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A good agreement between a flux tube-based quark model of light baryons (strange and nonstrange)

and the 1=Nc expansion mass formula has been found in previous studies. In the present work a larger

connection is established between the quark model and the 1=Nc and 1=mQ expansion method by

extending the previous procedure to baryons made of one heavy and two light quarks. The compatibility

between both approaches is shown to hold in this sector too.
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I. INTRODUCTION

The recent discoveries of the�b, �b, and �
�
b baryons at

the Tevatron have incited to a new analysis of heavy
baryons both within the combined 1=Nc and 1=mQ expan-

sion [1] and the quark model; see, for example, Refs. [2–4].
The combined 1=Nc and 1=mQ expansion is a model-

independent method. It is thus important to search for a
link between this method and the quark model. In previous
studies [5,6] we have investigated the possibility to estab-
lish a connection between the two approaches, and we have
found that a remarkable compatibility exists between them
when dealing with nonstrange [5] or strange baryons [6].

Presently we extend the ideas of our previous studies
[5,6] to the case of heavy baryons made of one heavy quark
(c or b) and two light ones (u, d, or s). This is the first step
of a larger project and we view it as an exploratory work
where we search for the compatibility between the spin-
independent part of a quark model Hamiltonian and the
corresponding terms in the combined 1=Nc and 1=mQ

expansion mass formula for the ground state. The spin-
dependent part as well as the excited states will be ana-
lyzed subsequently.

As previously, the comparison of the quark model results
with those of the 1=Nc expansion, presently combined with
a 1=mQ expansion, will be based on the introduction of a

quantum number N, which is the same as in the harmonic
oscillator potential and which is treated as a band number
in baryon phenomenology. The introduction of N in the
eigenvalues of the Hamiltonian was quite simple for iden-
tical quarks; the procedure becomes more involved for
baryons containing heavy quarks, as we shall see.

The paper is organized as follows. After a summary of
the charm and bottom baryon flavor states given in Sec. II,

the mass formula used by combining the 1=Nc and 1=mQ

expansions for such baryons is presented in Sec. III.
Section IV gives a corresponding mass formula obtained
from a Hamiltonian quark model where the confinement is
of Y-junction type and where one gluon exchange and
quark self-energy contributions are added perturbatively.
In that section the excitation quantum number N is intro-
duced and its meaning is discussed. A comparison between
results obtained, on one hand, in the combined 1=mQ and

1=Nc expansion and, on the other hand, in the quark model
is then made in Sec. V. Conclusions are finally drawn in
Sec. VI.
In the following, the symbol q will denote a light quark

ðu; d; sÞ and the symbolQ will denote a heavy quark ðc; bÞ.
Moreover, the symbol n will be used for u and d quarks
since both particles are assumed to have the same mass, as
in our previous works.

II. FLAVOR STATES

A. Charm baryons

Here we introduce the classification of ground state
charmed baryons based on SU(4) as due to Glashow,
Iliopoulos, and Maiani [7]. Although the SU(4) symmetry
is badly violated by the mass difference between heavy and
light quarks, this classification scheme is very convenient
because it helps in dividing baryons into submultiplets of
fixed charm (or beauty). These submultiplets appear natu-
rally from the decomposition of SU(4) irreps into SU(3)
irreps describing baryons where the mass difference is
essentially due to SU(3) breaking (see e.g. Ref. [8]). A
possible extension of this study to, for example, doubly
heavy baryons will follow this classification scheme as
well.
In the following the total spin of a baryon is denoted by

~J, the spin of the light subsystem by ~Jqq, and that of the

heavy quark by ~JQ. In SU(4) the baryon multiplets arise
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from the direct product decomposition 4 � 4 � 4 ¼ 20 �
20 � 20 � 4. All baryons in the symmetric multiplet 20
have JP ¼ 3

2
þ. The lightest SU(3) submultiplet is the well-

known Gell-Mann-Ne’eman decuplet. The single charm
baryons form a sextet where the Fermi statistics requires

Jqq ¼ 1. The six baryons ��þþ
c , ��þ

c , ��0
c ,��0þ

c ,��00
c , and

��0
c have the flavor structure given in Table I. The remain-

ing members of the symmetric multiplet are the three
double charm baryons ��þ

cc , �
�þþ
cc , ��þ

cc and the triple
charm baryon �þþ

ccc .
The experimental masses of single charm baryons with

JP ¼ 3
2
þ are [9]

��
c ¼ 2518:0� 0:8 MeV;

��
c ¼ 2646:4� 0:9 MeV;

��
c ¼ 2768:3� 3:0 MeV;

(1)

which represent mass averages when the hadron appears
with different charges. Note that here and below none of
the quantum numbers assigned to the charm baryons have
been measured experimentally, but are based on quark
model expectations.

The mixed symmetric representation 20 has JP ¼ 1
2
þ.

The lowest submultiplet is the SU(3) Gell-Mann-Ne’eman
octet. The single charm baryons �þþ

c , �þ
c , �

0
c, �

0þ
c , �00

c ,
and�0

c form a sextet with flavor states indicated in Table I
and Jqq ¼ 1. �þ

c , �
þ
c , and �0

c form an antitriplet with

flavor states shown in Table II having Jqq ¼ 0.

The experimental masses of single charm baryons with
JP ¼ 1

2
þ are [9]

�c ¼ 2286:46� 0:14 MeV;

�c ¼ 2453:56� 0:16 MeV;

�c ¼ 2469:5� 0:3 MeV;

�0
c ¼ 2576:9� 2:1 MeV;

�c ¼ 2697:5� 2:6 MeV;

(2)

where, again, mass averages are made when the hadron

appears with different charges. In the observed �c and �0
c

baryons it is expected that the light quarks are mostly in a
state with Jqq ¼ 0 and Jqq ¼ 1, respectively.

The mixed symmetric multiplet also contains three
double charm baryons, �þ

cc, �
þþ
cc , and �þ

cc, from which
only �þ

cc has been observed by the SELEX Collaboration
with a mass of 3518:9� 0:9 MeV [9], but needs
confirmation.

B. Bottom baryons

Despite the large symmetry breaking, for the sake of
classification one can also assume an SU(4) classification
of bottom baryons. Similarly, for single bottom baryons
there is a sextet shown in Table III and an antitriplet shown
in Table IV. The mass of �b has been previously measured
[9],

�b ¼ 5620:2� 1:6 MeV: (3)

Recent measurements have been made for �b [10,11],
�b, and ��

b [12]. The measured masses are

��
b ¼ 5774� 11� 15 MeV ½10�;

5792:9� 2:5� 1:7 MeV ½11�;
��

b ¼ 5811:5� 1:7 MeV ½12�;
���

b ¼ 5832:7� 1:8 MeV ½12�: (4)

The first observation of the doubly strange baryon ��
b has

just been reported by D0 Collaboration [13] with a mass of

TABLE I. Flavor states of the single charm sextet baryons:
JP ¼ 1

2
þ (no star) for baryons in the mixed representation and

JP ¼ 3
2
þ (with star) for baryons in the symmetric representation.

They all have Jqq ¼ 1. Members of the same doublet become

degenerate at mQ ! 1.

Baryon doublet Flavor state

�þþ
c , ��þþ

c uuc
�þ

c , �
�þ
c

1ffiffi
2

p ðudþ duÞc
�0

c, �
�0
c ddc

�0þ
c , ��0þ

c
1ffiffi
2

p ðusþ suÞc
�00

c , �
�00
c

1ffiffi
2

p ðdsþ sdÞc
�0

c, �
�0
c ssc

TABLE II. Flavor states of the single charm antitriplet baryons
with JP ¼ 1

2
þ in the mixed symmetric representation. They all

have Jqq ¼ 0.

Baryon Flavor state

�þ
c

ffiffi
1
2

q
ðud� duÞc

�þ
c

ffiffi
1
2

q
ðus� suÞc

�0
c

ffiffi
1
2

q
ðds� sdÞc

TABLE III. Flavor states of the single bottom sextet baryons:
JP ¼ 1

2
þ (no star) for baryons in the mixed representation and

JP ¼ 3
2
þ (with star) for baryons in the symmetric representation.

They all have Jqq ¼ 1. Members of the same doublet become

degenerate at mQ ! 1.

Baryon doublet Flavor state

�þ
b , �

�þ
b uub

�0
b, �

�0
b

1ffiffi
2

p ðudþ duÞb
��

b , �
��
b ddb

�00
b , �

�00
b

1ffiffi
2

p ðusþ suÞb
�0�

b , ��0�
b

1ffiffi
2

p ðdsþ sdÞb
��

b , �
��
b ssb
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6165� 10� 13 MeV. The remaining undiscovered single

bottom baryons are �0�
b , ��0�

b , and ���
b .

III. GROUND STATE HEAVY BARYONS IN THE
1=mQ AND 1=Nc EXPANSION

The approximate spin-flavor symmetry for large Nc

baryons containing light q ¼ u, d, or s quarks and heavy
Q ¼ c or b quarks is SUð6Þ � SUð2Þc � SUð2Þb; i.e. there
is a separate spin symmetry for each heavy flavor. Over a
decade ago the 1=Nc expansion has been generalized to
include an expansion in 1=mQ and light-quark flavor sym-

metry breaking [14].
Let us first consider that SU(3)-flavor symmetry is exact.

In this case the mass operator is a flavor singlet. In the
combined 1=mQ and 1=Nc expansion to order 1=m2

Q the

ground state mass operator Mð1Þ takes the following form:

Mð1Þ ¼ mQNQ1þ�qq þ �Q þ �qqQ; (5)

whereNQ is the number of heavy quarks. The leading order

term is mQ at all orders in the 1=Nc expansion. Next we

have

�qq ¼ c0Nc1þ c2
Nc

J2qq; (6)

where ~Jqq is the total spin of the light-quark pair. This

operator contains the dynamical contribution of the light
quarks and is independent ofmQ. Then, �Q gives the 1=mQ

corrections due to NQ heavy quarks,

�Q ¼ NQ

1

2mQ

�
c001þ c02

N2
c

J2qq

�
: (7)

In the following we shall deal with NQ ¼ 1 only. Lastly,

�qqQ contains the heavy-quark spin-symmetry violating

(chromomagnetic) operator which is of order 1=mQ as

well,

�qqQ ¼ 2
c002

NcmQ

~Jqq � ~JQ; (8)

~JQ being the spin of the heavy quark. This is the term

responsible for the splitting between states which form
degenerate doublets in the heavy-quark limit; see
Tables I and III.

The unknown coefficients c0, c2, c
0
0, c

0
2, and c002 are

functions of 1=Nc and of a QCD scale �. Each coefficient
has an expansion in 1=Nc where the leading term is of
order unity and does not depend on 1=mQ. Without loss of

generality one can set c0 	 �. The other coefficients con-
tain a dimensional power of � and a dimensionless func-
tion of 1=Nc beginning at order unity and have to be fitted
to the available experimental data. In agreement with
Ref. [14], we can take

c0 ¼ �; c2 
�; c00 
 c02 
 c002 
�2: (9)

At the dominant order, the value of � can be extracted
from the mass combinations

�Q ¼ mQ þ Nc�; (10a)

1

3
ð�Q þ 2��

QÞ ��Q ¼ 2
�

Nc

; (10b)

��
Q � �Q ¼ 3

2

�
2�2

NcmQ

�
; (10c)

resulting from the mass definition (5). Equations (10a) and
(10b) imply that the dimensionless expansion coefficients
are taken approximately equal to 1 and are thus only
functions of the QCD scale � [see Eqs. (9)], in agreement
with Ref. [14]. They also express the fact that �Q is

negligible with respect to the other terms in (5). Here and
below the particle label represents its mass.
A slightly more complicated mass combination, involv-

ing light baryons as well as heavy ones, directly leads to
mQ, that is [1],

1

3
ð�Q þ 2�QÞ � 1

4

�
5

8
ð2N þ 3�þ�þ 2�Þ

� 1

10
ð4�þ 3�� þ 2�� þ�Þ

�
¼ mQ: (11)

This mass combination gives

mc ¼ 1315:1� 0:2 MeV; mb ¼ 4641:9� 2:1 MeV;

(12a)

while the value

� � 324 MeV (12b)

ensures that the mass combinations (10) are optimally
compatible with the experimental values for Q ¼ c and

TABLE V. Mass combinations resulting from the heavy quark
and large Nc limit and their experimental values [1].

Mass combination Experiment (MeV) Experiment (MeV)

Q ¼ c Q ¼ b

�Q 2286:46� 0:14 5620:2� 1:6
1
3 ð�Q þ 2��

QÞ ��Q 210:0� 0:5 205:4� 2:1
��

Q ��Q 64:4� 0:8 21:2� 2:5
�Q ��Q 183:0� 0:3 172:7� 3:4

TABLE IV. Flavor states of the single bottom antitriplet bary-
ons with JP ¼ 1

2
þ in the mixed symmetric representation. They

all have Jqq ¼ 0.

Baryon Flavor state

�þ
b

ffiffi
1
2

q
ðud� duÞb

�þ
b

ffiffi
1
2

q
ðus� suÞb

�0
b

ffiffi
1
2

q
ðds� sdÞb
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Q ¼ b indicated in Table V. Note also that the heavy-quark
flavor symmetry predicts that the observed ð�b ��cÞ ¼
3333:7� 1:6 MeV splitting [1] can give a measure of the
quark mass difference mb �mc up to corrections of the
order �2ð1=2mc � 1=2mbÞ � 23 MeV [14]. The values
given by Eqs. (12) satisfy this constraint.

The operator analysis including SU(3)-flavor breaking
leads to an expansion in the SU(3) violating parameter �

which contains the singletMð1Þ, an octetMð8Þ, and a 27-plet
Mð27Þ. The last term brings contributions proportional to �2

and we neglect it. For Mð8Þ we retain its dominant contri-
bution T8 to order N0

c . Then the mass formula becomes

M ¼ Mð1Þ þ �T8: (13)

The flavor breaking parameter � is governed by the mass
difference ms �m (where m is the average of the mu and
md masses) and therefore is �
 0:2–0:3. It is measured in
units of the chiral symmetry breaking scale parameter
�� 
 1 GeV. A measure of the SU(3)-flavor breaking

factor can be given by [14]

�Q ��Q ¼
ffiffiffi
3

p
2

ð���Þ: (14)

The value ð���Þ ¼ 206 MeV leads to �Q ��Q ¼
178 MeV, which is the average value of the corresponding
experimental data listed in Table V.

IV. QUARK MODEL FOR HEAVY BARYONS

A. Hamiltonian

The potential model used to describe heavy baryons is
the same as that which has been proposed in Ref. [6] for
light baryons. Let us recall its main features.

In quark models, a baryon is a bound state of three
valence quarks which can be described at the dominant
order by the spinless Salpeter Hamiltonian

H ¼ X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
i þm2

i

q
þVY; (15)

wheremi is the current (bare) mass of the quark i and VY is
the confining interaction potential. Both the flux tube
model [15] and lattice QCD [16,17] suggest that the flux
tubes form a Y junction: A flux tube starts from each quark
and the three tubes meet at the Torricelli point of the
triangle formed by the three quarks. This point, located
in ~xT , minimizes the sum of the flux tube lengths, leading
to the following confining potential:

VY ¼ a
X3
i¼1

j ~xi � ~xTj: (16)

The position of the quark i is denoted by ~xi, and a is the
energy density of the flux tubes. Such a Hamiltonian can
also be obtained in the framework of the field correlator
method [18].

As ~xT is a complicated three-body function, it is inter-
esting to approximate the confining potential by a more
tractable form. In the following, we will use

HR ¼ X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
i þm2

i

q
þVR; (17)

VR ¼ ka
X3
i¼1

j ~xi � ~Rj; (18)

where ~R is the position of the center of mass and k is a
corrective factor [19]. The eigenvalues corresponding to
potentials VY and VR differ from each other only by about
5% in most cases. The accuracy of the formula (18) is thus
rather satisfactory, and has already led to relevant results in
Ref. [6]. For light (symmetrical) qqq baryons, a good value
for the corrective factor is k0 ¼ 0:952. For very asymmet-
rical qqQ baryons, a good choice is k1 ¼ 0:930 [19]. This
last value corresponds actually to the case mq=mQ ! 0.

Besides the confining potential (16), other contributions
are necessary to reproduce the baryon masses. We shall add
them as perturbations to the dominant Hamiltonian (17).
The most widespread correction is a Coulomb interaction
term of the form

�Hoge ¼ � 2

3

X
i<j

�S;ij

j ~xi � ~xjj ; (19)

arising from one gluon exchange processes, where �S;ij is

the strong coupling constant between the quarks i and j.
Actually, one should deal with a running form �SðrÞ, but it
would considerably increase the difficulty of the computa-
tions. Typically, we need two values: �0 ¼ �S;qq for a qq

pair and �1 ¼ �S;qQ for a qQ pair, in the spirit of what has

been done in a previous study describing mesons in the
relativistic flux tube model [20]. There it was found that
�1=�0 � 0:7 describes rather well the experimental data
of q �q and Q �q mesons.
Another perturbative contribution to the mass is the

quark self-energy. This is due to the color-magnetic mo-
ment of a quark propagating through the vacuum back-
ground field. It adds a negative contribution to the hadron
masses [21]. The quark self-energy contribution for a
baryon is given by

�Hqse ¼ � fa

2�

X
i

�ðmi=�Þ
�i

: (20)

The factors f and � have been computed in quenched and
unquenched lattice QCD studies [22,23]. Although it is not
known with great accuracy, it seems well established that
3 � f � 4 and ð1:0 � � � 1:3Þ GeV [22,23]. The func-
tion �ð�Þ is analytically known; we refer the reader to
Ref. [21] for the explicit formula. For typical values of
the light-quark masses, we have 0 � mq=� & 0:3, while

for heavy quarks, we have 1:0 & mQ=� & 6:0. The func-
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tion �ð�Þ is such that

�ð�Þ � 1þ
�
4þ 3 ln

�

2

�
�2 for �  1;

� 2

�2
for � ! 1: (21)

For the relevant values of � ¼ mi=� a better accuracy is
obtained with the following simple forms:

�ð�Þ � 1� 	�2 with 	 ¼ 2:85 for 0 � � & 0:3;

� 


�2
with 
 ¼ 0:79 for 1:0 & � & 6:0: (22)

Let us note that the corrections depending on the parameter

 appear at order 1=m3

Q in the mass formula, so they are not

considered in this work. Finally, �i is the dynamical mass
of the quark i, defined as [21]

�i ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2
i þm2

i

q �
: (23)

This dynamical mass is state dependent: It represents the
kinetic energy of the quark i averaged with the wave
function of the unperturbed spinless Salpeter
Hamiltonian (17).

B. General formulas

We are mainly interested in analytical expressions, so
that a comparison with the large Nc mass formula will be
straightforward. To this aim, the auxiliary field technique
will be used in order to transform the Hamiltonian (17) into
an analytically solvable one [24,25]. With � ¼ ka, we
obtain

Hð�i; �jÞ ¼
X3
j¼1

� ~p2
j þm2

j

2�j

þ�j

2

�

þ X3
j¼1

�
�2ð ~xj � ~RÞ2

2�j

þ �j

2

�
: (24)

The auxiliary fields, denoted as �i and �j, are operators,

and Hð�i; �jÞ is equivalent to H up to their elimination

thanks to the constraints

��i
Hð�i; �jÞ ¼ 0 ) �i;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
i þm2

i

q
;

��j
Hð�i; �jÞ ¼ 0 ) �i;0 ¼ �j ~xi � ~Rj:

(25)

h�i;0i is the dynamical quark mass introduced in Eq. (23),

and h�i;0i is the energy of the flux tube linking the quark i to
the center of mass.

Although the auxiliary fields are operators, the calcula-
tions are considerably simplified if one considers them as
real numbers. They are finally eliminated by a minimiza-
tion of the masses [24], and the extremal values of �i and
�j are logically close to h�i;0i and h�j;0i, respectively. This
technique can give approximate results very close to the

exact ones (see Ref. [26] for a comparative study of bary-
ons with the auxiliary fields introduced only in the kinetic
part of the Hamiltonian).
In Ref. [27], it has been shown that the eigenvalues of a

Hamiltonian of the form (24) can be analytically found by
making an appropriate change of variables, the quark
coordinates ~xi ¼ f ~x1; ~x2; ~x3g being replaced by new coor-

dinates ~x0k ¼ f ~R; ~�; ~�g. The center of mass is defined as

~R ¼ �1 ~x1 þ�2 ~x2 þ�3 ~x3
�t

; (26)

with �t ¼ �1 þ�2 þ�3. f ~�; ~�g are two relative coordi-

nates: ~� / ~x1 � ~x2 and ~� / �1 ~x1þ�2 ~x2
�1þ�2

� ~x3. As we only

consider baryons built from two different quarks, the gen-
eral formulas obtained in Ref. [27] can be simplified. In the
case of two quarks with massm and another with massm3,
the mass spectrum of the Hamiltonian (24) is given by
(�1 ¼ �2 ¼ �, �1 ¼ �2 ¼ �)

Mð�;�3; �; �3Þ ¼ !�ðN� þ 3=2Þ þ!�ðN� þ 3=2Þ þ�

þ �þ�3 þ �3

2
þm2

�
þ m2

3

2�3

; (27)

where

!� ¼ �ffiffiffiffiffiffiffi
��

p ; !� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ�3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3

��
þ 2�

�3�3

s
: (28)

The integers N�=� are given by 2n�=� þ ‘�=�, where n�=�
and ‘�=� are the radial and orbital quantum numbers

relative to the variable ~�= ~�, respectively. One can also
easily check that [27]

h ~�2i ¼ N� þ 3=2

!�

; h ~�2i ¼ N� þ 3=2

!�

; (29)

with

 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�3

2�þ�3

s
: (30)

These last identities provide relevant information about the
structure of the baryons, since

h ~X2i ¼ hð ~x1 � ~x2Þ2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�3

2�þ�3

s
h ~�2i; (31)

h ~Y2i ¼
��

~x1 þ ~x2
2

� ~x3

�
2
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ�3

4�3

s
h ~�2i: (32)

Moreover, by symmetry, we can assume the following
equality

hð ~x1 � ~x3Þ2i ¼ hð ~x2 � ~x3Þ2i � h ~X2i
4

þ h ~Y2i; (33)

CHARM AND BOTTOM BARYON MASSES IN THE . . . PHYSICAL REVIEW D 78, 076003 (2008)

076003-5



which will be useful in the computation of the one gluon
exchange contribution.

The case of qqq baryons, studied in our previous papers
[5,6], is obtained by takingm ¼ mn ¼ 0 andm3 ¼ ms, and
by setting � ¼ k0a. If the three quarks are identical, then
m3 ¼ m,�3 ¼ �, �3 ¼ �. For qqQ baryons, we explicitly
write m3 ¼ mQ, �3 ¼ �Q, �3 ¼ �Q, and we set � ¼ k1a,
m ¼ 0 or ms for n or s-quarks, respectively. Let us note

that different values of k0 have been previously used: k0 ¼
ð1=2þ ffiffiffi

3
p

=4Þ in Ref. [5] and k0 ¼ 1 in Ref. [6]. In this
work, we choose phenomenological values computed in
Ref. [19] in order to obtain the best possible simulation of
the Y junction for both qqq and qqQ baryons with the
potential (18).

C. Mass formula for heavy baryons

In this section, we focus our attention on ssQ baryons.
The mass formula for nnQ baryons is obtained simply by
setting ms ¼ 0, and the case of nsQ baryons will be dis-
cussed in the next section. The four auxiliary fields appear-
ing in the mass formula (27) have to be eliminated by
solving simultaneously the four constraints:

@�Mð�;�Q; �; �QÞ ¼ 0; @�Q
Mð�;�Q; �; �QÞ ¼ 0;

@�Mð�;�Q; �; �QÞ ¼ 0; @�QMð�;�Q; �; �QÞ ¼ 0:

(34)

This cannot be done exactly in an analytical way, but
solutions can be obtained by assuming that 1=mQ and ms

are small quantities. After some algebra, a solution was
found by working at order 1=mQ and m2

s (all contributions

proportional to ms are vanishing). By denoting

N ¼ N� þ N�; �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1aðN þ 3Þ

2

s
;

GðN;N�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N� þ 3

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN þ 3Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N� þ 3

q
Þ;

(35)

we have obtained

� ¼ �1 þ 3m2
s

4�1

� k1a

4mQ

GðN;N�Þ;

� ¼ �1 � m2
s

4�1

� k1a

4mQ

ð2N� þ 3Þ;

�Q ¼ mQ þ k1a

2mQ

GðN;N�Þ;

�Q ¼ k1a

mQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N� þ 3ÞðN þ 3Þ

2

s
:

(36)

Logically,�Q � mQ since this auxiliary field is dominated

by the effective mass of the heavy quark. The length of the
flux tube joining the heavy quark to the center of mass is
smaller than the other ones, so limmQ!1�Q ¼ 0 as

expected.
The mass formula (27), in which the auxiliary fields are

replaced by the expressions (36), reads at orders 1=mQ and

m2
s as

M ¼ mQ þ 4�1 þm2
s

�1

þ k1a

2mQ

GðN;N�Þ: (37)

It is interesting to look at the magnitude of the various
terms in this formula. Let us choose typical values for the
parameters: k1 ¼ 1, a ¼ 0:2 GeV2, ms ¼ 0:3 GeV, mc ¼
1:5 GeV, mb ¼ 5:0 GeV. For the ground state (N ¼ 0),
�1 ¼ 0:548 GeV. The contribution of the kinetic energy
and of the confinement in M, given by 4�1 ¼ 2:191 GeV,
is of the order ofmQ. The contribution of the strange quark

is given by m2
s

�1
¼ 0:164 GeV, while the term k1a

2mQ
Gð0; 0Þ is

0.083 GeV and 0.025 GeV, respectively, for the charm and
bottom masses. These values justify a posteriori the use of
the power expansion inms and in 1=mQ. Formulas (36) and

(37) giving the optimal values of the auxiliary fields and
the corresponding minimal mass are approximate solutions
of Eq. (27). In Table VI, these values are compared with the
exact solutions obtained numerically. In all cases, the error
on the mass is quite small, even if the error on some
auxiliary fields is larger. The auxiliary fields � and �Q

are used to compute perturbatively the self-energy.
Fortunately, the error on these fields is small. As expected,

TABLE VI. Relative error (%) on auxiliary fields (36) and mass (37) for typical values of the physical parameters (k1 ¼ 1, a ¼
0:2 GeV2). Quark masses are given in GeV.

ms=mQ 0=1:5 0:3=1:5 0=5:0 0:3=5:0
ðN;N�Þ (0,0) (4,0) (4,4) (0,0) (4,0) (4,4) (0,0) (4,0) (4,4) (0,0) (4,0) (4,4)

� 0.007 6.6 5.2 2.8 5.6 5.4 0.2 0.7 1.4 2.9 0.02 2.0

� 8.9 7.1 29.5 10.2 7.2 30.1 1.1 1.0 3.6 2.3 1.1 3.5

�Q 0.2 4.8 4.6 0.8 4.5 5.3 0.04 0.2 0.4 0.1 0.1 0.5

�Q 44.5 74.0 67.4 33.7 68.8 61.9 12.8 21.8 18.7 1.8 16.4 13.3

M 0.2 1.4 1.7 0.5 1.7 1.7 0.05 0.1 0.3 0.6 0.3 0.2
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the accuracy is improved for large values of mQ, while ms

has only a little influence.
The contribution of the one gluon exchange term can be

computed with the help of relations (31) and (32). One
obtains

�Moge � � 2

3

�
�0ffiffiffiffiffiffiffiffiffi
h ~X2i

q þ 2�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ~X2i=4þ h ~Y2i

q
�

¼ � 2

3
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1a

2N� þ 3

s �
1þ m2

s

4�2
1

þ
ffiffiffiffiffiffiffiffi
k1a

p
8mQ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N� þ 3

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2N� þ 3Þ

N þ 3

s
� 1

��

� 4

3
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1a

N þ 3

s �
1þ m2

s

4�2
1

�
ffiffiffiffiffiffiffiffi
k1a

p
2mQ

2N� þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN þ 3Þp

�
:

(38)

For values of the parameters defined above together with
�0 ¼ �1 ¼ 0:4, the contribution of the dominant term in
�Moge is �0:264 GeV for the ground state. The m2

s=�
2
1

term brings �0:020 GeV while the 1=mc term brings
0.034 GeV. Again, the use of the power expansion in ms

and in 1=mQ seems relevant.

The relations (36) defining � and �Q allow us to write

down the contribution of the quark self-energy (20). Using
the approximation (22) one obtains

�Mqse ¼ � fa

��1

�
1�

�
3

4�2
1

þ 	

�2

�
m2

s

þ k1a

4�1mQ

GðN;N�Þ
�
: (39)

We recall that the correction proportional to 	m2
s comes

from a convenient parametrization of the �ð�Þ function,
while the term proportional to m2

s=�
2
1 is due to the expan-

sion of the auxiliary field �. For the values of the parame-
ters defined above and the typical values f ¼ 3:5 and
� ¼ 1 GeV, the contribution of the dominant term in
�Mqse is �0:302 GeV for the ground state. The m2

s=�
2
1

term brings 0.092 GeV while the 1=mc term brings

�0:031 GeV. The use of the power series expansion in
ms and in 1=mQ seems more questionable here, mostly for

the contribution of the strange quark. This is due to the
particular nature of the self-energy interaction which can
be defined only as a perturbation [21].
If we now look at the dominant terms in M�mQ,

�Moge, and �Mqse, we find, respectively, 2.191 GeV,

�0:264 GeV, and �0:302 GeV for the ground state with
parameters defined above. These numbers show that it is a
posteriori justified to treat the Coulomb interaction and the
self-energy interaction as perturbations.

D. Mass formulas for general qqq and qqQ baryons

In this section we gather mass formulas obtained for
both light and heavy baryons. The qqq mass formula is
given in Ref. [6] and is recalled here for completeness,

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0aðN þ 3Þ

3

s
; Mqqq ¼ M0 þ ns�M0s

ðns ¼ 0; 1; 2; 3Þ; M0 ¼ 6�0 � 2k0a�0ffiffiffi
3

p
�0

� 3fa

2��0

;

�M0s ¼
�
1

2
� k0a�0

6
ffiffiffi
3

p
�2

0

þ fa

2�

�
3

4�2
0

þ 	

�2

��
m2

s

�0

: (40)

All parameters were already presented above, except the
number ns of s-quarks in the baryons. The mass formula
Mqqq depends only on N ¼ N� þ N� since the contribu-

tion of terms proportional to N� � N�, vanishing for ns ¼
0 and 3, was found to be very weak in general [6].
In the previous section, only the case of a heavy baryon

containing two identical light quarks was treated (ns ¼ 0
or ns ¼ 2). It has been shown that every s-quark brings the
same contribution �M0s to the mass of a light baryon [see
Eq. (40)]. So, we can reasonably assume that the same
situation occurs for qqQ baryons. To take into account the
contribution of ns-quarks to the mass of these baryons, it is
enough to replace the term m2

s by nsm
2
s=2 in Eqs. (37)–

(39). Let us note that it is not necessarily true for the
auxiliary fields � and � [6]. In the following formulas,
we keep explicitly the dependence on both N� and N�:

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1aðN þ 3Þ

2

s
; MqqQ ¼ mQ þM1 þ ns�M1s þ�MQ ðns ¼ 0; 1; 2Þ;

M1 ¼ 4�1 � 2

3

�
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1a

2N� þ 3

s
þ 2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1a

N þ 3

s �
� fa

��1

;

�M1s ¼ m2
s

�1

�
1

2
� 1

12�1

�
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1a

2N� þ 3

s
þ 2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1a

N þ 3

s �
þ fa

2�

�
3

4�2
1

þ 	

�2

��
;

�MQ ¼ k1a

2mQ

��
1� fa

2��2
1

�
GðN;N�Þ � �0

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N� þ 3

2N� þ 3

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2N� þ 3Þ

N þ 3

s
� 1

�
þ 4�1

3

2N� þ 3

N þ 3

�
: (41)
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E. What is the good quantum number?

At the lowest order, the mass formula (37), with the
rescaling a $ � (see next section), leads to

ðM�mQÞ2 ¼ 4��

3

k1
k0

ðN þ 3Þ: (42)

The model thus predicts Regge trajectories for heavy bary-
ons, with a slope of 4��k1=ð3k0Þ � 1:3�� instead of 2��
for light baryons. At this dominant order, the mass formula
depends only on N. However, when corrections are added,
the mass formula is no longer symmetric under interchange
of N� and N�. Is it still possible to find a single quantum

number? There are three possibilities:
(i) As in Ref. [6], we could assume that N� � N�. But,

the presence of a heavy quark makes the system

rather asymmetric in the ~� and ~� variables. So this
solution seems unnatural.

(ii) Another possibility is to impose N� ¼ 0 and N� ¼
N. With no excitation in the ~� variable, the two light
quarks are moving around a static heavy quark in the
configuration q�Q� q, as proposed in Ref. [28].

(iii) The opposite possibility can also be assumed: N� ¼
N and N� ¼ 0. With no excitation in the ~� variable,

the two light quarks behave as a diquark orbiting
around the heavy quark by forming a Q� ðqqÞ
system, as considered in Ref. [29].

At order 1=mQ, the dominant term (37) depends on the

function GðN;N�Þ. The baryon mass is lowered when

GðN;N�Þ is minimal, that is to say, for N� ¼ N. In this

case

FðNÞ ¼ GðN;NÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2N

p ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ NÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2N
p �;

(43)

with Fð0Þ ¼ 3ð ffiffiffi
2

p � 1Þ � FðNÞ< 3=2, this upper bound
being the limit of FðNÞ forN going to infinity. The analysis
of the dominant part of the Coulomb term (38) shows that
the baryon mass is also lowered when N� ¼ N. So it is

natural to assume that the favored configuration, minimiz-
ing the baryon energy, is N� ¼ N and N� ¼ 0, as in

Ref. [29]. In this case a light-diquark–heavy-quark struc-
ture for the baryon is favored.

It is also possible to reach the same conclusion by

looking at the mean values of the variables ~X and ~Y. At
the dominant order, we have

h ~X2i ¼ 3þ 2N�

a
; h ~Y2i ¼ 3þ 2N�

4a
: (44)

Because of the particular shape of the potential (a Cornell
type), the more the system is small, the more its mass will
be small. Indeed, the energy of the flux tubes increases with
the size of the baryon, while the attractive Coulomb-like
forces are larger for small quark separations.
Equations (44) show that an excitation of type N� will

keep the baryon smaller than the corresponding excitation
in N�. Thus, the most favored possibility, at least for the

small excitation numbers, is also N� ¼ N and N� ¼ 0.

As for light baryons, heavy baryons can be labeled by a
single harmonic oscillator excitation number, and the
emergence of this quantum number can be understood
within a relativistic quark model framework. However,
we only discuss the ground state in the following, that is,
N� ¼ 0 and N� ¼ N ¼ 0. Excited states will be studied in

subsequent papers.

F. Determination of the parameters

The parameters needed for qqq baryons have been
obtained in our previous papers [5,6] but, since we use a
new value for k0, we prefer to determine a set of new values
for the parameters which are gathered in Table VII. The
new values are very close to the previous ones and do not
alter the good results obtained in Refs. [5,6]. The auxiliary
field method systematically overestimates the absolute
scale of the mass spectrum [24]. In order to obtain a
good accuracy for the baryon masses, it is necessary to
perform the rescaling a ¼ ��=ð6k0Þ throughout the mass
formulas, where � is the physical string tension for a
meson [5]. As u and d current quark masses are expected
to be very small, we also take a vanishing current mass for
the quark n. The parameters � and f are fitted on the nnn
baryon Regge trajectory. As it is not possible to determine
independently �0 and f, we choose for �0 a value in
agreement with other potential models. More details can
be found in Ref. [5]. It is worth noting that the value 3.6 for
f is in the range [3–4] and that the string tension value of
0:165 GeV2 is in good agreement with the value predicted
by the flux tube model [30]. The s-quark mass is fitted to
the strange baryon masses in the bandN ¼ 0 [6]. The value
found for ms is larger than the PDG value of 104þ26

�34 MeV
[9]. However, a strange quark mass in the range 0.2–
0.3 GeV is quite common in potential models [31–33].
The parameters linked to heavy quarks are mc, mb, k1,

and �1. We fix �1 ¼ 0:7�0 from the quark model study of
Ref. [20]. The value k1 ¼ 0:930 has been computed in
Ref. [19]. Because of the rescaling a ¼ ��=ð6k0Þ, only
the ratio k1=k0 � 0:98 is relevant. Let us note that fixing
this ratio to 1 does not noticeably change the other parame-
ters. The heavy-quark masses can be fitted to the experi-
mental data as follows. The quark model mass formula (41)
is spin independent; it should thus be suitable to reproduce
the masses of heavy baryons for which J2qq ¼ 0. Typically,

TABLE VII. Parameters for qqq baryons.

Fixed parameters Fitted parameters

mn ¼ 0 �0 ¼ 0:4 ms ¼ 0:240 GeV
k0 ¼ 0:952 � ¼ 1:0 GeV � ¼ 0:165 GeV2

a ¼ ��=ð6k0Þ 	 ¼ 2:85 f ¼ 3:60
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one expects that

MnncjN¼0 ¼ �c ¼ 2286:46� 0:14 MeV; (45)

MnnbjN¼0 ¼ �b ¼ 5620:2� 1:6 MeV: (46)

These values are reproduced by formula (41) with mc ¼
1:252 GeV and mb ¼ 4:612 GeV. These masses, obtained
by a comparison of the quark model to the experimental
data, are clearly compatible with those obtained from the
mass combination (11)—both determinations actually dif-
fer by less than 5%. This is a first evidence of the com-
patibility between the quark model and large Nc expansion
in the heavy baryon sector. The supplementary parameters
for qqQ baryons are gathered in Table VIII. One can notice
that we predict MnscjN¼0 ¼ 2433 MeV and MnsbjN¼0 ¼
5767 MeV with these parameters. These values are very
close to the experimentally observed masses of�c and�b,
respectively.

V. COMPARISON OF THE TWO APPROACHES

First we recall that the heavy-quark masses can be
obtained in two different ways. On the one hand, the large
Nc inspired mass combination (11) leads to mc ¼
1315 MeV and mb ¼ 4642 MeV. On the other hand, the
quark model mass formula (41) is compatible with the
experimental data, provided mc ¼ 1252 MeV and mb ¼
4612 MeV. Both approaches lead to quark masses that
differ by less than 5%, as pointed out in Sec. IV F. Thus
the two approaches that are considered in this paper agree
at least at the dominant order, where only mQ is present.

The other parameter involved in the large Nc mass
formula is �. A comparison of the spin-independent part
of the mass formulas (5) and (41) leads to the following
identification for Nc ¼ 3:

c0 ¼ 1

3
M1jN¼0 ¼ 4

3
�1 � 2

9

ffiffiffiffiffiffiffiffi
k1a

3

s
ð�0 þ 2

ffiffiffi
2

p
�1Þ � fa

3��1

;

(47)

where�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k1a=2

p
. According to Eqs. (9) and (12b) one

has c0 ¼ � ’ 0:324 GeV. The quark model parameters of
Tables VII and VIII give 0.333 GeV for the expression after
the second equality sign in Eq. (47), which means a very
good agreement for the QCD scale �. In this quantity,
0.475 GeV comes from the dynamics of the confinement
(4�1=3), while the Coulomb interaction (term containing
�0 and �1) contributes with �0:044 GeV and the self-
energy (term proportional to f) with �0:097 GeV. The

mass shift yielded by these two residual interactions is
quite significant and their presence improves the value of
�.
Next the terms of order 1=mQ lead to the identity

c00 ¼ 2mQ�MQjN¼0

¼ k1a

�
3ð ffiffiffi

2
p � 1Þ

�
1� fa

2��2
1

�
� �0

6
ð ffiffiffi

2
p � 1Þ þ 4�1

3

�
:

(48)

Note that to test this relation the value ofmQ is not needed,

like for the identity (47). The large Nc parameter � ¼
0:324 GeV gives, for the left-hand side of (48), c00 
�2 ¼
0:096 GeV2, and the quark model gives, for the right-hand
side, 0:091 GeV2, which is again a good agreement. In this
quantity, the contribution of the dynamics of the confine-
ment [k1aFð0Þ] is 0:105 GeV2, while the contributions of
the Coulomb interaction and of the self-energy are
0:029 GeV2 and �0:043 GeV2, respectively. The relative
magnitude of these two terms compared to the first one is
larger here but they nearly cancel each other.
The SU(3)-flavor breaking term is proportional to the

factor ��� 
ms �m in the 1=Nc mass formula (13). This

is also the case in our quark mass formula since m ¼ 0.
Using Eqs. (13), (14), and (41) one obtains

��� ¼ 2ffiffiffi
3

p �M1sjN¼0

¼ 2m2
sffiffiffi

3
p

�1

�
1

2
� 1

12�1

ffiffiffiffiffiffiffiffi
k1a

3

s
ð�0 þ 2

ffiffiffi
2

p
�1Þ

þ fa

2�

�
3

4�2
1

þ 	

�2

��
: (49)

From phenomenology, Eq. (14) implies that ��� ¼
0:206 GeV and the quark model estimate is 0.170 GeV,
which compares satisfactorily with the value used in the
combined 1=Nc and 1=mQ expansion [14]. In the quark

model, the contribution of the dynamics of the confinement
(term proportional to 1=2) is 0.093 GeV, while the contri-
butions of the Coulomb interaction and of the self-energy
are �0:009 GeV and 0.085 GeV, respectively. Thus the
effect of the self-energy is as large as that of the
confinement.
Let us recall that, except for mc and mb, all the model

parameters are determined from theoretical arguments
combined with phenomenology, or are fitted on light
baryon masses. The comparison of our results with the
1=Nc expansion coefficients c0, c

0
0, and ��� is independent

of the mQ values. So we can say that this analysis is

parameter-free.
So far, our formalism is spin independent. An evaluation

of the coefficients c2, c
0
2, and c002 through a computation of

the spin-dependent effects within a three-body quark
model is then de facto out of the scope of the present
approach. If included, the spin-dependent interactions be-

TABLE VIII. Supplementary parameters for qqQ baryons.

Fixed parameters Fitted parameters

k1 ¼ 0:930 mc ¼ 1:252 GeV
�1 ¼ 0:7�0 mb ¼ 4:612 GeV
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tween quarks i and j would appear as relativistic correc-
tions to the Coulomb potential, proportional to 1=�i�j (�i

is the dynamical mass of the quark i) [5]. At the dominant
order, one expects that c2 / ��2

1 and c002 / ��1
1 . The ratio

c002=c2 should thus be of order �1 ¼ 356 MeV, which is
roughly in agreement with Eq. (9) stating that c002=c2 
�.
This gives an indication that the quark model and the 1=Nc

expansion method would remain compatible if the spin-
dependent effects were included, as we already pointed out
in the light baryon sector [5,6].

Charm and bottom baryons have been studied with a
Hamiltonian similar to ours in Ref. [33]. All parameters (a,
�S, mn, etc.) have values very close to ours, but some
differences exist: A genuine junction Y is used for the
confinement instead of the approximation (17) and (18),
the auxiliary fields are introduced only at the level of the
kinetic part, the Coulomb potential is not treated perturba-
tively, and the color-magnetic interaction is taken into
account. The consequence of this procedure is that no
analytical mass formula can be derived explicitly. But,
the numerical results obtained in that paper are in good
agreement with experiment, which reinforces our ap-
proach. Moreover, it was also found that a unit of angular
momentum between the heavy quark and the two light
quarks is energetically favored with respect to a unit of
angular momentum between the two light quarks. This
corresponds to our choice N� ¼ 0.

VI. CONCLUSIONS

Our previous studies establishing a connection between
the quark model and the 1=Nc expansion for light baryons
have been successfully extended to baryons containing a
heavy quark. Accordingly, the 1=Nc expansion was sup-

plemented by a 1=mQ expansion due to the heavy quark.

As in the light baryon sector, there is a clear correspon-
dence between various terms appearing in our mass for-
mula (41) and those of the mass formula in the combined
1=Nc and 1=mQ expansion described in Sec. III. First, both

methods lead to compatible values for the heavy-quark
masses. Second, the typical QCD scale involved in the
1=Nc expansion is well reproduced by the quark model
without any free parameter: All necessary parameters have
been previously fitted on light baryons. Finally, the domi-
nant term in SU(3)-flavor breaking expansion is satisfac-
torily reproduced. The spin-dependent terms, seen as
relativistic effects, deserve a special study, to be considered
in the future.
This study, completing the two previous ones [5,6],

brings reliable QCD-based support in favor of the constitu-
ent quark model assumptions due to the compatibility of its
mass formula and the mass formula derived from the
model-independent 1=Nc expansion. Moreover, a better
insight into the coefficients ci encoding the QCD dynamics
in the mass operator is obtained: the dependence on the
quark content and on the excitation number.
We presently focused on ground state heavy baryons.

For excited states, the quark model suggests that the band
number N classifying the heavy baryon resonances should
be associated to the quantum of excitation of the heavy-
quark–light-diquark pair in a harmonic oscillator picture.
We leave a detailed study of excited heavy baryons for
future studies.
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