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We examine the temperature-dependent electroweak phase transition in extensions of the standard

model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly

conformal dynamics. In particular, we focus on the low energy effective theory used to describe minimal

walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement,

we identify significant regions of parameter space which yield a sufficiently strong first-order transition

for electroweak baryogenesis. The composite particle spectrum corresponding to these regions can be

produced and studied at the Large Hadron Collider experiment. We note the possible emergence of a

second phase transition at lower temperatures. This occurs when the underlying technicolor theory

possesses a nontrivial center symmetry.
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I. INTRODUCTION

The experimentally observed baryon asymmetry of the
Universe may be generated at the electroweak phase tran-
sition (EWPT) [1–4]. For the mechanism to be applicable it
requires the presence of new physics beyond the standard
model (SM) [5–10]. An essential condition for electroweak
baryogenesis is that the baryon-violating interactions in-
duced by electroweak sphalerons are sufficiently slow
immediately after the phase transition to avoid the destruc-
tion of the baryons that have just been created. This is
achieved when the thermal average of the Higgs field
evaluated on the ground state, in the broken phase of the
electroweak symmetry, is large enough compared to the
critical temperature at the time of the transition (see, for
example, Ref. [11] and references therein):

�c=Tc > 1: (1)

In the SM, the bound (1) was believed to be satisfied only
for very light Higgs bosons [12–16]. However, this was
before the mass of the top quark was known. With mt ¼
175 GeV, nonperturbative studies of the phase transition
[17] show that the bound (1) cannot be satisfied for any
value of the Higgs mass. In addition to the difficulties with
producing a large enough initial baryon asymmetry, the
impossibility of satisfying the sphaleron constraint (1) in
the SM provides an incentive for seeing whether the situ-
ation improves in various extensions of the SM [18–21].
See [11] for additional references in this direction.

In this paper we explore the electroweak phase transition
in a model in which the electroweak symmetry is broken

dynamically [22,23]. A dynamical origin behind the spon-
taneous breaking of the electroweak symmetry is a natural
extension of the SM. However, electroweak precision data
and constraints from flavor-changing neutral currents both
disfavor an underlying gauge dynamics resembling too
closely a scaled-up version of quantum chromodynamics
(QCD) (see [24–26] for recent reviews).
Since technicolor models have been less fashionable

than supersymmetric models in the past decade, it is worth-
while to review the recent progress that has enhanced their
attractiveness from the particle physics perspective. One
area of progress is in the understanding of the phase
diagram [27–30], as a function of the number of flavors
and colors, of any SUðNÞ nonsupersymmetric gauge theory
with fermionic matter transforming according to various
representations of the underlying gauge group. This has
made it possible to provide the first classification of the
possible theories one can use to break the electroweak
symmetry [28,31]. New analytic tools such as the all-order
beta function [30] allow the determination, for the first
time, of the anomalous dimension of the mass of the
fermions at the nonperturbative infrared fixed point. This
information is crucial for walking technicolor models [32–
37], i.e., the ones for which the underlying gauge dynamics
is nearly conformal.
A key realization that enabled further progress was that

gauge theories with fermions in two-index (symmetric or
adjoint) representations of the underlying gauge group
have interesting features [27–31], such as the possibility
of the existence of a nonperturbative infrared fixed point
for a very low number of flavors [27], naturally reducing
the tension with precision data [27,31,38,39]. These prop-
erties make them intriguing candidates for walking
technicolor-type models [27,31] (related studies can be
found in [40]). In contrast, the naive scaling up of QCD,

*jcline@hep.physics.mcgill.ca
+mjarvine@ifk.sdu.dk
‡sannino@fysik.sdu.dk

PHYSICAL REVIEW D 78, 075027 (2008)

1550-7998=2008=78(7)=075027(14) 075027-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.075027


which is far from conformal, is strongly contradicted by
phenomenological constraints [41].

Another important development occurred in first princi-
ple lattice simulations of the minimal walking technicolor
theories, carried out in Refs. [42–46]. These studies give
preliminary support to the analytical arguments that these
theories are nearly or actually already conformal. The case
of fermions in the fundamental representation has been
investigated in [42,47,48].

On the astrophysical side, technicolor models are ca-
pable of providing interesting dark matter candidates, since
the new strong interactions confine techniquarks in techni-
meson and technibaryon bound states. The spin of the
technibaryons depends on the representation according to
which the technifermions transform and the numbers of
flavors and colors. The lightest technimeson is short-lived,
thus evading big-bang nucleosynthesis constraints, but the
lightest technibaryon has typically [49] a mass of the order

mTB � 1–2 TeV: (2)

Technibaryons are therefore natural dark matter candi-
dates [50–52]. In fact it is possible to naturally understand
the observed ratio of the dark to luminous matter mass
fraction of the Universe if the technibaryon possesses an
asymmetry [50–52]. If the latter is due to a net B� L
generated at some high energy scale, then this would be
subsequently distributed among all electroweak doublets
by fermion-number-violating processes in the SM at tem-
peratures above the electroweak scale [53–55], thus natu-
rally generating a technibaryon asymmetry as well. To
avoid experimental constraints the technibaryon should
be constructed in such a way as to be a complete singlet
under the electroweak interactions [28,51] while still hav-
ing a nearly conformal underlying gauge theory [28]. In
this case it would be hard to detect it in current Earth-based
experiments such as CDMS [52,56–59]. Other possibilities
have been envisioned in [60,61] and possible astrophysical
effects studied in [62]. One can alternatively obtain dark
matter from possible associated new sectors instead of the
technicolor sector [63], including those which are not
gauged under the electroweak interactions [28]. In [24]
the reader will find an up-to-date summary of the recent
efforts in this direction.

Coming to the main topic of this paper, the order of the
EWPT depends on the underlying type of strong dynamics
and plays an important role for baryogenesis [11,64]. The
technicolor chiral phase transition at finite temperature is
mapped onto the electroweak one. Attention must be paid
to the way in which the electroweak symmetry is em-
bedded into the global symmetries of the underlying tech-
nicolor theory. An interesting preliminary analysis
dedicated to earlier models of technicolor has been per-
formed in [65].

In this work, we wish to investigate the EWPT in a class
of realistic and viable technicolor models. An explicit

phenomenological realization of walking models consis-
tent with the electroweak precision data is termed minimal
walking technicolor (MWT) [38]. It is based on an SU(2)
gauge theory coupled to two flavors of adjoint techni-
quarks. This model is thought to lie close, in theory space,
to theories with nontrivial infrared fixed points [27,30].
Indeed it is possible that it already has such a fixed point
itself. In the vicinity of such a zero of the beta function, the
coupling constant flows slowly (‘‘walks’’). This theory
possesses an SU(4) global symmetry. At the LHC one
will observe the composite states which are classified
according to irreducible representations of the stability
group left invariant by the technifermion condensate. The
stability group, here, corresponds to the SO(4) symmetry
which contains the SU(2) custodial symmetry of the SM.
We choose the natural SM embedding, as detailed in the
following section.
In Ref. [38] a comprehensive Lagrangian was intro-

duced for this model, taking into account the global sym-
metries of the underlying gauge theory, the walking
dynamics via the modified Weinberg sum rules [66], and
the constraints coming from precision data [39]. The ef-
fective theory contains composite scalars and spin-one
vectors. Compatibility between the electroweak precision
constraints and tree-level unitarity of WW scattering was
demonstrated in [67].
The study of longitudinal WW scattering unitarity ver-

sus precision measurements within the effective
Lagrangian approach demonstrated that it is possible to
pass the precision tests while simultaneously delaying the
onset of unitarity [67].
In the present work we will use as a template the low

energy effective theory developed in [38]. We start in
Sec. II by summarizing the basic theory, highlighting the
degrees of freedom relevant near the phase transition. In
Sec. III the finite-temperature effective potential is then
computed at the one-loop order, including the resummation
of ring diagrams. Our analysis is presented in Sec. IV. As a
preliminary investigation we adopt the high-temperature
expansion results for the effective potential. We then ex-
plore the region of the effective theory parameters yielding
a first-order phase transition and study its strength. The
ratio of the composite Higgs thermal expectation value at
the critical temperature divided by the corresponding tem-
perature is determined as a function of the parameters of
the low energy effective theory. We identify a significant
region of parameter space where this ratio is sufficiently
large to induce electroweak baryogenesis. The spectrum of
the composite spin-zero states directly associated to these
regions can be investigated and the related particles pro-
duced at the Large Hadron Collider experiment. In
Sec. IVD we note the possible emergence of a second
phase transition at lower temperatures, i.e., the confine-
ment/deconfinement one. This transition occurs when the
underlying technicolor theory possesses a nontrivial center
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symmetry. Several appendixes are provided, which give
details concerning our analytical results.

II. INTRODUCING MINIMALWALKING
TECHNICOLOR

A. The underlying degrees of freedom and Lagrangian

The new dynamical sector we consider, which underlies
the Higgs mechanism, is an SU(2) technicolor gauge the-
ory with two adjoint technifermions [27]. The two adjoint
fermions may be written as

Qa
L ¼ Ua

Da

� �
L
; Ua

R; Da
R; a ¼ 1; 2; 3; (3)

with a being the adjoint color index of SU(2). The left-
handed fields are arranged in three doublets of the SUð2ÞL
weak interactions in the standard fashion. The condensate
is h �UUþ �DDi which correctly breaks the electroweak
symmetry. The model as described so far suffers from the
Witten topological anomaly [68]. However, this can easily
be addressed by adding a new weakly charged fermionic
doublet which is a technicolor singlet [31]. Schematically,

LL ¼ N
E

� �
L
; NR; ER: (4)

In general, the gauge anomalies cancel using the generic
hypercharge assignment

YðQLÞ ¼ y

2
; YðUR;DRÞ ¼

�
yþ 1

2
;
y� 1

2

�
; (5)

YðLLÞ ¼ �3
y

2
; YðNR; ERÞ ¼

��3yþ 1

2
;
�3y� 1

2

�
;

(6)

where the parameter y can take any real value [31]. In our
notation the electric charge isQ ¼ T3 þ Y, where T3 is the
weak isospin generator. One recovers the SM hypercharge
assignment for y ¼ 1=3.

To discuss the symmetry properties of the theory it is
convenient to use the Weyl basis for the fermions and
arrange them in a vector transforming according to the
fundamental representation of SU(4):

Q ¼
UL

DL

�i�2U�
R

�i�2D�
R

0
BBB@

1
CCCA; (7)

where UL and DL are the left-handed techniup and techni-
down, respectively, and UR and DR are the corresponding
right-handed particles. Assuming the standard breaking to
the maximal diagonal subgroup, the SU(4) symmetry spon-
taneously breaks to SO(4). This is driven by the condensate

hQ�
i Q

�
j ���E

iji ¼ �2h �URUL þ �DRDLi; (8)

where the indices i; j ¼ 1; . . . ; 4 denote the components of

the tetraplet of Q and the Greek indices indicate the
ordinary spin. The matrix 4� 4 E is defined in terms of
the two-dimensional unit matrix by

E ¼ 0 1
1 0

� �
; (9)

the antisymmetric tensor is ��� ¼ �i�2
�� and we used

hU�
LU

��
R ���i ¼ �h �URULi. A similar expression holds for

theD techniquark. The above condensate is invariant under
an SO(4) symmetry. This yields nine broken generators
with associated Goldstone bosons.
Replacing the Higgs sector of the SM with MWT, one

writes

LH ! �1
4F

a
��F a�� þ i �QL�

�D�QL þ i �UR�
�D�UR

þ i �DR�
�D�DR þ i �LL�

�D�LL þ i �NR�
�D�NR

þ i �ER�
�D�ER; (10)

with the technicolor field strength F a
�� ¼ @�Aa

� �
@�Aa

� þ gTC�
abcAb

�Ac
�, a; b; c ¼ 1; . . . ; 3. For the

left-handed techniquarks the covariant derivative is

D�Q
a
L ¼

�
	ac@� þ gTCAb

��
abc � i

g

2
~W� � ~
	ac

� ig0
y

2
B�	

ac

�
Qc

L: (11)

Here A� are the techni gauge bosons, W� are the gauge

bosons associated to SUð2ÞL and B� is the gauge boson

associated to the hypercharge. 
a are the Pauli matrices and
�abc is the fully antisymmetric symbol. In the case of right-
handed techniquarks the third term containing the weak
interactions disappears and the hypercharge y=2 has to be
replaced according to whether it is an up or down techni-
quark. For the left-handed leptons the second term con-
taining the technicolor interactions disappears and y=2
changes to �3y=2. Only the last term is present for the
right-handed leptons with an appropriate hypercharge
assignment.

B. Tree-level low energy theory for MWT

In [38] we constructed the effective theory for MWT
including composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the SM fermions. We have also used the
Weinberg modified sum rules to constrain the low energy
effective theory. This extension of the SM was thereby
shown to pass the electroweak precision tests. Near the
finite-temperature phase transition the relevant degrees of
freedom are the scalars and hence we will not consider the
vector spectrum nor that of the composite fermions.
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1. Scalar sector

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

M ¼
�
�þ i�

2
þ ffiffiffi

2
p ði�a þ ~�aÞXa

�
E; (12)

which transforms under the full SU(4) group according to

M ! uMuT; with u 2 SUð4Þ: (13)

The Xa’s, a ¼ 1; . . . ; 9, are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant. hMi is given by

hMi ¼ v

2
E: (14)

We note that� is a scalar while the�a’s are pseudoscalars.
It is convenient to separate the fifteen generators of SU(4)
into the six that leave the vacuum invariant Sa and the
remaining nine that do not Xa.

The connection between the composite scalars and the
underlying techniquarks can be derived from their trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

Mij �Q�
i Q

�
j "��; with i; j ¼ 1 . . . 4: (15)

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [69]. The generators Sa, with a ¼
1; 2; 3, form a vectorial SU(2) subgroup of SU(4), which is
denoted by SUð2ÞV , while S4 forms a Uð1ÞV subgroup. The
Sa generators, with a ¼ 1; . . . ; 4, together with the Xa

generators, with a ¼ 1; 2; 3, generate an SUð2ÞL �
SUð2ÞR � Uð1ÞV algebra. This is seen by changing the
generator basis from ðSa; XaÞ to ðLa; RaÞ, where

La � Sa þ Xaffiffiffi
2

p ¼

a

2 0
0 0

� �
;

� RaT � Sa � Xaffiffiffi
2

p ¼ 0 0
0 � 
aT

2

� �
;

(16)

with a ¼ 1; 2; 3. The electroweak gauge group is then
obtained by gauging SUð2ÞL and the Uð1ÞY subgroup of
SUð2ÞR � Uð1ÞV , where

Y ¼ �R3T þ ffiffiffi
2

p
YVS

4; (17)

and YV is theUð1ÞV charge. For example, from Eqs. (5) and
(6) we see that YV ¼ y for the techniquarks and YV ¼ �3y
for the new leptons. As SU(4) spontaneously breaks to SO
(4), SUð2ÞL � SUð2ÞR breaks to SUð2ÞV . As a conse-
quence, the electroweak symmetry breaks to Uð1ÞQ, where

Q ¼ ffiffiffi
2

p
S3 þ ffiffiffi

2
p

YVS
4: (18)

The SUð2ÞV group, being entirely contained in the unbro-
ken SO(4), acts as a custodial isospin, which ensures that
the � parameter is equal to one at tree level.
The electroweak covariant derivative for theM matrix is

D�M ¼ @�M� ig½G�ðyÞMþMGT
�ðyÞ�; (19)

where

gG�ðYVÞ ¼ gWa
�L

a þ g0B�Y

¼ gWa
�L

a þ g0B�ð�R3T þ ffiffiffi
2

p
YVS

4Þ: (20)

Notice that in the last equation G�ðYVÞ is written for a

general Uð1ÞV charge YV , while in Eq. (19) we have to take
the Uð1ÞV charge of the techniquarks YV ¼ y, since these
are the constituents of the matrixM, as explicitly shown in
Eq. (15).
Three of the nine Goldstone bosons associated with the

broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETCs) as well as the electroweak
interactions per se. Using a bottom-up approach, we will
not commit to a specific ETC theory, but rather limit
ourselves to introducing the minimal low energy operators
needed to construct a phenomenologically viable theory.
The new Higgs Lagrangian is

L Higgs ¼ 1
2 Tr½D�MD�My� �V ðMÞ þLETC; (21)

where the potential reads

V ðMÞ ¼ �m2

2
Tr½MMy� þ �

4
Tr½MMy�2

þ �0 Tr½MMyMMy� � 2�00½DetðMÞ
þ DetðMyÞ�; (22)

and LETC contains all terms which are generated by the
ETC interactions and not by the chiral symmetry breaking
sector.
We explicitly break the SU(4) symmetry in order to

provide mass to the Goldstone bosons which are not eaten
by the weak gauge bosons. Assuming parity invariance,

L ETC ¼ m2
ETC

4
Tr½MBMyBþMMy� þ � � � ; (23)

where the ellipses represent possible higher dimensional

operators, and B � 2
ffiffiffi
2

p
S4 commutes with the SUð2ÞL �

SUð2ÞR � Uð1ÞV generators.
The potential V ðMÞ is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

v2 ¼ h�i2 ¼ m2

�þ �0 � �00 ; (24)

while the Higgs mass is
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M2
H ¼ 2m2: (25)

The linear combination �þ �0 � �00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons ��, �0, correspond to the three massless
Goldstone bosons which are absorbed by the longitudinal
degrees of freedom of theW� and Z boson. The remaining
six uneaten Goldstone bosons are technibaryons, and all
acquire tree-level degenerate masses through (not yet
specified) ETC interactions:

M2
�UU

¼ M2
�UD

¼ M2
�DD

¼ m2
ETC: (26)

The remaining scalar and pseudoscalar masses are

M2
� ¼ 4v2�00; M2

A� ¼ M2
A0 ¼ 2v2ð�0 þ �00Þ (27)

for the technimesons and

M2
~�UU

¼ M2
~�UD

¼ M2
~�DD

¼ m2
ETC þ 2v2ð�0 þ �00Þ (28)

for the technibaryons. Reference [70] provides further in-
sight into some of these mass relations.

2. Fourth lepton family and Yukawa interactions

The fermionic content of the effective theory consists of
the SM quarks and leptons, the new lepton doublet L ¼
ðN;EÞ introduced to cure the Witten anomaly, and a com-
posite techniquark-technigluon doublet. In fact the most
relevant contributions are the ones of the top quark and the
new lepton contribution due to their large Yukawa cou-
plings and their relatively small zero-temperature masses,
compared to the EWPT temperature.

Many extensions of technicolor have been suggested in
the literature to provide masses to ordinary fermions. Some
of the extensions use additional strongly coupled gauge
dynamics, while others introduce fundamental scalars.
Many variants of the schemes presented above exist, and
a review of the major models is given by Hill and Simmons
[25]. At the moment there is not yet a consensus on which
ETC is the best. To keep the number of fields minimal,
Ref. [38] made the most economical ansatz, i.e., ignorance
of the complete ETC theory was parametrized by simply
coupling the fermions to the low energy effective compos-
ite Higgs. This simple construction minimizes the flavor-
changing neutral current problem. It is worth mentioning
that it is possible to engineer a schematic ETC model
proposed first by Randall in [71] and adapted for the
MWT in [72] for which the effective theory presented
here can be considered as a minimal description [73].
The details can be found in [38]. In our study of the phase
transition we will not consider the composite fermions
since they are expected to be much heavier than the scalar
degrees of freedom.

III. MWT—EFFECTIVE POTENTIAL

The tree-level effective potential is obtained by evaluat-
ing the potential in (22) and (23) in the background where
the Higgs fields assumes the vacuum expectation value �,
i.e., M ¼ �E=2. It has the SM form

Vð0Þ ¼ 1

4
ð�þ �0 � �00Þð�2 � v2Þ2 ¼ M2

H

8v2
ð�2 � v2Þ2:

(29)

The effective potential at one loop can be naturally divided
into zero- and nonzero-temperature contributions.

A. Zero-temperature contribution

We begin by constructing the one-loop effective poten-
tial at zero temperature. We fix the counterterms so as to
preserve the tree-level definitions of the VEVand the Higgs
mass, i.e., M2

H ¼ 2 ��v2, with �� ¼ �þ �0 � �00. The one-
loop contribution to the potential then reads:

Vð1Þ
T¼0 ¼

1

642

X
i

nifiðMið�ÞÞ þ VGB; (30)

where the index i runs over all of the mass eigenstates,
except for the Goldstone bosons (GBs), and ni is the multi-
plicity factor for a given scalar particle while for Dirac
fermions it is �4 times the multiplicity factor of the
specific fermion. The function fi is

fi ¼ M4
i ð�Þ

�
log

M2
i ð�Þ

M2
i ðvÞ

� 3

2

�
þ 2M2

i ð�ÞM2
i ðvÞ; (31)

where M2
i ð�Þ is the background-dependent mass term of

the ith particle. This prescription would lead to infrared
divergences in the ’t Hooft-Landau gauge for VGB, the GB
contribution, when evaluated at the tree-level VEV, due to
the vanishing of the GB masses. Different ways of dealing
with this problem have been discussed in the literature.
One possibility is to regularize the infrared divergence by
replacing M2

i ðvÞ with some characteristic mass scale.
However with this prescription the tree-level VEV and
Higgs mass get shifted by the presence of the one-loop
correction. A simpler approach is to neglect the GB con-
tribution, since in practice it never has a strong effect on the
phase transition.We tried both methods and found that they
give essentially indistinguishable results.
To explicitly evaluate the potential above it is useful to

split the scalar matrix into four 2� 2 blocks as follows:

M ¼ X O
OT Z

� �
; (32)

with X and Z two complex symmetric matrices account-
ing for six independent degrees of freedom each and O a
generic complex 2� 2 matrix representing eight real bo-
sonic fields. O accounts for the SM-like Higgs doublet, a
second doublet, and the three GBs absorbed by the longi-
tudinal gauge bosons. We find nX ¼ nZ ¼ 6while the two
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weak doublets split into two SUð2ÞV isoscalars, i.e., the
Higgs (nH ¼ 1) and� (n� ¼ 1) with different masses and
two independent triplets, i.e., nGB ¼ 3 and nA ¼ 3. In
Appendix A we summarize the tree-level expressions for
the background-dependent masses of the scalar states.

For the contribution of the gauge bosons we have nW ¼
6 and nZ ¼ 3. In the fermionic sector we will consider only
the heaviest particles, i.e., the top for which nT ¼ �12 and
the two new leptons nN ¼ nE ¼ �4.

B. One-loop finite-temperature effective potential

The one-loop, ring-improved, finite-temperature effec-
tive potential can be divided into fermionic, scalar and
vector contributions:

Vð1Þ
T ¼ Vð1Þ

T f þ Vð1Þ
T b þ Vð1Þ

T gauge: (33)

The fermionic contribution at high temperature reads

Vð1Þ
T f ¼ 2

T2

24

X
f

nfM
2
fð�Þ

þ 1

162

X
f

nfM
4
fð�Þ

�
log

M2
fð�Þ
T2

� cf

�
; (34)

where cf ’ 2:635 05, nTop ¼ 3, nN ¼ nE ¼ 1, and we

have neglected Oð1=T2Þ terms. The field-dependent
masses are

MTopð�Þ ¼mTop

�

v
; MNð�Þ ¼mN

�

v
; ME ¼mE

�

v
;

(35)

with mTop, mN and mE the physical masses. Notice that the

logarithmic term in (34) combines with a similar term in
the zero-temperature potential (30) so that their sum is
analytic in the masses M2

fð�Þ.
For the scalar part of the thermal potential one must

resum the contribution of the ring diagrams. Following
Arnold and Espinosa [14] we write

Vð1Þ
T b ¼

T2

24

X
b

nbM
2
bð�Þ �

T

12

X
b

nbM
3
bð�; TÞ

� 1

642

X
b

nbM
4
bð�Þ

�
log

M2
bð�Þ
T2

� cb

�
; (36)

where cb ’ 5:407 62 and Mbð�; TÞ is the thermal mass
which follows from the tree-level plus one-loop thermal
contribution to the potential (see Appendix A). For the
gauge bosons,

Vð1Þ
T gauge ¼ T2

24

X
gb

3M2
gbð�Þ �

T

12

X
gb

½2M3
T;gbð�Þ

þM3
L;gbð�; TÞ� �

1

642

X
gb

ngbM
4
gbð�Þ

�
�
log

M2
gbð�Þ
T2

� cb

�
: (37)

HereMT;gb (ML;gb) is the transverse (longitudinal) mass of

a given gauge boson and we have MT;gbð�Þ ¼
ML;gbð�; T ¼ 0Þ ¼ Mgbð�Þ. Only the longitudinal gauge

bosons acquire a thermal mass squared at the leading order
Oðg2T2Þ. The transverse bosons acquire instead a magnetic
mass squared of order g4T2 which we have neglected.
The explicit form of the transverse and longitudinal

gauge boson mass matrix is given in Appendix B.

IV. RESULTS

We used the one-loop high-temperature approximation
together with the summation of the ring diagrams to evalu-
ate the effective potential in our numerical calculations.
The full expression of the finite-temperature potential is
given as a sum of the tree-level potential (29), the zero-
temperature one-loop contribution (30), and the one-loop
thermal corrections at high temperature, (34), (36), and
(37). We assumed that the phase transition takes place
when the two minima are degenerate. This then defines
the critical value of the thermal average of the composite
Higgs field �c, in the broken phase, at the critical tem-
perature Tc. Above the critical temperature the ground
state is the one at the origin of the Higgs field. For conve-
nience we subtracted from the potential a temperature-
dependent constant which is defined in such a way that
Vð�; TÞ ¼ 0 for � ¼ 0.
The relevant input parameters are the zero-temperature

masses of the Higgs (MH) and its pseudoscalar partner �
(M�). The phase transition also depends on the masses of
the scalar partners of the Goldstone bosons A0;� (MA), on
the mass scale of the scalar baryons mETC, and on the
masses of the heavy fermions. For simplicity, we choose
the masses of the new fermions to be equal:

M2
E ¼ M2

N � M2
f : (38)

This choice does not seem to have a strong effect on the
phase transition; for example, we checked that using in-
stead ME ’ 2MN very similar results were obtained. We
have neglected the heavy composite vectors of MWT since
they are expected to decouple at the scale of the EWPT. At
this scale, the couplings to the SM gauge bosons are simply
g and g0. We set the parameter y to y ¼ 1=3 so that the
MWT hypercharge assignment equals the SM one. Notice
that y appears only in the longitudinal Debye mass of the Z
boson. Since the effective potential terms are proportional
to M2

i ð�Þ or M4
i ð�Þ, the contributions of the fermions and
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the composite scalars typically dominate over that of the
relatively light Z boson, whence the dependence of the
phase transition on y is negligible.

It is instructive to consider two limiting cases, for which
the thermal mass spectrum simplifies: light and heavy ETC
masses. Interpolating between these two cases would re-
quire some way of smoothly connecting the thermal
masses when the heavy ETC states have decoupled to those
for which they are fully contributing. We discuss these
separately in the following subsections.

A. Heavy ETC-induced masses

We first consider �c=Tc in the heavy ETC mass sce-
nario, i.e., taking the limit mETC=Tc 	 1. When the scalar
baryons become heavy their contributions to the effective

potential become negligible. Since�c=Tc is more sensitive
toMH andM� than to the other masses, we chose to plot it
in the ðMH;M�Þ plane, while varying the remaining pa-
rametersMA andMf . The resulting dependences are shown
in Fig. 1. The contour values of �c=Tc are �c=Tc ¼
0:5; . . . ; 3:0 from lighter to darker shades with steps of
0.5. Recall that electroweak baryogenesis requires
�c=Tc * 1.
In the triangular regions in the upper left corners of the

plots, the broken phase is metastable already at T ¼ 0,
whence there is no phase transition. When one approaches
this region from below, one observes that Tc goes to zero
and�c=Tc blows up. This happens since the one-loop zero-
temperature potential induces an almost degenerate mini-
mum at the origin together with the one at a finite value of
�. At this point any small temperature favors the minimum
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FIG. 1. The strength of the phase transition (�c=Tc) in the MH-M� plane for MA, Mf ¼ 150 and 300 GeV, in the heavy ETC mass
scenario. �c=Tc ¼ 0:5; 1:0; 1:5; . . . 3:0 at the contour lines, such that �c=Tc < 0:5 in the region with lightest color. In the white region
in the upper left corners of the plots the broken-phase vacuum is metastable already at T ¼ 0.
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at the origin. Such small temperatures are not within the
range of applicability of the high-temperature expansion. It
is for this reason that we excluded the region of parameter
space yielding a one-loop zero-temperature potential with
a global minimum at the origin.

We observe a similar behavior in the region of parameter
space where MH ’ 120 GeV and M� ’ 650 GeV in the
MA ¼ 350 GeV, Mf ¼ 350 GeV plot. In this case the

black and white regions cannot be studied via the high-
temperature approximation since M�=Tc > 7, which is a
strong indication of the breakdown of the high-temperature
expansion [80]. However, we have checked the validity of
the high-T expansion for the other regions of our plots by
adding higher order terms in the expansion and seeing how
the results change. Including terms up to and including

order 1=T6, we find that the quantitative results presented
here are stable against higher order corrections.

B. Light ETC-induced masses

In the light ETC mass scenario, all of the MWT scalars
are relatively light with respect to the electroweak scale.
Then all of the degrees of freedom which were discussed in
Sec. III A are thermally active at the phase transition. The
strength of the phase transition in this case is plotted in
Fig. 2. Since we found �c=Tc to be rather weakly depen-
dent onmETC when the scalar baryons are thermally active,
we fixed mETC ¼ 150 GeV. The transition is slightly
weaker than in the heavy mETC scenario. For MA *
300 GeV or Mf * 500 GeV no first-order transition is
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FIG. 2. The strength of the phase transition (�c=Tc) in the MH-M� plane, for the light ETC mass (mETC ¼ 150 GeV) scenario. MA

and Mf are varied as indicated in the labels.
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seen. This is why we changed the second reference point of
MA from 350 to 250 GeV in the plots.

C. Explanation of results

It is possible to qualitatively understand the behavior of
�c=Tc as a function of the masses. In general, a strong first-
order phase transition can be achieved if the zero-
temperature potential is close to being flat, i.e., the vacuum
value Vð� ¼ vÞ is small and negative [recall that we define
Vð� ¼ 0Þ to be zero]. Then if the thermal corrections are
strong and positive around � ’ v, the phase transition
takes place at a low temperature, giving a large �c=Tc.

In our model Vð� ¼ vÞ is small typically when the
composite Higgs mass is low and one of the masses MA

and M� is a bit larger. The one-loop zero-temperature
contribution of the scalars is enhanced relative to the
tree-level potential for such values of the masses. It in-
creases the value of the potential at the broken phase and
creates a bump between the two minima. This is illustrated
in Fig. 3, which shows the typical shape of the one-loop
correction (30) and (31) from bosons, where we have
replaced logðm2ð�ÞÞ by logðT2Þ due to the finite-T contri-
bution canceling this nonanalytic dependence. Fermions
have exactly the opposite effect, whence the contributions
of the fermions and the scalar bosons need to be balanced.
The baryons do not play a big role, since their (squared)
masses include the hard term M2

ETC and are thus more

weakly dependent on �.
The shape of the thermal corrections also affects �c=Tc,

since a term of the form �Tm3 ��T�3 creates a barrier
between the symmetric and broken phases in the potential

at the critical temperature, where V � ��2ð�� vcÞ2.
However this is true only if the field-dependent mass is
close to the form m2 � g2�2. Thermal and vacuum con-
tributions of the form m2 � g2�2 þm2

0ðTÞ reduce this

effect, and for large m2
0ðTÞ, the expansion of the cubic

term in powers of � gives contributions in the wrong
direction, tending to reduce �c=Tc.
The behavior seen in Figs. 1 and 2 can be understood as

a combination of the above effects. In the white regions in
the upper left-hand corners of the plots, the contribution to
the bump from the zero-T one-loop correction is so large
that the broken-phase vacuum is metastable even at T ¼ 0.
Next to this region there is a large part of parameter space
where the scalar and fermion masses are correctly balanced
to produce small and negative Vð� ¼ vÞ, which yields
large �c=Tc. However, in the upper right-hand corner of
the plots,

P
bnbM

2
b becomes so large that the thermal

corrections do not enhance the potential at � ’ v any
longer, and the phase transition is weakened. When the
composite baryons are thermally active (light ETC
masses), their effect on the ring resummation makes the
second term of (36) more negative but not sufficiently of
the form �3. Hence the scalar and Higgs masses are
restricted to be smaller to compensate, which causes the
difference between Figs. 1 and 2.
Note that when the scalar baryons are decoupled the

scalar fields of MWT consist of two Higgs doublets. Hence
dependences shown in Figs. 1 and 2 are quite similar to
those of the two Higgs doublet models [81]. Both have a
metastable broken-phase vacuum when the Higgs is light
and the other scalars are heavy with respect to the electro-
weak scale. The edge of this region has a similar depen-
dence on MH in both models. Strong first-order phase
transitions are observed near the regions of metastable
vacua in both cases.
In the parameter region where a strong first-order tran-

sition is observed the composite Higgs and its pseudoscalar
partner � are light enough to be produced at the LHC.
Moreover one expects, for this range of parameters of the
effective Lagrangian, sizable deviations from the SM pre-
dictions at the LHC. For example, the important pp !
HW process at LHC is enhanced relative to the SM one
[82]. A detailed analysis dedicated to the LHC phenome-
nology of nearly conformal technicolor models is about to
appear [83]. We emphasize that the spectrum is completely
fixed by the underlying gauge theory and that first principle
lattice simulations can test our results.

D. A novel phase transition at lower energies

As suggested in [24], an intriguing possibility can
emerge in that one can have two independent phase tran-
sitions at nonzero temperature in technicolor theories,
whenever the theory possesses a nontrivial center symme-
try. The two phase transitions are the chiral one, directly
related to the electroweak phase transition, and a confining

FIG. 3 (color online). Typical shape of bosonic contribution to
one-loop zero-temperature potential, Eqs. (30) and (31), which
helps to enhance the strength of the phase transition.
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one at lower temperatures. During the history of the
Universe one predicts a phase transition around the elec-
troweak scale and another one at lower temperatures with a
jump in the entropy proportional to the number of degrees
of freedom liberated (or gapped) when increasing (decreas-
ing) the temperature (see [84] for a simple explanation of
this phenomenon and a list of relevant references). This
may have very interesting cosmological consequences. In
this work we have concentrated on the chiral one alone.
The interplay with the confining one, expected to occur at
lower temperatures, can be studied by coupling the effec-
tive Lagrangian presented here to the Polyakov-loop effec-
tive degree of freedom as done in [84].
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APPENDIX A: ZERO- AND FINITE-
TEMPERATURE BACKGROUND-DEPENDENT

SCALAR MASSES

The composite scalars are assembled in the matrixM of
Eq. (12). In terms of the mass eigenstates this reads

M ¼

i�UU þ ~�UU
i�UDþ ~�UDffiffi

2
p �þi�þi�0þA0

2
i�þþAþffiffi

2
p

i�UDþ ~�UDffiffi
2

p i�DD þ ~�DD
i��þA�ffiffi

2
p �þi��i�0�A0

2

�þi�þi�0þA0

2
i��þA�ffiffi

2
p i�UU þ ~�UU

i�
UD

þ ~�
UDffiffi

2
p

i�þþAþffiffi
2

p �þi��i�0�A0

2

i�
UD

þ ~�
UDffiffi

2
p i�DD þ ~�DD

0
BBBBBBBB@

1
CCCCCCCCA
; (A1)

where � ¼ vþH. The Lagrangian summary for the Higgs sector, including the spontaneously broken potential, and the
ETC mass term for the uneaten Goldstone bosons, is

L Higgs ¼ 1

2
Tr½D�MD�My� þm2

2
Tr½MMy� � �

4
Tr½MMy�2 � �0 Tr½MMyMMy� þ 2�00½DetðMÞ þ DetðMyÞ�

þm2
ETC

4
Tr½MBMyBþMMy�; (A2)

where the covariant derivative is given by Eq. (19).
The zero-temperature background-dependent scalar mass squared eigenstates are

�m2 þm2
ETC þ ð�� �00 þ �0Þ�2; 6 degenerate states; �m2 þm2

ETC þ ð�þ �00 þ 3�0Þ�2;

6 degenerate states; �m2 þ ð�� �00 þ �0Þ�2; 3 degenerate states ðGBÞ; �m2 þ ð�þ �00 þ 3�0Þ�2;

3 degenerate states; �m2 þ 3ð�� �00 þ �0Þ�2; 1 state ðHiggsÞ; �m2 þ ð�þ 3�00 þ �0Þ�2; 1 state:

(A3)

The temperature-dependent (one-loop) effective scalar
masses of the Arnold-Espinosa approximation [14] are
calculated as follows. Compute the T2 term of the one-
loop thermal correction Vð1Þ

T as explained in Sec. III B, but
in an arbitrary background, i.e., a function of all of the
scalar fields. Then, for example, the contribution of the top
quark loop reads

Vð1Þ
T2 Top ¼

T2

4
M2

Topjbackground

¼ m2
TopT

2ðð�þ�0Þ2 þ ð�þ A0Þ2Þ
4v2

: (A4)

The effective thermal masses are obtained by adding to the
T ¼ 0 scalar mass matrix the thermal mass matrix

Mij ¼ @2

@vi@vj

Vð1Þ
T2 : (A5)

Here vi represents the ith scalar field thermally active at
the electroweak phase transition.
The one-loop finite-temperature correction to the scalar

masses, due solely to the scalar self-interactions, and con-
sidering all of the 20 bosons to be thermally active, is

T2

6
ð11�þ 20�0Þ: (A6)

However the full finite-temperature corrections have in-
volved expressions when taking into account all of the
particles, i.e., gauge bosons and fermions.
We summarize below the temperature- and background-

dependent scalar masses in the case in which the ETC
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states are heavy, and hence integrated out, and the case in which we retain all of the states.

1. Heavy METC

M2
��ð�; TÞ ¼ �m2 þ ð�þ �0 � �00Þ�2 þ T2

6
ð5�þ 8�0Þ þ T2

16
ðg21 þ 3g22Þ; (A7)

M2
A�ð�; TÞ ¼ �m2 þ ð�þ 3�0 þ �00Þ�2 þ T2

6
ð5�þ 8�0Þ þ T2

16
ðg21 þ 3g22Þ; (A8)

M2
�=�0ð�; TÞ ¼ �m2 þ ð�þ �0 þ �00Þ�2 þ T2

6
ð5�þ 8�0Þ þ T2

16
ðg21 þ 3g22Þ þ

T2

6v2
ðm2

E þm2
N þ 3m2

TopÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�00�2Þ2 þ

�
T2

6v2
ð�m2

E þm2
N þ 3m2

TopÞ
�
2

s
; (A9)

M2
H=A0ð�; TÞ ¼ �m2 þ ð2�þ 3�0 � �00Þ�2 þ T2

6
ð5�þ 8�0Þ þ T2

16
ðg21 þ 3g22Þ þ

T2

6v2
ðm2

E þm2
N þ 3m2

TopÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�� 2�00Þ�2�2 þ

�
T2

6v2
ð�m2

E þm2
N þ 3m2

TopÞ
�
2

s
: (A10)

2. Light METC

M2
��ð�; TÞ ¼ �m2 þ ð�þ �0 � �00Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

16
ðg21 þ 3g22Þ; (A11)

M2
A�ð�; TÞ ¼ �m2 þ ð�þ 3�0 þ �00Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

16
ðg21 þ 3g22Þ; (A12)

M2
�=�0ð�; TÞ ¼ �m2 þ ð�þ �0 þ �00Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

16
ðg21 þ 3g22Þ þ

T2

6v2
ðm2

E þm2
N þ 3m2

TopÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�00�2Þ2 þ

�
T2

6v2
ð�m2

E þm2
N þ 3m2

TopÞ
�
2

s
; (A13)

M2
H=A0ð�; TÞ ¼ �m2 þ ð2�þ 3�0 � �00Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

16
ðg21 þ 3g22Þ þ

T2

6v2
ðm2

E þm2
N þ 3m2

TopÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�� 2�00Þ�2�2 þ

�
T2

6v2
ð�m2

E þm2
N þ 3m2

TopÞ
�
2

s
; (A14)

M2
�UD= ~�UD

ð�; TÞ ¼ �m2 þm2
ETC þ ð�þ 2�0Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

4
ðy2g21 þ g22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�0 þ �00Þ�2�2 þ

�
1

4
T2g22

�
2

s
;

(A15)

M2
�UU= ~�UU

ð�; TÞ ¼ �m2 þm2
ETC þ ð�þ 2�0Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

8
½ð1þ 2yþ 2y2Þg21 þ 2g22�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�0 þ �00Þ�2�2 þ

�
T2

8
½ð1þ 2yÞg21 � 2g22�

�
2

s
; (A16)
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M2
�DD= ~�DD

ð�; TÞ ¼ �m2 þm2
ETC þ ð�þ 2�0Þ�2 þ T2

6
ð11�þ 20�0Þ þ T2

8
½ð1� 2yþ 2y2Þg21 þ 2g22�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�0 þ �00Þ�2�2 þ

�
T2

8
½ð1� 2yÞg21 � 2g22�

�
2

s
: (A17)

Here the notationMA=B means that the states A and B are mixed through thermal corrections. The diagonal thermal masses
of each A=B system are reported on the right-hand side.

APPENDIX B: TRANSVERSE AND LONGITUDINAL GAUGE BOSON MASS MATRIX

The background-dependent transverse gauge boson mass matrix is

M2
Tð�Þ ¼

�2

4

g2 0 0 0
0 g2 0 0
0 0 g2 �g0g
0 0 �g0g g02

2
6664

3
7775; (B1)

while the longitudinal background-dependent Debye mass is in MWT:

M2
Lð�Þ ¼ M2

Tð�Þ þ�L; (B2)

with

�L ¼
ð2þ 5

6Þg2T2 0 0 0
0 ð2þ 5

6Þg2T2 0 0
0 0 ð2þ 5

6Þg2T2 0
0 0 0 fðyÞg02T2

2
6664

3
7775; (B3)

and 3fðyÞ ¼ 1þ ð6y2 þ 2Þ þ 5þ 1
2 ð9y2 þ 1

2Þ þ 1
2 ðy2 þ 1

2Þ.
The longitudinal mass matrix receives finite-temperature
contributions from the scalars, the new lepton family, the
techniquark-technigluon states which adds to the usual SM
corrections (but with the standard Higgs replaced by the
technicolor sector). The transverse bosons acquire a mag-
netic mass of order g2T which we have neglected. To
compute the nonzero-temperature corrections to the longi-
tudinal vector boson masses we have used the formulas:

Uð1Þ: �S
L ¼ g02T2

3

X
S

Y2
S; �F

L ¼ g02T2

6

X
F

Y2
F;

(B4)

where the sums are over complex scalars and chiral fermi-
ons, respectively. For the non-Abelian part we used:

SUðNÞ: �S
L ¼ g2T2

3

X
S

t2ðRSÞ;

�F
L ¼ g2T2

6

X
F

t2ðRFÞ; �V
L ¼ N

3
g2T2;

(B5)

where 	abt2ðRÞ ¼ Tr½TaTb�. It is instructive to separate
the various contributions to �L.

For the Uð1Þ part the fermionic and scalar contributions
read

�F
L ¼ T2g02

�
5

9
Ng þ 18y2 þ 1

12
þ 2y2 þ 1

12

�
; (B6)

�S
L ¼ T2g02

3
½1þ ð6y2 þ 2Þ�; (B7)

where the first contribution counts Ng ¼ 3 generations of

the SM fermions, the second contribution is due to the new
nontechnicolor family while the last term is due to the
techniquark-technigluon fermion states. For the bosonic
sector the first term is due to the two Higgs doublets
contained in O while the term in brackets takes into
account the contribution of the other ditechniquark type
of states.
For the SU(2) part the fermionic, scalar and vector

contributions reads

�F
L ¼ T2g2

6

�
2Ng þ 1

2
þ 1

2

�
; (B8)

�S
L ¼ T2g2

3
½1þ 2�; (B9)

�V
L ¼ 2

3
T2g2: (B10)

In the fermionic case the first contribution counts Ng ¼ 3

generations of the SM fermions, the second contribution is
due to the new nontechnicolor family while the last term is
due to the techniquark-technigluon fermion states. For the
bosonic sector the first term is due to the two Higgs
doublets contained in O while the second term takes into
account the contribution of the other ditechniquark type of
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states (the ones in the upper left component of the matrix
M).

APPENDIX C: GENERATORS

It is convenient to use the following representation of SU
(4):

Sa ¼ A B
By �AT

� �
; Xi ¼ C D

Dy CT

� �
; (C1)

where A is Hermitian, C is Hermitian and traceless, B ¼
�BT and D ¼ DT . The S are also a representation of the
SOð4Þ generators, and thus leave the vacuum invariant
SaEþ ESaT ¼ 0. Explicitly, the generators read

Sa ¼ 1

2
ffiffiffi
2

p 
a 0
0 �
aT

� �
; a ¼ 1; . . . ; 4; (C2)

where a ¼ 1; 2; 3 are the Pauli matrices and 
4 ¼ 1. These
are the generators of SUVð2Þ � UVð1Þ.

Sa ¼ 1

2
ffiffiffi
2

p 0 Ba

Bay 0

� �
; a ¼ 5; 6; (C3)

with

B5 ¼ 
2; B6 ¼ i
2: (C4)

The rest of the generators which do not leave the vacuum
invariant are

Xi ¼ 1

2
ffiffiffi
2

p 
i 0
0 
iT

� �
; i ¼ 1; 2; 3; (C5)

and

Xi ¼ 1

2
ffiffiffi
2

p 0 Di

Diy 0

� �
; i ¼ 4; . . . ; 9; (C6)

with

D4 ¼ 1; D6 ¼ 
3; D8 ¼ 
1;

D5 ¼ i1; D7 ¼ i
3; D9 ¼ i
1:
(C7)

The generators are normalized as follows:

Tr ½SaSb� ¼ 1
2	

ab; Tr½XiXj� ¼ 1
2	

ij;

Tr½XiSa� ¼ 0:
(C8)
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