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We calculate the strength of the electroweak phase transition in a supersymmetric model with four

chiral generations. The additional chiral fermions (and scalar partners) lower the critical temperature and

thus strengthen the first-order phase transition. The scalar partners stabilize the potential, leading to an

effective theory that is bounded from below. We identify the ensemble of parameters where �c=Tc * 1

simultaneous with obtaining a large enough Higgs mass. Our calculations focus on a subset of the full four

generational supersymmetric parameter space: We take the pseudoscalar heavy, tan� ¼ 1, and neglect all

subleading contributions to the effective potential. We find that the region of parameter space with a strong

first-order phase transition requiresm~q0=mq0 & 1:1 while the constraint on the lightest Higgs mass requires

m~q0=mq0 * 1 with mq0 * 300 GeV. We are led to an intriguing prediction of quarks and squarks just

beyond the current Tevatron direct search limits that are poised to be discovered quickly at the LHC.
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I. INTRODUCTION

The origin of the matter asymmetry is a deep mystery
that remains unsolved. Conditions that can lead to a dy-
namical asymmetry between baryons and antibaryons were
articulated years ago by Sakharov [1]: baryon number
violation, C and CP violation, and a departure from ther-
mal equilibrium. All three conditions are satisfied by the
standard model as it passes through the electroweak phase
transition. But, the CP violation is too small [2], and the
phase transition is not strongly first order (e.g., [3–7]),
given the direct search bounds on the Higgs boson from
LEP. New physics with large CP violation is trivial to
introduce into the model; weak scale supersymmetry is
an obvious example (care needs only to be taken to ensure
that induced electric dipole moments are within the experi-
mental bounds). Even with a new source of CP violation, if
the phase transition is not strong enough first order, any
generated baryon asymmetry will be washed out [8]. New
physics that enhances the first order phase transition, how-
ever, is generally much more tricky to achieve.

In the early 1990s it was realized that the electroweak
phase transition could be enhanced by modifying the cubic
coupling of the finite-temperature effective potential [3].
Nontrivial modifications of the cubic coupling could arise
from additional scalars with order one couplings to the
Higgs. In the minimal supersymmetric standard model
(MSSM), the scalar superpartners to the top quarks (stops)
can play precisely this role [9–12]. It has long been advo-
cated that the region of MSSM parameter space with a light
stop (and a light Higgs) can yield a strong enough phase
transition. Unfortunately, the combination of direct
searches for the lightest Higgs boson and direct searches
for stops have virtually ruled out this possibility. The
remaining parameter space [13] requires a large hierarchy
between the left-handed and right-handed stops to ensure
the Higgs satisfies the LEP bound.

Methods to strengthen the first-order phase transition
beyond the SM and MSSM are now widely discussed
[14–25]. Several of these ideas add a singlet field, such
as in the NMSSM or nMSSM. Another related idea is to
simply cut off the SM at a low scale, adding the effects of
higher dimensional operators [26,27] (which can be UV
completed by integrating out a singlet).
Yet another interesting possibility, and the one we will

focus on in this paper, is to add more particles with
modestly strong couplings to the Higgs. This was proposed
in [18]; the additional particles have quantum numbers
such that they mix with the MSSM charginos and neutra-
linos. Heavy particles that receive their mass entirely or
dominantly from electroweak symmetry breaking can have
a substantial impact on the electroweak phase transition. In
this paper we consider a modification to the MSSM similar
in spirit to [18] to enhance the phase transition. Namely, we
add a fourth generation of particles (and sparticles) to the
MSSM. Larger couplings to the Higgs are automatic sim-
ply due to the direct search bounds from LEP and Tevatron
on fourth generation fermions.
That the electroweak phase transition could be enhanced

in a four generation supersymmetric model was considered
before in [28]. They performed an interesting numerical
study that also found that the electroweak phase transition
can be enhanced when m~q0=mq0 is not much larger than 1.

However, the present limits on fourth generation quark
masses rule out their parameter space, and moreover,
they allowed tan� to far exceed 1, implying that the b0
Yukawa coupling was nonperturbative. In our analysis, we
first systematically analyze the origin of the contributions
that allow the phase transition to become first order. This
allows us to make a clear distinction between supersym-
metric and nonsupersymmetric theories with heavy chiral
fermions. We then identify the viable region of parameter
space where the Yukawa couplings are under control
( tan� ’ 1) and all other bounds are satisfied.
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A fourth generation has historically been thought to be
strongly disfavored by the absence of flavor mixing, the
Z ! � �� constraint, and electroweak precision data. (Some
early reviews can be found in [29–31].) All of these ob-
jections can be straightforwardly overcome, as was re-
cently emphasized in [32]. Below we summarize these
results in the form of the parameter space that is allowed.
It is interesting that the constraints from electroweak pre-
cision data can be overcome without or with an electro-
weak scale Majorana mass for the fourth generation right-
handed neutrinos. If a Majorana mass does indeed exist,
lepton number is violated at the electroweak scale, and thus
scenarios of baryogenesis that rely on an earlier generation
of B� L number (such as leptogenesis) do not work here
[33,34]. Electroweak baryogenesis is one of the few
mechanisms not sensitive to this source of lepton number
violation and thus becomes even more interesting to study.

II. SETUP

We consider a low energy supersymmetric theory with a
fourth chiral generation of matter, the ‘‘4MSSM’’ (for an
early discussion, see [35]). A fourth chiral generation of
matter does affect electroweak precision observables. One
of the main results of [32] was to show that it can be made
completely consistent with electroweak precision data so
long as there are modest mass splittings between the iso-
spin partners in the quark and lepton doublets. This split-
ting causes a modest reduction in the positive contribution
to S, simultaneous with a positive contribution to T, allow-
ing ensembles of parameters that are within the 68% CL
ellipse of the LEP Electroweak Working Group. For ex-
ample, the mass spectrum m�0 ¼ 100 GeV, m‘0 ¼
155 GeV, mt0 ¼ 310 GeV, mb0 ¼ 260 GeV, and mh ¼
115 GeV is perfectly acceptable. There is strong sensitivity
to the mass differences with only mild sensitivity to the
overall scale of the particles. We will present results for
both the electroweak preferred ratio mt0=mb0 � 1:2 as well
as mt0 ¼ mb0 for comparison.

With supersymmetry, there are additional contributions
to electroweak precision observables from superpartners
(e.g., [36]). We have not included these contributions to
optimize the parameter set to match electroweak data,
simply because many more parameters enter the fit that
can be freely adjusted without affecting our results for the
electroweak phase transition. We therefore take fourth
generation Yukawa couplings consistent with [32] and
take the scalar partner masses to be degenerate, eliminating
this potential additional contribution to isospin violation.

We neglect all subleading contributions to the zero-
temperature and finite-temperature effective potential.
Subleading here refers to couplings smaller than about 1.
We retain the contributions from gauge bosons, but we
neglect light fermions (u, d, c, s, b, e, �, �), Higgs bosons
(the quartic is small), and all superpartners other than ~t01;2,
~b01;2, ~t1;2. We also neglect contributions from fourth gen-

eration leptons because the number of degrees of freedom
per particle is only 1=3 that of quarks and the bounds on the
mass from the nonobservation in experiment are much
weaker than for quarks.

III. SUPERSYMMETRY WITH tan� ¼ 1

In the limit tan� ! 1, several aspects of supersymmetry
drastically simplify. From the definition of tan� �
hHui=hHdi, we see the vacuum expectation values (vevs)

are equal, vu ¼ vd ¼ v=
ffiffiffi
2

p
, where v ¼ 246 GeV, and the

Yukawa couplings

yf ¼
2mf

v
(1)

are the same for the up-type and down-type fermions. The
fourth generation quarks t0 and b0 have large Yukawa
couplings,

yt0;b0 ¼ 2:1

�
mt0;b0

260 GeV

�
; (2)

where 260 GeV is shown for convenience in comparison to
the (approximate) present direct search bounds from the
Tevatron [37,38]. Note that these Yukawa couplings are a

factor of
ffiffiffi
2

p
larger than in a nonsupersymmetric model,

since the t0 and b0 acquire their mass only through cou-
plings to the up-type and down-type Higgs, respectively.
If tan� � 1, either the up-type or down-type Higgs vev

is reduced, and thus to hold the masses of the fermions
fixed, either yt0 or yb0 must increase. Setting tan� ¼ 1
allows the largest possible physical fourth generation fer-
mion masses with the smallest Yukawa couplings. Since yf
cannot be arbitrarily large for perturbative calculations at
the weak scale to be valid, the parameter choice tan� ¼ 1
really just maximizes the cutoff scale of the model. Even
with this adjustment, the cutoff scale is low. This can be
estimated by running the one-loop renormalization group
equations for the Yukawa couplings up to �4�. We show
the scale of the Landau pole as a function of fermion mass
in Fig. 1. Note that requiring y2f=ð4�Þ & 1, which is about

as large as can be considered for one-loop calculations,
implies yf & 3:5, corresponding to mf & 450 GeV; we

will not consider fermion masses that much exceed this
value.
In the limit tan� ! 1 the Higgs sector also drastically

simplifies. The general tree-level potential for the neutral
components of the Higgs in the MSSM is [39]

V ¼ ðm2
Hu

þ�2ÞjH0
uj2 þ ðm2

Hd
þ�2ÞjH0

dj2
� ðbH0

uH
0
d þ c:c:Þ þ 1

8ðg2 þ g02ÞðjH0
uj2 � jH0

dj2Þ2:
(3)

Expanding the neutral components in the limit tan� ¼ 1,
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H0
u

H0
d

� �
¼ 1ffiffiffi

2
p v

v

� �
þ 1ffiffiffi

2
p cos� sin�

� sin� cos�

� �
h
H

� �
; (4)

where the � rotation matrix diagonalizes the Higgs fluctu-
ations ðh;HÞ into mass eigenstates. In the limit that the
second Higgs doublet ‘‘decouples’’ (mA0;H;H� � mh), the

mixing angle � ! ��, and thus the lightest Higgs is

simply h ¼ ðH0
u þH0

d �
ffiffiffi
2

p
vÞ. In this limit the tree-level

Higgs potential vanishes, since h corresponds to the exci-
tation of a D-flat direction.

Since electroweak precision data prefers mt0=mb0 ’ 1:2,
this could be arranged either by adjusting just these two
Yukawa couplings yt0=yb0 ¼ 1:2 or instead adjusting
tan� ¼ 1:2. These two scenarios are nearly equivalent
for our purposes, and so we choose to set tan� ¼ 1. The
alternative, tan� ¼ 1:2, would give a tree-level contribu-
tion to the Higgs potential. The contribution to the ðmassÞ2
is, however, just 0:03M2

Z. As we will see, the one-loop
radiative corrections from quarks and squarks will be far
larger than this, so it is safe to completely neglect tree-level
contributions even if tan� were allowed to vary slightly
from 1.

In addition to taking tan� ¼ 1, we also choose super-
symmetric parameters such that the mass eigenstates of ~t01;2
and ~b01;2 correspond to the gauge eigenstates ~t0L;R and ~b0L;R.
This is done purely to simplify our calculation. It is a rather
conservative approximation, since it is well known that
increasing the off-diagonal contribution to the squark mass
matrix leads to an enhancement in the one-loop contribu-
tion to the Higgs mass (e.g., see [40]). We expect that the
parameter space with a strong first-order phase transition
will enlarge as this restriction is relaxed. Note that since the
off-diagonal left-right contribution to the up-type and
down-type squark mass matrix is equal to mfðAf ��Þ

(where again, tan� ¼ 1), this simplification corresponds
to the specific parameter choice Af ¼ �.

Finally, as we discussed above, the Higgs potential
simplifies in the limit mA0 , mH� , mH0 � mh. This is a
common assumption in the electroweak phase transition
literature: The operational advantage is that the low energy
theory is effectively a one-Higgs-doublet model that is
drastically simpler to analyze at finite temperature.

IV. ONE-LOOP EFFECTIVE POTENTIAL

In the 4MSSM with tan� ¼ 1, loop corrections entirely
determine the Higgs potential. We are interested in the loop

corrections to just the scalar fluctuation � ¼ ðhþ vÞ= ffiffiffi
2

p
.

At one loop the effective potential for the Higgs is deter-
mined from the Coleman-Weinberg potential

V1 ¼
X
i

ni
64�2

Mið�Þ4
�
ln
Mið�Þ2
�2

� ci

�
; (5)

where Mið�Þ are the field-dependent masses and � is the

renormalization scale (MS scheme). We generally use Mi

to refer to �-dependent (and temperature-dependent)
masses and mi to refer to MiðvÞ at zero temperature. The
ci’s are constants corresponding to 5=6 for gauge bosons
and 3=2 for fermions and scalars. The degeneracies per
particle are nq ¼ �12 (for each q ¼ t, t0, b0), n~qL ¼ n~qR ¼
6, nWT

¼ 4, nZT
¼ 2, nWL

¼ 2, nZL
¼ 1.

Expanding the effective potential as given above, evi-
dently the minimum is not necessarily located at the proper
electroweak breaking scale v ¼ 246 GeV. This is easily
remedied by imposing a renormalization condition on the
mass parameter such that the minimum is enforced to be at
v. This amounts to adding the v-dependent contribution to
the effective potential,

�V ¼ � dV1ð� ¼ vÞ
dv2

�2

¼ �X
i

ni
32�2

M2
i ðvÞ

dM2
i ðvÞ

dv2

�
ln
M2

i ðvÞ
�2

þ 1

2
� ci

�
�2:

(6)

The masses used in the effective potential are MS
masses that differ from the physical (pole) masses through
finite and log-dependent corrections. The running fermion
masses are given at one loop by

mfjpole ¼ mfð�Þ
�
1þ �s

�

�
4

3
þ ln

�2

m2
f

��
: (7)

Since the fourth generation fermions overwhelmingly
dominate the contributions to the (zero- and finite-
temperature) effective potential, we take � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt0mb0
p

,

i.e., the scale of the largest electroweak breaking masses
in the problem. This tends to minimize the higher-order
corrections to the potential, though our calculations are not
particularly sensitive to the precise choice of renormaliza-

FIG. 1 (color online). An estimate of the cutoff scale of the
4MSSM as a function of the fourth generation fermion mass by
running the one-loop renormalization group equations of the
quark Yukawas up to where they encounter a Landau pole (yf0 �
4�).
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tion scale. We note also that by fixing tan� ¼ 1 at � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mt0mb0

p
, we have neglected higher-order electroweak run-

ning of tan� between � and v.
The running scalar masses also differ from their physical

pole masses through one-loop corrections depending on
not only the gluon but also gluino diagrams [36]. This
correction is generally numerically smaller than the cor-
rection to the fermion mass, typically less than a few %.
Moreover, since the correction is gluino mass dependent,
relating the pole mass to the running mass requires specify-
ing an otherwise unfixed parameter in our model. We
choose instead to simply take m~f;pole ¼ m~fðm~fÞ, thus ne-
glecting the difference between the pole and running mass
for the squarks.

V. FINITE-TEMPERATURE ONE-LOOP
EFFECTIVE POTENTIAL

The finite-temperature contributions to the effective po-
tential are [3–7]

VT ¼ VT1 þ Vring; (8)

where

VT1 ¼
X
i

ni
2�2

Ji

�
M2

i

T2

�
T4; (9)

Vring ¼ � T

12�

X
k¼WL;ZL

nkð �M3
k �M3

kÞ; (10)

and

�M 2
k ¼ M2

k þ�k: (11)

The field-dependent fermion and scalar masses are

Mfð�Þ2 ¼ 2y2f�
2; (12)

M~fð�Þ2 ¼ m2
soft þMfð�Þ2: (13)

Explicit expressions for the thermal masses of the SM
gauge bosons can be found in, e.g., Ref. [41]. The finite-
temperature contributions depend on the thermal functions

JB;Fðy2Þ ¼
Z 1

0
dx x2 ln

�
1� exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q ��
: (14)

Often a high-temperature approximation is employed to
estimate these integrals. In our case, due to the large
Yukawa couplings, this approximation is generally not
appropriate. Consequently, all computations given below
evaluate the thermal functions JB;F numerically. The ring

contribution (10) is only relevant for the longitudinal com-
ponents of the W and Z. No contributions from scalars are
included here since the squarks receive a contribution from
soft supersymmetry breaking, and thus they remain heavy
in the � ! 0 limit.

We have self-consistently included contributions in the
finite-temperature effective potential the same as those
included in the zero-temperature effective potential.
Namely, we include contributions from t0, b0, t, their super-
partners ~t0L;R, ~b0L;R, ~tL;R, as well as the transverse and

longitudinal components of W, Z.
In the standard model, the electroweak phase transition

becomes second order when the Higgs mass approaches
70 GeV [42]. Qualitatively, this is because the transverse
modes of W and Z, which would drive a first-order phase
transition in the standard model with a lighter Higgs mass,
develop a thermal mass from nonperturbative effects. If the
transverse thermal masses are large, they effectively re-
move the cubic term from the finite-temperature potential
when the effective potential is reset to zero at� ¼ 0. In our
model, the first-order phase transition is mostly driven by
squarks. In fact, when the W and Z are neglected in our
model,�c and Tc do not change significantly and the phase
transition remains first order. Therefore, we do not expect
nonperturbative effects encountered in the standard model
at larger Higgs masses to significantly affect our calcula-
tions of the strength of the phase transition in the 4MSSM.

VI. EFFECTS OF NEW HEAVY PARTICLES

The effects of heavy particles (that receive their mass
dominantly from electroweak symmetry breaking) on the
electroweak phase transition can be broadly characterized
as follows. Consider the effective potential at Tc, where
there are two degenerate minima Veffð0; TcÞ ¼ Veffð�c; TcÞ
located at � ¼ 0 and � ¼ �c. Now add to this a new
particle that satisfies Mð�cÞ=Tc � 1. The phase transition
strength is modified in two ways from the contributions of
the new particle. One is through corrections to the finite-
temperature contribution; the other is through the zero-
temperature Coleman-Weinberg potential.

A. Finite-temperature effects

The contributions from bosons and fermions with
masses larger than the critical temperature, m � Tc, can
be characterized by how they contribute at large field
values � � T and small field values � � T. At large
field values, we can take a low temperature approximation
to the finite-temperature effective potential. In this limit,
the contribution from fermions or bosons becomes

VT1jT�m ¼ �jnj
�
Mð�Þ
2�T

�
3=2

T4 exp

�
�Mð�Þ

T

�
; (15)

where n counts the number of degrees of freedom per
boson or fermion with field-dependent mass Mð�Þ.
Clearly, when Mð�Þ � T, which is equivalent to � � T
(with order one or larger Yukawa couplings), the contribu-
tion to the effective potential from fermions or bosons is
exponentially suppressed.
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At small field values, we can take a high-temperature
approximation to the thermal contribution to the effective
potential. The leading order contribution is the field-
independent constant

VT1jT�m ¼ �jnjcB;F �
2

90
T4; (16)

where cB;F ¼ ð1; 7=8Þ for a boson or fermion contribution.

The combination of (15) and (16) implies that the in-
troduction of a heavy fermion or boson causes a substantial
negative shift in the potential at � ¼ 0 while causing a
negligible shift in the potential at � ¼ �c. As an illustra-
tion, we show in Fig. 2(a) the effect of adding one addi-
tional heavy fermionic degree of freedom (nf ¼ �1, for

illustration) that obtains a mass of 400 GeV entirely from
electroweak symmetry breaking. Readjusting the mini-
mum Veffð� ¼ 0Þ ¼ 0 shifts the potential up for all field
values, thereby removing the second minimum at� ¼ �c,
and thus restoring electroweak symmetry. We must lower
the temperature further in order to have the second mini-
mum reappear in the effective potential with the new heavy
fermion or boson.

B. Zero-temperature effects

The second effect of heavy bosons and fermions is that
they also modify the zero-temperature effective potential.
Here, however, the effect of fermions and bosons is differ-
ent. There are two contributions whose origin is ultimately
the Coleman-Weinberg potential. One contribution is to the
quartic coupling (5), while the second contribution is the
quadratic term (6). For smaller field values, i.e., � & �,
the dominant contribution is from the quadratic term. Since
we choose� ’ mq0 , the log term drops out of (6), giving an

overall negative (positive) contribution to the effective
potential from fermions (bosons).
The negative contribution from fermions at modest field

values actually overpowers the effect from the finite-
temperature contributions discussed above. This is illus-
trated in Fig. 2(b). The net result is that introducing a new
heavy chiral fermion causes a decrease in �c=Tc as the
mass of the fermion is increased. The resulting decrease in
the strength of the electroweak phase transition with one
additional chiral fermion is shown in Fig. 3.
Adding bosonic contributions cancels the contribution

from fermions in the Coleman-Weinberg potential. This
cancellation is one-loop exact in the limit m~f0 ¼ mf0 , i.e.,

no SUSY breaking contribution to the scalar mass. This
makes it clear that we need both heavy fermions and

FIG. 2 (color online). An illustration of the effect of adding one additional heavy fermion that obtains a mass of 400 GeV entirely
from electroweak symmetry breaking. The figure (a) on the left shows the effective potential at the critical temperature Tc (solid line)
in the 4MSSM with mt0 ¼ mb0 ¼ 400 GeV and m~q0=mq0 ¼ 1:05. Adding an additional heavy fermion (with n ¼ �1) to the effective

potential is shown (dashed line), except that only the finite-temperature contribution, VT1, is included in (a). Figure (b) on the right
shows the effect of including just the finite-temperature contribution (dashed line), identical to Figure (a), and then the effect of
including both the finite temperature as well as the zero-temperature contribution V1 (solid line). The net effect shown in Figure (b)
solid line is that the global minimum at � ’ �c decreases and thus Tc increases.

FIG. 3 (color online). This plot shows that the electroweak
phase transition order parameter decreases if an additional heavy
chiral quark is added to the theory without its corresponding
superpartner.
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scalars with equal numbers of degrees of freedom and
similar masses to utilize the mechanism of Ref. [18] to
lower �c=Tc.

Reference [18] estimated that order ten or more degrees
of freedom is needed to sufficiently enhance the phase
transition to achieve�c=Tc * 1. A fourth generation quark
corresponds to adding 24 degrees of freedom. (We could
have equivalently added degrees of freedom in other ways,
such as several pairs of vectorlike supersymmetric lepton
doublets that only get mass through the Higgs mechanism.
This is another interesting possibility that we will not
explore here [43].) We have calculated the strength of the
phase transition for a range of quark and squark masses.
The results are shown in Fig. 4.

VII. LIGHTEST HIGGS MASS IN THE 4MSSM

Given the parameter choice tan� ¼ 1, the tree-level
Higgs potential vanishes, and thus the lightest Higgs
mass also vanishes at leading order. It is well known that
loop corrections from splitting the masses of the top quark
from the stops in the Coleman-Weinberg potential provide
large corrections to the tree-level value. In the 4MSSM, we
can split not only the top and stops, but also split the fourth
generation quarks from squarks. Since the one-loop con-
tribution to the Higgs quartic coupling is proportional to

y4f, even a small splitting between f and ~f has a very

important effect on the Higgs mass. A one-loop estimate
of the lightest Higgs mass in the 4MSSM can be obtained
by taking d2ðV0 þ V1Þ=d�2 at � ¼ v. This gives our
rough estimate for the Higgs mass

m2
h ¼ X

f¼t;t0;b0

3

2�2

m4
f

v2
ln
m2

~f

m2
f

; (17)

where again v ¼ 246 GeV and mA0;H;H� � mh. In Fig. 5

we show Higgs mass plotted against different mt0 ¼ mb0

masses, where all squark masses were taken to be degen-
erate m~t0 ¼ m~b0 ¼ m~t. Each contour has the fourth genera-

tion squark-to-quark mass ratio, m~f0=mf0 , fixed to the

values shown. Clearly, when the splitting between the

fourth generation squark and quark (MS) masses vanishes,
there is an insufficient one-loop contribution from top/stop
loops to raise the Higgs mass much above about 60 GeV.
Nevertheless, for even a small splitting between fourth
generation squarks and quarks, one can easily obtain a
one-loop contribution to the Higgs mass that far exceeds
the LEP bound so long as mf * 300 GeV.

VIII. RESULTS

Combining our calculation of the phase transition with
our calculation of the Higgs mass, we can find the allowed
region in parameter space where the first order phase
transition is strong �c=Tc * 1 while the Higgs mass sat-
isfies the LEP bound mh > 115 GeV. We have computed
this for the mass ratiomt0=mb0 ¼ 1 in Fig. 6 andmt0=mb0 ¼
1:2 in Fig. 7. In Fig. 6(a) we show contours of increasing
�c=Tc, illustrating that it is straightforward to obtain the
strength of the phase transition to significantly exceed
�c=Tc ¼ 1. In Fig. 6(b) we show contours of increasing
Higgs mass, illustrating that it is also straightforward to
obtain a lightest Higgs mass that significantly exceeds
mh ¼ 115 GeV.
Note that our plots are with respect to the pole masses of

quarks and squarks (as well as the ratio m~q0=mq0). The

quantities that enter the effective potential are

MS-renormalized masses, which differ (as we discussed
above) for fermion masses. Since the fermion pole mass is

larger than its MS-renormalized counterpart by about 5%,
the ratio of pole masses can be as small as 0.95 while the

ratio of MS masses is still larger than 1. This is why the
fourth generation contributions to the Higgs mass (17)

FIG. 4 (color online). Contour plot with the ratio m~q0=mq0

fixed, from top to bottom, as 1.05, 1.1, 1.15, 1.2. The masses
of the fourth generation quarks are taken to be equal.

FIG. 5 (color online). Contour plot of the lightest Higgs mass
as a function of the fourth generation quark mass. Each contour
corresponds to a fixed ratio m~q0=mq0 , from top to bottom, 1.2,

1.1, 1.0, 0.95 with mt0 ¼ mb0 and m~t ¼ m~q0 .
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remain positive even when the pole mass ratio m~q0=mq0 is

smaller than 1.
These results suggest that even though only one-loop

approximations for the effective potential and the Higgs
mass calculation were employed, we are not near any

critical boundary, and so a more refined calculation is
expected to only modestly adjust the parameter regions
we have shown. For instance, there are several effects that
can increase the Higgs mass to values higher than our
calculation. One is moving away from the parameter

FIG. 6. The region in the quark/squark mass plane where the electroweak phase transition is strongly first order is shown. The regions
shown in the left- and right-hand side figures (a) and (b) are identical: the upper boundary (the solid line) is determined by �c=Tc ¼ 1
while the lower boundary is determined bymh ¼ 115 GeV. The dotted and dashed contours on the left-hand side figure (a) correspond
to�c=Tc ¼ 1:5, 2.0, respectively. The dotted, dot-dashed, and dotted contours on the right-hand side figure (b) correspond to the Higgs
masses mh ¼ 150, 200, 250 GeV, respectively.

FIG. 7. The same as Fig. 6 but we take mt0=mb0 ¼ 1:2, as favored by electroweak precision data. The basic shape and size of the
region is the same, illustrating that our results are not particularly sensitive to the heavy fourth generation quark mass ratios.
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choice Af ¼ �, where the off-diagonal contribution from

squarks provides a modest increase. Another is separating
the third generation squark masses from the fourth genera-
tion squark masses. The latter effect is also modest: in
Fig. 5, the contour 0.95 corresponds to just the contribution
from the third generation, and one can see that there is a
small increase as the squark mass (equal to the fourth
generation quark mass) increases. Similar statements also
hold for the finite-temperature effective potential, since
again our results show that there are model parameters
where the 4MSSM model has an electroweak phase tran-
sition with �c=Tc that is well above the critical first order
boundary ’ 1.

IX. CONCLUSIONS

We have calculated the strength of the electroweak
phase transition in a supersymmetric model with four
chiral generations. We find there is an intriguing region
of parameter space, with fourth generation quarks heavier
than about 300 GeV and the squark-to-quark mass ratio
1 & m~q0=mq0 & 1:1, where �c=Tc > 1. Within this region

of parameter space we showed the Higgs can be easily
heavier than the LEP bound of 115 GeV.

This suggests that a viable model of electroweak baryo-
genesis could indeed be a low energy supersymmetric
model with a fourth generation of chiral fermions. The
main drawback to this approach is the appearance of a
Landau pole in the Yukawa couplings below about 10 TeV,
requiring a UV completion. What we have shown is the
strength of the first-order phase transition can be large
enough to prevent the washout of a baryon asymmetry.
This model also has several new sources of CP violation,

ubiquitous in low energy supersymmetry, that could be
used to satisfy Sakharov’s CP violation criteria.
Examples of sufficient CP violation that have been em-
ployed in other supersymmetric electroweak baryogenesis
scenarios [9–11] include the phase of the Higgsino mass
parameter � as well as the gaugino mass parameters M1;2.

It is coincidental that the region of parameter space
where the first order transition is strong enough combined
with obtaining a large enough Higgs mass (taking tan� ¼
1) happens to be just beyond the current Tevatron direct
search bounds [37,38]. If we are lucky, the Tevatron could
begin to see evidence for new physics in the form of both
an extra chiral generation as well as superpartners in the
very near future. The LHC, however, can easily cover this
parameter space. Indeed, the mechanism to enhance the
first order phase transition described here is expected to be
found or ruled out with only a modest amount of data from
the LHC.
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Note added:—As this paper was being completed,

Ref. [44] appeared, speculating that the electroweak phase
transition could be enhanced with a fourth generation
without supersymmetry. Unfortunately, this does not
work, as we show in Fig. 3 where just adding fermions
actually decreases �c=Tc because of the effects of the
fermions on the zero-temperature effective potential.
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