 � 15

2
m̂3

�
1� 6ðLþ �EÞ�� 1

12

�
89þ 120ðLþ �EÞ þ ½18ðLþ �EÞ�2

þ 15�ð3Þ
�
�2

�
þ 45m̂4

�
ðLþ �EÞ2 þ 1

12
�ð3Þ

�
�� 135

4
m̂5��ð3Þ � 15

2
m̂6�ð3Þ

�
: (64)

The four-loop approximation to the pressure is obtained by adding Eq. (53) to Eq. (64), with m2
1 ¼ m2:

P 0þ1þ2þ3

P ideal

¼ 1� 5

288

�3

m̂3
þ 15

16

1

m̂

�
�2 þ 1

3

�
16 logm̂þ 6� 3�E � 11Lþ 8

� 0ð�1Þ
�ð�1Þ þ 16 log2

�
�3

�

� 5

4

�
��

�
3L� 59

15
�E þ 4

� 0ð�1Þ
�ð�1Þ � 2

� 0ð�3Þ
�ð�3Þ

�
�2 þ 1

72

�
1236þ 36C0

ball þ 108Ca
triangle þ 288�1

� 9198

5
�E þ 450�2

E � 6456

5
Lþ 432�ELþ 648L2 þ 135�2 � 54�2Cb

triangle � 216�2�E

þ ð2100� 72�E þ 1728LÞ �
0ð�1Þ
�ð�1Þ þ 432

�
� 0ð�1Þ
�ð�1Þ

�
2 � 432ð�E þ 2LÞ �

0ð�3Þ
�ð�3Þ þ 360

� 00ð�1Þ
�ð�1Þ

þ 1728 log2þ 216�2 log2þ 432ð4� �2Þ logm̂� 4534�ð3Þ
�
�3

�

þ 45

8
m̂

�
�� 2

3

�
13þ 3�E þ 7L� 4

� 0ð�1Þ
�ð�1Þ � 8 log2� 8 logm̂

�
�2

� 1

72

�
3742� 288CI � 48C0

ball � 8064�1 � 6072�E � 2544�2
E � 3904L� 1872�EL� 2184L2 þ 900�2

þ ð1808þ 1824�E þ 2496LÞ �
0ð�1Þ
�ð�1Þ � 288

� 00ð�1Þ
�ð�1Þ þ 2688�E log2þ 4992L log2þ 4992ð�E þ LÞ logm̂

� 2304�E log�þ 2304log2ð2�Þ � 15�ð3Þ
�
�3

�
� 15

4
m̂3

�
1� 3ðLþ �EÞ�þ 1

12
ð89þ 120ðLþ �EÞ

þ ½18ðLþ �EÞ�2 þ 15�ð3ÞÞ�2

�
þ 135

16
�ð3Þm̂5�: (65)
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The final result for the pressure is given by Eq. (65). If we
use the weak-coupling expansion for the mass parameter,
m̂2 ¼ �=6, our result reduces to the weak-coupling expan-
sion result through order �3.2 Inserting m̂2 into Eq. (65),
we obtain

P ¼ P ideal

�
1� 5

4
�þ 5

ffiffiffi
6

p
3

�3=2 þ 15

4

�
log

�

4�T

þ C4

�
�2 � 15

ffiffiffi
6

p
2

�
log

�

4�T
� 2

3
log�þ C5

�
�5=2

� 45

4

�
log2

�

4�T
� 1

3

�
269

45
� 2�E � 8

� 0ð�1Þ
�ð�1Þ

þ 4
� 0ð�3Þ
�ð�3Þ

�
log

�

4�T
þ 1

3
ð4� �2Þ log�þ C6

�
�3

�
;

(66)

where the constants C4–C6 are

C4 � � 59

45
þ 1

3
�E þ 4

3

� 0ð�1Þ
�ð�1Þ �

2

3

� 0ð�3Þ
�ð�3Þ ; (67)

C5 � 5

6
þ 1

3
�E � 2

3
log

2

3
� 2

3

� 0ð�1Þ
�ð�1Þ ; (68)

C6 � 1

3
ð4� �2Þ log2

3
þ 103

54
þ 1

18
C0
ball �

1

6
Ca
triangle

� �2

12
Cb
triangle þ

4

9
�1 � 511

180
�E þ 25

36
�2
E þ 5�2

24

� �2

3
�E þ �2 log2þ

�
175

54
� 1

9
�E

�
� 0ð�1Þ
�ð�1Þ

þ 2

3

�
� 0ð�1Þ
�ð�1Þ

�
2 þ 5

9

� 00ð�1Þ
�ð�1Þ � 2

3
�E

� 0ð�3Þ
�ð�3Þ

� 2267

324
�ð3Þ: (69)

The numerical values of C4–C6 are

C4 ¼ 1:097 75; (70)

C5 ¼ �0:027 320 5; (71)

C6 ¼ �6:593 63: (72)

Gynther et al. [13] have calculated the pressure for an
OðNÞ-symmetric theory at weak coupling through order
g6 using effective field theory methods. Our result agrees
with theirs for N ¼ 1.

Using the renormalization group equation for the run-
ning coupling constant to next-to-leading order,

�
d�

d�
¼ 3�2 � 17

3
�3; (73)

it is straightforward to verify that the result (66) is inde-
pendent of the renormalization scale � through order
g6 logg.

IV. GAP EQUATIONS AND NUMERICAL RESULTS

The mass parameterm in screened perturbation theory is
completely arbitrary. In order to complete a calculation
using SPT, we need a prescription for the mass parameter
m as a function of g and T. One of the complications which
arises from the ultraviolet divergences is that the parame-
ters E0, m

2, m2
1, and g2 are all running parameters that

depend on the renormalization scale �.
The prescription of Karsch, Patkós, and Petreczky for

m�ðTÞ is the solution to the one-loop gap equation

m2� ¼ 1

2
�ð��Þ

�
J1ð	m�ÞT2 �

�
2 log

��
m�

þ 1

�
m2�

�
; (74)

where �� is the renormalization scale and J1ð	mÞ is the
function

J1ð	mÞ ¼ 8	2
Z 1

0

dpp2

ðp2 þm2Þ1=2
1

e	ðp2þm2Þ1=2 � 1
: (75)

Their choice for the scale was �� ¼ T. In the weak-

coupling limit, the solution to (74) is m� ¼ gð��ÞT=
ffiffiffiffiffiffi
24

p
.

The gap equation (74) is the renormalized version of the
following equation:

m2 ¼ 1

2
g2

ZX
P

1

P2 þm2
: (76)

There are many possibilities for generalizing (74) to higher
orders in g. We will consider three different possibilities in
the following.

A. Debye mass

One class of possibilities is to identify m� with some
physical mass in the system. The simplest choice is the
Debye mass mD defined by the location of the pole in the
static propagator:

p2 þm2 þ �ð0; pÞ ¼ 0; p2 ¼ �m2
D: (77)

The Debye mass is a well-defined quantity in scalar field
theory and Abelian gauge theories at any order in pertur-
bation theory. However, in non-Abelian gauge theories, it
is plagued by infrared divergences beyond leading order
[52].

B. Tadpole mass

The tadpole mass is another generalization of Eq. (74) to
higher loops. It can be calculated by taking the partial
derivative of the free energy F with respect to m2 before
setting m1 ¼ m:

2It is important to point out that we have only calculated part
of the g7 term in the weak-coupling expansion. See the discus-
sion in Sec. V.
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m2
t ¼ g2

@F
@m2

��������m1¼m
: (78)

From this equation, we see that m2
t is proportional to the

expectation value h�2i. The tadpole mass is well-defined at
all orders in scalar field theory, but the generalization to
gauge theories is problematic. The natural replacement of
h�2i would be hA�A�i, which is a gauge-variant quantity.

C. Variational mass

There is another class of prescriptions that is variational
in spirit. The results of SPT would be independent of m if
they were calculated to all orders. This suggests choosing
m to minimize the dependence of some physical quantity
on m. The variational mass is defined by minimizing the
free energy:

@F
@m2

¼ 0: (79)

The variational mass has the benefit that it is well-defined
at all orders in perturbation theory and can easily be
generalized to gauge theories.

D. Comparison

At one loop, the three different prescriptions give the
same gap equation, Eq. (74). Moreover, it turns out that the
two-loop tadpole mass coincides with the one-loop tadpole
mass [18]. However, at two loops the screening and varia-
tional masses are ill-behaved [18]. The screening mass

solution ceases to exist beyond g� 2:6 and the variational
gap equation only has solutions in the vicinity of g ¼ 0 for
some values of L. In the following, we therefore restrict
ourselves to the tadpole gap equation.

E. Tadpole gap equation through three loops

At one loop, the renormalized gap equation follows from
Eq. (15) upon differentiation with respect to m2 and can be
written as

0 ¼ m̂2 � 1

6
�

�
1� 6m̂� 6m̂2ðLþ �EÞ þ 3

2
�ð3Þm̂4

�
:

(80)

At two loops, the renormalized gap equation follows from
differentiating the sum of Eqs. (15) and (21) with respect to
m, and setting m1 ¼ m. It can be written in the form

0 ¼ m̂2 þ �2

12m̂
� �

6
½1þ �ð3� �E � LÞ�

þ 1

2
m̂�½1� 3�ð�E þ LÞ�

� m̂2�2

�
ð�E þ LÞ2 þ �ð3Þ

12

�
þ 5

8
m̂3�2�ð3Þ

þ 1

4
m4��ð3Þ: (81)

At three loops, the renormalized gap equation follows from
differentiating the sum of Eqs. (15), (21), and (31) and
setting m1 ¼ m. This yields

0 ¼ m̂2 þ 1

8

�2

m̂

�
1þ �

�
1� �E � 7

3
Lþ 4

3

� 0ð�1Þ
�ð�1Þ þ

8

3
log2þ 8

3
logm̂

��
� �

6

�
1� �ðLþ �E � 3Þ

þ �2

�
2ðLþ �EÞ2 � 17

12
þ 2�1 � 67

6
ðLþ �EÞ � 1

24
�Eð17� 21�EÞ � 3�2

16
� 17

12

� 0ð�1Þ
�ð�1Þ �

1

2
�E

� 0ð�1Þ
�ð�1Þ

� 1

2

� 00ð�1Þ
�ð�1Þ þ 1

24
�ð3Þ þ 1

4
C0
ball

��
þ 3

8
m̂�

�
1� 2�ðLþ �EÞ þ �2

�
9ðLþ �EÞ2 þ 10

3
ðLþ �EÞ þ 89

36
þ 5

12
�ð3Þ

��

� 5

16
m̂3�2�ð3Þ: (82)

F. Numerical results

The two-loop SPT-improved approximation to the pres-
sure is obtained by inserting the solution to the one-loop
gap equation (80) into the two-loop pressure (63). In Fig. 5
(a) we show the various truncations to the two-loop SPT-
improved approximation to the P=P ideal as a function of
gð2�TÞ. We notice that the various truncations converge
quickly. The order-g4 to order-g7 results are almost indis-
tinguishable and essentially equal to the exact numerical
two-loop result in Ref. [18]. In the three-loop case, we
insert the solution to the two-loop gap equation (81) into
the three-loop pressure (64). In Fig. 5(b), we show the
various truncations to the three-loop SPT-improved ap-

proximation to P=P ideal as a function of gð2�TÞ. The
three-loop result also converges to the exact numerical
three-loop result, albeit not as fast as in the two-loop
case. At four loops, we insert the solution to the three-
loop gap equation (82) into the four-loop pressure (65). In
Fig. 5(c), we show the various truncations to the four-loop
SPT-improved approximation to P=P ideal as a function of
gð2�TÞ. Although we cannot compare our successive ap-
proximations with a numerically exact four-loop result for
the pressure, we expect them to converge reasonably fast.
Based on the experience with the two- and three-loop
approximations, we expect that the g7 truncation provides
a good approximation to the numerically exact result.
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Clearly, however, only a calculation through g8 can settle
this issue firmly. In Fig. 5(d), we show the weak-
coupling expansion of P=P ideal to orders g2, g3, g4, g5,
and g6 as a function of gð2�TÞ for comparison. Note that
the results to order g2 are identical in SPT and in the weak-
coupling expansion since there is no m-dependence at this
order.

In Fig. 6(a), we show the two-, three-, and four-loop
pressure through order g7 normalized to P=P ideal as a

function of gð2�TÞ. In Fig. 6(b), we show the weak-
coupling expansion of P=P ideal to orders g2, g3, g4, g5,
and g6 as a function of gð2�TÞ for comparison. The
successive approximations using screened perturbation
theory have better convergence properties than the weak-
coupling results. The improved stability is partly due to the
fact that we are using a thermal mass determined by a gap
equation and not by the perturbative value for the Debye
mass.

(a) (b)

(c) (d)

FIG. 5. (a) Two-loop pressure, (b) three-loop pressure, (c) four-loop pressure, (d) weak-coupling expansion of the pressure, all
normalized to P ideal.

(a) (b)

FIG. 6. (a) Pressure normalized to P ideal through g7 for various loop orders, (b) weak-coupling pressure at various orders of g.
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V. SUMMARYAND OUTLOOK

In this paper, we have calculated the pressure of mass-
less scalar field theory to four loops using screened pertur-
bation theory expanding in a double expansion in powers
of g2 and m=T. Treating m as OðgTÞ, we truncated our
expansion at order g7. The expansion required the evalu-
ation of a new nontrivial three-loop diagram, where we
evaluated the sum-integral using the techniques developed
in Ref. [10]. We have seen that the successive approxima-
tions are more stable than the weak-coupling expansion. In
particular, it is interesting to note that the four-loop curve
lies between the two-loop curve and the three-loop curve.
The apparent improved convergence seemed to be linked
to the fact that SPT basically is an expansion about an ideal
gas of massive particles instead of an expansion about an
ideal gas of massless particles which is the case for the
weak-coupling expansion.

Using the weak-coupling value for the mass parameter
m, our result reduces to the weak-coupling result for the
pressure through g6. In particular, we have reproduced the
pressure at weak coupling for N ¼ 1 obtained by Gynther
et al. [13]. Using effective-field theory methods, the au-
thors in Ref. [13] have calculated the hard and soft con-
tributions to the pressure through order g6 separately. It
appears that the convergence properties in the hard sector
are better than in the soft sector even for moderate values of
the coupling.

We have mentioned that our result only includes part of
the full g7 term in the weak-coupling expansion. This is
straightforward to see, if one uses the effective-field theory
approach developed in [6]. The contributions to the free
energy comes from the two momentum scales T and gT.
The contribution from the hard scale T can be calculated by
evaluating the sum-integrals with bare propagators and so
is therefore a series in g2 starting at order g0. The contri-
bution to the free energy from the soft scale gT can be
calculated using an effective Euclidean three-dimensional
field theory whose coefficients depend on g and T. This
contribution to the free energy is a series in g starting at g3.
The contributions to the free energy that are odd in powers
in g are therefore entirely coming from three-dimensional
vacuum diagrams and power-counting tells you immedi-
ately that part of the g7 term is arising from the five-loop
vacuum diagrams. Our four-loop calculation therefore
agrees with the weak-coupling expansion through order g6.

In order to evaluate the free energy to order g7, we must
determine all the coefficients in the effective theory to
sufficiently high order in g. The only nontrivial calculation
that is required is to determine the mass parameter in the
effective theory to order g6. This involves the expression
for the diagram calculated in Appendix D i.e. the sum-
integral

I �
ZX

P

1

P2

�
½�ðPÞ�2 � 2

ð4�Þ2��ðPÞ
�
: (83)

The evaluation of the free energy to order g7 is in progress
[53].
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APPENDIX A: SUM-INTEGRALS

In the imaginary-time formalism for thermal field the-
ory, the four-momentum P ¼ ðP0;pÞ is Euclidean with
P2 ¼ P2

0 þ p2. The Euclidean energy p0 has discrete val-

ues: P0 ¼ 2n�T for bosons, where n is an integer. Loop
diagrams involve sums over P0 and integrals over p. With
dimensional regularization, the integral is generalized to
d ¼ 3� 2� spatial dimensions. We define the dimension-
ally regularized sum-integral by

ZX
P
�

�
e��2

4�

�
�
T

X
P0¼2n�T

Z d3�2�p

ð2�Þ3�2�
; (A1)

where 3� 2� is the dimension of space and � is an
arbitrary momentum scale. The factor ðe�=4�Þ� is intro-
duced so that, after minimal subtraction of the poles in �
due to ultraviolet divergences, � coincides with the renor-

malization scale of the MS renormalization scheme.

1. One-loop sum-integrals

The massless one-loop sum-integral is given by

I n �
ZX

P

1

P2n

¼ ðe�E�2Þ� �ð2n� 3þ 2�Þ
8�2

�ðn� 3
2 þ �Þ

�ð12Þ�ðnÞ
� ð2�TÞ4�2n�2�; (A2)

where �ðxÞ is Riemann’s zeta function. Specifically, we
need the sum-integrals:

I 0
0 �

ZX
P
logP2 ¼ ��2T4

45
½1þOð�Þ�; (A3)

I1 ¼ T2

12

�
�

4�T

�
2�
�
1þ

�
2þ 2

� 0ð�1Þ
�ð�1Þ

�
�

þ
�
4þ �2

4
þ 4

� 0ð�1Þ
�ð�1Þ þ 2

� 00ð�1Þ
�ð�1Þ

�
�2 þOð�3Þ

�
;

(A4)

I2 ¼ 1

ð4�Þ2
�

�

4�T

�
2�
�
1

�
þ 2�E þ

�
�2

4
� 4�1

�
�þOð�2Þ

�
;

(A5)
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I 3 ¼ 1

ð4�Þ4T2
½2�ð3Þ þOð�Þ�: (A6)

2. Two-loop sum-integrals

We need two two-loop sum-integrals that are listed
below:

I sun ¼
ZX

PQ

1

P2Q2ðPþQÞ2 ¼ Oð�Þ; (A7)

ZX
PQ

P2 þ ð2=dÞp2

P6Q2ðPþQÞ2 ¼
3

4ð4�Þ4
�

�

4�T

�
4�

�
�
1

�2
þ

�
5

6
þ 4�E

�
1

�
þ 89

36
þ �

2

þ 10

3
�E þ 4�2

E � 8�1 þOð�Þ
�
:

(A8)

The setting-sun sum-integral was first calculated by Arnold
and Zhai in Ref. [10], while Eq. (A8) was calculated in
Ref. [40].

3. Three-loop sum-integrals

We need the following three-loop sum-integrals:

Iball ¼
ZX

PQR

1

P2Q2R2ðPþQþ RÞ2

¼ T4

24ð4�Þ2
�

�

4�T

�
6�
�
1

�
þ 91

15
þ 8

� 0ð�1Þ
�ð�1Þ � 2

� 0ð�3Þ
�ð�3Þ

þOð�Þ
�
; (A9)

I 0
ball ¼

ZX
PQR

1

P4Q2R2ðPþQþRÞ2

¼ T2

8ð4�Þ4
�

�

4�T

�
6�
�
1

�2
þ

�
17

6
þ 4�E þ 2

� 0ð�1Þ
�ð�1Þ

�
1

�

þ 1

2
�E

�
17þ 15�E þ 12

� 0ð�1Þ
�ð�1Þ

�
þC0

ballþOð�Þ
�
;

(A10)

ZX
P

1

P2

�
½�ðPÞ�2 � 2

ð4�Þ2��ðPÞ
�

¼ � T2

4ð4�Þ4
�

�

4�T

�
6�
�
1

�2
þ 1

�

�
4

3
þ 2

� 0ð�1Þ
�ð�1Þ þ 4�E

�

þ 1

3

�
46� 8�E � 16�2

E � 104�1 � 24�E logð2�Þ

þ 24log2ð2�Þ þ 45�2

4
þ 24

� 0ð�1Þ
�ð�1Þ þ 2

� 00ð�1Þ
�ð�1Þ

þ 16�E

� 0ð�1Þ
�ð�1Þ

�
þ CI þOð�Þ

�
; (A11)

where C0
ball ¼ 48:7976 and CI ¼ �38:5309. The massless

basketball sum-integral was first calculated in Ref. [10]
and I 0

ballin Ref. [13]. The expression for the sum-integral

Eq. (A11) appears here for the first time and is calculated in
Appendix D.

4. Four-loop sum-integrals

We also need a single four-loop sum-integral which was
calculated in Ref. [13]:

ZX
P

�
½�ðPÞ�3 � 3

ð4�Þ2� ½�ðPÞ�2
�

¼ � T4

16ð4�Þ4
�
1

�2
þ

�
10

3
þ 4

� 0ð�1Þ
�ð�1Þ þ 4L

�
1

�

þ ð2Lþ �EÞ2 þ
�
6

5
� 2�E þ 4

� 0ð�3Þ
�ð�3Þ

�
ð2Lþ �EÞ

þ Ca
triangle

�
� T4

512ð4�Þ2
�
1

�
þ 8Lþ 4�E þ Cb

triangle

�

þOð�Þ; (A12)

where Ca
triangle ¼ �25:7055 and Cb

triangle ¼ 28:9250.

APPENDIX B: THREE-DIMENSIONAL
INTEGRALS

Dimensional regularization can be used to regularize
both the ultraviolet divergences and infrared divergences
in three-dimensional integrals over momenta. The spatial
dimension is generalized to d ¼ 3� 2� dimensions.
Integrals are evaluated at a value of d for which they
converge and then analytically continued to d ¼ 3. We
use the integration measure

Z
p
�

�
e��2

4�

�
� Z d3�2�p

ð2�Þ3�2�
: (B1)

1. One-loop integrals

The one-loop integral is given by

In �
Z
p

1

ðp2 þm2Þn

¼ 1

8�
ðe�E�2Þ� �ðn� 3

2 þ �Þ
�ð12Þ�ðnÞ

m3�2n�2�: (B2)

Specifically, we need:

I00 �
Z
p
logðp2 þm2Þ

¼ �m3

6�

�
�

2m

�
2�
�
1þ 8

3
�þ

�
52

9
þ �2

4

�
�2 þOð�3Þ

�
;

(B3)
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I1 ¼ � m

4�

�
�

2m

�
2�
�
1þ 2�þ

�
4þ �2

4

�
�2 þOð�3Þ

�
;

(B4)

I2 ¼ 1

8�m

�
�

2m

�
2�
�
1þ �2

4
�2 þOð�3Þ

�
; (B5)

I3 ¼ 1

32�m3

�
�

2m

�
2�
�
1þ 2�þ �2

4
�2 þOð�3Þ

�
: (B6)

2. Three-loop integrals

We need two three-loop integrals:

Iball ¼
Z
pqr

1

p2 þm2

1

q2 þm2

1

r2 þm2

1

ðpþqþ rÞ2 þm2

¼� m

ð4�Þ3
�
�

2m

�
6�
�
1

�
þ 8� 4 log2

þ 4

�
13þ 17

48
�2 � 8 log2þ log22

�
�þOð�2Þ

�
;

(B7)

I0ball ¼
Z
pqr

1

ðp2 þm2Þ2
1

q2 þm2

1

r2 þm2

� 1

ðpþ qþ rÞ2 þm2

¼ 1

8mð4�Þ3
�
�

2m

�
6�
�
1

�
þ 2� 4 log2

þ 4

�
1þ 17

48
�2 � 2 log2þ log22

�
�þOð�2Þ

�
:

(B8)

The massive basketball was calculated in Ref. [6] to order
�0, and to order � in Ref. [54]. The other three-loop integral
is obtained by differentiating the massive basketball with
respect to the mass m.

3. Four-loop integrals

We need a single four-loop integral, namely, the triangle
integral. This integral was calculated in Ref. [54] and reads

Itriangle ¼
Z
pqrs

1

q2 þm2

1

ðpþ qÞ2 þm2

1

r2 þm2

� 1

ðpþ rÞ2 þm2

1

s2 þm2

1

ðpþ sÞ2 þm2

¼ �2

32ð4�Þ4
�
�

2m

�
8�
�
1

�
þ 2þ 4 log2� 84

�2
�ð3Þ

þOð�Þ
�
: (B9)

APPENDIX C: m=T EXPANSIONS

In this appendix, we list them=T expansions of the sum-
integrals we need. The sum-integrals include sums over the
Matsubara frequencies P0 ¼ 2�nT and integrals over the
three-momentum p. In the sum-integrals, two important
mass scales appear. These are the hard scale 2�T and the
soft scale m. The soft scale m is of order gT and at weak
coupling this scale is well-separated from the hard scale,
m � 2�T. We can therefore expand the sum-integrals as a
Taylor series in powers of m=T.
First consider the simple one-loop sum-integral appear-

ing in the expression for the one-loop free energy in
Eq. (13):

F 0a ¼ 1

2

ZX
P
log½P2 þm2�

¼ 1

2

ZXðhÞ

P
log½P2 þm2� þ 1

2

ZXðsÞ

P
log½P2 þm2�;

(C1)

where the superscripts (h) and (s) denote the hard and soft
contributions, respectively. In the hard region, the momen-
tum P is of order T and so we can expand in powers of
m2=P2. This yields

ZXðhÞ

P
log½P2 þm2� ¼

ZX
P
logP2 þm2

ZX
P

1

P2

� 1

2
m4

ZX
P

1

P4
þ � � � : (C2)

The contribution from soft momenta is given by the p0 ¼ 0
mode alone and reads

ZXðsÞ

P
log½P2 þm2� ¼ T

Z
p
logðp2 þm2Þ: (C3)

The other simple one-loop sum-integrals are expanded in a
similar manner.
We next consider the massive basketball diagram in

Eq. (24):

I ballðm2Þ ¼
ZX

PQR

1

ðP2 þm2ÞðQ2 þm2ÞðR2 þm2Þ½ðPþQþ RÞ2 þm2� : (C4)

Equation (C4) involves three sum-integrals and so receives contributions from four momentum regions: (hhh), (hhs), (hss),
and (sss). In the first case, where all the loop momenta are hard, we can expand the sum-integral in powers of m2. This

JENS O. ANDERSEN AND LARS KYLLINGSTAD PHYSICAL REVIEW D 78, 076008 (2008)

076008-14



yields

I ðhhhÞ
ball ðm2Þ ¼

ZX
PQR

1

P2Q2R2ðPþQþ RÞ2 � 4m2
ZX

PQR

1

P4Q2R2ðPþQþ RÞ2 þ � � � : (C5)

When two momenta are hard and one is soft, the contribution reads

I ðhhsÞ
ball ðm2Þ ¼ 4T

Z
p

1

p2 þm2

ZX
QR

1

Q2 þm2

1

R2 þm2

1

ðpþQþ RÞ2 þm2

¼ 4T
Z
p

1

p2 þm2

ZX
QR

1

Q2R2ðQþ RÞ2 � 8m2T
Z
p

1

p2 þm2

�ZX
QR

Q2 þ ð2=dÞq2

Q6R2ðQþ RÞ2
�
þ � � � : (C6)

When one momentum is hard and two are soft, the contribution is given by

I ðhssÞ
ball ðm2Þ ¼ 6T2

Z
pq

1

p2 þm2

1

q2 þm2

ZX
R

1

R2 þm2

1

ðpþ qþ RÞ2 þm2
¼ 6T2

Z
pq

1

p2 þm2

1

q2 þm2

ZX
R

1

R4
þ � � � :

(C7)

Finally, when all momenta are soft, the contribution is given by the massive basketball diagram Iball in three dimensions:

I ðsssÞ
ball ðm2Þ ¼ T3

Z
pqr

1

p2 þm2

1

q2 þm2

1

r2 þm2

1

ðpþ qþ rÞ2 þm2
: (C8)

The basketball diagram with a single mass insertion I 0
ballðm2Þ can be calculated by differentiating the massive basketball

diagram with respect to m2. This yields

I 0
ballðm2Þ ¼

ZX
PQR

1

ðP2 þm2Þ2
1

Q2 þm2

1

R2 þm2

1

ðPþQþ RÞ2 þm2

¼
ZX

PQR

1

P4Q2R2ðPþQþ RÞ2 þ T
Z
p

1

ðp2 þm2Þ2
ZX

QR

1

Q2R2ðQþ RÞ2

þ 2T
Z
p

p2

ðp2 þm2Þ2
�ZX

QR

Q2 þ ð2=dÞq2

Q6R2ðQþ RÞ2
�
þ 3T2

Z
pq

1

p2 þm2

1

ðq2 þm2Þ2
ZX

R

1

R4

þ T3
Z
pqr

1

ðp2 þm2Þ2
1

q2 þm2

1

r2 þm2

1

ðpþ qþ rÞ2 þm2
þ � � � : (C9)

Note that the second term is formally of order g5, but it vanishes at order �0 due to the fact that I sun ¼ Oð�Þ.
The massive four-loop triangle sum-integral reads

I triangleðm2Þ ¼
ZX

PQRS

1

Q2 þm2

1

ðPþQÞ2 þm2

1

R2 þm2

1

ðPþ RÞ2 þm2

1

S2 þm2

1

ðPþ SÞ2 þm2
: (C10)

When all four momenta are hard, the leading contribution is given by setting m ¼ 0, i.e.

I ðhhhhÞ
triangleðm2Þ ¼

ZX
PQRS

1

Q2ðPþQÞ2R2ðPþ RÞ2S2ðPþ SÞ2 : (C11)

When one of the momenta is hard and three are soft, we find

I ðhsssÞ
triangleðm2Þ ¼ 3T3

Z
pqr

1

p2 þm2

1

q2 þm2

1

r2 þm2

1

ðpþ qþ rÞ2 þm2

ZX
S

1

S4
þ � � � :

This contribution is of order g7. When one momentum is soft and three momenta are hard, the contribution is

I ðshhhÞ
triangleðm2Þ ¼ 6T

Z
s

1

s2 þm2

ZX
PQR

1

P2 þm2

1

Q2 þm2

1

ðPþQÞ2 þm2

1

R2 þm2

1

ðPþ RÞ2 þm2

¼ 6T
Z
s

1

s2 þm2

ZX
PQR

1

P2Q2R2ðPþQÞðPþ RÞ2 þ � � � : (C12)

This contribution is of order g7. When all four loop momenta are soft, the contribution is given by the massive three-
dimensional triangle diagram Itriangle:
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I ðssssÞ
triangleðm2Þ ¼ T4

Z
pqrs

1

q2 þm2

1

ðpþ qÞ2 þm2

1

r2 þm2

1

ðpþ rÞ2 þm2

1

s2 þm2

1

ðpþ sÞ2 þm2
: (C13)

This contribution is of order g6. Finally, we notice that the
contribution when two momenta are soft and two momenta
are hard, is of higher order in the coupling g.

APPENDIX D: EXPLICIT CALCULATIONS

In this appendix, we illustrate the use of the calculational
techniques developed by Arnold and Zhai in Ref. [10] to
evaluate complicated multiloop diagrams. The strategy is
to rewrite the original sum-integral into two sets of terms.
The first type is ultraviolet divergent, but is sufficiently
simple to be evaluated analytically using dimensional
regularization. The second type is finite both in the ultra-
violet and the infrared, but is normally so complicated that
it must be evaluated numerically. In order to isolate the
divergences in terms that are tractable, typically one or
more subtractions are required.

We need to calculate the following three-loop diagram:

I �
ZX

P

1

P2

�
½�ðPÞ�2 � 2

ð4�Þ2��ðPÞ
�
; (D1)

where the self-energy �ðPÞ is defined by

�ðPÞ ¼
ZX

Q

1

Q2ðPþQÞ2 : (D2)

The first term in Eq. (D1) arises from the m=T-expansion
of the triangle sum-integral in four dimensions, while the
second term arises from the term TI1I sun which is a part of
the counterterm F 2b�1g

2=g2.
At zero temperature, the self-energy is denoted by

�0ðPÞ and reads

�0ðPÞ ¼ 1

ð4�Þ2
�
e�E�2

P2

�
� �ð�Þ�2ð1� �Þ

�ð2� 2�Þ : (D3)

In order to isolate the UV divergences and simplify the
calculations, we write the self-energy as

�ðPÞ ¼ 1

ð4�Þ2�þ�0
sðPÞ þ�TðPÞ; (D4)

where �0
sðPÞ is the finite part of �0ðPÞ, i.e. we have

subtracted the divergent piece in Eq. (D3) from �0ðPÞ:

�0
sðPÞ ¼ 1

ð4�Þ2
��
e�E�2

P2

�
� �ð�Þ�2ð1� �Þ

�ð2� 2�Þ � 1

�

�
; (D5)

and�TðPÞ is the finite-temperature piece of�ðPÞ. In three
dimensions, �TðPÞ reads [10]

�TðPÞ ¼ T

ð4�Þ2
Z d3r

r2
eip�r

�
coth�r� 1

�r

�
e�jp0jr; (D6)

where �r ¼ 2�Tr. In the following we need the UV limit of
�TðPÞ. This happens to be given by the UV limit of the full

self-energy (D2) and is given by [10]

�T
UVðPÞ ¼

2

P2

ZX
Q

1

Q2
: (D7)

Using the decomposition (D4), the integral in Eq. (D1)
can be written as

I ¼ � 1

ð4�Þ4�2
ZX

P

1

P2
þ

ZX
P

1

P2
½�0

sðPÞ�2

þ 2
ZX

P

1

P2
�0

sðPÞ�TðPÞ þ
ZX

P

1

P2
½�TðPÞ�2: (D8)

We now consider the different contributions to I. The first
term in Eq. (D8) is a simple one-loop sum-integral and
reads

I1 ¼ � 1

ð4�Þ4�2
ZX

P

1

P2

¼ �
�

�

4�T

�
2� T2

12ð4�Þ4
�
1

�2
þ 2

�
1þ � 0ð�1Þ

�ð�1Þ
�
1

�

þ �2

4
þ 4þ 4

� 0ð�1Þ
�ð�1Þ þ 2

� 00ð�1Þ
�ð�1Þ þOð�Þ

�
: (D9)

The second term in Eq. (D8) contains no logarithmic UV
divergences and so it is finite in dimensional regulariza-
tion:

I2 ¼
ZX

P

1

P2
½�0

sðPÞ�2

¼ T2

12ð4�Þ4
�
4þ �2

3
þ 8

� 0ð�1Þ
�ð�1Þ

�
2þ log

�

4�T

�

þ 4
� 00ð�1Þ
�ð�1Þ þ 4

�
2þ log

�

4�T

�
2
�
þOð�Þ: (D10)

The third term requires a little more thought. Since the UV
behavior of�TðPÞ is 1=P2, the integrand�0

sðPÞ�TðPÞ=P2

is logarithmically divergent in the ultraviolet. In order to
isolate this divergence, we add and subtract �T

UVðPÞ from
�0

sðPÞ�TðPÞ=P2. Thus the third sum-integral in Eq. (D8)
becomes

I3 ¼ 2
ZX

P

1

P2
�0

sðPÞ�TðPÞ

¼ 2
ZX0

P

1

P2
�0

sðPÞ½�TðPÞ ��T
UVðPÞ�

þ 2
ZX0

P

1

P2
�0

sðPÞ�T
UVðPÞ

þ 2T
Z
p

1

p2
�0

sðp0 ¼ 0; pÞ�Tðp0 ¼ 0; pÞ; (D11)

where we have isolated the contribution from the p0 ¼ 0
term since the contribution to I3 from this term is infrared
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divergent. In order to calculate the first term in Eq. (D11),
we need �T

UVðPÞ in coordinate space. It is given by the
small-r behavior of �TðPÞ and reads

�T
UVðPÞ ¼

T

ð4�Þ2
Z d3r

r2
eip�r

�r

3
e�jp0jr: (D12)

This yields

Ia3 ¼ 2
ZX0

P

1

P2
�0

sðPÞ½�TðPÞ ��T
UVðPÞ�

¼ 2T2

ð4�Þ4
Z

d3r
1

r2

�
coth�r� 1

�r
� �r

3

� X
p0�0

e�jp0jr

�
Z d3p

ð2�Þ3
eip�r

p2
0 þ p2

�
2þ log

�2

p2
0 þ p2

�
: (D13)

The integral over three-momentum can be done analyti-
cally. We write it as

Z d3p

ð2�Þ3
eip�r

p2
0 þ p2

�
2þ 2 log

�

4�T
þ log

ð4�TÞ2
p2
0 þ p2

�
; (D14)

where the first two terms in the parentheses are indepen-
dent of p, making this part of the integral a simple Fourier
transform:

Z d3p

ð2�Þ3
eip�r

p2
0 þ p2

�
2þ 2 log

�

4�T

�

¼ e�jp0jr

4�r

�
2þ 2 log

�

4�T

�
: (D15)

Averaging over angles, the last term can be rewritten as

Z d3p

ð2�Þ3
eip�r

p2
0 þ p2

log
ð4�TÞ2
p2
0 þ p2

¼ 1

4�2ir

Z 1

�1
dpp

eipr

p2
0 þ p2

log
ð4�TÞ2
p2
0 þ p2

: (D16)

The integrand has a branch cut starting at p ¼ ijp0j run-
ning to p ¼ i1, and a pole in p ¼ ijp0j. The contour can
be deformed to wrap around the pole and the branch cut,
and taking care to include contributions from both, one
arrives at the result

Z d3p

ð2�Þ3
eip�r

p2
0 þ p2

log
ð4�TÞ2
p2
0 þ p2

¼ e�jp0jr

4�r

�
log

2�r

j �p0j þ �E þ e2jp0jrEið�2jp0jrÞ
�
; (D17)

where �p0 ¼ p0=2�T ¼ n and the exponential-integral
function EiðzÞ is defined as

Ei ðzÞ ¼ �
Z 1

�z

dte�t

t
: (D18)

Thus Eq. (D13) can be rewritten as

Ia3 ¼ 2T2

ð4�Þ4
Z

d3r
1

r2

�
coth�r� 1

�r
� �r

3

� X
p0�0

e�2jp0jr

4�r

�
�
2þ �E þ 2 log

�

4�T
þ log

2�r

j �p0j
þ e2jp0jrEið�2jp0jrÞ

�
: (D19)

The first three terms in the last parentheses are independent
of r and p0 and, for these terms, the integral over r and the
sum over Matsubara modes can be evaluated analytically.
In particular, we are able to find the coefficient of log�.
This is fortunate, because it allows us to check the con-
sistency of our final result for the free energy. Let


� 2T2

ð4�Þ4
Z

d3r
1

r2

�
coth�r� 1

�r
� �r

3

� X
p0�0

e�2jp0jr

4�r
: (D20)

Integrating over angles and summing over Matsubara fre-
quencies yields


 ¼ 2T2

ð4�Þ4
Z 1

0

d�r

�r

�
coth�r� 1

�r
� �r

3

�
2

e2�r � 1

¼ 4T2

ð4�Þ4
Z 1

0

d�r

�r

�
2

e2�r � 1
þ 1� 1

�r
� �r

3

�
1

e2�r � 1
:

(D21)

The integral above is finite, but the individual terms are
divergent for small �r. We therefore regulate them by multi-
plying by an extra factor ð2�rÞ� and taking the limit � ! 0
in the end. The basic integrals we need are

Z 1

0

dttx

et � 1
¼ �ðxþ 1Þ�ðxþ 1Þ; (D22)

Z 1

0

dttx

ðet � 1Þ2 ¼ �ðxþ 1Þ½�ðxÞ � �ðxþ 1Þ�: (D23)

This yields


 ¼ 4T2

ð4�Þ4
�
2�ð�Þ½�ð�� 1Þ � �ð�Þ� þ �ð�Þ�ð�Þ

� 2�ð�� 1Þ�ð�� 1Þ � 1

6
�ð�þ 1Þ�ð�þ 1Þ

�
:

(D24)

The limit � ! 0 is regular, and we obtain


 ¼ � 2T2

3ð4�Þ4
�
1þ �E � 3 logð2�Þ þ 2

� 0ð�1Þ
�ð�1Þ

�
: (D25)

The remaining integral over the coordinate r as well as the
Matsubara sum in Eq. (D19) must be done numerically.
Equation (D19) can then be written as

Ia3 ¼ � 2T2

3ð4�Þ4
��

2þ �E þ 2 log
�

4�T

�

�
�
1þ �E � 3 logð2�Þ þ 2

� 0ð�1Þ
�ð�1Þ

�
þ C

�
; (D26)
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where the numerical constant C is

C ¼ � 3

4�

Z d3r

r3

�
coth�r� 1

�r
� �r

3

� X
p0�0

�
e�2jp0jr log

2�r

j �p0j

þ Eið�2jp0jrÞ
�
¼ 0:003 481 4: (D27)

The subtraction term in Eq. (D11) can be calculated with
dimensional regularization and reads

Ib3 ¼ 2
ZX

P

1

P2
�0

sðPÞ�T
UVðPÞ

¼ 4

ð4�Þ2
ZX

Q

1

Q2

ZX
P

1

P4

��
e�E�2

P2

�
� �ð�Þ�2ð1� �Þ

�ð2� 2�Þ � 1

�

�

¼ � T2

6ð4�Þ4
�
1

�2
þ

�
2 log

�

4�T
þ 2

� 0ð�1Þ
�ð�1Þ þ 1

�
1

�

� 2log2
�

4�T
� 2 log

�

4�T

�
1þ 4�E � 2

� 0ð�1Þ
�ð�1Þ

�

þ 2
� 0ð�1Þ
�ð�1Þ þ 2

� 00ð�1Þ
�ð�1Þ � 1� �2

12
� 4�E þ 8�1

�
:

(D28)

The last term in Eq. (D11) is

Ic3 ¼ 2T
Z
p

1

p2
�0

sðp0 ¼ 0; pÞ�Tðp0 ¼ 0; pÞ

¼ 2T
Z
p

1

p2
�0

sðp0 ¼ 0; pÞ

� ½�ðp0 ¼ 0; pÞ ��0ðp0 ¼ 0; pÞ�: (D29)

The second term vanishes in dimensional regularization
since there is no mass scale in the integral, i.e.

2T
Z
p

1

p2
�0

sðp0 ¼ 0; pÞ�0ðp0 ¼ 0; pÞ ¼ 0: (D30)

In order to evaluate the first term in Eq. (D29), we must
calculate �ðp0 ¼ 0; pÞ. Using Feynman parameters, we
obtain

�ðp0 ¼ 0;pÞ ¼
ZX

Q

1

Q2ðpþQÞ2

¼ T

�
e�E�2

4�

�
��ð1=2þ �Þ
ð4�Þð3=2Þ��

�X
q0

Z 1

0

dx

½xð1� xÞp2 þ q20�ð1=2Þþ�
: (D31)

Inserting the expression for �0
sðp0 ¼ 0; pÞ and �ðp0 ¼

0; pÞ, we obtain

Ic3 ¼
2T2

ð4�Þ2
�
e�E�2

4�

�
� �ð1=2þ �Þ
ð4�Þð3=2Þ��

Z
p

1

p2

�
��

e�E�2

p2

�
� �ð�Þ�2ð1� �Þ

�ð2� 2�Þ � 1

�

�

�X
q0

Z 1

0

dx

½xð1� xÞp2 þ q20�ð1=2Þþ�
: (D32)

Ic3 ¼
2T2

ð4�Þ4
ðe��2Þ2�

2�

�ð12 þ �Þ
�ð32 � �Þ

�
ðe��2Þ� �ð�Þ�

2ð1� �Þ
�ð2� 2�Þ

Z 1

0
dp

p�4�

ðp2 þ 1Þð1=2Þþ�

Z 1

0
dx½xð1� xÞ��ð1=2Þþ2�

X0

q0

1

jq0j6�

� 1

�

Z 1

0
dp

p�2�

ðp2 þ 1Þð1=2Þþ�

Z 1

0
dx½xð1� xÞ��ð1=2Þþ�

X0

q0

1

jq0j4�
�

¼ 2T2

ð4�Þ4
�
e��2

4�2T2

�
2� �ð12 þ �Þ
�ð32 � �Þ

��
e��2

4�2T2

�
� 1

21þ4�
ffiffiffiffi
�

p �ð�Þ�2ð1� �Þ�ð12 � 2�Þ�ð3�Þ�ð12 þ 2�Þ
�ð2� 2�Þ�ð12 þ �Þ�ð1þ 2�Þ �ð6�Þ

� 1

4��

�ð12 � �Þ�ð�Þ�ð12 þ �Þ
�ð1þ �Þ �ð4�Þ

�
; (D33)

where the prime indicates that we have omitted the p0 ¼ 0 mode from the sum. Expanding Eq. (D33) in powers of �, we
obtain

Ic3 ¼
T2

6ð4�Þ4
�
1

�2
� 2

�
� 12� 11�2

3
� 24 logð2�Þ � 12log2ð2�Þ � 24 log

�

4�T
� 12log2

�

4�T

� 24 logð2�Þ log �

4�T
þ 12�2

E þ 24�1

�
þOð�Þ: (D34)
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The last term in Eq. (D8) is

I4 ¼
ZX

P

1

P2
½�TðPÞ�2: (D35)

Since the UV behavior of �TðPÞ is 1=P2, the sum-integral
in Eq. (D35) is UV finite. However, �TðPÞ has a logarith-
mic infrared divergence for the p0 ¼ 0mode. This implies
that the sum-integral I4 has linear and logarithmic IR
divergences. The linear divergence is set to zero in dimen-
sional regularization while the logarithmic is not. In order
to isolate these divergences, we rewrite the sum-integral as

I4 ¼
ZX0

P

1

P2
½�TðPÞ�2 þ T

Z
p

1

p2
½�Tðp0 ¼ 0; pÞ�2;

(D36)

where the prime indicates that we have omitted the p0 ¼ 0
mode from the sum. The primed sum-integral in Eq. (D36)
is finite both in the ultraviolet and in the infrared. Using the
three-dimensional representation of the �TðPÞ, Eq. (D6),
the first term in Eq. (D36) can be written as

Ia4 ¼
ZX0

P

1

P2
½�TðPÞ�2

¼ T3

ð4�Þ4
X0

p0

Z d3p

ð2�Þ3
Z d3r

r2
d3r0

ðr0Þ2
1

p2
0 þ p2

�
coth�r� 1

�r

�

�
�
coth�r0 � 1

�r0

�
eip�ðrþr0Þe�jp0jðrþr0Þ: (D37)

The integral over three-momentum p corresponds to a
Fourier transform of a massive propagator and so gives
rise to a Yukawa potential. The sum over nonzero
Matsubara frequencies can also be done analytically and
we obtain

Ia4 ¼
2T3

ð4�Þ5
Z d3r

r2
d3r0

ðr0Þ2
1

jrþ r0j
�
coth�r� 1

�r

��
coth�r0 � 1

�r0

�

� 1

e�rþ �r0þj�rþ�r0j � 1
: (D38)

Averaging over angles, one finds

Ia4 ¼
2T2

ð4�Þ4
Z 1

0

d�rd�r0

�r�r0

�
coth�r� 1

�r

��
coth�r0 � 1

�r0

�

� ½logðe2ð �rþ�r0Þ � 1Þ � logðe�rþ �r0þj�r��r0j � 1Þ
þ j�r� �r0j � �r� �r0�: (D39)

The remaining integrals over �r and �r0 must be done nu-
merically and we obtain

Ia4 ¼
T2

ð4�Þ4 ½0:058 739 2�: (D40)

The second term in Eq. (D36) is rewritten as

Ib4 ¼ T
Z
p

1

p2
½�Tðp0 ¼ 0; pÞ�2

¼ T
Z
p

1

p2
f½�Tðp0 ¼ 0; pÞ ��T

IRðpÞ�2

þ 2�Tðp0 ¼ 0; pÞ�T
IRðpÞ � ½�T

IRðpÞ�2g; (D41)

where �IRðpÞ is given by the q0 ¼ 0 term in Eq. (D31):

�T
IRðpÞ ¼ T

Z
q

1

q2ðpþ qÞ2

¼ T

�
e�E�2

4�

�
� 4�

ffiffiffiffi
�

p
ð4�Þð3=2Þ��

� �ð1=2þ �Þ�ð1=2� �Þ
�ð1� �Þ p�1�2�: (D42)

The first integral in Eq. (D41) is now well-behaved in both
the ultraviolet and the infrared. It can be evaluated numeri-
cally using the representation of �Tðp0 ¼ 0; pÞ in three
dimensions. The subtracted terms are infrared divergent
and are calculated with dimensional regularization. The
first integral can be calculated directly in three dimensions.
In this case, �T

IRðpÞ reduces to

�T
IRðpÞ ¼

T

8p
: (D43)

Using the three-dimensional representation (D6) for
�TðPÞ with p0 ¼ 0 and Eq. (D43), we get

Ib14 ¼ T
Z
p

1

p2
½�Tðp0 ¼ 0; pÞ ��T

IRðpÞ�2

¼ T3
Z
p

1

p2

�
1

ð4�Þ4
Z d3r

r2
d3r0

ðr0Þ2 e
ip�ðrþr0Þ

�
cothr� 1

r

�

�
�
coth�r0 � 1

�r0

�
� 1

4ð4�Þ2p
Z d3r

r2
eip�r

�
coth�r� 1

�r

�

þ 1

64p2

�
: (D44)

The averages over the angles between p and r, and between
p and r0 can be done analytically and we obtain

Ib14 ¼ T3
Z
p

1

p2

�
1

ð4�Þ2
Z 1

0
dr

Z 1

0
dr0

sinpr

pr

sinpr0

pr0

�
�
cothr� 1

r

��
coth�r0 � 1

�r0

�

� 1

4ð4�Þp
Z 1

0
dr

sinpr

pr

�
coth�r� 1

�r

�
þ 1

64p2

�
:

(D45)

The integrals over r, r0, and p must be done numerically.
The result is

Ib14 ¼ T2

ð4�Þ4 ½9:5763�: (D46)
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The first subtraction term in Eq. (D41) is

Ib24 ¼ 2T
Z
p

1

p2
�Tðp0 ¼ 0; pÞ�T

IRðpÞ

¼ 2T
Z
p

1

p2
½�ðp0 ¼ 0; pÞ ��0ðp0 ¼ 0; pÞ��T

IRðpÞ

¼ 2T
Z
p

1

p2
�ðp0 ¼ 0; pÞ�T

IRðpÞ; (D47)

where we have used the fact that the second term vanishes
in dimensional regularization. This term is logarithmically
divergent both in the infrared and in the ultraviolet. If we
use the same scale for the regularization of ultraviolet and
infrared divergences, the integral vanishes [6].
Inserting the expressions for�0ðp0 ¼ 0; pÞ and �T

IRðpÞ
into Eq. (D47), we obtain

Ib24 ¼ T3

ð4�Þ4�3�

�
e�E�2

4�

�
3�
21þ2�

�2ð12 þ �Þ�ð12 � �Þ
�ð32 � �Þ�ð1� �Þ

Z 1

0
dp

Z 1

0
dx

X
q0

p�1�4�

½xð1� xÞp2 þ q20�ð1=2Þþ�

¼ T3

ð4�Þ4�3�

�
e�E�2

4�

�
3�
21þ2�

�2ð12 þ �Þ�ð12 � �Þ
�ð32 � �Þ�ð1� �Þ

Z 1

0
dp

p�1�4�

ðp2 þ 1Þð1=2Þþ�

Z 1

0
dx½xð1� xÞ�2�X0

q0

1

jq0j1þ6�
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ð4�Þ4
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e�E�2

4�2T2

�
3� 4�

�

�ð12 þ �Þ�ð12 � �Þ�ð�2�Þ�ð12 þ 3�Þ�2ð1þ 2�Þ
�ð32 � �Þ�ð1� �Þ�ð2þ 4�Þ �ð1þ 6�Þ: (D48)

The prime on the sum in the second line indicates that we have excluded the zero mode q0 ¼ 0 from the sum. This mode
gives rise to an integral that is linearly divergent in the infrared. Since there is no mass scale in this integral, it vanishes.
Note also that the integral over p is logarithmically divergent in the infrared and this divergence is not set to zero in
dimensional regularization [13]. Expanding Eq. (D48) in powers of �, we obtain

Ib24 ¼ � T2

6ð4�Þ4
�
1

�2
þ

�
6 log

�

4�T
þ 6�E � 2

�
1

�
þ 12þ 25

12
�2 � 12 log

�

4�T
þ 18log2

�

4�T
þ 36�E log

�

4�T

� 12�E � 36�1

�
þOð�Þ: (D49)

Finally, we consider the last subtraction term in Eq. (D41). Since �T
IRðp0 ¼ 0; pÞ goes like 1=p for small p, the

integrand has a linear infrared divergence. This divergence is set to zero in dimensional regularization. In fact, since there
is no mass scale in the integral, it vanishes:

T
Z
p

1

p2
½�T

IRðpÞ�2 ¼ 0: (D50)

Adding Eqs. (D9), (D10), (D26), (D28), (D34), (D40), (D46), and (D49), we can write I in the following form:

I ¼ � T2

4ð4�Þ4
�
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4�T
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�
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þ 1
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�
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�ð�1Þ þ 4�E
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þ 1

3

�
46� 8�E � 16�2

E � 104�1 � 24�E logð2�Þ þ 24log2ð2�Þ þ 45�2

4
þ 24

� 0ð�1Þ
�ð�1Þ þ 2

� 00ð�1Þ
�ð�1Þ þ 16�E

� 0ð�1Þ
�ð�1Þ

�

� 38:5309þOð�Þ
�
: (D51)
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