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We study the final-state interaction (FSI) effects in charmless �Bu;d;s ! PP decays. We consider a FSI

approach with both short- and long-distance contributions, where the former are from inelastic channels

and are contained in factorization amplitudes, while the latter are from the residual rescattering among PP

states. Flavor SU(3) symmetry is used to constrain the residual rescattering Smatrix. We fit to all available

data on the CP-averaged decay rates and CP asymmetries, and make predictions on unmeasured ones. We

investigate the K� direct CP violations that lead to the so-called K� puzzle in CP violation. Our main

results are as follows: (i) Results are in agreement with data in the presence of FSI. (ii) For �B decays, the

�þ�� and �0�0 rates are suppressed and enhanced, respectively, by FSI. (iii) The FSI has a large impact

on direct CP asymmetries (A) of many modes. (iv) The deviation (�A) between Að �B0 ! K��þÞ and
AðB� ! K��0Þ can be understood in the FSI approach. Since AðK��0Þ is more sensitive to the

residual rescattering, the degeneracy of these two direct CP violations can be successfully lifted.

(v) Sizable and complex color-suppressed tree amplitudes, which are crucial for the large �0�0 rate

and �A, are generated through exchange rescattering. The correlation of the ratio Bð�0�0Þ=Bð�þ��Þ
and �A is studied. (vi) The B� ! ���0 direct CP violation is very small and is not affected by FSI.

(vii) Several �Bs decay rates are enhanced. In particular, the �
0�0 branching ratio is enhanced to the level of

1:0� 10�4, which can be checked experimentally. (viii) Time-dependent CP asymmetries S in �Bd;s

decays are studied. The �Sð �B0 ! KS�
0Þ is very small ( � 1%). This asymmetry remains to be one of the

cleanest measurements to search for new physics phases. The asymmetry S from �Bs to PP states with

strangeness S ¼ þ1 are expected to be small. We found that the jSj for �B0
s ! ��, ��0, and �0�0 decays

are all below 0.06. CP asymmetries in these modes will be useful to test the SM.
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I. INTRODUCTION

The study of B decays provides many useful information
of the flavor sector of the standard model (SM) [1]. In
particular, the measurements of the time-dependent CP
asymmetries in kaon and charmonium final states give a
rather precise value of sin2� ¼ 0:681� 0:025 [2], where
�=�1 ¼ argðV�

tdÞ with V the Cabbibo-Kobayashi-

Mashikawa (CKM) matrix. In the SM, time-dependent
CP asymmetries in penguin dominated modes are expected
to be close to the sin2� value [3]. Since the penguin loop
amplitudes are sensitive to high virtuality, new physics
beyond the SM may contribute to the time-dependent CP
asymmetries through the heavy particles in the loops.
Consequently, these asymmetries are promising places to
search for new physics effects [3–8].

The measurements of direct CP violation (A) in �B
decays are also very useful and interesting. The Að �B0 !
K��þÞ asymmetry was the first measured direct CP vio-
lation in �B decays. The data confirmed a large Að �B0 !
K��þÞ with a negative sign as predicted in perturbative
QCD calculations [9]. On the contrary, althoughAðB� !
K��0Þ ’ Að �B0 ! K��þÞ was expected in many
early theoretical predictions [9,10], the experimental
evidence has been accumulated favoring a positive
AðB� ! K��0Þ. The recent measurements show
AðK��þÞ ¼ ð�9:8þ1:2�1:1Þ% and AðK��0Þ ¼ ð5:0�

2:5Þ% [2], giving �AðK�Þ�AðK��0Þ�AðK��þÞ¼
ð14:8þ2:7�2:8Þ%, which is more than 5� from zero. This is the

so-called K� puzzle in direct CP violation, which has
attracted a lot of attention [11–19]. Several suggestions
were put forth to resolve this puzzle. For example, some
authors introduced next-to-leading order contributions in
factorization amplitudes [14], while some suggested new
physics origins [11–13,16–19] for the deviation.
It is well known that we need both weak and strong

phase differences to have a nonvanishing direct CP viola-
tion. Strictly speaking, the final-state interaction (FSI) is
the only source for nonvanishing strong phases. In addi-
tion, it is capable of enhancing the decay rates of many
modes, which are measured to be larger than expected. For
example, the large observed �B0 ! �0�0 rate, which re-
mains puzzling and is still posing tension in many theo-
retical calculations, can be obtained by using FSI [20].
Furthermore, it was recently realized that long-distance
FSI may play an indispensable role in charmful as well
as in charmless �B decays [21,22].
Data for �Bs decays are starting to emerge from the

Tevetron [1] and from B factories, and we anticipate
more to come in the near future, from LHCb and other
LHC experiments. Measurements of rates and CP asym-
metries in �Bs decays will be useful in testing the SM and in
searching for new (physics) phases. In fact, recently, a
claim on the evidence of new physics effect in the �Bs
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mixing was put forth [23]. It is thus timely to study �Bs

decays.
In this work, we investigate the effects of FSI on all

charmless �Bu;d;s ! PP decay rates and CP asymmetries.

We outline the underlying physical picture of the FSI
approach employed in this work. The master formula of
FSI for charmless �B ! PP decays is (see appendix A, if a
derivation is needed)

AFSI
i ¼ XN

k¼1

S1=2
ik A0

k; (1)

where AFSI and A0 are �B decay amplitudes with and with-
out FSI,1 respectively, i ¼ 1; . . . ; n denotes all charmless
PP states, k ¼ 1; . . . ; n; nþ 1; . . . ; N denotes all possible
states that can rescatter into the charmless PP states, and S
is the strong interacting S matrix. Note that no approxima-
tion has been made in the above equation, which, in
principle, all charmless �B decay amplitudes should follow.
In practice, this master formula is hard to use as it involves
many states (the number N is in general quite large in a
typical charmless B decay).

Let us investigate further the difficulties of using the
above master formula. The number of states allowed to
enter the formula grows with the mass of the decaying
particle. For a typical B decay, there is a large number of
the states involved in the equation and the contributions are
hard to handle. For example, we may need to consider a
rescattering process contributed from a multibody final
state, where the decay amplitude and the corresponding
rescattering S-matrix element are poorly known. There-
fore, the complication originates from the largeness of mB.
However, it is precisely the largeness of mB that makes
factorization approaches such as perturbative QCD [9],
QCD factorization (QCDF) [10,24] and soft collinear ef-
fective theory [25] possible. These approaches achieve
accessibility and simplifications. The underlying reason
for the simplicity is related to the so-called duality argu-
ment, which uses the fact that when contributions from all
hadronic states at a large enough energy scale are summed
over, one should be able to understand the physics in terms
of the quark and gluon degrees of freedom. Hence, it is
reasonable to expect that the main effect of FSI, especially
those from inelastic channels, is included in the factoriza-
tion amplitudes—a statement we expect to hold perfectly
in the mb ! 1 case. Since in the real world mb is finite,
whether it is large enough to validate the above argument
should be answered by experiments.

It is fair to say that most factorization results on
CP-averaged charmless �B ! PP decay rates, especially
color-allowed ones, agree well with the data. However,
some measurements seem to imply the needs of subleading
contributions. For example, rates of some suppressed de-

cay modes, such as the above mentioned �B0 ! �0�0 rate,
and some CP-odd quantities, such as the B� ! K��0

direct CP violation, do not agree well with predictions.
These are places, where subleading effects, such as FSI,
could be visible. Therefore, although we expect factoriza-
tion amplitudes to contain most of the FSI effects de-
manded in Eq. (1), it is likely that residual rescattering is
still allowed and needed in �B ! PP decays at the physical
mB energy scale. The group of charmless PP states is
unique to the processes we are studying and is well sepa-
rated from all other states. Since the duality argument
cannot be applied to these states of limited number, part
of their FSI effects may not be included in the factorization
amplitudes [26,27].
In summary, FSI in B decays may be simpler than we

thought, since mB could be large enough to apply a facto-
rization approach for the main part of FSI contributions.
We may only need to include the leftover FSI, i.e. residual
rescattering, in addition to the short-distance FSI in the PP
sector. In this sense, the FSI approach we are using is a
mild extension to the factorization approaches.
Note that a similar approach analyzing early data was

used in [27]. There is one major difference. In [27], in
principle, no short-distance phase was allowed in factori-
zation amplitudes to avoid double counting, while here we
do need short-distance phases to account for the FSI effects
from all inelastic plus some quasi-elastic channels. There
are also other works in the literature discussing rescattering
among PP states and/or from some inelastic channels
[22,28–32]. For example, in [22], rescattering from PP

and Dð�Þ �Dð�Þ final states was considered, and the main
FSI contributions resemble the charming penguin ones
[32,33]. We also note that similar discussion of the facto-
rization of S into short-distance and residual parts, as well
as the discussion of the approximation done when assum-
ing S is block diagonal (with a block for the PP states) can
be found in [28].
The layout of the present paper is as follows: In Sec. II,

we introduce the formalism. We then use it in Sec. III to
study �Bu;d;s ! PP decays. Results and discussions are also

presented. Section IV contains our conclusions. Some
derivations, including those lead to Eq. (1), are given in
appendices.

II. FORMALISM

In this section, we develop the formalism. The reader
who is not interested in the detail of the formalism may
proceed directly to the numerical analysis section.
Without loss of generality, we can re-express the S

matrix in Eq. (1) as

S ik ¼
Xn
j¼1

ðS1ÞijðS2Þjk; (2)

where S1 is a nonsingular n� n matrix with n as the total

1Note that AFSI contains weak as well as strong phases, while
A0 only has weak phases.
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number of charmless PP states and S2 is defined through
the above equation, i.e. S2 � S�1

1 S. The physical picture
mentioned in the last section is close to the one in facto-
rization approaches, except that there are still some resid-
ual rescattering effects, and we have

S 1 ¼ Sres; Afac
j ¼ XN

k¼1

ðS1=2
2 ÞjkA0

k; (3)

with N as the total number of states entering Eq. (1) and
Afac
j as the factorization amplitude. The residual rescatter-

ing effect is encoded in the Sres matrix. Note that although
S is unitary, Sres needs not be so, as it describes the residual
rescattering among various charmless PP states. In facto-
rization approaches, the above Sres is taken to be unity. We
shall use the up-to-date data to determine Sres. It should be
reminded that our framework does not exclude the fully
factorized case (Sres ¼ 1) and, hence, it is also being
tested. To apply the above formula, we need to specify
the factorization amplitudes. In this work, we use the
factorization amplitudes obtained in the QCD factorization
approach [24].

Combining Eqs. (1) and (3), we have

AFSI
i ¼ Xn

j¼1

ðS1=2
res ÞijAfac

j ; (4)

where, as mentioned before, i, j ¼ 1; . . . ; n denote all
charmless PP states. The number of parameters needed
to describe Sres seems to be quite large. This is, however,
not the case, since strong interaction has (an approximate)
SU(3) symmetry, which is expected to be a good one at the
mB rescattering scale and, hence, can be used to constrain
the form of Sres.

Explicitly, through SU(3) symmetry, we have

AFSI
�B0
d;s
!K��þ

AFSI
�B0
d;s
! �K0�0

AFSI
�B0
d;s
! �K0�8

AFSI
�B0
d;s
! �K0�1

0
BBBBBB@

1
CCCCCCA
¼ S1=2

res;1

Afac
�B0
d;s
!K��þ

Afac
�B0
d;s
! �K0�0

Afac
�B0
d;s
! �K0�8

Afac
�B0
d;s
! �K0�1

0
BBBBBB@

1
CCCCCCA
; (5)

AFSI
B�! �K0��

AFSI
B�!K��0

AFSI
B�!K��8

AFSI
B�!K��1

0
BBBB@

1
CCCCA ¼ S1=2

res;2

Afac
B�! �K0��

Afac
B�!K��0

Afac
B�!K��8

Afac
B�!K��1

0
BBBB@

1
CCCCA; (6)

AFSI
B�!���0

AFSI
B�!K0K�

AFSI
B�!���8

AFSI
B�!���1

0
BBBB@

1
CCCCA ¼ S1=2

res;3

Afac
B�!���0

Afac
B�!K0K�

Afac
B�!���8

Afac
B�!���1

0
BBBB@

1
CCCCA; (7)

AFSI
�B0
d;s
!�þ��

AFSI
�B0
d;s
!�0�0

AFSI
�B0
d;s
!�8�8

AFSI
�B0
d;s
!�8�1

AFSI
�B0
d;s
!�1�1

AFSI
�B0
d;s
!KþK�

AFSI
�B0
d;s
!K0 �K0

AFSI
�B0
d;s
!�0�8

AFSI
�B0
d;s
!�0�1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

¼ S1=2
res;4

Afac
�B0
d;s
!�þ��

Afac
�B0
d;s
!�0�0

Afac
�B0
d;s
!�8�8

Afac
�B0
d;s
!�8�1

Afac
�B0
d;s
!�1�1

Afac
�B0
d;s
!KþK�

Afac
�B0
d;s
!K0 �K0

Afac
�B0
d;s
!�0�8

Afac
�B0
d;s
!�0�1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

; (8)

where we have S1=2
res;i ¼ ð1þ iT iÞ1=2, with

T 1 ¼

r0 þ ra
�raþreffiffi

2
p �raþreffiffi

6
p 2�raþ�reffiffi

3
p

�raþreffiffi
2

p r0 þ raþre
2

ra�re
2
ffiffi
3

p � 2�raþ�re
3
ffiffi
2

p
�raþreffiffi

6
p ra�re

2
ffiffi
3

p r0 þ raþ5re
6 � 2�raþ�re

3
ffiffi
2

p
2�raþ �reffiffi

3
p � 2�raþ�reffiffi

6
p � 2�raþ �re

3
ffiffi
2

p ~r0 þ 4~raþ2~re
3

0
BBBBBB@

1
CCCCCCA
;

T 2 ¼

r0 þ ra
ra�reffiffi

2
p �raþreffiffi

6
p 2�raþ �reffiffi

3
p

ra�reffiffi
2

p r0 þ raþre
2

�raþre
2
ffiffi
3

p 2�raþ �re
3
ffiffi
2

p
�raþreffiffi

6
p �raþre

2
ffiffi
3

p r0 þ raþ5re
6 � 2�raþ�re

3
ffiffi
2

p
2�raþ�reffiffi

3
p 2�raþ �reffiffi

6
p � 2�raþ�re

3
ffiffi
2

p ~r0 þ 4~raþ2~re
3

0
BBBBBB@

1
CCCCCCA
;

T 3 ¼

r0 þ ra 0 0 0

0 r0 þ ra

ffiffi
2
3

q
ðra � reÞ 2�raþ �reffiffi

3
p

0
ffiffi
2
3

q
ðra � reÞ r0 þ 2raþre

3

ffiffi
2

p
3 ð2�ra þ �reÞ

0 2�raþ�reffiffi
3

p
ffiffi
2

p
3 ð2�ra þ �reÞ ~r0 þ 4~raþ2~re

3

0
BBBBBB@

1
CCCCCCA
;

(9)

and
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The rescattering parameters r0;a;e;t, �r0;a;e;t, ~r0;a;e;t, r̂0;a;e;t,
and �r0;a;e;t denote rescattering in �ð8Þ�ð8Þ ! �ð8Þ�ð8Þ,
�ð8Þ�ð8Þ ! �ð8Þ�1, �ð8Þ�1 ! �ð8Þ�1, and �1�1 !
�1�1, respectively, and the subscripts 0, a, e, t represent
flavor singlet, annihilation, exchange, and total-
annihilation rescatterings, respectively, (see Fig. 1). Note
that for identical particle final states, such as �0�0, factors
of 1=

ffiffiffi
2

p
are included in the amplitudes and the correspond-

ing Sres matrix elements. The P�8, P�1 are not physical
final states. The physical �, �0 mesons are defined through

�
�0

� �
¼ cos# � sin#

sin# cos#

� �
�8

�1

� �
; (11)

with the mixing angle # ’ �15:4� [34]. For the �ð0Þ�ð0Þ
states, we have

��
��0
�0�0

0
@

1
A ¼

cos2# � ffiffiffi
2

p
cos# sin# sin2#ffiffiffi

2
p

cos# sin# cos2# � sin2# � ffiffiffi
2

p
cos# sin#

sin2#
ffiffiffi
2

p
cos# sin# cos2#

0
B@

1
CA

�8�8

�8�1

�1�1

0
@

1
A; (12)

FIG. 1. Pictorial representation of (a) charge exchange re, (b) singlet exchange r0, (c) annihilation ra and (d) total-annihilation rt for
PP (re)scattering.
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where the identical particle factor of 1=
ffiffiffi
2

p
is properly

included in the mixing matrix.
The matrices T 1;2;3;4 can be obtained through a dia-

grammatic method by matching the Clebsh-Gordan coef-
ficients of scattering mesons (see Fig. 1) or by using an
operator method. We have Trð�in

1 �
out
1 �in

2 �
out
2 Þ=2,

Trð�in
1 �

in
2 �

out
1 �out

2 Þ, Trð�in
1 �

out
1 ÞTrð�in

2 �
out
2 Þ, and

Trð�in
1 �

in
2 ÞTrð�out

1 �out
2 Þ corresponding to re, ra, r0, and

rt contributions, respectively, (see similar discussion for
the case of charmful B decays in [21]). Note that due to
Bose-Einstein statistic and the S-wave configuration of the
final-state mesons in �B ! P1P2 decays, the amplitude
should be symmetric under the exchange of the indices 1
and 2. Consequently, the above terms exhaust all possible
combinations for �ð8Þ�ð8Þ ! �ð8Þ�ð8Þ scatterings. For
operators involving �1, we suitably replace� in the above
expressions by �113�3 to obtain operators corresponding
to �ri, ~ri, r̂i, and �ri.

It can be easily seen that rescattering formulas for
charmless �Bs ! PP decays resemble those for �B0 ! PP
decays. Information on Srec obtained from �B0

d decays can

be used to predict �Bs decay rates.
At first sight, it appears that we need 40 real parameters

(from 20 complex rescattering parameters: r0;a;e;t, �r0;a;e;t,

~r0;a;e;t, r̂0;a;e;t, and �r0;a;e;t) to describe Sres. The number of

independent parameters is actually much lower for two
reasons. First, rescattering parameters enter Sres only
through 7 independent combinations: 1þ iðr0 þ raÞ,
iðre � raÞ, iðra þ rtÞ, ið2�ra þ �reÞ, 1þ i½~r0 þ ð4~ra þ
2~reÞ=3�, ið4r̂a þ 2r̂e þ 3r̂tÞ, and 1þ i½ �r0 þ ð4�ra þ 2�re þ
3�rtÞ=6�. Second, SU(3) symmetry imposes further con-
straints on these combinations.
Flavor symmetry requires that ðSresÞm with an arbitrary

power of m should also have the same form as Sres. More
explicitly, from SU(3) symmetry, we should have

ðSresÞm ¼ ð1þ iT Þm � 1þ iT ðmÞ; (13)

where T ðmÞ is defined through the above equation and its
form is given by

T ðmÞ ¼ T with ðrj; �rj; ~rj; �rjÞ ! ðrðmÞ
j ; �rðmÞ

j ; ~rðmÞ
j ; �rðmÞ

j Þ;
(14)

for j ¼ 0, a, e, t.
It is found that the solutions to Eqs. (13) and (14) are

given by

1þ iðrðmÞ
0 þ rðmÞ

a Þ ¼ 2e2mi�27 þ 3Um
11

5
; iðrðmÞ

e � rðmÞ
a Þ ¼ 3e2mi�27 � 3Um

11

5
;

iðrðmÞ
a þ rðmÞ

t Þ ¼ �e2mi�27 � 4Um
11 þ 5Vm

11

20
; ið2�rðmÞ

a þ �rðmÞ
e Þ ¼ 3ffiffiffi

5
p Um

12; 1þ i

�
~rðmÞ
0 þ 4~rðmÞ

a þ 2~rðmÞ
e

3

�
¼ Um

22;

ið4r̂ðmÞ
a þ 2r̂ðmÞ

e þ 3r̂ðmÞ
t Þ ¼ 3ffiffiffi

2
p Vm

12; 1þ i

�
�rðmÞ
0 þ 4�rðmÞ

a þ 2�rðmÞ
e þ 3�rt

6

�
¼ Vm

22; (15)

where Um
ij and Vm

ij are elements of

U mð�; �8; �
0
8Þ � cos� sin�

� sin� cos�

� �
e2mi�8 0
0 e2mi�0

8

� �
cos� � sin�
sin� cos�

� �
;

Vmð�; �1; �
0
1Þ � cos� sin�

� sin� cos�

� �
e2mi�1 0
0 e2mi�0

1

� �
cos� � sin�
sin� cos�

� �
;

(16)

respectively. From the above solution, we see that two real
mixing angles � and �, and five complex phases �27;8;1, �

0
8;1

are needed to describe ðSresÞm in the full SU(3) case.
Several remarks are in order. (i) The subscripts of phases

denote the corresponding SU(3) multiplets and more de-
tails will be given shortly. (ii) The imaginary parts of
�27;8;1, �0

8;1 control the leakage of the nonunitary Sm
res

through the scattering of PP states into non-PP states.
(iii) As we shall see, the Sm

res can be factorized into two
parts depending only on the real and the imaginary parts of
these phases, respectively. (vi) To reduce the number of the

FSI parameters we will consider a restricted SU(3) case,
which is close to a U(3) symmetric case.
Since charmless mesons P consist of an octet (�ð8Þ) and

an singlet (�1), we have 8 	 8, 8 	 1, 1 	 8, and 1 	 1
SU(3) products for P1P2 final states. Because of the
S-wave configuration of P1P2 in �B decays and the Bose-
Einstein statistics, the resulting SU(3) multiplets should be
symmetric under the exchange of P1 and P2. The allowed
ones are the 27, 8 and the 1 from 8 	 8, the 80 from the
symmetrized 8 	 1þ 1 	 8, and 10 from 1 	 1 (see, for
example [35]). Hence, from SU(3) symmetry and the
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Bose-Einstein statistics, we have

ðSresÞm ¼ X27
a¼1

j27;aie2mi�27h27;aj

þ X8
b¼1

X
p;q¼8;80

jp;biUm
pqhq; bj

þ X
p;q¼1;10

jp; 1iVm
pqhq; 1j; (17)

where a and b are labels of states within multiplets. It can
be easily seen that the above form of Sm

res is preserved for
any value of m. We note that similar formulas for �B ! PP
rescattering (excluding P ¼ �1) from SU(3) symmetry
have been used in [27,28].

From Eq. (17), we see that the matrix Sm
res is in block-

diagonal form and we also have

U mð�; �8; �
0
8Þ ¼ Umð�;Re�8;Re�

0
8Þ


Umð�; iIm�8; iIm�0
8Þ;

Vmð�; �1; �
0
1Þ ¼ Vmð�;Re�1;Re�

0
1Þ


Vmð�; iIm�1; iIm�0
1Þ;

(18)

which can be proved by using the explicit expressions of
Um and Vm given in Eq. (16). Consequently, the matrix
Sm
res can be factorized into two matrices containing only

real and imaginary phases, respectively, i.e.

S m
resð�; �;�1;8;27; �

0
1;8Þ ¼ Sm

resð�; �; Re�1;8;27;Re�
0
1;8Þ


 Sm
resð�; �; iIm�1;8;27; iIm�0

1;8Þ:
(19)

Note that Sm
resð�; �; iIm�i; iIm�0

iÞ is a n� n real matrix.

Substituting the above expression of S1=2res into Eq. (4), we
have

AFSI ¼ S1=2
res ð�; �; Re�1;8;27;Re�

0
1;8Þ


 S1=2
res ð�; �; iIm�1;8;27; iIm�0

1;8Þ 
 Afac: (20)

An overall phase in Eq. (20) can be removed and we are
free to set Re�27 ¼ 0. Furthermore, in our analysis (as well
as in many analyses using naive or QCD factorization
approaches), various form factors and ms in Afac are al-
lowed to float in some given ranges of values. Therefore, an
overall scaling factor ( expð�Im�27Þ) can be absorbed into
the form factors in Afac and we set Im�27 ¼ 0 to avoid
double counting. We are left with two mixing angles, four
real phase differences, and four imaginary phase differ-
ences

�; �; �ð0Þ � Reð�8ð0Þ � �27Þ; �ð0Þ � Reð�1ð0Þ � �27Þ;
	ð0Þ � Imð�8ð0Þ � �27Þ; 
ð0Þ � Imð�1ð0Þ � �27Þ: (21)

The number of the residual FSI parameters is still quite
large. It will be preferable to reduce it through some

physical arguments or the consideration of some plausible
cases.
It is interesting to see how the residual FSI behaves in a

U(3) symmetric case. It is known that theUAð1Þ breaking is
responsible for the mass difference between � and �0 and
U(3) symmetry is not a good symmetry for low-lying
pseudoscalars. However, U(3) symmetry may still be a
reasonable one for a system that rescatters at energies of
order mB. The mass difference between � and �0, as an
indicator of U(3) symmetry breaking effect, does not lead
to sizable energy difference of these particles in charmless
B decays. In the literature, some authors also make use of
U(3) symmetry in charmless B decays (see, for example
[36]).
The full U(3) symmetry requires

ri ¼ �ri ¼ ~ri ¼ �ri (22)

for each i ¼ 0, a, e, t. This imposes a major reduction of
parameters. Note that the reduction is more easier to pre-
form in the ri formalism than in the SU(3) decomposition
formalism. This is one of the advantages of the former
formalism.
In the U(3) case, we are constrained to have (see

Appendix B)

rðmÞ
e rðmÞ

a ¼ 0: (23)

Consequently, there are two different solutions: (a) the

annihilation-type (rðmÞ
a � 0, rðmÞ

e ¼ 0) with

�27 ¼ �0
8 ¼ �0

1; �8; �1; � ¼ � 1

2
sin�1 4

ffiffiffi
5

p
9

;

� ¼ � 1

2
sin�1 4

ffiffiffi
2

p
9

;

(24)

and (b) the exchange-type (rðmÞ
e � 0, rðmÞ

a ¼ rðmÞ
t ¼ 0) with

�27 ¼ �0
8 ¼ �0

1; �8 ¼ �1;

� ¼ 1

2
sin�1

ffiffiffi
5

p
3

; � ¼ 1

2
sin�1 2

ffiffiffi
2

p
3

:
(25)

The explicit expressions of rðmÞ
i in terms of these phases

can be found in Appendix B.
It is interesting to note that in both solutions of the U(3)

case, a common constraint

�27 ¼ �0
8 ¼ �0

1 (26)

has to be satisfied. To reduce the number of the residual FSI
parameters shown in Eq. (21), we consider a restricted
SU(3) case, which is close, but not necessarily identical,
to the full U(3) case. Motivated by Eq. (26), we consider
the parameter space around

�0 ’ �0 ’ 0; 	0 ’ 
0 ’ 0: (27)

The above restriction on the FSI parameter space is a rather
strong model assumption. When comparing the fitted FSI
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parameters with those in Eqs. (24) and (25), it is possible to
determine whether the exchange-type, the annihilation-
type, or a mixed solution is preferred by data.

III. NUMERICAL RESULTS

In our numerical study, masses and lifetimes are taken
from the review of the Particle Data Group (PDG) [1], and
the branching ratios of B to charmless meson decays are
taken from [2,37,38]. We use f� ¼ 131 MeV, fK ¼
156 MeV [1], and fBðsÞ ¼ 200ð230Þ MeV for decay con-

stants. The values of CKM matrix elements are taken from
the central values of the latest CKMfitter’s results [39].

We use the QCD factorization calculated amplitudes
[24] for the factorization amplitudes in the right-hand
side of Eq. (4). We take the renormalization scale � ¼
4:2 GeV and the power correction parameters XA;H ¼
lnðmB=�hÞð1þ �A;He

i�A;H Þ. Hadronic parameters in facto-

rization amplitudes are fit parameters in addition to FSI
parameters, and are allowed to vary in the following
ranges:

0 � �A ¼ �H � 2; ��<�A;H � �;

msð2:1 GeVÞ ¼ ð100� 30Þ MeV;

FB�
0 ð0Þ ¼ 0:25� 0:05; FBK

0 ð0Þ ¼ 0:35� 0:08;

FBsKð0Þ ¼ 0:31� 0:08: (28)

Note that we take �A ¼ �H for simplicity. These estima-
tions agree with those in [24,40,41], while the ranges of
form factors are slightly enlarged to include the possible

effect of the overall scaling factor expð�Im�27Þ from S1=2
res .

Other parameters (if not specified explicitly) in the QCDF
amplitudes are taken from the central values of those used
in [24]. For the FSI parameters, we set allowed ranges to be

� �

2
< �; � � �

2
; ��< �;� � �;

� 0:35 � 	; 
 � 0:35
(29)

for the mixing angles, real and imaginary parts of FSI
phase differences. In the fit we take �0 ¼ �0 ¼ 	0 ¼ 
0 ¼
0 as mentioned in the end of the previous section. The
effects of relaxing these constraints will also be estimated.
We perform a 
2 analysis with all available data on

CP-averaged rates and CP asymmetries in �Bu;d;s ! PP
decays. There are altogether 43 data used in the fit. The
confidence level and 
2 for the best-fitted case are shown
in Table I. Contributions to 
2

min from various subsets of

data are also given. For example, 
2
fBð �B0!K�Þ;...g in the table

denotes the 
2 contribution obtained from 4 CP-averaged
�B0 ! K��þ, �K0�0, �K0�, �K0�0 rates, which are related
through FSI [see Eq. (5), and see Eqs. (6)–(8) for other
groups]. Numbers of data used are shown in parentheses.
From Table I, by comparing the 
2 value and the number

of data used in each group, we are able to have a rough idea
on the quality of the fit. In most cases, the 
2 values are
compatible or smaller than the numbers of data used,
indicating reasonable fit to measurements in these groups.
However, the 
2

fAðB�!K�Þ;...g, 
2
fAðB�!��Þ;...g and 
2

Sð �B0Þ
values are larger than the corresponding numbers of data
used. We will discuss more on the sources causing these
sizable 
2 later.
We give the fitted parameters in Table II. Uncertainties

are obtained by scanning the parameter space with 
2 �

2
min þ 1. The parameters consist of those in factorization

amplitude (in the upper table) and of FSI (in the lower
table). Values given in parenthesis are not fitted ones. We
take �0, �0 ¼ ð0� 10Þ� and 	0, 
0 ¼ 0� 0:05 for
estimation.
We note that (i) Most of our fitted values for hadronic

parameters in factorization amplitudes agree with those
usually used in [24,40,41]. However, the fit seems to prefer

TABLE II. Fitted hadronic and FSI parameters. Upper table contains fitted parameters in factorization amplitudes, while the lower
one contains fitted FSI parameters. Note that parameters with values given in parentheses are not fitted ones (see text).

�A;H �Að�Þ �Hð�Þ ms (MeV) FB�
0 ð0Þ FBK

0 ð0Þ FBsK
0 ð0Þ

1:18þ0:08
�0:23 �65:7þ16:3

�16:0 7:5þ40:6
�80:1 84:3þ1:8

�1:5 0:258þ0:017
�0:004 0:314þ0:030

�0:012 0:237þ0:025
�0:007

�ð�Þ �ð�Þ �ð�Þ �ð�Þ 	 
 �0, �0ð�Þ 	0, 
0

20:6þ1:9
�1:8 41:2þ24:7�3:8 51:4þ9:8

�26:8 88:9þ109:5
�8:9 �0:35þ0:03

�0:00 0:26þ0:09
�0:61 ð0� 10Þ ð0� 0:05Þ

TABLE I. Confidence level, 
2
min=d:o:f: and various contributions to 
2

min for the best-fitted solution. Numbers of data used are
shown in parentheses.

Confidence level 
2
min=d:o:f: 
2

fBð �B0!K�Þ;...g 
2
fAð �B0!K�Þ;...g 
2

fBðB�!K�Þ;...g 
2
fAðB�!K�Þ;...g

0.04 (43) 1.51 (43) 4.6 (4) 1.6 (3) 4.5 (4) 7.0 (4)


2
fBðB�!��Þ;...g 
2

fAðB�!��Þ;...g 
2
fBð �B0!��Þ;...g 
2

fAð �B0!��Þ;...g 
2
fBð �BsÞ;Að �BsÞg 
2

fSð �B0Þg
2.6 (4) 6.8 (4) 8.0 (9) 2.4 (3) 1.6 (4) 6.0 (4)
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a small value of FBsKð0Þ, which is at the lower end of the
allowed region given in Eq. (28). (ii) Although it helps
improve the fit, the effect of�H is subleading. On the other
hand, the effect of�A is prominent. The fitted�A is around
�66�, which is close to �55� as used in the so-called S4
scenario in QCDF [24]. When turning off FSI phases, our
results should be similar to those obtained in the S4 sce-
nario. (iii) The fitted � ’ 21� and � ’ 41� are closer to � ¼
24:1� and � ¼ 35:3� of the exchange-type solution [see
Eq. (25)] than to � ¼ �41:8� and � ¼ �19:5� of the
annihilation-type solution [see Eq. (24)]. The exchange-
type solution is more favorable. (iv) In this work, residual
FSI is taken as leftover FSI that complements the FSI in
factorization amplitudes. In principle, there is a possible
double counting in�A;H and residual FSI phases. However,

in practice the residual FSI is dominated by the exchange
rescattering, which provides important effects on rates and
CP asymmetries as we shall see later. These effects cannot
be easily obtained by varying �A;H and �A;H in reasonable

ranges. In fact, numerically the 
2=d:o:f: will not be re-
duced by freezing either of these parameters. Hence, both
parameters are numerically important.

A. Rates in �B0 and B� decays

In Table III, we show the CP-average rates of �B0, B� !
PP decays. In the table, Fac, ‘‘FSI,’’ and FSI denote
factorization, partial FSI, and full FSI results, respectively.
The FSI results are obtained with the best-fitted parameters
shown in Table II. The factorization results are obtained by
using the same set of the best-fitted parameters, but with

the residual FSI phases (�ð0Þ, �ð0Þ, 	ð0Þ, and 
ð0Þ) set to zero,
while the partially FSI results are obtained similarly, but

only with the real FSI phases (�ð0Þ, �ð0Þ) set to zero. Recall

that in Eq. (20) the S1=2
res matrix can be factorized into two

parts, one involving real FSI phases and the other involving
imaginary phases. The ‘‘FSI’’ results only make use of the
one involving imaginary phases and are sort of ‘‘halfway’’
from the factorization results to the full FSI ones.

Uncertainties for factorization results are not given and
can be found elsewhere (for example, in [24]). The first
uncertainties in FSI results are obtained by scanning the
parameter space with 
2 � 
2

min þ 1, while keeping �0 ¼
�0 ¼ 0 and 	0 ¼ 
0 ¼ 0. The second uncertainties in FSI
results are from the variations of �0, �0, 	0, and 
0. From
the table, we see that the �B ! �K� and �B ! �K�ð0Þ rates are
quite sensitive to �0, �0, 	0, and 
0. Hence, a larger varia-
tion of these parameters is not preferred by the data.

As shown in Table III, the residual FSI results agree with
data. Before turning on the residual FSI, the factorization
results are close to the S4 ones as expected. After the
residual FSI is turned on, some rates are enhanced remark-
ably. In particular, �B0 decays in the �S ¼ 0 transitions
receive large contributions from the residual FSI. In the
following, we will focus on effects of the FSI on some
interesting modes.

Through the residual FSI, �B0 ! �þ�� and �0�0 rates2

are reduced and enhanced roughly by factor 2, respectively,
leading to a better agreement with data. Note that in the
‘‘FSI’’ case, the �þ�� rate is enhanced, while the �0�0

rate is slightly reduced. Both of them are pushed even
further from the data. There are the real FSI phases
ð�;�Þ that will change these rates in the right direction.
In Fig. 2, we show the �B0 ! �þ�� and �0�0 rates

versus �. The solid line is obtained by using all other
parameters set to their best-fitted values, while the dashed
line is obtained using the exchange-type solution for FSI
parameters [see, Eq. (25)] with �, � fixed, � ¼ � and 	 ¼

 taken from the average of the central values of the fitted 	
and 
. We see that �B0 ! �þ�� and �0�0 rates are re-
duced and enhanced, respectively, as � is increasing. Both
rates reach the measured ones at �� 0:3�.

TABLE III. Branching ratios of various �B ! PP modes in
units of 10�6. Fac, ‘‘FSI,’’ and FSI denote factorization, partial
FSI and full FSI results, respectively. See the main text for
details. Experimental results are taken from [2,37].

Mode Exp Fac ‘‘FSI’’ FSI

�B0 ! K��þ 19:4� 0:6 (16.0) (22.5) 20:1þ1:7þ2:5
�0:3�2:5

�B0 ! �K0�0 9:8� 0:6 (7.2) (10.2) 9:2þ0:7þ1:2
�0:2�1:2

�B0 ! �K0� 1:0� 0:3 (0.9) (1.7) 1:4þ0:4þ0:5
�0:1�0:4

�B0 ! �K0�0 64:9� 3:1 (66.4) (62.3) 65:9þ6:9þ9:2
�10:6�8:1

B� ! �K0�� 23:1� 1:0 (18.0) (26.1) 22:5þ2:6þ3:0
�1:1�0:7

B� ! K��0 12:9� 0:6 (10.1) (14.3) 12:4þ1:5þ1:6
�0:2�1:6

B� ! K�� 2:7� 0:3 (1.4) (2.5) 2:1þ0:6þ0:6
�0:1�0:5

B� ! K��0 70:2� 2:5 (70.1) (65.0) 70:8þ6:6þ10:3
�12:3�9:2

B� ! ���0 5:59þ0:41
�0:40 (5.18) (5.18) 5:18þ0:55þ0:00

�0:38�0:00

B� ! K0K� 1:36þ0:29
�0:27 (1.22) (1.77) 1:46þ0:35þ0:15

�0:04�0:13

B� ! ��� 4:4� 0:4 (4.10) (4.47) 4:23þ0:59þ0:34
�0:23�0:37

B� ! ���0 2:7þ0:6
�0:5 (3.09) (2.76) 3:31þ0:19þ0:65

�0:51�0:54

�B0 ! �þ�� 5:16� 0:22 (6.65) (7.56) 5:30þ1:92þ0:39
�0:49�0:40

�B0 ! �0�0 1:55� 0:35a (0.50) (0.36) 1:04þ0:12þ0:10
�0:55�0:08

�B0 ! �� 0:8� 0:4ð<1:4Þ (0.21) (0.10) 0:46þ0:24þ0:10
�0:11�0:08

�B0 ! ��0 0:5� 0:4ð<1:2Þ (0.22) (0.24) 0:88þ0:39þ0:24
�0:40�0:21

�B0 ! �0�0 0:9þ0:8
�0:7ð<2:1Þ (0.16) (0.30) 1:06þ1:16þ0:36

�0:31�0:28

�B0 ! KþK� 0:15þ0:11
�0:10 (0.09) (0.05) 0:10þ0:35þ0:10

�0:02�0:06

�B0 ! K0 �K0 0:96þ0:21
�0:19 (1.47) (1.56) 1:10þ0:46þ0:12

�0:12�0:11

�B0 ! �0� 0:9� 0:4ð<1:5Þ (0.26) (0.37) 0:31þ0:05þ0:06
�0:01�0:06

�B0 ! �0�0 1:2� 0:7b (0.32) (0.22) 0:42þ0:02þ0:13
�0:15�0:11

aAn S factor of 1.8 is included in the uncertainty.
bAn S factor of 1.7 is included in the uncertainty.

2For the factorization amplitudes, we use the central values of
Gegenbauer coefficients for the pion wave function,
��
2 ð2 GeVÞ ¼ 0:2� 0:1, used in [42] and do not consider the

case of using a larger Gegenbauer coefficient, which leads to a
larger �0�0 rate.

CHUN-KHIANG CHUA PHYSICAL REVIEW D 78, 076002 (2008)

076002-8



It is known that in order to have the�0�0 rate as large as
observed, we need a sizable color-suppressed tree ampli-
tude [43]. In the residual FSI, a large color-suppressed tree
contribution can be generated from the exchange rescatter-
ing. As shown in the upper part of Fig. 3, the color-allowed
tree amplitude of the �B0 ! �þ�� decay, a main FSI
source in this sector, can produce a color-suppressed tree
amplitude for the �B0 ! �0�0 decay through the exchange
rescattering. At the same time, the�þ�� rate is reduced as
it rescatters. We see that the exchange rescattering is
responsible for the enhancement of �0�0 and the suppres-
sion of �þ��.

In Fig. 2, we show the �B0 ! KþK� and �K0K0 rates. It is
known that the KþK� rate is sensitive to annihilation-type
rescattering [27] (corresponding to the ra and rt terms as
depicted in Fig. 1(c) and 1(d)). In the SU(3) case (solid
line), for � � �=2, the KþK� constraint can be easily
satisfied, while in the U(3) case (dashed line), the con-

straint on � is even weaker. These features are understand-
able, since in both cases, the exchange-type rescattering,
which cannot generateKþK� final state by rescattering the
�B0 ! �þ�� decay amplitude, is dominating. Note that the
�K0K0 rate is reduced through FSI, giving better agreement
with data without violating the KþK� bound.
In summary, the residual FSI improves the agreement

between theory and experiment for rates, in particular, it
resolves the discrepancy between data and theoretical ex-
pectations on �B0 ! �þ�� and �0�0 rates.

B. Direct CP violations in �B0 and B� decays

Results for direct CP asymmetries in �B0, B� ! PP
decays are summarized in Table IV. In general, the residual
FSI has a large impact on direct CP violations of many
modes. In the following, we will focus on some interesting
results.

FIG. 3. Exchange rescattering in �B0 ! �0�0, B� ! K��0, and �Bs ! �ð0Þ�ð0Þ decays.
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FIG. 2 (color online). �B0 ! �þ��, �0�0 rates (left) and �B0 ! KþK�, �K0K0 rates (right) versus � are plotted. The solid line is
obtained by using all other parameters set to their best-fitted values, while the dashed line is obtained using the exchange-type solution
for FSI parameters (see text). Bands are one-sigma ranges of experimental data. Theoretical uncertainties are not shown. Note that the
fitted �=� is around 0.3 (see Table II).
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We first concentrate on the modes that lead to the
K� puzzle in direct CP violation. We see that before the
residual FSI is turned on (i.e. taking Sres ¼ 1), we
have Að �B0 ! K��þÞ ’ AðB� ! K��0Þ ’ �0:12
from the annihilation amplitude for �Að’ �66�Þ. After
turning on the residual FSI (Sres � 1), the asymmetry
Að �B0 ! K��þÞ changes from �� 0:12 to �� 0:09,
while AðB� ! K��0Þ changes from �� 0:12 to
�þ 0:05, reproducing the experimental results. In other
words, the residual FSI modifies Að �B0 ! K��þÞ and
AðB� ! K��0Þ by an amount of �þ 0:03 and
�þ 0:17, respectively.

The residual FSI has a more prominent effect on
AðB� ! K��0Þ, and, hence, it is capable of lifting the
degeneracy ofAðB� ! K��0Þ andAð �B0 ! K��þÞ. As
shown in Fig. 4, it only takes a small amount of � (� 0:2�)
to flip the sign of AðB� ! K��0Þ, but a large �
( * 0:8�) would be needed to do the same thing on
Að �B0 ! K��þÞ.
It is known that a sizable and complex color-suppressed

tree amplitude in the B� ! K��0 decay can solve the K�
puzzle [43]. As depicted in Fig. 3, a color-suppressed tree
amplitude in the K��0 mode can be generated from the

exchange rescattering of B� ! K��ð0Þ color-allowed tree
amplitudes, which are known to be quite sizable [24]. The
rescattering leads to the desired large and complex color-
suppressed amplitude in the K��0 mode.
We note that in order to solve the K� direct CP puzzle,

both �A and � phases are needed. For example, a similar
analysis using rescattering among naive factorization am-
plitudes that lack a large annihilation strong phase, was
unable to remove the degeneracy of AðK��þÞ and
AðK��0Þ [27]. In other words, rescattering from both
inelastic channels and PP final states contribute to
Að �K�Þs, reproducing the experimental results and resolv-
ing the K� direct CP-violation puzzle without the need of
introducing any new physics contribution.
As noted in the previous section, the exchange rescatter-

ing is also responsible for the enhancement of the �B0 !
�0�0 rate. In Fig. 5, we show a two-dimensional plot,
exhibiting the correlation of the ratio Bð �B0 !
�0�0Þ=Bð �B0 ! �þ��Þ with the difference �A �
Að �B0 ! K��þÞ �AðB� ! K��0Þ. The light shaded
area is obtained by scanning over ��< �, � � � and
one-sigma ranges of �, �, 	, and 
, while keeping all other
hadronic parameters at their best-fitted values. The dark
shaded area corresponds to the exchange-type U(3) case
and is obtained by scanning over ��< � ¼ � � �,
�0:35 � 	 ¼ 
 � 0:35, while using � and � given in
Eq. (25) and keeping all other hadronic parameters at their
best-fitted values. The solid line is obtained in a similar
manner except keeping 	 ¼ 
 ¼ �0:05, which is the av-
erage of the central values of the best-fitted 	 and 
. Note
that in this case, only one FSI parameter � is varied. From
the plot, we clearly see that the data can be easily repro-
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FIG. 4 (color online). Same as Fig. 2, except that direct CP violations of �B0 ! K��þ and B� ! K��0 (left), and �B0 ! K��
(right) versus � are plotted. Note that the best-fitted �=� is around 0.3.

TABLE IV. Same as Table III, except for the direct CP asym-
metries A (in units of percent) in various �B ! PP modes.

Mode Exp Fac ‘‘FSI’’ FSI

�B0 ! K��þ �9:8þ1:2�1:1 (� 11:8) (� 12:2) �9:0þ2:0þ2:0
�0:6�2:2

�B0 ! �K0�0 �1� 13a (3.3) (0.9) �12:8þ2:2þ1:7
�1:0�1:5

�B0 ! �K0� - (10.7) (2.1) �28:7þ8:0þ3:3
�1:9�1:9

�B0 ! �K0�0 4:8� 5:1 (0.2) (0.6) 1:7þ0:8þ0:3
�0:2�0:4

B� ! �K0�� 0:9� 2:5 (0.3) (0.2) �0:3þ0:7þ1:2
�0:6�1:1

B� ! K��0 5:0� 2:5 (� 11:8) (� 10:3) 4:8þ1:4þ1:9
�1:2�2:0

B� ! K�� �27� 9 (39.8) (28.2) �27:3þ8:6þ10:8
�3:0�6:3

B� ! K��0 1:6� 1:9 (� 2:6) (� 2:6) �3:3þ1:0þ0:5
�0:5�0:5

B� ! ���0 6� 5 (� 0:06) (� 0:06) �0:06þ0:00þ0:00
�0:01�0:00

B� ! K0K� 12þ17�18 (� 3:5) (� 1:8) 12:8þ9:1þ16:0
�12:8�17:8

B� ! ��� �16� 7 (19.7) (22.0) �12:3þ4:1þ3:5
�2:9�3:2

B� ! ���0 21� 15 (22.8) (20.3) 54:8þ5:3þ1:7
�10:6�3:0

�B0 ! �þ�� 38� 15b (22.3) (21.1) 15:5þ10:2þ4:6
�4:3�4:5

�B0 ! �0�0 43þ25
�24 (� 51:5) (� 45:8) 48:3þ11:5þ11:8

�33:1�13:1

�B0 ! �� - (� 11:7) (� 77:6) �50:7þ15:0þ15:7
�12:4�16:3

�B0 ! ��0 - (� 28:5) (� 29:3) �5:7þ9:5þ7:8
�22:2�7:4

�B0 ! �0�0 - (3.6) (18.7) 29:7þ26:2þ8:3
�1:7�6:6

�B0 ! KþK� - (0) (52.9) 71:0þ10:9þ20:6
�41:4�15:6

�B0 ! K0 �K0 �58þ73
�66 (� 9:0) (� 19:9) �37:8þ8:4þ15:2

�37:1�15:0

�B0 ! �0� - (19.7) (19.1) 7:2þ11:5þ0:4
�13:8�0:5

�B0 ! �0�0 - (13.2) (12.4) 22:7þ7:7þ1:0
�20:5�1:0

aAn S factor of 1.4 is included in the uncertainty.
bAn S factor of 2.4 is included in the uncertainty.
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duced, and the exchange rescattering is responsible for
generating sizable and complex color-suppressed tree am-
plitudes that account for the difference �A and the
Bð �B0 ! �0�0Þ=Bð �B0 ! �þ��Þ ratio at the same time.

We now continue to discuss FSI effects on direct CP
asymmetries. There are several interesting results and re-
marks: (i) Large effects of residual FSI on A for several
other modes are obtained. Direct CP asymmetries in �B0 !
�K0�0, �K0�, �0�0 decays and in B� ! K��0, K��, ���
decays change signs in the presence of FSI. In Fig. 4, we
see thatAðB� ! K��Þ is quite sensitive to FSI. The solid
line passes through the one-sigma range of data around
�� 0:3�. (ii) Recall that in Table I, we have

2
fAðB�!K�Þ;...g ¼ 7:0 and 
2

fAðB�!��Þ;...g ¼ 6:8 from

AðB� ! �K0��; K��0; K��;K��0Þ and AðB� !
���0; K0K�; ���;���0Þ results, respectively. We see
from Table IV that the main contributions to these 
2 are
fromAðB� ! K��0Þ andAðB� ! ���0Þ, respectively.
(iii) Note that the experimental uncertainty of Að �B0 !
�þ��Þ is enlarged by a PDG S factor originated from two
different measurements: 0:25� 0:08� 0:02 and 0:55�
0:08� 0:05 from BABAR [37] and Belle [44], respec-
tively. Our fitted result of Að �B0 ! �þ��Þ ¼
ð15:5þ10:2þ4:6

�4:3�4:5 Þ% prefers the BABAR data. (iv) The direct

CP violation of �B0 ! �0�0 flips its sign, resulting in a
large and positiveAð�0�0Þ. (v) The directCP violation of
B� ! ���0 is very small and does not receive any con-
tribution from the residual rescattering, since it can only
rescatter into itself [see Eq. (7)]. The smallness of
AðB� ! ���0Þ is consistent with a requirement fol-
lowed from the CPT theorem [45]. The AðB� ! ���0Þ
measurement remains as a clean way to search for new
physics effects [22].

C. Rates and direct CP asymmetries in �B0
s decays

We now turn to Bs decays. In Table V, we show the
CP-averaged rates and direct CP violations of �B0

s ! PP
decays. The results are then compared with the data. From
the table, we see that (i) The Bð �Bs ! K��þÞ rate agrees

well with data. From Fig. 6, we note that the result is in
agreement with the data for 0< �<�=2 and any value of
�. (ii) The Bð �Bs ! KþK�Þ rate plotted in Fig. 6 versus �
and � agrees with the data. (iii) The Bð �Bs ! �þ��Þ data
can be reproduced, but the result has a large uncertainty.
(iv) The Að �Bs ! K��þÞ data can be reproduced, but the
fitted value is close to the lower end of the data.
We expect the residual FSI to have sizable contributions

to various �Bs ! PP decay rates. For example, from Fig. 3

we see that the �Bs ! �ð0Þ�ð0Þ decays also receive contribu-

tions from the exchange rescattering. Plots of �Bs ! �ð0Þ�ð0Þ
rates versus � and � are shown in Fig. 6. The �Bs ! �0�0
rate is quite sensitive to the FSI phase �. As shown in
Table V, the �B0

s ! �0�0 branching ratio is enhanced by a
factor of 1.2 and reaches 1:0� 10�4, which can be
checked in the near future. The �Bs ! �K0�0 and �K0�
modes are also quite sensitive to the residual rescattering,
and their rates are enhanced by factors of 1.5 to 2,
respectively.
Similar to the �Bu;d cases, the residual FSI also has a large

impact on many Að �Bs ! PPÞ. From Table V, we see that
signs of Að �Bs ! �K0�0Þ and Að �Bs ! �K0�0Þ are flipped.
Note that directCP asymmetries in �Bs ! �K0�0, �K0�,�0�
and �0�0 decays are close to or greater than 50%. On the
contrary, direct CP asymmetries in penguin dominated
b ! s transition modes, such as �Bs ! K0 �K0, ��0 and
�0�0 decays, are predicted to be quite small. It should be
noted that these results may be subject to some small SU(3)
breaking effects.
There is increasing interest in the �Bs sector [1,23]. It is

expected that more data from CDF and other detectors
should be available soon. Predictions on �Bs decay rates
and direct CP violations given here can be tested in the
near future.

D. Time-dependent CP violations in �B0 and �B0
s decays

Results on time-dependent CP asymmetries S are given
in Table VI. The sources of the first two uncertainties are
the same as those in previous tables, while the last uncer-
tainty comes from the variation of �=�3 ¼ ð67:6þ2:8

�4:5Þ�
[39]. We fit to data on mixing induced CP asymmetries.
Note that for the �B0 ! K0 �K0 mode, the mixing induced
CP asymmetry obtained by BABAR (� 1:28þ0:80þ0:11

�0:73�0:16

[46]) and Belle (� 0:38þ0:69
�0:77 � 0:08 [47]) are quite differ-

ent, and the central value of the former exceeds the physi-
cal range. Consequently, for this mode, only the Belle
result is used in our fit.
Time-dependent CP asymmetries S of most �B0 decay

modes, except �B0 ! �0�0, ��, KþK�, and K0 �K0 decays,
do not receive large contributions from the residual FSI.
Likewise, Sf in most of �Bs modes are not sensitive to FSI

effects, except those in �B0
s ! �0�ð0Þ, KS�

0, and KS�
ð0Þ

decays.
For �B0 decays, we define �S � sin2�eff � sin2�c �cK,

where sin2�eff ¼ ��fSðfÞ with �f the CP eigenvalue

0.0 0.1 0.2 0.3 0.4 0.5
0.3
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π 0π 0 π π

FIG. 5 (color online). Correlation of the ratio Bð �B0 !
�0�0Þ=Bð �B0 ! �þ��Þ with the difference �A �
AðK��þÞ �AðK��0Þ. The light shaded area corresponds to
the restricted SU(3) case, the dark shaded area corresponds to the
exchange-type U(3) case and the solid line is the same as the
previous one except keeping 	 ¼ 
 ¼ �0:05. See the main text
for more details.
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FIG. 6 (color online). Same as Fig. 2 except that �Bs
0 ! K��þ and KþK� rates (top), �B0

s ! �ð0Þ�ð0Þ rates (bottom) versus � (left) or
� (right) [with all other parameters fixed at the best-fitted values] are plotted here. Theoretical uncertainties are not shown. Note that
the best-fitted values for these FSI phases are �=�� 0:3 and �=�� 0:5.

TABLE V. Same as Table III, except for the branching ratios (upper table) in the unit of 10�6

and direct CP asymmetries (lower table) in the unit of percent for various �Bs ! PP modes.
Experimental results are from [2,38].

Mode Exp Fac ‘‘FSI’’ FSI

Bð �Bs
0 ! K��þÞ 5:00� 1:25 (4.72) (6.08) 4:81þ1:57þ0:20

�0:39�0:22

Bð �Bs
0 ! �K0�0Þ - (0.68) (0.59) 1:13þ0:24þ0:05

�0:33�0:04

Bð �Bs
0 ! �K0�Þ - (0.28) (0.21) 0:59þ0:10þ0:04

�0:16�0:04

Bð �Bs
0 ! �K0�0Þ - (2.33) (2.11) 2:44þ0:14þ0:42

�0:44�0:36

Bð �Bs
0 ! �þ��Þ 0:53� 0:51 (0.30) (0.10) 0:86þ1:72þ2:93

�0:19�0:85

Bð �Bs
0 ! �0�0Þ - (0.15) (0.05) 0:43þ0:86þ1:47

�0:10�0:43

Bð �Bs
0 ! ��Þ - (17.5) (21.3) 20:2þ7:6þ5:9

�1:2�4:5

Bð �Bs
0 ! ��0Þ - (70.8) (65.7) 63:6þ47:1þ13:7

�9:2�9:7

Bð �Bs
0 ! �0�0Þ - (81.9) (85.3) 99:1þ6:9þ15:2

�72:3�13:4

Bð �Bs
0 ! KþK�Þ 24:4� 4:8 (24.7) (25.3) 20:7þ11:5þ3:3

�2:1�3:0

Bð �Bs
0 ! K0 �K0Þ - (25.4) (27.1) 20:4þ12:1þ3:8

�1:8�3:4

Bð �Bs
0 ! �0�Þ - (0.06) (0.09) 0:09þ0:03þ0:00

�0:00�0:00

Bð �Bs
0 ! �0�0Þ - (0.09) (0.11) 0:13þ0:03þ0:01

�0:00�0:01

Að �Bs
0 ! K��þÞ 39� 17 (33.4) (36.7) 26:6þ2:7þ4:8

�5:2�4:7

Að �Bs
0 ! �K0�0Þ - (� 49:1) (� 46:8) 45:5þ30:7þ10:1

�12:6�10:5

Að �Bs
0 ! �K0�Þ - (2.0) (� 3:5) 76:4þ14:9þ6:0

�5:1�7:7

Að �Bs
0 ! �K0�0Þ - (2.5) (� 2:9) �14:6þ4:3þ5:7

�21:8�4:2

Að �Bs
0 ! �þ��Þ - (0) (� 22:7) �6:1þ9:7þ56:4

�1:2�21:5

Að �Bs
0 ! �0�0Þ - (0) (� 22:7) �6:1þ9:7þ56:4

�1:2�21:5

Að �Bs
0 ! ��Þ - (1.6) (1.1) �3:6þ2:6þ1:9

�1:6�1:4

Að �Bs
0 ! ��0Þ - (0.4) (0.5) 0:2þ1:7þ1:1�0:1�1:0

Að �Bs
0 ! �0�0Þ - (0.2) (0.0) 0:0þ0:2þ0:4

�3:5�0:3

Að �Bs
0 ! KþK�Þ - (� 11:9) (� 12:7) �11:0þ3:1þ2:7

�1:3�2:9

Að �Bs
0 ! K0 �K0Þ - (0.3) (1.1) 2:2þ1:8þ1:2

�0:3�1:1

Að �Bs
0 ! �0�Þ - (3.9) (4.7) 82:8þ5:5þ4:2

�20:0�4:9

Að �Bs
0 ! �0�0Þ - (37.5) (33.5) 93:9þ2:7þ3:2

�15:5�4:4
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of the state f. Comparing with the recent value of
sin2�c �cK ¼ 0:671� 0:024 [2] as measured in B0 ! K þ
charmonium modes, we obtain

�SðKS�
0Þ ¼ 0:107þ0:028

�0:046; �SðKS�Þ ¼ 0:098þ0:051
�0:068;

�SðKS�
0Þ ¼ 0:011þ0:026

�0:024: (30)

Note that the uncertainties in �SðKS�
0Þ are dominated by

the one in the sin2�c �cK measurement. The �SðKS�
0Þ,

being one of the promising tests of the SM [4], agrees
with the one found in [4,5], while the�SðKS�

0Þ given here
is slightly larger. The main contribution to the 
2

fSð �B0Þg given
in Table I is from Sð �B0 ! K0 �K0Þ.

We note that in the charming penguin approach by
Ciuchini et al. [33], the K� direct CP violation puzzle
�AðK�Þ can also be resolved [15] and predictions on �S
are made. Ciuchini et al. obtained �SðKS�

0Þ ¼ 0:024�
0:059 and �SðKS�

0Þ ¼ �0:007� 0:054 [8,15]. Note that
(i) their �SðKS�

0Þ overlaps with the one given in this
work, (ii) the central value of their �SðKS�

0Þ is negative,
but the associated uncertainties allow positive�SðKS�

0Þ as

well. There is a considerable overlap between their
�SðKS�

0Þ and the one given here.
For �B0

s decays, the S contributed from �B0
s-B

0
s mixing

itself is around �0:036. Hence, for penguin dominated

b ! s transition, such as �Bs ! K0 �K0, �ð0Þ�ð0Þ decays, we
do not expect the corresponding jSj to be much larger than
Oð0:05Þ. Indeed, the predicted jSj as shown in Table VI for
�B0
s ! ��, �0�0 and ��0 decays are all below 0.06. In

particular, given the large �B0
s ! �ð0Þ�0 rates, Sð �Bs !

�ð0Þ�0Þ are potentially good places to test the standard
model. Given the recent interesting preliminary results in
the Bs phase [1,23], it will be very useful to search for S in
these Bs charmless decays.

IV. CONCLUSION

In this work, we study the FSI effects in all charmless
�Bu;d;s ! PP decay modes. We consider a FSI approach

with both short- and long-distance contributions in which
the former are from all inelastic channels and are contained
in factorization amplitudes, while the latter are from resid-
ual rescattering among PP states. Flavor SU(3) symmetry

TABLE VI. Results on the time-dependent CP asymmetry S of various �Bd;s ! PPmodes. The
first two uncertainties are same as those in previous tables, while the last uncertainty comes from
the variation of �=�3.

Mode Exp Fac ‘‘FSI’’ FSI

�B0 ! KS�
0 0:58� 0:17 (0.780) (0.747) 0:778þ0:003þ0:014þ0:003

�0:037�0:013�0:002

�B0 ! KS� - (0.831) (0.772) 0:769þ0:013þ0:043þ0:000
�0:050�0:039�0:001

�B0 ! KS�
0 0:60� 0:07 (0.691) (0.696) 0:682þ0:008þ0:004þ0:000

�0:002�0:004�0:000

�B0 ! �þ�� �0:65� 0:07 (� 0:591) (� 0:533) �0:542þ0:088þ0:038þ0:139
�0:005�0:034�0:074

�B0 ! �0�0 - (0.854) (0.820) 0:484þ0:425þ0:096þ0:145
�0:114�0:109�0:096

�B0 ! �� - (� 0:985) (� 0:378) �0:308þ0:122þ0:144þ0:160
�0:237�0:110�0:089

�B0 ! ��0 - (� 0:945) (� 0:956) �0:946þ0:015þ0:020þ0:034
�0:036�0:016�0:016

�B0 ! �0�0 - (� 0:901) (� 0:946) �0:917þ0:089þ0:030þ0:001
�0:024�0:021�0:000

�B0 ! KþK� - (� 0:920) (� 0:468) �0:630þ0:091þ0:521þ0:085
�0:289�0:187�0:046

�B0 ! K0 �K0 �0:38þ0:69
�0:77 � 0:09 (� 0:110) (0.184) 0:327þ0:264þ0:072þ0:002

�0:283�0:068�0:011

�1:28þ0:80þ0:11
�0:73�0:16

�B0 ! �0� - (0.019) (0.064) 0:057þ0:151þ0:011þ0:000
�0:145�0:012�0:004

�B0 ! �0�0 - (0.043) (� 0:011) 0:084þ0:064þ0:016þ0:0001
�0:124�0:018�0:003

�Bs
0 ! �þ�� - (0.143) (� 0:003) 0:095þ0:055þ0:109þ0:002

�0:014�0:942�0:001

�Bs
0 ! �0�0 - (0.143) (� 0:003) 0:095þ0:055þ0:109þ0:002

�0:014�0:942�0:001

�Bs
0 ! �� - (� 0:041) (� 0:033) �0:057þ0:029þ0:016þ0:003

�0:002�0:017�0:004

�Bs
0 ! ��0 - (� 0:006) (� 0:010) �0:016þ0:016þ0:005þ0:001

�0:007�0:003�0:002

�Bs
0 ! �0�0 - (0.031) (0.033) 0:048þ0:013þ0:003þ0:000

�0:014�0:003�0:000

�Bs
0 ! KþK� - (0.194) (0.202) 0:195þ0:019þ0:017þ0:005

�0:035�0:021�0:004

�Bs
0 ! K0 �K0 - (0.005) (� 0:007) �0:010þ0:023þ0:007þ0:001

�0:010�0:005�0:002

�Bs
0 ! �0� - (0.691) (0.382) 0:140þ0:175þ0:008þ0:044

�0:230�0:007�0:025

�Bs
0 ! �0�0 - (0.816) (0.597) 0:135þ0:169þ0:095þ0:065

�0:145�0:096�0:037

�Bs
0 ! KS�

0 - (� 0:315) (� 0:719) �0:155þ0:116þ0:061þ0:101
�0:147�0:047�0:164

�Bs
0 ! KS� - (� 0:137) (� 0:622) 0:076þ0:255þ0:031þ0:091

�0:416�0:050�0:157

�Bs
0 ! KS�

0 - (� 0:174) (� 0:256) 0:001þ0:046þ0:077þ0:001
�0:109�0:0848�0:001
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is used to constrain the residual rescattering S matrix. We
fit to all available data on the CP-averaged decay rates and
CP asymmetries and make predictions on yet to be mea-
sured ones. Our main results are as follows:

(i) Results are in agreement with data in the presence of
FSI.

(ii) The fitted strong phase �A ’ �66� in annihilation
amplitudes is close to the one used in the S4 sce-
nario of the QCDF approach.

(iii) For �B decays, the �þ�� and �0�0 rates are sup-
pressed and enhanced, respectively, by FSI.

(iv) The deviation (�A) between Að �B0 ! K��þÞ
and AðB� ! K��0Þ can be understood in the
FSI approach. Since AðK��0Þ is more sensitive
to the residual rescattering, the degeneracy of these
two direct CP violations can be successfully lifted.
However, both short- and long-distance strong
phases are needed to give correct values for
Að �K�Þs.

(v) It is interesting to note that the exchange rescatter-
ing is responsible for generating large and complex
color-suppressed amplitudes, which are crucial in
explaining the enhancements in the Bð �B0 !
�0�0Þ=Bð �B0 ! �þ��Þ ratio and the CP asymme-
try difference �A.

(vi) The residual FSI has a large impact on direct CP
asymmetries of many modes.

(vii) The direct CP violation of B� ! ���0 is very
small and does not receive any contribution from
the residual rescattering [see Eq. (7)]. It remains as
a clean mode to search for new physics phases.

(viii) The present data on �Bs ! PP decay rates and
direct CP violations can be successfully
reproduced.

(ix) Several �Bs decay rates are enhanced by FSI. In
particular, the �0�0 branching ratio is predicted to
reach 10�4 level, which can be checked
experimentally.

(x) Time-dependent CP asymmetry S in �Bd;s decays are

studied. The�Sð �B0 ! KS�
0Þ is very small ( � 1%).

This asymmetry remains as one of the cleanest
measurements to search for new physics phases.
The fitted �Sð �B0 ! KS�

0Þ is positive and cannot
explain the present �Sð �B0 ! KS�

0Þ data.
(xi) Most of the time-dependent CP asymmetries S of

�Bs to PP states with the strangeness S ¼ þ1 are
expected to be small. The predicted jSj for �B0

s !
��, ��0 and �0�0 decays are all below 0.06. These
modes will be useful to test the SM.
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APPENDIX A: MASTER FORMULA OF FSI

Let HW ¼ P
q�qOq denote the weak decay

Hamiltonian, where �q are VqbV
�
qd (or VqbV

�
qs) and Oq

are four-quark operators (including Wilson coefficients
cis. From time reversal invariance of Oq, one has

hi; outjOqj �Bi� ¼ ðhi; outjÞ�Uy
TUTO

�
qU

y
TUTj �Bi�

¼ hi; injOqj �Bi
¼ X

k

hi; injk; outihk; outjOqj �Bi

¼ X
k

S�
kihk; outjOqj �Bi; (A1)

where Sik � hi; outjk; ini is the strong interaction S-matrix
element, and we have used UTjoutðinÞi� ¼ jinðoutÞi to fix
the phase convention. Equation (A1) can be solved by (see,
for example [48])

hi; outjOqj �Bi ¼
X
k

S1=2
ik Aq0

k ; (A2)

where Aq0
k is a real amplitude. To show that this is indeed a

solution to Eq. (A1), one needs to use Sik ¼ Ski, which
follows from the time reversal invariance of strong inter-
actions and the phase convention we have adopted. The
weak decay amplitude picks up strong scattering phases
[49], and we have

AFSI
i ¼ hi; outjHW j �Bi ¼

X
q

hi; outj�qOqj �Bi

¼ X
q;k

S1=2
ik ð�qA

q0
k Þ ¼ X

k

S1=2
ik A0

k; (A3)

where we have defined A0 � P
q�qA

q0 free of any strong

phase. The above equation is the master formula for FSI in
�Bu;d;s decays.

APPENDIX B: CONSTRAINTS IN THE U(3) CASE

In the U(3) case, one cannot have rescattering from both

exchange and annihilation so that rðmÞ
e rðmÞ

a ¼ 0. This can be
easily seen by inspecting Sm

res;3 in the ���0 � K0K� �
���q � ���s basis, where �q ¼ ðu �uþ d �dÞ= ffiffiffi

2
p

and

�s ¼ s�s. From Eq. (9) and the requirement that Sm
res and

T ðmÞ preserve their forms as determined by U(3) symme-
try, we should have

T ðmÞ ¼
rðmÞ
0 þrðmÞ

a 0 0 0

0 rðmÞ
0 þrðmÞ

a

ffiffiffi
2

p
rðmÞ
a rðmÞ

e

0
ffiffiffi
2

p
rðmÞ
a rðmÞ

0 þ2raþrðmÞ
e 0

0 rðmÞ
e 0 rðmÞ

0

0
BBBB@

1
CCCCA

(B1)
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in the new basis. Under U(3) symmetry, it is evident that
ðSm

res;3Þ34;43 ¼ 0 for any m. Hence, from

ðS2m
res;3Þ34;43 ¼ ð1þ 2iT ðmÞ

3 �T ðmÞ
3 
T ðmÞ

3 Þ34;43
¼ � ffiffiffi

2
p

rðmÞ
e rðmÞ

a ; (B2)

which should also be zero, we must have

rðmÞ
e rðmÞ

a ¼ 0 (B3)

for any m in the U(3) case.
Given the above constraint, we have two different solu-

tions, which are, (a) annihilation-type (rðmÞ
a � 0, rðmÞ

e ¼ 0)

and (b) exchange-type (rðmÞ
e � 0, rðmÞ

a ¼ 0). For the
annihilation-type solution, we have

1þ iðrðmÞ
0 þ rðmÞ

a Þ ¼ 2e2mi �� þ 3e2mi�8

5
;

irðmÞ
a ¼ 3

5
ðe2mi�8 � e2mi ��Þ;

iðrðmÞ
a þ rðmÞ

t Þ ¼ �e2mi �� � 4e2mi�8 þ 5e2mi�1

20
;

rðmÞ
e ¼ 0;

(B4)

which corresponds to taking

�27 ¼ �0
8 ¼ �0

1 � ��; �8; �1; � ¼ � 1

2
sin�1 4

ffiffiffi
5

p
9

;

� ¼ � 1

2
sin�1 4

ffiffiffi
2

p
9

(B5)

in Eq. (15). For the exchange-type solution, we have

1þ irðmÞ
0 ¼ 1

2
ðe2mi �� þ e2mi�8Þ;

irðmÞ
e ¼ 1

2
ðe2mi �� � e2mi�8Þ; rðmÞ

a ¼ rðmÞ
t ¼ 0;

(B6)

which corresponds to setting

�27 ¼ �0
8 ¼ �0

1 � ��; �8 ¼ �1;

� ¼ 1

2
sin�1

ffiffiffi
5

p
3

; � ¼ 1

2
sin�1 2

ffiffiffi
2

p
3

(B7)

in Eq. (15).
In the above solutions, we explicitly see that U(3) sym-

metry imposes relations on the parameters of different
SU(3) multiplets, and, consequently, reduces the number
of independent parameters. It should be noted that mixing
angles are fixed in both solutions.
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