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The photon-to-pion transition form factor is investigated using the form of the renormalon-based twist-

four pion distribution amplitude (DA) in the framework of the light-cone local-duality QCD sum rule,

which, with suitable parameters, is insensitive to the higher-order Gegenbauer coefficients. With a careful

determination for the insertion parameters so that the contribution from the higher-order Gegenbauer

expansions is suppressed, the best-fit central values of the first two nontrivial Gegenbauer coefficients of

the pion distribution amplitude are extracted out from the CLEO data to be a2ð1 GeV2Þ ¼ 0:145� 0:055

and a4ð1 GeV2Þ ¼ �ð0:125� 0:085Þ, respectively. The rescaled photon-to-pion transition form factor

with our best-fit parameters is consistent very well with both the CELLO data and the prediction of the

interpolation formula in all the experimental accessible region of the momentum transfer. The shape of the

pion distribution amplitude based on the two-parameter model favors the camel-like type, where the near-

end-point values are suppressed more than the asymptotic DA, and satisfies the midpoint constraint from

light-cone sum rules approximately.
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I. INTRODUCTION

The production of one neutral pion by two virtual photon
fusion plays a crucial role in the study of QCD exclusive
processes. For photons with large virtualities, the transition

form factor F���, which relates to the vacuum-to-pion
transformation through two electromagnetic currents lo-
cated at different positions with a lightlike separation, can
be expanded with the operator product expansion (OPE)
technique near the light cone. It has been turned out that
this transition form factor can be factorized, and expressed
as a convolution of two factors [1], in which the first one is
a process-dependent hard-scattering kernel arising from
the short distance dynamics of QCD, and the second one
names as the pion distribution amplitude (DA), a universal
nonperturbative quantity, coming from the large distance
dynamics. Experimentally, the most favorable situation is
when one of the photons is nearly real. The corresponding
transition form factor, F��, has been measured first by the
CELLO Collaboration [2], and then extended up to the
momentum transfer of 9 GeV2 by the CLEO Collaboration
[3] with high precision. Theoretically, F�� has been inves-
tigated up to now in different frameworks, such as the
light-cone quark models [4], the QCD sum rule methods
[5], the instanton-vacuum-based chiral quark models [6–
8], etc. Among these, the light-cone QCD sum rules
(LCSR) have been developed to be a useful tool to extract
the information of the pion DA from the experimental data
[9–14]. The main outcome of these theoretical analyses
shows that the most famous asymptotic form of the pion
DA [1] and the Chernyak-Zhitnitsky (CZ) one [15] are
excluded from their first two extracted nontrivial

Gegenbauer coefficients of the pion DA. To our knowl-
edge, all the LCSR’s results are based on the assumption
that the truncated conformal expansion of the pion DA up
to the forth Gegenbauer coefficient would be valid.
However, the uncertainty using this assumption is ambig-
uous, and extremely difficult to estimate.
In the present work, we reanalyze the ��� ! �0 tran-

sition form factor, with sum rules of a quite different type,
namely the light-cone sum rules based on the analytic
continuation by duality (ACD) [16–21]. Because of strictly
local duality, the ACD sum rules need less phenomeno-
logical information, do not suffer from stability problems,
and become accurate at large momentum transfer, and of
course, they can give a more reliable estimate to uncer-
tainties. Moreover, a suitable choice of the radius of local
duality in the ACD sum rules will lead to a great suppres-
sion of the magnitude of the factors in front of higher-order
Gegenbauer coefficients, so that it gives a possibility to
obtain an accurate estimate for the first two nontrivial
Gegenbauer coefficients.
The paper is organized as follows: In the next section we

present the theoretical expression of the form factor,

F���
QCDðQ2; q2Þ, based on a light-cone OPE and the consis-

tent expressions of the twist-two and twist-four parts of the
pion DAs, which are connected with each other by the
renormalon model approach. In Sec. III we make a com-
parison between the Borel LCSR and the light-cone ACD
sum rules, and clarify the reasons why we use the ACD
sum rules in our work. An error analysis for the ACD sum
rules is also discussed in this section. Section IV is devoted
to the detailed error estimate for our ACD sum rules, and
the optimized parameters used in these sum rules are care-
fully determined. In Sec. V we present our fit results for the
first two nontrivial Gegenbauer coefficients, compare them
with other models. Finally, in Sec. VI a summary of our
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conclusions is given, and some open questions are dis-
cussed as well.

II. THE TRANSITION FORM FACTOR F���

The transition form factor for ���� ! �0, F���ðq2; Q2Þ,
is defined through the correlation function [1]:

��;�ðq1; q2Þ �
Z

d4xe�iq1�xh�0ðpÞ j Tfj�ðxÞj�ð0Þg j 0i
¼ i�����q

�
1 q

�
2F

���ðQ2; q2Þ; (1)

where q1 and q2 are the momenta of two incident photons,
p ¼ q1 þ q2 is the momentum of pion, Q2 ¼ �q21 > 0,
q2 ¼ �q22 > 0, and j� ¼ ð2=3Þ �u��u� ð1=3Þ �d��d is the

electromagnetic current of the light quarks.
If the virtualities of the photons are far from zero, the

correlation function can be expanded using the OPE tech-
nique near the light cone, and the resultant expression turns
to be factorizable [1], namely the transition form factor can
be expressed as a convolution of a perturbative hard-
scattering kernel T, and a universal nonperturbative DA

(’ðiÞ
� of twist i) [9,10]

F���ðQ2; q2Þ ¼ f�
Z 1

0
du

��
T0 þ �sð�2

RÞ
4�

T1

�
’ð2Þ

� ðu;�2
FÞ

� 1

2
N�1

T T2
0’

ð4Þ
� ðu;�2

FÞ
�
; (2)

where f� ¼ 132 MeV is the pion decay constant NT ¼
ðe2u � e2dÞ=

ffiffiffi
2

p ¼ ffiffiffi
2

p
=6, the QCD normalization factor, u

the quark longitudinal momentum fraction, and�F and�R

are the factorization scale and the renormalization scale,
respectively. The leading term, T0, in the hard-scattering
kernel is [1]

T0 ¼ NT

�Q2

�
1

1þ!ð �u� uÞ þ ðu ! �uÞ
�
; (3)

where �u ¼ 1� u, ! ¼ ðQ2 � q2Þ=ðQ2 þ q2Þ, and �Q2 ¼
�ðq1 � q2Þ2=4 ¼ ðQ2 þ q2Þ=2 is the average virtuality of
the valence quarks. The next-to-leading order (NLO) ra-
diative correction, T1, to the leading twist part has been
calculated in the Feynman gauge [22] and is represented by
[23]

T1 ¼ 4T0

�
1

6
½ð1þ �!Þ lnð1� �!Þ þ 4ð1�!Þ lnð1�!Þ þ ð1þ �!Þln2ð1� �!Þ

� ð1�!Þln2ð1�!Þ � 9ð1þ �!Þ�

þ 1

6
ln

�Q2

�2
F

½2ð1þ �!Þ lnð1� �!Þ � 2ð1�!Þ lnð1�!Þ þ 3ð1þ �!Þ�

þ 1

6!2ð1� �2Þ ½2ð1þ �!Þð1þ �!� 2!2Þ lnð1� �!Þ � 2ð1þ!Þð1þ!� 2!2Þ lnð1�!Þ
� ð1þ �!Þð1�!2Þln2ð1� �!Þ þ ð1þ!Þð1�!2Þln2ð1�!Þ�

� 1�!2

3!2ð1� �2Þ ln
�Q2

�2
F

½ð1þ �!Þ lnð1� �!Þ � ð1þ!Þ lnð1�!Þ� þ ð! ! �!Þ
�
; (4)

with � ¼ 2u� 1.

The dependence of the twist-two DA ’ð2Þ
� ðu;�2

FÞ
[’�ðu;�2

FÞ hereafter] on the factorization scale �F is
governed by the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution equation [1]:

d’�ðu;�2
FÞ

d ln�2
F

¼
Z 1

0
dvVðu; v;�sð�2

FÞÞ’�ðv;�2
FÞ; (5)

with the ERBL kernel

Vðu; v;�sð�2
FÞÞ ¼

�sð�2
FÞ

4�
V0ðu; vÞ þ �2

sð�2
FÞ

16�2
V1ðu; vÞ

þ � � � ; (6)

where V0 and V1 come from one- and two-loop contribu-
tions, respectively.

With the knowledge of the ERBL evolution kernel in
one-loop approximation [1], it is useful to expand the twist-
two DA, ’�ðu;�2

FÞ, in the eigenfunctions of ERBL equa-
tion, namely to make the conformal expansion in terms of

Gegenbauer polynomials C3=2
n ð�Þ,

’�ðu;�2
FÞ ¼ �ðuÞX

n�0

0
anð�2

FÞC3=2
n ð�Þ;

�ðuÞ � 6uð1� uÞ; a0 ¼ 1;

(7)

where the summation
P0

n�0 is taken only over even indices
n � 0 accounting for the symmetry under isospin trans-
formation and charge conjugation. The scale dependence
of the DA is determined by

a
1-loop
n ð�2

FÞ ¼ anð�2
0Þ
�
�sð�2

FÞ
�sð�2

0Þ
�
�ðnÞ

; (8)
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where �ðnÞ � �0ðnÞ=2b0 with �iðnÞ and bi being the
anomalous dimensions and the �-function coefficients,
respectively.

When one evolves over a large interval in�F or when�s

at the starting scale �0 is large, the NLO evolution will
become more important. However, to the NLO accuracy,

the C3=2
n ð�Þ are no longer eigenfunctions of the evolution,

so that their coefficients do not evolve independently.
Namely, anð�FÞ at �F >�0 depends on all coefficients
a2ð�0Þ; . . . ; anð�0Þ. The solution to the evolution equation
at the two-loop level is [24]

’2-loop
� ðu;�2

FÞ ¼ �ðuÞX
n

0anð�2
0ÞEnð�2

F;�
2
0Þ
�
c nðuÞ

þ �sð�2
FÞ

4�

X
j>n

0dn;jð�2
F;�

2
0Þc jðuÞ

�
: (9)

It implies that

a2-loopn ð�2
FÞ ¼ Enð�2

F;�
2
0Þanð�2

0Þ

þ �sð�2
FÞ

4�

X
0�j<n

0Ejð�2
F;�

2
0Þ

	 dj;nð�2
F;�

2
0Þajð�2

0Þ; (10)

where

Enð�2
F;�

2
0Þ¼

�
�sð�2

FÞ
�sð�2

0Þ
�
�ðnÞ

	
�
b0þb1�sð�2

FÞ=ð4�Þ
b0þb1�sð�2

0Þ=ð4�Þ
�ð�1ðnÞb0��0ðnÞb1Þ=2b0b1

;

(11)

for the ‘‘diagonal’’ part, and

dj;nð�2
F;�

2
0Þ ¼

Mj;n

2b0½�ðnÞ � �ðjÞ � 1�
	

�
1�

�
�sð�2

FÞ
�sð�2

0Þ
�
�ðnÞ��ðjÞ�1

�
; (12)

for the mixing coefficients, and the numerical values of the
anomalous dimensions and the first few elements of the
matrix Mjn are [25]

�0ð0Þ ¼ 0; �1ð0Þ ¼ 0; �0ð2Þ ¼ 100

9
; �1ð2Þ ¼ 34 450

243
� 830

81
Nf; �0ð4Þ ¼ 728

45
;

�1ð4Þ ¼ 662 846

3375
� 31 132

2025
Nf; �0ð6Þ ¼ 2054

105
; �1ð6Þ ¼ 958 337 651

4 116 000
� 3 745 727

198 450
Nf;

M02 ¼ �11:2þ 1:73Nf; M04 ¼ �1:41þ 0:565Nf; M24 ¼ �22:02þ 1:65Nf;

M06 ¼ 0:0259þ 0:0259Nf; M26 ¼ �7:765þ 0:823Nf; M46 ¼ �22:77þ 1:39Nf;

(13)

respectively, with Nf being a number of active quark
flavors.

The higher-twist component of the transition form factor
depends on the higher quark-gluon Fock state and the
quark transverse momentum. In the LCSR, the asymptotic
form of the twist-four DA is usually used for simplicity [9–
12]. Dorokhov [26] has calculated the transition form
factor up to twist-four in the instanton-vacuum-based ef-
fective quark-meson model, and extracted the twist-four
DA of pion. Recently, the renormalon approach [27],
which relates the leading twist DA to the twist-four DA,
has been used to explore the twist-four DA beyond the
asymptotic approximation. This kind of renormalon-
motivated twist-four DA of pion has been adopted by
Agaev first to analyze the experimental data [14]. The
analysis is then improved by Bakulev et al. [13], and a
consistent expression in the renormalon approach is given
in the form of

’ð4Þ
� ðu;�2

FÞ ¼ 	2ð�2
FÞ

Z 1

0
dvKðu; vÞ’�ðvÞ; (14)

where the kernel K is

Kðu; vÞ ¼ � 2

3

�

ðv > uÞ

�
u �u

v2
þ 1

v
ln

�
1� u

v

��

þ ðu ! �u; v ! �vÞ
�
; (15)

and the coupling 	2 is defined by [28]

h�ðpÞ j gs �d ~G���
�u j 0i ¼ i	2f�p�;

~G�� ¼ 1
2�����G

��; G�� ¼ Ga
��

a=2;
(16)

with the one-loop scale dependence being given by [28]

	2ð�2Þ ¼
�
�sð�2Þ
�sð�2

0Þ
�
�T4

=b0
	2ð�2

0Þ; �T4
¼ 32

9
: (17)

For the sake of consistency between the twist-two and
four DAs of pion in the renormalon model, we prefer to use
Eq. (14) in this paper. For latter convenience, we complete
the integration over v in Eq. (14), and obtain an explicit
expression of the twist-four DA in terms of the first three
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Gegenbauer polynomial expansion coefficients:

’ð4Þ
� ðu;�2

FÞ ¼ 	2ð�2
FÞ
�
u �u

�
�5a2ð�2

FÞð�2þ u �uÞ � 35

10
a4ð�2

FÞð�8� 35u �uþ 94u2 �u2Þ

þ a6ð�2
FÞ
�
54þ 8882

10
u �u� 51832

10
u2 �u2 þ 75647

10
u3 �u3

��
þ 4u2½�1þ a2ð�2

FÞð�1þ 10 �uÞ

þ a4ð�2
FÞð�1þ 28 �u� 63 �u2 þ 126 �u3Þ þ 3a6ð�2

FÞ �uð18þ 99 �u� 484 �u2 � 858 �u3 þ 572 �u4Þ� lnuþ ðu! �uÞ
�
:

(18)

For the case where one photon is nearly real, i.e. q2 ! 0,
the interaction induced by this photon at large distance will
play an important role [5], and such nonperturbative effects
cannot be sufficiently suppressed by using only the trun-
cated light-cone OPE in Eq. (2). One way to avoid this
disease is to work with the LCSRmethod [9], which allows
the QCD theoretical calculation at sufficient large q2 at
first, and then returns to the real photon case by means of
the dispersion relation. We will follow this stratagem, but
with a different type of sum rules, the ACD sum rules.

III. THE ACD SUM RULES

A. The reason for using the local-duality sum rules

The ACD sum rules belong to a class of strictly local
QCD sum rules. The key point is that the transition form

factor F���ðQ2; t � q22Þ is an analytic function in the com-
plex t plane with a cut on the positive real axis running
from the lowest resonance threshold to infinity. Then, the
dispersion relation may be written as

F���ðQ2; t0Þ ¼ 1

2�i

I
�
dt

F���ðQ2; tÞ
t� t0

¼ 1

�

Z R

0
dt

ImF���ðQ2; tÞ
t� t0

þ 1

2�i

	
I
jtj¼R

dt
F���ðQ2; tÞ

t� t0
; (19)

where � denotes the integral contour composed of a circle
CR and a cut on the positive real axis as shown in Fig. 1.

Because of the asymptotic behavior of F���, we choose the
dispersion relation without subtraction.

It is obvious that, when the radius of the circle becomes
infinite, and the integral along the circle vanishes, we get
the usual sum rule

F���ðQ2; t0Þ ¼ 1

�

Z 1

0
dt

ImF���ðQ2; tÞ
t� t0

: (20)

Then, the spectral density can be calculated from the
imaginary part of the transition form factor according to
the global or semilocal quark-hadron duality above some
threshold s0,

Z 1

s0

dt
�hðQ2; tÞ
t� t0

¼ 1

�

Z 1

s0

dt
ImF���ðQ2; tÞ

t� t0
: (21)

The global duality assumption introduces a source of sys-
tematic uncertainties, which can be controlled qualitatively
after the Borel transformation if there is a stability window
of the Borel mass and the duality threshold. When the
radius R of the circle CR is finite but still sufficiently large,
the pointwise quark-hadron duality, namely the local dual-
ity, is valid, and the uncertainty of duality assumption can
be estimated in a controlled and quantitative way.
Usually, the pion DA can be parametrized by only two

variables, a2ð�2
0Þ and a4ð�2

0Þ. This two-parameter model

enables one to fit the experimental constraints for the
coefficients, h�Ni� � R

1
0 ’�ðxÞð2x� 1ÞNdx, up to N ¼

10 with the nonlocal-condensate (NLC) QCD sum rules
[29]. Although the two-loop evolution of the two-
parameter model generates the higher Gegenbauer har-
monics, the contribution of the corresponding higher co-
efficients still remain numerically negligible, so that the
analysis of the transition form factor can be safely carried
out within the framework of this two-parameter model
[11,13]. However, as an initial input, the validity of the
two-parameter model analysis from the CLEO data
strongly depends on the value of the asymmetric parameter
! ¼ ðQ2 � q2Þ=ðQ2 þ q2Þ, namely the kinematic region

FIG. 1. The contour of the integration in the complex t plane.

ZE-KUN GUO AND JUEPING LIU PHYSICAL REVIEW D 78, 076006 (2008)

076006-4



of !. For instance, the transition form factor in the space-
like region can be expressed as

F���ðQ2; q2Þ ¼ f�ffiffiffi
2

p � �Q2

�
W0ð!;�RÞ

þX0

n>0

Wnð!;�RÞanð �Q2Þ
�
; (22)

where, for simplicity, we set the factorization scale �2
F ¼

�Q2. In the small j!j region, Wn 
!n, so that the confor-
mal expansion converges fast. However, in the real photon
limit, j!j ! 1, all the Gegenbauer coefficients are seized
of nearly equal weights, Wnð1; �RÞ � 1 [23]. The two-
parameter model is thus not suitable in this kinematic
region if the Gegenbauer coefficients decrease not so fast
with n, just as in the instanton-vacuum-based chiral quark
model [6–8] and the light-cone quark model [4]. For the
usual LCSR, the value of ! is an average over the global
duality region, and eventually j!j ! 1 when q2 grows.
However, in the ACD sum rules, the exact local duality
allows us to choose an appropriate R, so that the values of
Wn>4 corresponding to the local-duality point are sup-
pressed, and the estimate of the first two nontrivial
Gegenbauer coefficients from the sum rules is reliable.

B. Description of the ACD sum rules

The integral in Eq. (19) along the real t axis from 4m2
� to

tth is the low energy physical absorptive part, and the
corresponding spectral density contains resonances in the
interval ½4m2

�; tth�, which cannot be produced from the
light-cone OPE in general. As necessary phenomenologi-
cal information, these resonances’ contribution is assumed
to be dominated by the lower vector mesons, and described
as the finite-width Breit-Wigner form [9],

FRðQ2; t0Þ � 1ffiffiffi
2

p
�

X
V¼�;!

Z tth

4m2
�

dt

	 mV�VfVF
V�ðQ2Þ

½ðm2
V � tÞ2 þm2

V�
2
V�ðt� t0 � i�Þ ; (23)

where FV�ðQ2Þ and fV are defined through the matrix
elements of electromagnetic current

h�0ðpÞjj�jVðq2Þi ¼ FV�ðQ2Þm�1
V �����e

�q�1 q
�
2 ; (24)

and

hVjj�j0i ¼ fVffiffiffi
2

p mVe
�
�; (25)

respectively, with e� being the polarization vectors of the
corresponding vector mesons. The isospin symmetry leads
to

1
3 h�0ðpÞjj�j!ðq2Þi � h�0ðpÞjj�j�0ðq2Þi; (26)

which implies

F!�ðQ2Þ � 3F��ðQ2Þ: (27)

Assuming the spectral density is smooth in t within the
interval ½tth; R� and can be represented by a polynomial of

degree m � N1, an auxiliary analytic function Dð1Þ
N1
ðtÞ with

Dð1Þ
N1
ðt0Þ ¼ 1 may be introduced as a weight factor to sup-

press the Cauchy kernel by the least-square fit routine [16–
19],

F���ðQ2; t0Þ ¼ 1ffiffiffi
2

p
�

X
V¼�;!

Z tth

4m2
�

dt

	 mV�VfVF
V�ðQ2ÞDð1Þ

N1
ðtÞ

½ðm2
V � tÞ2 þm2

V�
2
V�ðt� t0 � i�Þ

þ 1

2�i

I
jtj¼R

dt
Dð1Þ

N1
ðtÞF���ðQ2; tÞ
t� t0

þ�fit;

(28)

where a specific form for the weight factor is chosen to be

Dð1Þ
N1
ðtÞ ¼ 1� t� t0

R

XN1

n¼0

cn

�
t

R

�
n
; (29)

the coefficients cn are determined by the conditions

Z R

tth

dt
Dð1Þ

N1
ðtÞ

t� t0
tm ¼ 0; for m ¼ 0; 1; . . . ; N1; (30)

and the fit error is

�fit � 1

�

Z R

tth

dt

�
1

t� t0
� 1

R

XN1

n¼0

cn

�
t

R

�
n
�
ImF���ðQ2; tÞ:

(31)

which goes to zero for N1 ! 1. On the other hand, on the
circle CR, only the truncated terms in the asymptotic

expansion of F��� are known in practice. It gives rise to
an additional source of error named asymptotic error, �asy.
Choosing a larger value of N1 will increase the contribu-
tion from the truncated terms, and thus enhances the
asymptotic error [19], while the fit error will be larger for
N1 being smaller. The order of magnitude of N1 is usually
chosen to be less than or equal to the order of the truncated
expansions, see Sec. IV for more details.
There may be an additional error in the ACD trick

generated by an inappropriate procedure of the analytic
continuation of the theoretical expansion from the space-
like region of t, the negative real axis of the t plane, to the
whole circle CR. As shown in Ref. [18], if one neglects the
t dependence of the expansion coefficients on the circle
CR, and just replaces them with their expressions in the
spacelike region, for example

F���ðQ2; tÞ ’ F���ðQ2; t ¼ q2 < 0Þ; (32)

in our case, it will then introduce the so-called analytic
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continuation error,�AC, and may be out of control [19]. To
avoid the influence from such analytic continuation error,

we try to take the t dependence of F��� on the circle CR

into account, and analytically extrapolate the expression of

F��� from the negative real axis of t to the circle CR by
considering t as a complex variable. This simple process
for the analytical continuation exhibits also one disease,
namely the expression for the perturbative part must be
divergent at some fixed ! in the timelike region where
j!j> 1, as seen from Eqs. (3) and (4). Moreover, this
singularity may be far from the end points, and thus, it
cannot be suppressed by the DA. To cure this disease,
another weight function of the same type as before is
introduced [20,21]:

Dð2Þ
N2
ðtÞ ¼ 1� t� t0

R

XN2

n¼0

dn

�
t

R

�
n
; (33)

with the coefficients dn determined by

dm

dtm
Dð2Þ

N2
ðtÞðt ¼ RÞ ¼ 0; m ¼ 0; 1; 2; . . . ; N2: (34)

which leads to a replacement of the weight factor in
Eq. (28):

Dð1Þ
N1
ðtÞ ! DN1;N2

ðtÞ � Dð1Þ
N1
ðtÞDð2Þ

N2
ðtÞ: (35)

Finally, in the limit t0 ! 0, we obtain the ACD expres-
sion for the transition form factor,

F��ðQ2Þ � F��ðQ2; q2 ¼ 0Þ ¼ F��ðQ2ÞIR þ IðQ2Þ;
(36)

where

IR � 1ffiffiffi
2

p
�

X
V¼�;!

Z tth

4m2
�

dt
cVmV�VfVDN1;N2

ðtÞ
½ðm2

V � tÞ2 þm2
V�

2
V�ðt� t0Þ

;

c� ¼ 1; c! ¼ 3

IðQ2Þ � 1

2�

Z 2�

0
d�DN1;N2

ðRei�ÞF���ðQ2; Rei�Þ: (37)

The two equations for F��ðQ2Þ and F��ðQ2Þ, Eq. (36) with
ðN1; N2Þ and ðN0

1; N
0
2Þ respectively, can be solved to obtain

F��ðQ2Þ ¼ I0RIðQ2Þ � IRI
0ðQ2Þ

I0R � IR
; (38)

F��ðQ2Þ ¼ IðQ2Þ � I0ðQ2Þ
I0R � IR

; (39)

where the unprimed quantities and the primed ones corre-
spond to the different choices of a pair of the indices
appearing in DN1

ðtÞ and DN2
ðtÞ, namely ðN1; N2Þ and

ðN0
1; N

0
2Þ, respectively. Equations (38) and (39) are our

local ACD sum rules for determining the form factors
F��ðQ2Þ and F��ðQ2Þ.

IV. DETERMINATION OF THE PARAMETERS

To determine the values of tth, the vector-meson masses,
widths

m� ¼ 770 MeV; �� ¼ 151 MeV;

m! ¼ 782 MeV; �! ¼ 8 MeV;
(40)

and the coupling f� ¼ 132 MeV, f� ¼ 216 MeV are

used, while the coupling of ! meson has not been fixed
unambiguously. From the approximate relations
3h!jj�j0i � h�0jj�j0i, we have f! � 1

3 f�, which is con-

sistent with the extraction of the resonance parameters
from the experimental data [30]. It is found numerically
that the spectral density of � and ! mesons in our expres-
sion becomes negligible when s goes beyond 1 GeV2,
which is consistent with the conclusion that the duality
radius in the rho-meson channel was 1:5 GeV2 [31]. Thus,
we take tth ¼ 1:25 GeV2 for the duality radius in our
estimation. The coupling 	2ð�2

0Þ was originally estimated

in [28,32], reestimated in [11], and found to be
	2ð1 GeV2Þ ¼ 0:19� 0:02 GeV2. We use 0:19 GeV2 for
	2ð1 GeV2Þ in the numerical analysis except for explicit
statement. The ERBL evolution will be executed at the
two-loop level with the two-loop strong coupling constant
as in [11]. Up to now, there are still three parameters in our
ACD sum rule, i.e. R, N1, and N2, left to be determined.
The determination of the R value is not a trivial task.

Choosing a larger value of R could reduce the uncertainty
resulting from the higher-twist DAs, and the uncertainty
from the next-to-next-to-leading order (NNLO) perturba-
tive correction since the renormalization scale �R is pro-
portional to ðQ2 þ RÞ in some renormalization schemes.
However, if R exceeds some value, the corresponding
absolute value of ! ¼ ðQ2 � RÞ=ðQ2 þ RÞ with some
fixed Q2 will be larger than 0.8 in the spacelike region,
and the neglected higher Gegenbauer coefficients will take
an important role when those Gegenbauer coefficients an>4

are not very small as usually expected. Therefore, within
the experimentally acquirable range of Q2, the larger R,
and consequently the larger j!j, may lead to the invalida-
tion of the two-parameter model of the pion DA.
Furthermore, we hope to avoid/suppress the influence
from the resonances in the J=c region. Therefore, an upper
bound for R is set to be 9 GeV2, and the other values,
namely R ¼ 3 and 5:76 GeV2, are also checked to obtain
the optimized R for the sum rule.
To avoid an additional running due to the renormaliza-

tion, the natural renormalization scale, �2
R, may be chosen

to be lower than the usual average virtuality of the valence
quarks, ðQ2 þ RÞ=2, since the large transferred momentum
is, in fact, partitioned among many propagators in the hard-
scattering amplitude. In these attempts, the Brodsky-
Lepage-Mackenzie scale [33,34] is expected to decrease
the influence from the NNLO radiative correction, but its
rather low value Q2=9 [33] questions the applicability of
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the perturbative QCD prediction at experimental accessible
momentum transfers. In the so-called physically based
scheme, the �V scheme [35], the renormalization scale is
determined to be Q2=1:7 for the amplitude of ��� ! �

calculated with the asymptotic distribution and MS renor-
malization scheme, which becomes as, say ðQ2 þ q2Þ=4
roughly, corresponding to our case, ���� ! �. It is ex-
pected that the higher-order QCD corrections are mini-
mized due to the fact that this scale reflects the mean
(NLO) virtuality of the exchanged gluons [33]. In the spirit
of the �V scheme, the natural renormalization scale �2

R is
set to be ðQ2 þ RÞ=4 in our ACD sum rule approach.

Now we deal with the estimation of N1 and N2. In the
ACD sum rules, N1, N2 are determined by minimizing the
amount of magnitude of the fit and asymptotic errors
[17,21], and play the role similar to the stability window
in the Borel sum rules. The error of the transition form
factor is

jF��
exactðQ2Þ � F��

theoryðQ2Þj � �asy þ�fit; (41)

where the analytic continuation error is negligible after
making an appropriate analytic continuation for t. The fit
error is bounded by

�fit � �fit-max � M
�

Z R

tth

dt

��������
DN1;N2

ðtÞ
t

��������; (42)

where M denotes the maximal mean value of the spectral
density ImFRðt; Q2Þwithin the interval ½tth; R�, and is set to
be 1:0 GeV�1 since the maximal value of the spectral
density ImFRðt; Q2Þ in our analysis is, at most,
9:4 GeV�1. The resultant upper bounds of the fit error
corresponding to different values of N1, N2, and R are
shown in Fig. 2 and Table I. It is obvious from this estimate
that the larger the values of N1 and N2, the smaller the fit
errors. We will choose N1 ¼ 2, 3 and N2 ¼ 5, 6 to make
the fit errors to be minimal and negligible.

The asymptotic error in ACD sum rule is defined as

�asy ¼ 1

2�

��������
Z 2�

0
DN1;N2

ðRei�Þ½F���ðQ2; Rei�Þ

� F���
QCDðQ2; Rei�Þ�d�

��������; (43)

where the QCD prediction, F���
QCDðQ2; tÞ, is considered as

an asymptotic expression of the physical farm factor,

F���ðQ2; tÞ. One of the upper bounds for the asymptotic
error is traditionally estimated to be [17,21]

�asy-max ¼ �

2�

Z 2�

0
d�jDN1;N2

ðRei�Þj; (44)

where � stands for the upper bound of jF���ðQ2; tÞ �
F���
QCDðQ2; tÞj in the spacelike region. However, it is much

overestimated so that �asy-max � �asy because of the
strong enhancement due to the phase decoherence in
�asy-max. We prefer to trace back to the original definition
(43).

The difference between F���ðQ2; tÞ and F���
QCDðQ2; tÞ

comes from two sources, one of which is the NNLO
radiative correction, F��

NNLOðQ2Þ, for the hard kernel of

the leading twist part, and the other one the neglected
higher twists. The latter will not be considered in this paper
for two reasons: First, the contributions higher than twist-
four to the photon-to-pion transition form factor have not
been calculated up to now to our knowledge; second, the
(factorizable) twist-six contribution to the electromagnetic
pion form factor is only about 2% of the twist-four one, and
thus negligible [36]. We thus assume that such higher-twist
corrections are similar or even more negligible since the
experimental accessible momentum transfers in our case

(a) R = 3GeV2 (b) R = 5.76GeV2 (c) R = 9GeV2

FIG. 2 (color online). The dependence of �fit-max on N1 and N2 for R ¼ 3, 5.76, and 9 GeV2. From above to below, the plots
(discrete data connected by straight lines) correspond to N2 ¼ 1, 2, 3, 4, 5, and 6, respectively.

TABLE I. The �fit-max with some parameters.

�fit-max ½GeV�1� R ¼ 5:76 GeV2 R ¼ 9 GeV2

N1 ¼ 3, N2 ¼ 5 1:43	 10�4 1:16	 10�3

N1 ¼ 3, N2 ¼ 6 8:4	 10�5 7:75	 10�4
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are higher. Therefore, we have approximately

�asy � 1

2�

��������
Z 2�

0
DN1;N2

ðRei�ÞF���
NNLOðQ2; Rei�Þd�

��������
¼ jF��

NNLOðQ2Þj�2
R¼ðQ2þRÞ=4;�2

F¼2Q2 ; (45)

where the fact that the average of any analytical function
on a circle is just its value at the center is used. It is worth
noting that, after the integration over the circle cR, the
chosen value of �R in our ACD sum rules will remain to
be invariant, and occur in the expression of F��

NNLOðQ2Þ.
The remarkable characteristic of �asy is that it is, in fact,
independent ofN1 andN2, which are simply determined by
minimizing �fit.

Now as a quantitative estimate, let us use the result for

the radiative correction up to the NNLO order in the MS

scheme [see Eq. (4.3) in [34] ] including only a large part of
F��
NNLOðQ2Þ proportional to the leading � function, and

calculate the ratio of F��
NNLOðQ2Þ to F��

up to NLOðQ2Þ which
are shown in Fig. 3. In most of theQ2 region of the data, the
influence from NNLO correction is below 10%. Another
observation is that R ¼ 9 GeV2 is a better choice in the
whole Q2 region. The magnitudes of the asymptotic error
for R to be the Schmedding-Yakovlev (SY) scale �2

SY �
5:76 GeV2 are listed in Table II. From Tables I and II, we
can see that the upper bound of the total error of the ACD
sum rules is about 10�4 GeV�1 for smaller N1 and N2, and
R being 5.76 or 9 GeV2.
As the end of this section, we note that the magnitude of

the R value has an important role to control the conver-
gence of the conformal expansion for the transition form
factor in the numerical simulation. Rewriting the integral
expression on the circle in terms of the first three
Gegenbauer coefficients

IðQ2Þjjtj¼R ¼ I0ðQ2Þjjtj¼R þ I2ðQ2; �2
FÞ � a2ð�2

FÞjjtj¼R

þ I4ðQ2; �2
FÞ � a4ð�2

FÞjjtj¼R

þ I6ðQ2; �2
FÞ � a6ð�2

FÞjjtj¼R: (46)

We can show in Fig. 4 the dependence of the different
weights, In, on Q2 in the summation IðQ2Þ for different
choices of the R value. The absolute value of I6 is nearly
negligible compared with others when R is not less than
�2

SY � 5:76 GeV2, so that the first two nontrivial

Gegenbauer coefficients of pion DA extracted from the
experiment can be creditable.

FIG. 3. The ratio F��
NNLOðQ2Þ=F��

up to NLOðQ2Þ for the renormal-
ization scale, �2

R ¼ ðQ2 þ RÞ=4, with R being 3 GeV2 (dotted
line), 5:76 GeV2 (dashed line), and 9 GeV2 (solid line).

(a) R = 3GeV 2 (b) R = 5.76GeV2 (c) R = 9GeV 2

FIG. 4 (color online). The dependence of the weights In (n � 6) on Q2 for �2
R ¼ �2

F ¼ ðQ2 þ RÞ=2, N1 ¼ 3, N2 ¼ 5 and
(a) R ¼ 3 GeV2, (b) R ¼ 5:76 GeV2, (c) R ¼ 9 GeV2. From above to below, the plots correspond to the weights I0 (solid), I2
(dot-dot-dashed), I4 (dash-dotted), and I6 (dashed), respectively.

TABLE II. The NNLO radiative corrections for R ¼ 5:76 GeV2.

Q2 ½GeV2� 1.00 2.00 3.00 5.76 8.00

�asy ½GeV�1� 1:2	 10�2 3:8	 10�3 1:9	 10�3 5:6	 10�4 2:9	 10�4
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V. EXTRACTING THE PION DA FROM THE CLEO
DATA

The first two nontrivial Gegenbauer coefficients are
extracted from the CLEO experimental data with the fit
of the form

Q2 � F��ðQ2Þ ¼ A0ðQ2Þ þ A2ðQ2; �2
0Þ � a2ð�2

0Þ
þ A4ðQ2; �2

0Þ � a4ð�2
0Þ; (47)

where the expressions of the factors A0, A2, and A4 can be
read off from Eq. (2), the initial scale�2

0 is fixed at 1 GeV2

for the comparison with other LCSR results, and the con-
tribution of a6 is neglected according to the previous dis-
cussion. We consider only the experimental uncertainty in
the fit procedure in order to obtain a strict constrain in the
parameter space of ða2; a4Þ [11]. The natural renormaliza-
tion scale is taken to be �2

R ¼ ðQ2 þ RÞ=4, while the
factorization scale is chosen to be higher than �2

R, say
�2

F ¼ ðQ2 þ RÞ=2. The parameters in the auxiliary weight
functions are set to be N1 ¼ 3, N2 ¼ 5 and N0

1 ¼ 3, N0
2 ¼

6 to make the fit error in Eq. (38) negligible. The two
different R values, 5:76 GeV2 and 9 GeV2, are used in the
numerical analysis for comparison. The neglected higher-
twist contributions are small enough in most of the experi-

mental energy region, and the largest potential theoretical
uncertainty comes from the renormalon-based twist-four
contribution. In fact, a4 predicted in the renormalon model
may be considered to be as its upper limit due to neglecting
the contribution coming from the twist-four anomalous
dimensions as mentioned in Ref. [27]. In the following,
the lower limit of the twist-four coupling, 	2ð1 GeV2Þ ¼
0:17 GeV2 for R ¼ 5:76 GeV2 and R ¼ 9 GeV2 respec-
tively, will be used to check the influence of the uncertainty
of the twist-four coupling.
The fit results of our numerical simulation are shown in

Fig. 5, where the experimental data are taken from Ref. [3],
and the experimental systematic and statistic uncertainties,
�sys and �sta, have been combined in quadrature, and the

weight 1=ð�2
sys þ �2

staÞ is put for every datum point in the

error analysis. The central values of the fits and the corre-
sponding �2

DOF � �2=13 are listed in Table III, in which

the different symbols are used to designate the different
parameter insertions leading to the different locations in
the a2-a4 plane. Note that our �2 values are comparable
with those in LCSR [11,13]. As shown in Fig. 5, the
variation with R and 	2 is moderate, and the 1� confiden-
tial regions largely overlap, which exhibits a stability of the
ACD local sum rule in the variation of the parameters. The
average ratio of A4ðQ2; �2

0Þ=A2ðQ2; �2
0Þ, which determines

the orientation of the large axis of the fiducial ellipse, is
insensitive to the variation of 	2, and will be smaller when

(a) (b)

FIG. 5 (color online). The fit at �2
0 ¼ 1 GeV2 with (a) R ¼ 5:76 GeV2, (b) R ¼ 9 GeV2. The solid and dashed error ellipses

correspond to the 68% and 95% confidential regions, respectively.

TABLE III. The extracted central values of the Gegenbauer coefficients a2 and a4 evaluated at the normalization scale�2
0 ¼ 1 GeV2

for different parameter insertions.

R-value Twist-four coupling (GeV2) Symbols a2 a4 hu�1iR� �2
DOF

R ¼ 5:76 GeV2 	2ð�2
0Þ ¼ 0:17 5 0.21 �0:17 0.04 0.467

	2ð�2
0Þ ¼ 0:19 4 0.26 �0:24 0.02 0.466

R ¼ 9 GeV2 	2ð�2
0Þ ¼ 0:14 b 0.09 �0:04 0.05 0.472

	2ð�2
0Þ ¼ 0:17 . 0.15 �0:14 0.01 0.466

	2ð�2
0Þ ¼ 0:19 m 0.2 �0:21 �0:01 0.466

	2ð�2
0Þ ¼ 0:21 c 0.25 �0:28 �0:03 0.468
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R becomes larger. The values of this ratios at �2
0 ¼

1 GeV2 in Figs. 5(a) and 5(b) are about 0.30 and 0.19,
respectively (corresponding to 0.36 and 0.23 at �2

0 ¼
5:76 GeV2, respectively), which are smaller than the latest
LCSR result [13], and indicate that the factors in front of
the neglected Gegenbauer coefficients, say a6, should be
very small as shown in Fig. 4. For comparison, the values
of a2, a4 and hu�1iR� for the different DAs of the pion are
listed in Table IV, where most of the rows are taken from
the Table I of Ref. [13] except for the results from Agaev’s
revised renormalon-based model [14], the NLC sum rules
with the improved Gaussian model of the nonperturbative
QCD vacuum [38], and the latest lattice QCD estimate of
the QCDSF/UKQCD collaboration [39], and we have
evolved the values of the last two rows down to the scale
of �2

F ¼ 1 GeV2 using the exact two-loop coupling and
the two-loop ERBL kernel.

The reduced inverse moment is defined by

hu�1iR�ð�2
FÞ �

hu�1i�ð�2
FÞ

3
� 1 ¼

Z 1

0
du’�ðu;�2

FÞu�1

¼ a2 þ a4 þ � � � ; (48)

which is relevant in leading-order perturbative calculations
for the photon-to-pion transition form factor and the pion
electromagnetic form factor. We can see that our fit is
consistent, in the signs of a2 and a4 as well as in magnitude
of the reduced inverse moment, with all results based on
the two-parameter model listed in Table IV.
The curves of the transition form factor with different

parameters in Table III are displayed in Figs. 6(a) and 6(b).
For comparison, the plots of the interpolation formula for
both the perturbative and the nonperturbative regions
[40,41],

F��ðQ2Þ ¼
ffiffiffi
2

p
4�2f�ð1þQ2=s0Þ

�
1� 5

3

�sðQ2Þ
�

�
;

s0 ¼ 0:67 GeV2;

(49)

are drawn as well, where the exact two-loop coupling is
used for consistency. The interpolation formula without the
radiative correction is consistent with the chiral anomaly
constraint, and thus is more suitable in the low energy
region, while the one with the radiative correction should
be more reliable in the asymptotic region. We note that our
strategy is to derive the t ¼ 0 prediction from the incom-
plete t ¼ R QCD expression working at relatively large
Q2, and thus we do not want to exactly arrive at the
normalization point of the axial anomaly, but prefer to
take it as a standard for choosing the best-fit parameters.
As usual, the higher-order radiative contributions and the

TABLE IV. Estimation of the Gegenbauer coefficients a2 and
a4, and the reduced inverse moment hu�1iR� normalized at �2

0 ¼
1 GeV2 in different two-parameter models of pion DA.

DAs Symbols a2ð�2
0Þ a4ð�2

0Þ hu�1iR�
Asymptotic j 0 0 0

CZ [15] 0.56 0 0.56

PR [7] h 0.09 �0:02 0.07

ADT [8]  0.05 �0:04 0.01

SY [10] w 0.27 �0:22 0.05

BMS03 [11] 0.31 �0:35 �0:04
Agaev [14] 0.27 �0:3 �0:03
BMS06 [13] 0.44 �0:40 0.04

BZ [37] d 0.12 �0:02 0.1

NLC01 [29] r 0.2 �0:14 0.06

NLC06 [38] 0.29 �0:21 0.08

QCDSF/UKQCD06 [39] 0:28� 0:16

(a) (b) (c)

FIG. 6 (color online). (a) The transition form factor F��ðQ2Þ from the ACD sum rules with different parameter insertions4 (dotted),
5 (dashed),m (dash-dotted), and. (solid). The interpolation formula without the radiative correction is plotted by the upper dot-dot-
dashed line, while that formula with the radiative correction by the lower dot-dot-dashed line. (b) F��ðQ2Þ from the ACD sum rules
with other parameter insertions c (dotted), m (dash-dotted), . (solid), and b (dashed). The interpolation plots are the same as (a).
(c) The rescaled �� � transition form factor from the ACD sum rules with the same parameters and designations as (b), and from the
LCSR [42] (lower dot-dot-dashed line), [9] (upper dot-dot-dashed line).
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power corrections are suppressed at the larger R value, and
the theoretical results for F��ðQ2Þ from the ACD sum rules
should be more reliable if the higher resonance contribu-
tions are carefully dropped by choosing an appropriate

weight function Dð1Þ
N1
ðtÞ. Therefore, we fix R to be

9 GeV2. To get a reliable value region of the twist-four
coupling, we vary it within a large interval of
½0:14 GeV2; 0:21 GeV2�. From Table III, we see that the
a4 becomes relatively large with the increasing of 	2.
Then, from Fig. 6(b), one can see that the fit plots with
larger R and 	2ð1 GeV2Þ � 0:19 GeV2 are more consis-
tent with the interpolation without radiative correction, and
the plot withb even has nearly the same value as the chiral
anomaly.

Another constraint for our fit parameters is arising from
the transition form factor F��ðQ2Þ derived from Eq. (39) in
our ACD sum rules. We can see from Fig. 6(c) that this
form factor with the corresponding a2 and a4 extracted
from the experimental data of F��ðQ2Þ is sensitive to the
variation of 	2, and the larger 	2 value will lead to a bad
behavior in the asymptotic region. On the other hand,
F��ðQ2Þ has been calculated in the LCSR [9,42], and turns
out to be related with the decay rate of J=� ! � ! �0!,

BrðJ=� ! � ! �0!=J=� ! eþe�Þ
¼ 9

32
ð3MJ=�F

��ðM2
J=�Þ=m�Þ2; (50)

which is predicted from our ACD sum rules with the
parameter insertion b to be about 4:9	 10�4, and agrees
very well with the experimental data ð4:5� 0:5Þ 	 10�4

[43]. In consideration with all of the above, we obtain our
best fit and the uncertainty, mainly caused from the varia-
tion of the twist-four coupling, as a conservative estimate
for 	2ð1 GeV2Þ varying from 0:14 GeV2 to 0:19 GeV2,

a2ð1 GeV2Þ ¼ 0:145� 0:055;

a4ð1 GeV2Þ ¼ �ð0:125� 0:085Þ: (51)

The best-fit error ellipses of R ¼ 9 GeV2 with some
typical model predictions are shown in the Fig. 7. The
latest LCSR estimates with the same renormalon-based
twist-four DA [13] are far from the 3� confidential region
even with 	2ð1 GeV2Þ ¼ 0:21 GeV2, while those for the
instanton-vacuum-based chiral quark model [7], the earlier
NLC condensate QCD sum rules [29], and the Ball-Zwicky
(BZ) DA [37] exhibit a nice compatibility between them-
selves and ours in our 2� confidential region when
	2ð1 GeV2Þ � 0:19 GeV2.
As mentioned before, our local ACD sum rule and the

usual light-cone sum rule use the dispersion relations (28)
with (31) and (20) with (21), respectively. We note that in
the former the resonances’ contributions in the interval
½tth; R�, �fit, are eliminated by introducing an appropriate

FIG. 7 (color online). The error ellipses of our best fit at �2
0 ¼ 1 GeV2 with different parameters b (top left), . (top right), m

(bottom left), c (bottom right), compared with other models listed in Table IV, where solid error ellipses correspond to 1�, dashed to
2�, and dotted to 3�.
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weight function Dð1Þ
N1
ðtÞ into the integral, and the higher

resonances’ contributions, such that J=c etc. are avoided
by chosen R to be � 9 GeV2. However, these complicated
high resonance contributions are only approximated by the
assumption of the global or semilocal quark-hadron duality
above some threshold s0 with Borel suppression in the
usual light-cone sum rules. Moreover, as we already dis-
cussed, the usual LCSR is working in the kinematical
region of ! being an average over the global duality
region, eventually j!j ! 1, where all the Gegenbauer co-
efficients are seized of nearly equal weights, and the two-
parameter model may not be suitable. By contrast, the
ACD sum rules allow us to choose an appropriate R to
work in the small j!j region where the conformal expan-
sion (22) converges fast, so that the estimate of the first two
nontrivial Gegenbauer coefficients from the sum rules is
reliable [as indicated by the low values of
A4ðQ2; �2

0Þ=A2ðQ2; �2
0Þ shown in Fig. 5]. Thus, we believe

that the absolute values of a2 and a4 may be overestimated
in the latest LCSR evaluation though the signs of a2, a4,
and hu�1iR� are the same as ours and many other estimates
[13].

In Fig. 8(a), we present the shapes of our two-parameter
DAs corresponding to four different insertions of the twist-
four couplings 	2, each of which is camel-like, and has one
minimum at the midpoint and two maxima on its two sides.
They are similar to the CZ DA, but not a simple copy of the
CZ DA because of their stronger suppression near the end
points. This characteristic indicates that the soft gluon
exchange effect in the perturbative QCD hard kernel is
suppressed so that the Sudakov suppression is not as nec-
essary as for the case of the asymptotic DA [44,45], and
that there may be a nonperturbative suppression for DA at
the end points, as suggested by Dorokhov [46]. We note
here that our two-parameter DAs of the best fit may also be
camel-like despite the better numerical compatibility with
some quasiasymptotic ones.

It should be emphasized that another constraint on the
pion DA is coming from the decay couplings, such as g�NN

and g�!�, which are related to the value of ’�ð1=2Þ in the

LCSR. It was further suggested by Braun and Filyanov that
this midpoint constraint should be ’�ðu ¼ 1=2; �2

0 ¼
1 GeV2Þ ¼ 1:2� 0:3 [47], which conflicts heavily with
the camel-like DA from the latest LCSR, and matches
approximately to our best fits for the parameter insertion
0:14 GeV2 � 	2ð1 GeV2Þ � 0:19 GeV2.

VI. CONCLUSIONS

In this study, we use the light-cone ACD sum rule and
the renormalon-based twist-four pion DA to extract the
first two nontrivial Gegenbauer coefficients from the
CLEO data of the photon-to-pion transition form factor.
The ACD sum rule provides a flexible tool to study the
different kinematic regions of !, some of which are very
suitable for the truncated conformal expansion. With a
careful determination for the parameters so that the con-
tribution from the higher-order Gegenbauer expansions is
suppressed, the best-fit central values of the first two non-
trivial Gegenbauer coefficients, a2ð1 GeV2Þ and
a4ð1 GeV2Þ, are found to be 0:145� 0:055 and�ð0:125�
0:085Þ, respectively. They are consistent not only in signs
of a2 and a4 but also in the magnitude of the reduced
inverse moment hu�1iR� with all results based on the two-
parameter model listed in Table IV. The rescaled photon-
to-pion transition form factor with our best-fit parameters
is consistent very well with both the CELLO data and the
prediction of the interpolation formula in all the experi-
mental accessible region of the momentum transfer.
Moreover, the decay rate of J=� ! � ! �0!, which is
related to F��ðQ2Þ, is predicted from our ACD sum rules
with the parameter insertion b (see Table III) to be about
4:9	 10�4, and agrees very well with the experimental
data ð4:5� 0:5Þ 	 10�4 [43].

(a) (b)

FIG. 8 (color online). (a) Some two-parameter DAs at �2
0 ¼ 1 GeV2. The plots with midpoint values from above to below

correspond to the asymptotic DA, our best fit with parameters b, ., m, c, LCSR [13], respectively. (b) The rescaled photon-to-
pion transition form factor. Our best fit withb (dashed line),. (solid line), andm (dotted line). The interpolation formula without the
radiative correction (upper dot-dot-dashed line), and with that correction (lower dot-dot-dashed line). The triangles denote the CLEO
data and the squares denote the CELLO data.
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Our extracted pion DA based on the two-parameter
model belongs to the camel-like type, where the near-
end-point values are suppressed more than the asymptotic
DA, and it is helpful for the collinear factorization assump-
tion adopted in this up-to-NLO order study. Our best-fit
error ellipses show that the latest LCSR estimates with the
same renormalon-based twist-four DA [13] are far from
our 3� confidential region even with 	2ð1 GeV2Þ ¼
0:21 GeV2, while those for the instanton-vacuum-based
chiral quark model [7], the earlier NLC condensate QCD
sum rules [29], and the BZ DA [37] lie in the 2� con-
fidential region when 	2ð1 GeV2Þ � 0:19 GeV2.

More information about the pion DA can be deduced
from other experiment sources, such as the pion electro-
magnetic form factor [44], the diffractive dissociation of a
pion into jets [12], and the Drell-Yan process ��N !
�þ��X [48]. All the analyses favor the camel-like type,
but cannot single out the pion DA without ambiguity. Our
investigation also supports these results but with more
confidence for the first two coefficients of the
Gegenbauer polynomial expansion compared with the
usual LCSR. Importantly, our pion DA based on the two-
parameter model, which is different from the latest LCSR’s
result [13], satisfies approximately the midpoint constraint

for the pion DA from the vertex LCSR [47]. However, the
constraint from the decay couplings in LCSR is still an
open question up to now. For example, with
’�ð1=2; 1 GeV2Þ ¼ 1:2, the coupling gD�D� extracted
from the LCSR is about 12 [49], and decreases to 10.5
by taking the radiative correction into account [50], which
are smaller than the experimental value gD�D� ¼ 17:9�
0:3� 1:9. This decay coupling increases only by 9% even
for the asymptotic DA [51], which has, to our knowledge,
the largest midpoint value among the two-parameter mod-
els. Although the key to this problem is uncertain, a relative
larger midpoint value for the pion DA is yet necessary [51],
and the two-parameter model of the pion DA may need to
be generalized to, for example, the powerlike falloff model
[52].
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