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Four-loop screened perturbation theory
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We study the thermodynamics of massless ¢*-theory using screened perturbation theory. In this
method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in
the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in
m/T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at
order g’ and the loop expansion is shown to have better convergence properties than the weak-coupling
expansion. The free energy at order g% involves the four-loop triangle sum-integral evaluated by Gynther,
Laine, Schroder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation
of the free energy at order g’ requires the evaluation of a nontrivial three-loop sum-integral, which we

calculate by the same methods.
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I. INTRODUCTION

In recent years there has been significant progress in the
understanding of thermal field theories in equilibrium [1-
4]. For example, the thermodynamic functions can be
calculated as power series in the coupling constant g at
weak coupling and advanced calculational techniques have
been developed in order to go beyond the first few correc-
tions. The pressure has been calculated through order g°
for massless ¢*-theory [5,6], massless QED [7-9], and
massless non-Abelian gauge theories [10-12]. Very re-
cently, the calculation frontier has been pushed to order
g% in massless ¢*-theory by Gynther, Laine, Schroder,
Torrero, and Vuorinen [13]. The calculation in Ref. [13]
involves the computation of complicated four-loop vacuum
diagrams and was motivated by the corresponding problem
in non-Abelian gauge theories: There are three momentum
scales—hard momenta of order T, soft momenta of order
gT, and supersoft momenta of order g>T, which give
contributions to the free energy. The contribution from
the hard scale T to the free energy can be calculated as a
power series in g2 using naive perturbation theory without
resummed propagators. The order g° is the first order at
which all three momentum scales in QCD contribute to the
free energy and so it is important to calculate the full g®
term. Such a calculation involves the evaluation of four-
loop vacuum diagrams in four dimensions.

However, it is well-known that the weak-coupling ex-
pansion is very sensitive to the renormalization scale, and it
is furthermore convergent only if the coupling constant is
tiny. The physical origin of this instability does not seem to
be related to the magnetic mass problem in QCD, as it
appears in ¢*-theory and QED as well. Rather, it seems to
be associated with screening effects and quasiparticles.
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In recent years there have been large efforts to reorgan-
ize the perturbative series such that it has improved con-
vergence properties. Several of these methods are
variational in nature, in which the thermodynamic poten-
tial {) depends on one or more variational parameters m;.
The pressure and other thermodynamic quantities are then
found by evaluating () and its derivatives at the variational
point where 6Q/8m; = 0.

One of these methods is screened perturbation theory
(SPT) which in the context of hot ¢*-theory was intro-
duced by Karsch, Patkés, and Petreczky [14] (see also
Refs. [15-17]). In this approach, one introduces a single
variational parameter m? which is added to and subtracted
from the original Lagrangian. The added piece is kept as a
part of the free Lagrangian and the subtracted piece is
treated as an interaction. The parameter m? has a simple
interpretation of a thermal mass and satisfies a variational
equation. SPT has been applied to calculate the pressure to
three-loop order [18] and the convergence properties of the
successive approximations are dramatically improved as
compared to the weak-coupling expansion. The mass pa-
rameter is of order g and so it might be reasonable to carry
out an additional expansion of the Feynman diagrams in
powers of m/T, and truncate at the appropriate order. This
was done in Ref. [19] and it was demonstrated that the
double expansion in m/T and g converges quickly to the
numerically exact result even for large values of the
coupling.

The generalization of SPT to gauge theories cannot
simply be made by adding and subtracting a local mass
term as this would violate gauge invariance. Instead one
adds and subtracts to the Lagrangian a hard thermal loop
(HTL) improvement term [20]. The free piece of the
Lagrangian includes the HTL self-energies, while the re-
maining terms are treated as perturbations. Hard thermal
loop perturbation theory is a manifestly gauge invariant
approach that can be used to calculate static as well as
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dynamic quantities in a systematic expansion. HTL pertur-
bation theory has been applied to calculate the pressure to
two-loop order [21-25] in an m/T expansion and the
convergence properties of the successive approximations
are again improved as compared to the weak-coupling
expansion.

Another variational method in which the propagator is a
variational function was constructed by Luttinger and
Ward [26] and by Baym [27] for nonrelativistic fermions
in the early 1960s. Later, it was generalized to relativistic
quantum field theories by Cornwall, Jackiw, and
Tomboulis [28]. The approach is based on the fact that
the thermodynamic potential {) can be written in terms of
the two-particle irreducible (2PI) vacuum diagrams. The
propagator D satisfies the variational equation Q) /8D =
0. The 2PI effective action formalism is also referred to as
®-derivable approximations.

Since the 2PI effective action formalism involves an
effective propagator, a truncated calculation in the loop
expansion or 1/N-expansion involves a selective resum-
mation of diagrams from all orders of perturbation theory.
This fact makes renormalization of d-derivable approxi-
mations highly nontrivial. In recent years, there have been
large efforts to prove renormalizability in the loop expan-
sion, 1/N-expansion, or the Hartree approximation, and, in
particular, to prove that the counterterms are medium
independent, i.e. independent of temperature and chemical
potential [29-32].

The second issue is that of gauge-fixing dependence.
While the exact 2PI effective action is gauge independent
at the stationary point, this property is often lost in approx-
imations. The problem has been examined by Arrizabalaga
and Smit [33] as well as Carrington et al. [34]. In Ref. [33],
it was shown that the n-loop ®-derivable approximation,
which is defined by the truncation of the action functional
after n loops, has a gauge dependence that shows up at
order g?". Furthermore, if the nth order solution to the gap
equation is used to evaluate the complete effective action,
the gauge dependence first shows up at order g**. Explicit
examples of the gauge dependence of the three-loop
®-derivable approximation can be found in Ref. [35].

The ®-derivable approach has been used by Blaizot,
Iancu, and Rebhan [36-38] and by Peshier [39] to calculate
the thermodynamic quantities at the two-loop level in
scalar field theory as well as in gauge theories. The calcu-
lations are based on the fact that the solution to the gap
equation for the propagator for soft momenta is given by
the HTL self-energies. Three-loop calculations have been
performed in scalar field theory by Braaten and Petitgirard
[40], and in QED in Ref. [35] using an m/T expansion
similar to that employed in SPT in Ref. [19]. The conver-
gence of the successive approximations to the pressure is
improved significantly compared to the weak-coupling
expansion and the sensitivity to the renormalization scale
is also reduced. In Ref. [41], the authors carried out a
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numerically exact three-loop calculation of the pressure
in ¢*-theory. Similarly, numerically exact two-loop calcu-
lations of the pressure in QED including an analysis of the
gauge dependence of the results can be found in Ref. [42].
In these calculations no attempts to compare with the m/T
expansions of Refs. [35,40] were made.

Finally, we mention other related resummation methods
that have been applied in recent years, namely, the 2-
particle point irreducible (2PPI) method [43,44] as well
as the linear delta-expansion [45-48]. These methods are
also variational in spirit. Moreover, it has been shown that
they correctly predict a second-order phase transition when
applied to ¢*-theory. In the case of the linear delta-
expansion, the successive approximations of e.g. the pres-
sure are remarkably stable as compared to the weak-
coupling expansion.

The article is organized as follows. In Sec. II, we briefly
discuss the systematics of screened perturbation theory. In
Sec. III, we calculate the pressure to four-loop order in a
double expansion in m/T and g>. In Sec. IV, we discuss
different gap equations that are used to determine the mass
parameter in screened perturbation theory. We also present
our numerical results and compare them with the weak-
coupling expansion. In Sec. V, we summarize. In
Appendix A and B, we list the sum-integrals and the
integrals that we need. In Appendix C, we discuss the
m/T expansion of typical sum-integrals that appear in
the calculation. In Appendix D , we calculate explicitly a
new three-loop sum-integral that contributes to order g’ in
the m/T expansion.

II. SCREENED PERTURBATION THEORY

The Lagrangian density for a massless scalar field with a
¢* interaction is

£=togoms-Lptiar (1)
2%m 24 ’

where g is the coupling constant and A £ includes counter-
terms. Renormalizability guarantees that A L is of the form

1 1
=_ Eh — —Ag?2p?
AL ZAZGMd)& 10 24Ag d*. )

Screened perturbation theory, which was introduced in
thermal field theory by Karsch, Patkods, and Petreczky [14],
is simply a reorganization of the perturbation series for
thermal field theory. It can be made more systematic by
using a framework called ““optimized perturbation theory”
that Chiku and Hatsuda [49] have applied to a spontane-
ously broken scalar field theory. The Lagrangian density is
written as

1 1 g°
Lopr = =& + F0udk e — E(mz —my)¢* — ﬁd"‘
+ AL+ ALgpr. 3)
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Here, &, is the vacuum energy density term, and we have
added and subtracted mass terms. If we set £; = 0 and
m? = m?, we recover the original Lagrangian Eq. (1).
Screened perturbation theory is defined by taking m? to
be of order unity and m? to be of order g?, expanding
systematically in powers of g2 and setting m? = m? at the
end of the calculation. This defines a reorganization of the
perturbative series in which the expansion is about the free

field theory defined by

1 1
Lee = —E + 5%4’3’%’ - §m2¢2- 4)

The interacting term is
1 50 g 4
£im=§m1¢ _ﬁgﬁ +A£+A‘£SPT (5)

Screened perturbation theory generates new ultraviolet
divergences, but they can be canceled by the additional
counterterm in A Lgpr. If we use dimensional regulariza-
tion and minimal subtraction, the coefficients of these
operators are polynomials in g2 and (m? — m?). The coun-
terterm A L is

__Agz 4
AL =5 gt ©6)

The additional counterterms required to remove the new
divergences are

ALSPT = _A(C;O - %(Amz - Am%)d)z (7)

Several terms in the power series expansions of the coun-
terterms are known from previous calculations at zero
temperature. The counterterms Ag? and Am? are known
to order o, where a = g2/(4)* [50]. We will need the
coupling constant counterterm to next-to-leading order in
a:

3 9 17
A2={— +(————)2+~12. 8
826" T4e  126) & ®
We need the mass counterterms Am? and Am? to next-to-
leading order in a:

1 1 5
Am2 = I:Za + (P - m)az + - ']mz, (9)

1 1 5
amt =[gea+ (@ qig)e + b 0

The counterterm for A&, has been calculated to order a*
[51]. We will need its expansion only to first order in & and

second order in m?:

1 1 1 1
1 1
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FIG. 1. One-loop vacuum diagram.

III. FREE ENERGY TO FOUR LOOPS

In this section, we calculate the m/T expansions of the
pressure to four loops in screened perturbation theory. In
performing the truncation, m is treated as a quantity that is
O(g) and we include all terms which contribute to order g’.

A. One-loop free energy

The free energy at leading order in g2 is
Fo=2E + Foa+ Aol 12)

where A(&, is the term of order g° in the vacuum energy
counterterm Eq. (11).
The expression for diagram F, in Fig. 1 is

1
Fou= EIP log[P2 + m?], (13)

where the symbol Y, is defined in Appendix A.
Treating m as O(gT) and including all terms which
contribute through O(g’), we obtain

1 1 1 1 1
foa = 5]’0 +§m2]1 +*TI(/) _Zm4.[2 +6m6[3,

2
(14)

where the sum-integrals I and I, are defined in
Appendix A and the integral |, is defined in Appendix B.
In Appendix C, we illustrate the m/T expansion of simple
one-loop sum-integrals such as the one appearing in
Eq. (13). We also note that most of the multiloop diagrams
are products of simple one-loop sum-integrals.

The term I, is logarithmically divergent and the pole in
€ is canceled by the zeroth-order term Ay&, in Eq. (11).
The final result for the truncated one-loop free energy is

o
90

_ 15 ~6
Gy ] (15)

Fo=—

P—w%+mﬁ+%@+nm4

P = M = M
where i = 5%z and L = logz—.

B. Two-loop free energy

The contribution to the free energy at two loops is given
by

oF
.7:1=.7:1a+.7:1b+A150+ﬁA1m2, (16)

where A&, and A,m? are the vacuum and mass counter-
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FIG. 2. Two-loop vacuum diagrams. The cross denotes a mass
insertion.

terms of order g2, respectively. The expressions for the
diagrams F, and Fy, in Fig. 2 are

_1 23 1 2
j:la_gg PP2+m2 ’ (17)
1 1
fm==—7ﬁ§P;7;;; (18)

Expanding the sum-integrals in Egs. (17) and (18) to order
0(g") yields

1
fla = ggz[.l% + 2T1111 - 2m211]2 + TZI%

—2m?I\TI, + 2m* I I5 + m* I3 + 2m*TI, I5],
(19)

1
flb: —Em%[]'l-i—Tll —m2]2+m4I3], (20)
where the integral [, is defined in Appendix B.

The poles in € in Egs. (19) and (20) are canceled by the
counterterms in Eq. (16). The final result for the two-loop
contribution to the free energy is

w*T* T5 . R
Fi = %0 aI:Z — 15/ — 15(L + yg — 3)m?

+ 90(L + yp)m® + 45((L + yp)? + %m))m‘*

45
-2 e

Tt

. N .2, 3 .
~ 50 ISm%[l —6m — 6(L + yp)m?® + §§(3)m4].

21

Note that we here and in the following have pulled out a
factor of Figew = —7>T*/90.

C. Three-loop free energy

The contribution to the free energy at three loops is

d
:FZ:T2a+j:2b+j:2c+f2d+A250+%A2m2

1 0%7F, 0F 1 0F
+ - ——Z(Am?)?* + ( + )A 2
2 (8m2)2( ) am?  om2 )"
+%A1g2 +f—12"A1m%, (22)
1
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FIG. 3. Three-loop vacuum diagrams.

where we have included all necessary counterterms. The
expressions for the diagrams Fs,, Fop, Fac, and Foy in

Fig. 3 are
L, 1 2 1
=—-— R —, (23
Fou 16g (ip P+ m2> iQ (Q2 + m2)2 23)

F __1 41 1 1 1
20 48g pQRP2+m2 Q2+m2 R? + m?
1
X s
P+ Q+R?+m?

(24)

I, 1 1
=_ ; ; , 25
Fa 48 my » P2+ m? Q(Q2+m2)2 (25)

1, 1
- —_— 2
4mlzp (P2 + m?)? (26)

1

Foa=—

Expanding in powers of m? to the appropriate order gives

1
Tza = _Egé‘[T‘I%IZ + I%Iz + 2T2.I]I]Iz + T31%12
+ ZTII.I].IZ - 2m2T1112]2 + szzlf - 2m21%13
- 2m2T2]21112 - 2m2]11% - 4m2T11]113
- 2m2TIII% + m4T12]§ + 2m4T1211 13], (27)

1
Fop=-— Eg‘tl:-[ball + TPl + 4T Iy, + 6T 1515
2+ (2/d)q?
- 4’"2]{3:111 — 8m2Tlli %]
or Q°R*(Q + R)
(28)

"Notice that the term 71,1, in F, in Eq. (28) vanishes.
However, we include this term because it gives rise to a finite
term at four loops when renormalizing the coupling constant g.
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1
TZC = Zgzm%[T‘IlIZ + 1112 + TZIIIQ + T-IZII

- m2T1212 - mZI% - 2m211]3 - 2m2T11.73
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where I, Ty, and I}, are defined in Appendix A, and
Ly, 1s defined in Appendix B.

The poles in € in Egs. (27)—(30) are canceled by the
counterterms in Eq. (22).

+m*Th 5], (29) The final result for the three-loop contribution to the free
energy is
1
de = — Zm?[TIQ + Iz - 2m2.[3], (30)
|
mT*5 1 59 (=D, ,=3)
= - 1-2 ~3L—4 +2
I 90 8m” [ (15 E (=1 = 3))'"
A2 A {/(_1)
— 12m*{5 + 7L + 3yy — 8logm — 8log2 — 4 =1
(=1 "—1 9 2
+ <268(L +oyp) —48(L + yp)? + 2((—1)) (34 + 12y,) + 12 i((_l)) + (17 = 21y,) + 34 + % — 48y,
- {(3) — 6C{)all)ﬁ13 + (89 + 120(L + yg) + [18(L + yp) P> + 15{(3))%4]
T 15 i} 5 . .
%0 3 7 [1 +2(L + yg — 3)m — 18(L + yp)mn® — (12(L + yp)* + £(3))m?® + —{(3) ]
m
T+ 45
- T4 2L+ e - £GY) (31)
90 2 m
Here C},,, = 48.7976 is the numerical constant in I, [13].
D. Four-loop free energy
The contributions to the free energy at four loops are
_ a.7:'0a 2 1 83.7?021 2\3
f3—f3a+f3b+f3c+f3d+f3e+f3f+f3g+f3h+f3i+f3j+A350+—A3m 8(8m—2)3(A1m)
2
n d .7';03 (A, m2)(Aym?) + (afla 3,7:12b) m? +‘T—53A2g2 n ( Foa " 2&+ fzc) 2
(9m?) am* 9 g g
1/ aF3, 9. F? f oF 1 d f
7((8 21)2 + (am 21;)2)(A1 2)2 + = lb my + lbz (Almz)(Almz) + 2 (Algz)(Alm )
(.7:20 + 2&>Alm% + (afz; + afzzb + aj:zzc 8.7:22(1) 2. (32)
m? m? am om om d
|
Note that some of the terms first contribute at order g8 or 1 1 1 1
higher. For example, the Vacuum counterterm A&, first Fae = 248 i por (P2 + m?)? Q* + m® R* + m?
contributes at order m*a? ~ g%. ) |
The expressions for the diagrams F3,—F3;, in Fig. 4 are X POt R T m is ol (35)
1 1 2 1 2
F :—86(I ﬁ) (I ﬁ)) (33) 1 g 1 1 1
32 p B 0 (07 + ) T30 = B Fpors O 4 o (P + OF ¥ 0P B2+
% 1 1 1
1 13 1 (P+R)?+m*> 2+ m? (P+8)?+m>
Fa=1z8 2 2 2 ny G
48 pP"+m 0 (Q* + m*) (36)
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o8P &

@OOC}
O@O@

g

O@OC}

F3n

F3j

FIG. 4. Four-loop vacuum diagrams.

= _l 442 1 1 g
F 3 g8 m1iPP2 T (iQ (0 + mz)z)’
(37)

Fa= _ég4m%<iP p2 _il_ mz)ziQ (0? _: m2)>’
(38)

Fo = — 4 zi 1 1 1
& 12 POR (P2 + m2)2 Q2 + m? R + m?

1
X
(P+Q+R?+m?

L, 1 1
= - 2 ; , 40
Fsn 48 my P2+ m? Q(Q2+m2)3 (40)

(39)
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Fu= égzmi‘(ipm)z, 1)

1 1
SRR W

Expanding the sum-integrals in powers of m? to the
appropriate order gives

1
Fau= 538 (1BI + 2 LB + 2L, + I
+ TR +2THI I3 — 2m*T? 31,1,
- 2m2T311]%12 + 4T21112]1]2 - 4m2T12]1]%
+ 27321, 1, — 4m?T1,1315], (43)

1
f?)b = &g6[TI3.I? + 3T21113.I% + 3T3I3I%Il
- 3m2TI3]%12 + 131:3 + T4I’1§I3

- 6m2T2111311 .Iz + 3T11 1%13 - 3m2T3I%I312

+3m*TLI2 I + 3m* T 1, 13, (44)
1
Fi. = ﬂgﬁ[(ll + T —m* )T Ly + (I, + TH) Iy,

+ 31?1 L I I, — m*TIL 1,1, + 3T 21,1,

Q* + (2/d)q?

“20r =T g+ RE

], (45)

1
Fra=1z8

48 I:iP[H(P):P + T4Itriangle

+ 6TIIIP%[H(P)]2 + 3T3121ba11], (46)

1
T3e = Sg m%[TZIZ.Il + T3I 12 + 2T12.I 12
—2m?’ThLI5 + 1,15+ 2T* 1\ 1, I, — m*T*15 1,
+ TII.I% - 4m2T12]1]3], (47)

1
Fy=- g8 [T I + 2T 101, + TP L1

- 2m2TI3I|.12 + .I';I% - 2T2m21311]2
+ 2T1111.I3 + 2m4TI3III3 + m4TI3I%], (48)

1
Fae= —Eg m [T%{mn + I+ 3771,
2+ (2/d)q?
0 + (2/d)q ] @)

+2(TI, — szlz)iQR —Q6R2 0+ R
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1

T:‘)h = Zg2m‘1‘[TI311 + T21113 + TI] 13 - sz.IzI:),

+ 1113 + m4T]3I3], (50)

1
f:; 8g ml[Tzlz + 2T12.12 + 1'2 4m2T1213:|, (51)

1
Fai= _gm?[TI3 + 1], (52)
|

2T4 5 a3

P =50 3w

triangle

[1 + 18(11L + 3yg — 6 — 16log2 — 16logrm —

PHYSICAL REVIEW D 78, 076008 (2008)

where the self-energy I1(P) is defined in Eq. (D2) and the
integrals I} ;; and [y are defined in Appendix B. The
poles in Egs. (43)—(52) are canceled by the counterterms in
Eq. (32). The final result for the four-loop contribution to
the free energy is

N 1)) 2
e
6456

9198
<1236 + 108C;pgie + 36Chyy + 288y) = —z— v + 450y} — —o— L + 432y;L + 648L7 + 1357

— 54772CP,

triangle

"(=1)

+ 360 =1

— 21672y + (2100 — 72y, + 1728L)

{'(=1)
{(=1)

(=1
{(=1)

{'(=3)
{(=3)

+ 432( ) —432(yp + 2L)

+ 1728102 + 21672 log2 + 432(4 — 72) logrit — 4534;(3));1%3

9
+ 5(3742 — 288C; — 48CL,, — 8064y, — 6072y — 2544y% — 3904L — 1872y L — 2184L? + 9007>

2=y
-y

— 2304y logm + 2304log?(27) — 15{(3))17%4]

+ (1808 + 18247y, + 2496L)

T4 5 o?m?

90 16 m°

- [1 + (84L + 36y, — 96logrit — 36 — 9610g2 — 48

+ 2(48(L + yE)? —268(L + yg) — yg(17 — 21yg) + 48y, — 34 — ——

{"(=1)

+ 2688y, 1og2 + 4992 log2 + 4992(y, + L) logs

I\
)
97 _ {'(-1)

2 =) (34 + 12v5)

é;”(( 1)) +403) + 6C,ga]1)ﬁ13 —3(89 + 120(L + vz) + [18(L + yo)P + 15§(3))m4]
2 4 15 45 2 s
T A8y + AL+ e + 20 - D et |- T M g

where the constants are

Cl, = 48.7976, (54)
Cliangle = —25.7055, (55)
Clangle = 28.9250, (56)
C, = —38.5300. (57)

There are a couple of calculational details that are worth-
while pointing out. The g° contribution arising from dia-
gram F34 when all momenta are hard (h) reads

o (o) _ IP[H(P)P. (58)

This term can be combined with the g° term arising from

(53)

the counterterm Fo,A,g%> = —g*I,.Ag%/48 and gives

iP{[H(P)]3 B (4’:)26

This particular combination was first calculated by
Gynther et al. [13] using the methods of Arnold and
Zhai. Similarly, we combine the g’ term from F54 with
the term T1, I, from F,,A, g2, which gives

iP%{[H(P)]Z (4 )2 [H(P)]} (60)

[H(P)P}. (59)

We calculate this sum-integral in Appendix D. Finally, the
term from F,,A;m? which involves I, can be combined
with the term —m?1, 1,71, arising from 5, to give

162 ( L1 )
ﬁg 12 (477_)2 € 12 Isun~ (61)
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Since I, vanishes at order €’ and the term inside the
parenthesis is finite, the particular combination (61) van-
ishes in the limit € — O.

E. Pressure to four loops

The pressure 2 is given by — F. The contributions to the
pressure of zeroth, first, second order, and third order in g2
are given by Egs. (15), (21), (31), and (53), respectively.
Adding these contributions and setting £, = 0 and m? =
m?, we obtain approximations to the pressure in screened
perturbation theory which are accurate to O(g”).

The one-loop approximation to the pressure is

TO = ,‘Pideal[l - 157’,\”2 + 60ﬁ’l3 + 45ﬁ14(L + ’yE)

PHYSICAL REVIEW D 78, 076008 (2008)

where Pige,; = mT*/90 is the pressure of an ideal gas of
massless particles.

The two-loop approximation to the pressure is obtained
by adding Eq. (21) with m? = m?:

5
P0+1 = Tideal{l - Za + 15ma + 15ﬁ12(L + YE — 3)(1
—30/m[1 + 3(L + yp)a]
1
- 45ﬁ14[(L + yp) + ((L + yg)? + E(G))oz]

+ g LB)m’a + 15{(3)7?16}. (63)

_ 1_5 £(3) mé], 62) The three-loop approximation to the pressure is obtained
2 . by adding Eq. (31) with m} = m*:
5 5 59 15 5 J(=1) 57(=3)
Porrar = Paea]1 + a2 =2 ~|—<——+—L+— +5 )
0+1+2 = Fid ‘{ gm® " a“ 127 47T aYET 0= T2 ¢(-3)

15

5
+ grhz(268(L + yg) —48(L + yp)* + 7=D)

9772
+ ——48
) Y1

1
T 154(3))012] + 45m4((L oy E§(3))a -
The four-loop approximation to the pressure is obtained by addmg Eq. (53) to Eq. (64), with m% = m":

G4+ 12y, + 125

"(—1
+7m|:1—<5+3y5+7L—810gm—810g2 4§( )>a]a

{'(=1)

{(=1)
"(=1)

& + ye(17 —

21yg) + 34

—3) - 6C{3au)a2 - %ﬁﬁ[l —6(L + yp)a — —(89 +120(L + y5) + [18(L + y)

135

D sac) - “’{(3)} (64)

2

Pos1+2+3 5 @ 151 [ 2 ( &= )
ZOrlaH . +-(161 +6—3y;—11L +8 + 16log2 3]
Poreal 288 73 16 m ogri YE Z(—1) 08% )
5 59 J'(—1) 4“’(—3))
- 3L — 4 -2 2 4 —(1236 + 36C! . + 108C“ + 288
4[ ( 15 g(_l) év( 3) ball triangle Y1
9198 6456
e + 450y% — ?L +432ygL + 648L% + 13577 — 5477 Cly e — 2167y
{'(—1) (J’(—l))2 J'(—3) J"(—1)
+ (2100 — 72y, + 1728L) + 432 — 432(yp + 2L) + 360
E (-1 (-1 e 2(=3) (1)
+ 17281og2 + 21672 log2 + 432(4 — 7?) logri — 45345(3))@]
45 2 (1) .
+§m|: 3<l3+3y5+7L 4§(_1) —810g2—810gm)a2

1
- ﬁ(3742 — 288C, — 48C],, — 8064y, — 6072y, — 2544y% — 3904L — 1872y,L — 2184L* + 90072

{'(=1)
{(=1)

+ (1808 + 18247y, + 2496L)

LIS + yp)P + 155(3))02] + %g(s)mﬁa.

"(=1)
—1)

— 2304y logr + 2304log?(27) — 15g(3))a3]

— 288
¢

+ 2688y log2 + 4992L log2 + 4992(yr + L) logim
15, 1
- Zm[l 3L+ v+ 5 (39 + 120 + )

(65)
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The final result for the pressure is given by Eq. (65). If we

use the weak-coupling expansion for the mass parameter,

m? = a/6, our result reduces to the weak- coupling expan-

sion result through order o Insertlng 2 into Eq. (65),
we obtain
5 56 15 u
P—P a+ 20302 4 _[1 -
ld““{ 19773 4 | ®anr

+C ] 2 - \/_[ loga—i-Cs] 32
45 o2 ,u 1(269 {’( 1)
P R [T
483
{( 3 ) LT — ) loga + C6]a3},
(66)
where the constants C,—Cg are
59 1 4 7(-1) 2/(-3)
=—_ 4 _yp+- - = : 67
GETETIET IO T3y P
5 1 2 2/0(-1)
=_+- = 1
Cs cT37E—3logz—3 =1 (68)
2 103 1
C Y (4 - 772) logf + 57 + 18 C{)all 6 Cgriangle
2 2
T 4 511 25 ,  Sw
— L Ch 4y — ey g2
12 Ctrlangle 9 Y1 180 YE 36 YE 24
2 175 1 J(—1)
+ 7°log2 +
BERCAA (54 9 )g(—n
2 (5’(—1>>2 LSED 2 1Y)
3\4(=1) 9= 37 (=3)
2267
==y {E)} (69)
The numerical values of C4—Cg are
Cy = 1.09775, (70)
Cs; = —0.0273205, (@an)
Ce = —6.59363. (72)

Gynther et al. [13] have calculated the pressure for an
O(N)-symmetric theory at weak coupling through order
g% using effective field theory methods. Our result agrees
with theirs for N = 1.

Using the renormalization group equation for the run-
ning coupling constant to next-to-leading order,

Tt is important to point out that we have only calculated part
of the g7 term in the weak-coupling expansion. See the discus-
sion in Sec. V.

PHYSICAL REVIEW D 78, 076008 (2008)
uw— =3a’> — —a?, (73)

it is straightforward to verify that the result (66) is inde-
pendent of the renormalization scale w through order

g%logg.

IV. GAP EQUATIONS AND NUMERICAL RESULTS

The mass parameter m in screened perturbation theory is
completely arbitrary. In order to complete a calculation
using SPT, we need a prescription for the mass parameter
m as a function of g and T'. One of the complications which
arises from the ultraviolet divergences is that the parame-
ters £y, m*, m3, and g* are all running parameters that
depend on the renormalization scale .

The prescription of Karsch, Patkés, and Petreczky for
m.(T) is the solution to the one-loop gap equation

m? = %a(m)[fl e e [

where w* is the renormalization scale and J,(Bm) is the
function

p? 1
+ m2)l/2 B(p*+m*)12 _

npm =g [y (75)
Their choice for the scale was w, = T. In the weak-
coupling limit, the solution to (74) is m, = g(u.)T/~/24.
The gap equation (74) is the renormalized version of the
following equation:

1 1
2 _ 1 2
T8 ipPz + m? (76)

There are many possibilities for generalizing (74) to higher
orders in g. We will consider three different possibilities in
the following.

A. Debye mass

One class of possibilities is to identify m, with some
physical mass in the system. The simplest choice is the
Debye mass m, defined by the location of the pole in the
static propagator:

p>+m?>+ 20, p) =0, pr = —m?. (77

The Debye mass is a well-defined quantity in scalar field
theory and Abelian gauge theories at any order in pertur-
bation theory. However, in non-Abelian gauge theories, it
is plagued by infrared divergences beyond leading order
[52].

B. Tadpole mass

The tadpole mass is another generalization of Eq. (74) to
higher loops. It can be calculated by taking the partial
derivative of the free energy F with respect to m? before
setting m; = m:
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my =g°——5 . (78)

om= | y,=m
From this equation, we see that m? is proportional to the
expectation value (¢?). The tadpole mass is well-defined at
all orders in scalar field theory, but the generalization to
gauge theories is problematic. The natural replacement of
(¢?) would be (A,A,,), which is a gauge-variant quantity.

C. Variational mass

There is another class of prescriptions that is variational
in spirit. The results of SPT would be independent of m if
they were calculated to all orders. This suggests choosing
m to minimize the dependence of some physical quantity
on m. The variational mass is defined by minimizing the
free energy:

oF

=0. 79
Py (719)

The variational mass has the benefit that it is well-defined
at all orders in perturbation theory and can easily be
generalized to gauge theories.

D. Comparison

At one loop, the three different prescriptions give the
same gap equation, Eq. (74). Moreover, it turns out that the
two-loop tadpole mass coincides with the one-loop tadpole
mass [18]. However, at two loops the screening and varia-

tional masses are ill-behaved [18]. The screening mass
|

40(-1) 8
+§§(—1) 3
17
12
14"(=1)
2 {(=1)

5
_ 7 ~3.2
T Z(3).

F. Numerical results

The two-loop SPT-improved approximation to the pres-
sure is obtained by inserting the solution to the one-loop
gap equation (80) into the two-loop pressure (63). In Fig. 5
(a) we show the various truncations to the two-loop SPT-
improved approximation to the P/ P;4., as a function of
g(27T). We notice that the various truncations converge
quickly. The order-g* to order-g’ results are almost indis-
tinguishable and essentially equal to the exact numerical
two-loop result in Ref. [18]. In the three-loop case, we
insert the solution to the two-loop gap equation (81) into
the three-loop pressure (64). In Fig. 5(b), we show the
various truncations to the three-loop SPT-improved ap-

67 1 3
+ a2|:2(L +yp)? =+ 2y, — F(L + vE) — ﬁ')’E(17 —2lyg) —
g// _1
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solution ceases to exist beyond g ~ 2.6 and the variational
gap equation only has solutions in the vicinity of g = 0 for
some values of L. In the following, we therefore restrict
ourselves to the tadpole gap equation.

E. Tadpole gap equation through three loops

At one loop, the renormalized gap equation follows from
Eq. (15) upon differentiation with respect to m? and can be
written as

1 3
0=rm?— 8a[l — 61t — 6L + yp) + 55(3);414].

(80)

At two loops, the renormalized gap equation follows from
differentiating the sum of Egs. (15) and (21) with respect to
m, and setting m; = m. It can be written in the form

a?

0=m>+
T o

—%U+a6—yE—UJ
+ %n%a[l ~3alyg + L)]
3 5
— rh2a2|:('yE + L) + %jl + grh3a2§(3)
+ %m4a§(3). 81

At three loops, the renormalized gap equation follows from
differentiating the sum of Egs. (15), (21), and (31) and
setting m; = m. This yields

8
+=log2 + = 10gﬁ1:|} - %{1 —a(lL + yg —3)

3

= 177(-1) 1 (1)

2YE (-0
89

16 12 (—1)

1 1 3 10 5
+ ﬂm) + ZC‘/”“]} + grha{l —2a(L + yp) + a2[9(L + vp)? + ?(L +vp) + % + E5(3)]}

(82)

|
proximation to P/Pis.a as a function of g(27T). The

three-loop result also converges to the exact numerical
three-loop result, albeit not as fast as in the two-loop
case. At four loops, we insert the solution to the three-
loop gap equation (82) into the four-loop pressure (65). In
Fig. 5(c), we show the various truncations to the four-loop
SPT-improved approximation to P/ P4, as a function of
g(27T). Although we cannot compare our successive ap-
proximations with a numerically exact four-loop result for
the pressure, we expect them to converge reasonably fast.
Based on the experience with the two- and three-loop
approximations, we expect that the g’ truncation provides
a good approximation to the numerically exact result.
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Clearly, however, only a calculation through g% can settle
this issue firmly. In Fig. 5(d), we show the weak-
coupling expansion of P/ P,y to orders g2, g3, g*, &°,
and g° as a function of g(27T) for comparison. Note that
the results to order g2 are identical in SPT and in the weak-
coupling expansion since there is no m-dependence at this
order.

In Fig. 6(a), we show the two-, three-, and four-loop
pressure through order g’ normalized to P/Pi4., as a

4.0 0
g(2nT)

1.0 2.0

(a) Two-loop pressure, (b) three-loop pressure, (c) four-loop pressure, (d) weak-coupling expansion of the pressure, all

function of g(2#T). In Fig. 6(b), we show the weak-
coupling expansion of P/ P, to orders g2, g3, g*, g°,
and g% as a function of g(2#T) for comparison. The
successive approximations using screened perturbation
theory have better convergence properties than the weak-
coupling results. The improved stability is partly due to the
fact that we are using a thermal mass determined by a gap
equation and not by the perturbative value for the Debye
mass.

1.04
1.02
1.00
0.98 S
P RS
Pideal 0.96 SIS
0.94 12 loops -
0.92 3 loops -—-—-
4 loops
0.90 - .
0 1.0 2.0 3.0

FIG. 6.

40 0 2.0
g(2nT)

1.0

(a) Pressure normalized to P, through g’ for various loop orders, (b) weak-coupling pressure at various orders of g.
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V. SUMMARY AND OUTLOOK

In this paper, we have calculated the pressure of mass-
less scalar field theory to four loops using screened pertur-
bation theory expanding in a double expansion in powers
of g and m/T. Treating m as O(gT), we truncated our
expansion at order g’. The expansion required the evalu-
ation of a new nontrivial three-loop diagram, where we
evaluated the sum-integral using the techniques developed
in Ref. [10]. We have seen that the successive approxima-
tions are more stable than the weak-coupling expansion. In
particular, it is interesting to note that the four-loop curve
lies between the two-loop curve and the three-loop curve.
The apparent improved convergence seemed to be linked
to the fact that SPT basically is an expansion about an ideal
gas of massive particles instead of an expansion about an
ideal gas of massless particles which is the case for the
weak-coupling expansion.

Using the weak-coupling value for the mass parameter
m, our result reduces to the weak-coupling result for the
pressure through g°. In particular, we have reproduced the
pressure at weak coupling for N = 1 obtained by Gynther
et al. [13]. Using effective-field theory methods, the au-
thors in Ref. [13] have calculated the hard and soft con-
tributions to the pressure through order g¢ separately. It
appears that the convergence properties in the hard sector
are better than in the soft sector even for moderate values of
the coupling.

We have mentioned that our result only includes part of
the full g7 term in the weak-coupling expansion. This is
straightforward to see, if one uses the effective-field theory
approach developed in [6]. The contributions to the free
energy comes from the two momentum scales 7 and g7T.
The contribution from the hard scale T can be calculated by
evaluating the sum-integrals with bare propagators and so
is therefore a series in g? starting at order g°. The contri-
bution to the free energy from the soft scale g7 can be
calculated using an effective Euclidean three-dimensional
field theory whose coefficients depend on g and 7. This
contribution to the free energy is a series in g starting at g>.
The contributions to the free energy that are odd in powers
in g are therefore entirely coming from three-dimensional
vacuum diagrams and power-counting tells you immedi-
ately that part of the g’ term is arising from the five-loop
vacuum diagrams. Our four-loop calculation therefore
agrees with the weak-coupling expansion through order g°.

In order to evaluate the free energy to order g’, we must
determine all the coefficients in the effective theory to
sufficiently high order in g. The only nontrivial calculation
that is required is to determine the mass parameter in the
effective theory to order g°. This involves the expression
for the diagram calculated in Appendix D i.e. the sum-

integral
B 1
=¥, mimer-
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The evaluation of the free energy to order g’ is in progress
[53].
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APPENDIX A: SUM-INTEGRALS

In the imaginary-time formalism for thermal field the-
ory, the four-momentum P = (P, p) is Euclidean with
P? = P% + p?. The Euclidean energy p, has discrete val-
ues: Py = 2n7T for bosons, where n is an integer. Loop
diagrams involve sums over P, and integrals over p. With
dimensional regularization, the integral is generalized to
d = 3 — 2e spatial dimensions. We define the dimension-
ally regularized sum-integral by

eyﬂ2>e
= T
il’ < 4 PO%ﬂ-T

where 3 — 2¢€ is the dimension of space and w is an
arbitrary momentum scale. The factor (e¥/4m)€ is intro-
duced so that, after minimal subtraction of the poles in €
due to ultraviolet divergences, w coincides with the renor-
malization scale of the MS renormalization scheme.

d3—25p

(277.)3*26 ’

(AD

1. One-loop sum-integrals

The massless one-loop sum-integral is given by

1
L=,
2)e {2n—3+26)T(n—3+e)
8 TT(n)

X (277.T)4—2n—25’

= (675

(A2)

where {(x) is Riemann’s zeta function. Specifically, we
need the sum-integrals:

I,= iplong = —
:?Q%Y[ ()

(107 e aEED LM o]
(A4)

Yoo T aen
L= () e+ (G- ) 0]

+ O(e)], (A3)

+

(A5)
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)4T2 [24(3) + O(e)] (A6)

I,= a

2. Two-loop sum-integrals

We need two two-loop sum-integrals that are listed
below:

= O(e), (AT)

T zi _
T Geng PPOA(P + 0)
i P2+(2/d)p2: 3 (M)4E
PO P6Q2(P+Q)2 4(477)4 47T
x[i+(§+4 )l+§+2
e \6 VEJeT36 " 2
10 ’

(A8)

The setting-sun sum-integral was first calculated by Arnold
and Zhai in Ref. [10], while Eq. (A8) was calculated in
Ref. [40].

3. Three-loop sum-integrals

We need the following three-loop sum-integrals:

1
Iy = i
ball por P2Q*R2(P + Q + R)?

T o Vo J=D_d(=3)
i lier) Lot s 3500 2%y
+@(e)], (A9)

T = IPQR P4Q2R2(P1+ 0+ R)?
2 . 1(—
“stimilonr) T (@2 e
&= 1)) +CL,+ @(e)],

Z(=1)
(A10)

1

XPPZ{[H(P)]2 (4 )2 ()}
[42660 0, ]

=_R%ﬂﬁﬁﬂé+ {1

1
+ 3[46 — 8yp — 16y% — 104y, — 24y log(2m)

+ 24l0g2(2m) + 454772 +24 i((:ll)) +2 i/((_ 11))
(1)
+ 16y5ﬁ] +C+ O(e)}, (A11)
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where C{ ;, = 48.7976 and C; = —38.5309. The massless
basketball sum-integral was first calculated in Ref. [10]
and J{,,in Ref. [13]. The expression for the sum-integral
Eq. (A11) appears here for the first time and is calculated in
Appendix D.

4. Four-loop sum-integrals

We also need a single four-loop sum-integral which was
calculated in Ref. [13]:

¥ {mer -

B LD
- mwd?+6* &ﬂ+“)
+ QL + yp)? + (g— 2yp + 43(( 33)))(2L + vE)

T 1
C’?rlangleil 512(477_)2[ +8L + 47E + Ctnangle]
+ O(e), (A12)
where Cij,pe1. = —25.7055 and Cfmngle 28.9250.

APPENDIX B: THREE-DIMENSIONAL
INTEGRALS

Dimensional regularization can be used to regularize
both the ultraviolet divergences and infrared divergences
in three-dimensional integrals over momenta. The spatial
dimension is generalized to d =3 — 2e€ dimensions.
Integrals are evaluated at a value of d for which they
converge and then analytically continued to d = 3. We
use the integration measure

eyMZ € d3—25p
= . B1
_/; ( 4 ) (2ar)3 2 (B1)
1. One-loop integrals
The one-loop integral is given by
1=[__L_
" p (p* + m?)"
1 I'n—2+e)
— (o VE 1 2)€ 2 3—2n—2s' B2
87T(e M) “TOTw) (B2)

Specifically, we need:
I = ] log(p? + m?)
P

o m3 [ \2e€ 8 52 5 3
(B3)
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__m(rye© \ 2 3 ]
I, 47T<2m) [1+2e+<4+4)e + O(€) |,
(B4)
_ 1 M\ 12 2 3
L - <2m) [1 + , e+ 0O(e )] (B5)

. 2
I; = ! (M)z [1+26+%62+(9(63)]. (B6)

- 32am3 \2m

2. Three-loop integrals

We need two three-loop integrals:

1 1 1 1
L., =
ball [pq,pz+m2qz+mzr2+n12(p+q+r)2+m2

o m [ pw\oe[1
= ——(477)3 (%) [E + 8 —4log2

17
+ 4(13 + Eﬂz —8log2 + 10g22)6 + (9(62)],

(B7)

1 1 1
I =
ball qur PAmR E+m 2+ m?
1
pt+q+r?+m?

1 M\6el1
— (V[ 241022
8m(4)’ <2m) I:e %

17
+ 4(1 + 4—877'2 —2log2 + log22)6 + (9(62)].

(B8)

The massive basketball was calculated in Ref. [6] to order
€’, and to order € in Ref. [54]. The other three-loop integral
is obtained by differentiating the massive basketball with
respect to the mass m.

3. Four-loop integrals

We need a single four-loop integral, namely, the triangle
integral. This integral was calculated in Ref. [54] and reads
|
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1 1 1
I. =
triangle /pqrs qz + mz (p + q)z + m2 }’2 + m2
1 1 1
(p+r)?+m?>s>+m?(p+s)?+m?

m? Mm\8e[ 1 84
— ENV 242+ 41002 - 22403
32(4m) (Zm) [e 0g2 = 540)

+ (9(6)]. (BY)

APPENDIX C: m/T EXPANSIONS

In this appendix, we list the m/T expansions of the sum-
integrals we need. The sum-integrals include sums over the
Matsubara frequencies P, = 27nT and integrals over the
three-momentum p. In the sum-integrals, two important
mass scales appear. These are the hard scale 27T and the
soft scale m. The soft scale m is of order g7 and at weak
coupling this scale is well-separated from the hard scale,
m <K 27rT. We can therefore expand the sum-integrals as a
Taylor series in powers of m/T.

First consider the simple one-loop sum-integral appear-
ing in the expression for the one-loop free energy in
Eq. (13):

1
fm=—il%WMwﬂ
24~p

1 F b 1 FG6)
= 71 log[P? + m*] + —I ’ log[P? + m?],
24-p 29p

(CDhH

where the superscripts (h) and (s) denote the hard and soft
contributions, respectively. In the hard region, the momen-
tum P is of order T and so we can expand in powers of
m?/P?. This yields

(h) 1
i log[P? + m?*] = i logP? + mzi —
P P pP

1 41 1 n
— —m — 4
2 pP*

The contribution from soft momenta is given by the p, = 0
mode alone and reads

()
i log[P? + m?] = T[ log(p? + m?).
P p

(C2)

(C3)

The other simple one-loop sum-integrals are expanded in a
similar manner.

We next consider the massive basketball diagram in
Eq. (24):

1

Tt =Y TG TS N G R

(C4)

Equation (C4) involves three sum-integrals and so receives contributions from four momentum regions: (hhh), (hhs), (hss),
and (sss). In the first case, where all the loop momenta are hard, we can expand the sum-integral in powers of m?. This
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yields
1o - ¥ ! ~anY : oo ()
ball POR P2Q2R2(P + Q + R)2 POR P4Q2R2(P + Q + R)2
When two momenta are hard and one is soft, the contribution reads
1 1 1 1
Jhhs) 2y 4Tf i
ba () oD+ m* 4 or Q>+ m* R>+m?> (p+ Q+ R?*+m?
1 1 1 2+ (2/d)q?
=4T[ 2 21 2p2 2_8m2T[ 2 2[1 %]4_"" (C6)
p P° +m*For O*R*(Q + R) p P+ m* LG or Q°R*(Q + R)
When one momentum is hard and two are soft, the contribution is given by
1 1 1 1 1 1 1
I(hss) 2:6T2j i =6T2[ 1_4_
bar () pa P+ m?* @+ m? R R+ m? (p+q+R?+m? pg P>+ m? ¢* + m*9x R*
(C7)

Finally, when all momenta are soft, the contribution is given by the massive basketball diagram Iy, in three dimensions:

1 1 1 1
T (m2) = 713 [ . C8
v (1) par P>+ m> @ +m> P+ m? (p+q+r)?+m? ©

The basketball diagram with a single mass insertion I}, (m?) can be calculated by differentiating the massive basketball
diagram with respect to m?. This yields

I () = i 1 1 1 1
ball por (P* + m?)? Q> + m* R* + m?> (P + Q + R)* + m?

B 1 i 1 1
B iPQR P*Q’°R*(P+ Q + R) [p(p2 +m?)? iQR Q°R*Q + R)?

p? 0+ QDT 0 [ ] 1 1
* 2T[p 7 + ) [ig OR(Q + R)Z] T / PR e  .x

1 1 1 1
+T3f T 9
par PP @+ m? P+ m? (p+q+r)?+m? €

Note that the second term is formally of order g>, but it vanishes at order €” due to the fact that T, = O(e).
The massive four-loop triangle sum-integral reads

1 1 1 1 1 1
T tianele 2=2 ) C10
wiangle (1) pors Q> + m?> (P + Q) +m?> R>+m?> (P+ R)* + m?> S + m> (P + S)> + m? (€10)

When all four momenta are hard, the leading contribution is given by setting m = 0, i.e.

(hhhh) 2y _ 1 11
L angie ) ZPQRS Q*(P + Q)*R*(P + R*S*(P + 8)* (1D

When one of the momenta is hard and three are soft, we find

1 1 1 1 1
I(hsss) m2 :3T3f i e
iangte (1) par PP+ m? @+ m? P+ m? (p+q+r)?+m*ds st

This contribution is of order g’. When one momentum is soft and three momenta are hard, the contribution is

1 1 1 1 1 I
re ot [ §
wangie (") St mEFpor PPt m? QP+ m? (P+ QP + m> B2+ m? (P + R + m?
— 6T j ! i ! "
s 82+ m* Fpor PPQ*R*(P + Q)(P + R)?

This contribution is of order g’. When all four loop momenta are soft, the contribution is given by the massive three-
dimensional triangle diagram /e

(C12)
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1 1
Ity =1 [

This contribution is of order g°. Finally, we notice that the
contribution when two momenta are soft and two momenta
are hard, is of higher order in the coupling g.

1 1 1
. C13
s @ +m> (p+q?+m?r2+m?(p+r)?+m?s®+m?(p+s)+m? (€13)
f
self-energy (D2) and is given by [10]
2 1

APPENDIX D: EXPLICIT CALCULATIONS

In this appendix, we illustrate the use of the calculational
techniques developed by Arnold and Zhai in Ref. [10] to
evaluate complicated multiloop diagrams. The strategy is
to rewrite the original sum-integral into two sets of terms.
The first type is ultraviolet divergent, but is sufficiently
simple to be evaluated analytically using dimensional
regularization. The second type is finite both in the ultra-
violet and the infrared, but is normally so complicated that
it must be evaluated numerically. In order to isolate the
divergences in terms that are tractable, typically one or
more subtractions are required.

We need to calculate the following three-loop diagram:

_¥ ! >
=Y, plner - Zonel oy
where the self-energy I1(P) is defined by
1
1) - iQ e (D2)

The first term in Eq. (D1) arises from the m/T-expansion
of the triangle sum-integral in four dimensions, while the
second term arises from the term T'1, I, which is a part of
the counterterm F,,A g2/ g%

At zero temperature, the self-energy is denoted by
I1°(P) and reads

n°(p) =

1 (e”E,u,z)f el (1 — e). D3)

(4m)? 2 - 2e)
In order to isolate the UV divergences and simplify the
calculations, we write the self-energy as

1
(4m)’e
where I19(P) is the finite part of IT°(P), i.e. we have
subtracted the divergent piece in Eq. (D3) from I1°(P):
1 YEpu?\e I'(e)%(1 — 1

A e o
(4) P Q2 - 2e) €

and I17(P) is the finite-temperature piece of IT(P). In three
dimensions, I17(P) reads [10]

[I(P) = + 119(P) + 117 (P), (D4)

I(P) =

T r 1
HT(P) = W /% elp'r(COthf - ;>€7|p0|r’ (D6)

where 7 = 27rTr. In the following we need the UV limit of
I17(P). This happens to be given by the UV limit of the full

Using the decomposition (D4), the integral in Eq. (D1)
can be written as

1 1 1
[=—— -+ _ HO P 2
(4m)te ip p? ip P2[ (P)]
1
+ 22 L noemre) + I PP ©8)
P
We now consider the different contributions to /. The first

term in Eq. (DS8) is a simple one-loop sum-integral and
reads

- 1 i 1
! (4m)*e* 4=p P?

 fmye T 1 2(-1)
- (m) 12(477)4[_2”(1 (- 1))

-1 2D
+T+4+4§( SRR 1)+@<e>]. (D9)

The second term in Eq. (D8) contains no logarithmic UV
divergences and so it is finite in dimensional regulariza-
tion:

n-Y e
r [4 Y Al (2 + 1ogL)

T 2Gn* 3 =) 47T
J"(=1) mo\2
+4 &) + 4(2 + logm> ] + O(e). (D10)

The third term requires a little more thought. Since the UV
behavior of IT17(P) is 1/P?, the integrand I19(P)I17(P)/P?
is logarithmically divergent in the ultraviolet. In order to
isolate this divergence, we add and subtract 117,(P) from
I19(P)II7(P)/P>. Thus the third sum-integral in Eq. (D8)
becomes

—21 I nopnre)
= oY e e) - e
+ 23;? TO(P)TIE (P)
for f,, ple?(po = 0.p)17(py=0.p).  (DID)

where we have isolated the contribution from the py = 0
term since the contribution to /3 from this term is infrared
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divergent. In order to calculate the first term in Eq. (D11),
we need I17,(P) in coordinate space. It is given by the
small-r behavior of I17(P) and reads

T d "ol r
nr,(p) = P —-e'P 3 =Ipol (D12)
This yields
1
= zi’ o2 (P (P) = TGy (P)]
P
272 1 1 7
- - jd3r—2<cothf —== ) Z e~ Ipolr
(47T) r r Po#0
dp  ePT Mz
(2 +1log———;). D13
Q27)® pg + p2< g+ Pz) P

The integral over three-momentum can be done analyti-
cally. We write it as

d3p eip~r

(2m)3 p% + p?

(4

—l—lg2

2
(2 + 210g n D ) (D14)
P

47T

where the first two terms in the parentheses are indepen-
dent of p, making this part of the integral a simple Fourier
transform:

d3 ip'r

B (2 2log- )

Q2m)? p3 + p? 47T

*|I70|V
e M
= 2 + 2log——).
4 ( 0g47TT)

aor

(D15)

Averaging over angles, the last term can be rewritten as
d3 p eip~r

(2m)3 p% + p?

(47T)?
pi+p°

1 fw 4 err o (47T)?
A7%ir J-w ppp(z)—l—p2 gp(z)-i—pz'

The integrand has a branch cut starting at p = i|p,| run-
ning to p = ioo, and a pole in p = i| py|. The contour can
be deformed to wrap around the pole and the branch cut,
and taking care to include contributions from both, one
arrives at the result

(D16)

dp  ePr (47T)?
@m) pg+p* pg+p’
e—|P0|r

77
= —47Tr ( glp | + v+ e2|P0|rEl( 2|p0|”)) (D17)

where py = po/2#T = n and the exponential-integral
function Ei(z) is defined as
B [ o dte”!
.t

Thus Eq. (D13) can be rewritten as

Ei(z) =

(D18)
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277 1 7
a — 3 — E
13 477)4 fd r (cothr ; g)

(2 + vy t+ 210g

8*2|P0|r

AT

+ e2lrolrgj(—2| p0|r)). (D19)
The first three terms in the last parentheses are independent
of r and p, and, for these terms, the integral over r and the
sum over Matsubara modes can be evaluated analytically.
In particular, we are able to find the coefficient of logu.
This is fortunate, because it allows us to check the con-
sistency of our final result for the free energy. Let

e—2|P0|r

_2T* [, F
- (4m)? ,/d (cothr 7 g) Z 4arr

po#0

(D20)

Integrating over angles and summing over Matsubara fre-
quencies yields

¢ 277 foodr( . 1 f) 2
=—0 cothr ——— = )|——
@4m)* 7 Y e

_4T2f°°df<2+1_1_7)1
@m* Jo 7\ —1 Fo3)er -1
(D21)

The integral above is finite, but the individual terms are
divergent for small 7. We therefore regulate them by multi-
plying by an extra factor (27)* and taking the limit @« — 0
in the end. The basic integrals we need are

f‘” dit*
0o e —1

fw% =T+ D) - {x+ 1) (D23)
0o (e"—1)

=T+ 1){(x+ 1), (D22)

This yields

412
£ = i 2P@Lta — 1) ~ L] + T@)i(@)
-2 — DNé(a — 1) — ér(a + 1) (a + 1)]
(D24)
The limit & — 0 is regular, and we obtain
_er _ {'(=1
&= W(l + yg — 3log(2m) + 2 {(—1))' (D25)

The remaining integral over the coordinate r as well as the
Matsubara sum in Eq. (D19) must be done numerically.
Equation (D19) can then be written as

A 277

I = —3(477_)4 [(2 + vy t+ 210g4 T)
'(=1)
{(=1)

X (1 + yg — 3log(2m) + 2 ) + C], (D26)
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where the numerical constant C is
3 Br 1 7 27
C= f 2 (cothr —-—= I) > ( _2|”0|’log—r
477 r 3 Pa20 |[J |

+Ei(=2] polr)) = 0.0034814. (D27)

The subtraction term in Eq. (D11) can be calculated with
dimensional regularization and reads

PHYSICAL REVIEW D 78, 076008 (2008)

The second term vanishes in dimensional regularization
since there is no mass scale in the integral, i.e.

1
o7 [p T8 = 0.p)I%py = 0.) = 0. (D30)

In order to evaluate the first term in Eq. (D29), we must
calculate II(py, = 0, p). Using Feynman parameters, we
obtain

1
B =2¥ S HIYPIL(P 1
’ iPPz (P (P) H(POZO,P)ZIQQQ(I)+Q)2
_ 4 1 L{(eYEM2>E D(e?(1—€) l} ve y\NeT(1/2
(477)22; 0 ip PINP) T2-20 € = T(e = ) (4( g(g/;i)
NG
T 1 )z é“’( 1)
=———|5t|2log— +2 +1
6(477)4[62 ( 4nT  {(-1) g/() y %jo Xl —x)p? +q2](1/2)+e (D31)
n
—210g24 T_210g47rT<1 + 4y — {( 1)) . . o -
/ ") ) Inserting the expression for I1Y(py =0, p) and II(p, =
n i((_ll))-'_zi(_]) —1—717—2—4y5+871:|. 0, p), we obtain
(D28) = 272 (e”,uz)f I'a/2+e 1
The last term in Eq. (D11) is NGk (@4m@2me J, p?
v [(emﬂ)el“(e)rz(l —€ 1]
15 =27 [ 100 = 0.1 (g = 0. ) ) Te-2 e
P
D32
= 2Tf %H(s)(po =0,p) Zj; [x(1 — X)P + 612](1/2)“ (B32)
pP
X [IL(po = 0, p) = II(py = 0, p)] (D29)
J
o 2T (e"ud)* TG+ e) 5 (T (1 — €) B (1/2)+2¢
5= (4m)* 2w F(% - 6)[(e7,u, ) re—-2e Jo p(p + 1)(1/2)+e / dxlx(1 — x)]"/2* Z |
1 foo 1
_ = _ (1/2)+€
€ f » (p + 1)(1/2)+€ [ dalx(l — 0] % |fI0|4€:|
_ 272 ( e u? )2e F(% +e) [( evu? )E 1 [(e)2(1 — e)r(% — 26)1‘(35)1*(% + 2€) £(6€)
@Am)*\4m’1?) TG - e)L\d7’T?) 214/ I'2-2erG+ e'(1 + 2e)
1 TG—el(el'G+ e §(46):| O3)

e I'a+e

where the prime indicates that we have omitted the p, = 0 mode from the sum. Expanding Eq. (D33) in powers of €, we

obtain

11 2 12
5= —[— — 12— T 24l0g2m) — 12l0g2(2m) — 24 1ogL
Yler e 3 47T

6(4)*

— 2410g(27) 1ogﬁ + 1292 + 2471] + O(e).
a

121
g T T

(D34)
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The last term in Eq. (D8) is

I — ipg[m(m]%

Since the UV behavior of IT17(P) is 1/P?, the sum-integral
in Eq. (D35) is UV finite. However, I1;(P) has a logarith-
mic infrared divergence for the p, = 0 mode. This implies
that the sum-integral I, has linear and logarithmic IR
divergences. The linear divergence is set to zero in dimen-
sional regularization while the logarithmic is not. In order
to isolate these divergences, we rewrite the sum-integral as

(D35)

1 1
=Y mmrer et [ Lo o
(D36)

where the prime indicates that we have omitted the p, = 0
mode from the sum. The primed sum-integral in Eq. (D36)
is finite both in the ultraviolet and in the infrared. Using the
three-dimensional representation of the I1(P), Eq. (D6),
the first term in Eq. (D36) can be written as

|
A= HT P 2
i= ¥ @)
T3 /[ dp j‘d3r ar 1 < 1)
=—— —— | — ——= ————={cothr — =
(477')4% 2m)3 r* (r)? py + p? 7

X (COth}:/ — ;/)gip'(r"'r’)e—|p0|(r+r/).
r

(D37)

The integral over three-momentum p corresponds to a
Fourier transform of a massive propagator and so gives
rise to a Yukawa potential. The sum over nonzero
Matsubara frequencies can also be done analytically and
we obtain

. 273 [d3r &ar 1 ( th'—l)( th"—l)

LTl R Pl PR L St N
1

X R (D38)

Averaging over angles, one finds

. 2T* [odrdF _ 1 S, 1
14 = W '/0 7<C0thr - ;)(Cothl’l - ?>

X [log(e2™*+™) — 1) — log(e™ 7 *1F=71 — 1)

+lF=Fl-7r=7] (D39)
The remaining integrals over 7 and 7 must be done nu-
merically and we obtain

2
a —
I

=G [0.058 739 2].

(D40)

The second term in Eq. (D36) is rewritten as

PHYSICAL REVIEW D 78, 076008 (2008)
1
B=1 [ 17y =0.p)F
pP

= T,[,,plz{[HT(pO =0, p) — IL(p)P

+ 217 (pg = 0, )L (p) — [ (p) 1},

where I1z(p) is given by the g, = 0 term in Eq. (D31):

1
Hix(p) = qu 7*(p + q)*

B 675M2 € 45\/;
N T( 4 ) (47r) /D€
ra/2+erd/2-—e _,_,.
T — e P

The first integral in Eq. (D41) is now well-behaved in both
the ultraviolet and the infrared. It can be evaluated numeri-
cally using the representation of II17(py, = 0, p) in three
dimensions. The subtracted terms are infrared divergent
and are calculated with dimensional regularization. The
first integral can be calculated directly in three dimensions.
In this case, [T (p) reduces to

(D41)

(D42)

T

Hﬁm=@. (D43)

Using the three-dimensional representation (D6) for
I17(P) with p, = 0 and Eq. (D43), we get

1
I = Tf (o = 0.p) = T ()P
p
1 1 d31" d3r/ ) 1
N tp'(r+r’)< th ——)
el [ e eom =

1 1 &rr . 1
X (cothf’ - _—) - [%e’“(cothf — j)
7 4(4)*p r F

(D44)

1
+— .
64192]
The averages over the angles between p and r, and between
p and r’ can be done analytically and we obtain

121 _ 73 [ LZI: 1 i [oo i [m 2 sinpr sinp/r/
p P L@m)> Jo 0 pr pr
1 1
X (cothr — —)(cothf’ — T,)
r F

1 ©  sinpr 1 1
- d thr — =) + —= |.
4(47)p _/:) d pr (CO d 7’) 64p2]

(D45)

The integrals over r, ¥/, and p must be done numerically.
The result is

2
bl _ L

4 (47T)4

[9.5763]. (D46)
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The first subtraction term in Eq. (D41) is where we have used the fact that the second term vanishes
in dimensional regularization. This term is logarithmically
1% =27 f 57 (py = 0, p)Ifr(p) divergent both in the infrared and in the ultraviolet. If we

use the same scale for the regularization of ultraviolet and

_ L — 0, — infrared divergences, the integral vanishes [6].
2T /;7 2 [IT(po = 0, p) — I°(py = 0, )1z (p) Inserting the expressions for I1°(p, = 0, p) and I1%(p)

1 into Eq. (D47), we obtain
—or ] T = 0. p)ITR(p), (D47)
P

Ib2 . T3 (eVEMZ)fS 2 F2(2 + E)F(Z — 6) [ [ dxz p—1—4e
& T @mr e\ 4n I'G— el —e) [x(1 — x)p? + g3]1/D+e

q90

3 fevrp?\e  , T2G+ TG — e pide
= € d d 1— 2e
(47T)473€( 4 ) I'G—erd —e p(p + 1)(1/2+e f A1 = 2] Z lqg |l+ﬁe

90
_T? (675M2>35 4 TG+ erG - e)F(—Ze)F(§ + 3e)I'%(1 + 2¢)

@m*\4m212) = TG~ oT(1 — T2 + 4e) ¢(1+ 6e). (D48)

The prime on the sum in the second line indicates that we have excluded the zero mode ¢, = 0 from the sum. This mode
gives rise to an integral that is linearly divergent in the infrared. Since there is no mass scale in this integral, it vanishes.
Note also that the integral over p is logarithmically divergent in the infrared and this divergence is not set to zero in
dimensional regularization [13]. Expanding Eq. (D48) in powers of €, we obtain

T? 1 7 1 25 M M M
W=———{—+G1——+6—Q}+n+—2—n1——+m 2 B4 36y, logt
4 6(4m)*Le T T OVE € 27 4T F 4aT YEOR T
12y, - 36y1] + Oe). (D49)

Finally, we consider the last subtraction term in Eq. (D41). Since H k(po =0, p) goes like 1/p for small p, the
integrand has a linear infrared divergence. This divergence is set to zero in dlmensional regularization. In fact, since there
is no mass scale in the integral, it vanishes:

[ — [P =o0. (D50)
P

Adding Egs. (D9), (D10), (D26), (D28), (D34), (D40), (D46), and (D49), we can write I in the following form:

= lin) o L2 o]

PP _ 5 457? J=1)  {"=1) {'(—=1)
+ 3 [46 8yg — 16y — 104y, — 24y, log(277) + 24log 2m) + 1 + 24 =1 +2 =1 + 16y5—§(_1):|
— 38.5309 + (O(e)}. (D51)
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