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Department of Informatics, Maria Curie-Skłodowska University pl. Marii Curie–Skłodowskiej 5, 20-031 Lublin, Poland
(Received 4 June 2008; revised manuscript received 25 August 2008; published 22 October 2008)

We confront the R-parity violating minimal supersymmetric standard model with the neutrino

oscillation data. Investigating the 1-loop particle-sparticle diagrams with additional bilinear insertions

on the external neutrino lines we construct the relevant contributions to the neutrino mass matrix. A

comparison of the so-obtained matrices with the experimental ones assuming normal or inverted hierarchy

and taking into account possible CP-violating phases allows to set constraints on the values of the bilinear

coupling constants. A similar calculation is presented with the input from the Heidelberg-Moscow

neutrinoless double beta decay experiment. We base our analysis on the renormalization group evolution

of the minimal supersymmetric standard model parameters which are unified at the grand unified theory

scale. Using the obtained bounds we calculate the contributions to the Majorana neutrino transition

magnetic moments.
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I. SUPERSYMMETRIC MODELWITH R-PARITY
VIOLATION

The recent confirmation of neutrino oscillations [1]
gives a clear signal of the existence of physics beyond
the standard model of particles and interactions (SM).
Among many exotic proposals the introduction of super-
symmetry (SUSY) proved to be both elegant and effective
in solving some of the drawbacks of the SM. The minimal
supersymmetric standard model (MSSM) (a comprehen-
sive review can be found in [2]) populates the so-called
desert between the electroweak and the Planck scale with
new heavy SUSY particles, thus removing the scale prob-
lem.What is more, using theMSSM renormalization group
equations for gauge couplings indicates that there is a
unification of g1, g2, and g3 around mGUT � 1:2�
1016 GeV which means that the MSSM in a somehow
natural way includes grand unified theories (GUTs). This
model is also characterized by a heavier Higgs boson,
comparing with the Higgs boson predicted by SM, which
is in better agreement with the known experimental data.
New interactions present in MSSM lead to many exotic
processes which opens a completely new field of research.

Building the minimal supersymmetric version of the
standard model one usually assumes the conservation of
the R-parity, defined as R ¼ ð�1Þ3BþLþ2S, where B is the
baryon number, L the lepton number, and S the spin of the
particle. The definition implies that all ordinary SM parti-
cles have R ¼ þ1 and all their superpartners have R ¼
�1. In theories preserving R-parity the product of R of all
the interacting particles in a vertex of a Feynman diagram
must be equal to 1. This implies that the lepton and baryon
numbers are conserved, and that SUSY particles are not
allowed to decay to non-SUSY ones. It follows that the

lightest SUSY particle (usually the lightest neutralino ~�0
1)

must remain stable, giving a good natural candidate for
cold dark matter. All this makes the R-parity conserving
models very popular.
In practice, however, the R-parity conservation is

achieved by neglecting certain theoretically allowed terms
in the superpotential. Casting such a hand-waving ap-
proach away, one should retain these terms, finishing
with an R-parity violating (RpV) model, with richer phe-
nomenology and many even more exotic interactions [3–
6]. The RpV models provide mechanisms of generating
Majorana neutrino masses and magnetic moments, de-
scribe neutrino decays, SUSY particles’ decays, exotic
nuclear processes like the neutrinoless double beta decay,
and many more. Being theoretically allowed, RpV SUSY
theories are interesting tools for studying the physics be-
yond the standard model. The many never-observed pro-
cesses allow also to find severe constraints on the
nonstandard parameters of these models, giving an insight
into physics beyond the SM.
The violation of the R-parity may be introduced in a few

different ways. In the first one R-parity violation is intro-
duced as a spontaneous process triggered by a nonzero
vacuum expectation value of some scalar field [3]. Other
possibilities include the introduction of additional bi- [4] or
trilinear [6] RpV terms in the superpotential, or both. In the
following we incorporate the explicit RpV breaking
scenario.
The R-parity conserving part of the superpotential of

MSSM is usually written as

WMSSM ¼ �ab½ðYEÞijLa
i H

b
u
�Ej þ ðYDÞijQa

ixH
b
d
�Dx
j

þ ðYUÞijQa
ixH

b
u
�Ux
j þ�Ha

dH
b
u�; (1)

while its RpV part reads
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iLa
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The Y’s are 3� 3Yukawa matrices. L andQ are the SU(2)
left-handed doublets while �E, �U, and �D denote the right-
handed lepton, up-quark, and down-quark SU(2) singlets,
respectively. Hd and Hu mean two Higgs doublets. We
have introduced color indices x; y; z ¼ 1; 2; 3, generation
indices i; j; k ¼ 1; 2; 3 ¼ e;�; �, and the SU(2) spinor in-
dices a; b ¼ 1; 2.

As far as the (in principle unknown) RpV coupling
constants are concerned, the most popular approach is to
neglect the bilinear terms and to discuss the effects con-
nected with the trilinear terms only. In such a case, if one is
not interested in exotic baryon number violating processes,
one has to additionally set �00 ¼ 0, which ensures the
stability of the proton. In this paper we concentrate on
the bilinear terms only and set all trilinear RpV couplings
to zero.

For completeness we write down the scalar mass term
present in our model,

L mass ¼ m2
Hd
hydhd þm2

Hu
hyuhu þ qym2

Qqþ lym2
Ll

þ um2
Uu

y þ dm2
Dd

y þ em2
Ee

y; (3)

the soft gauginos mass term (� ¼ 1; . . . ; 8 for gluinos)

L gaug ¼ 1

2
ðM1

~By ~BþM2
~Wy
i
~Wi þM3~g

y
�~g� þ H:c:Þ;

(4)

as well as the supergravity mechanism of supersymmetry
breaking, by introducing the Lagrangian

L soft ¼ �ab½ðAEÞijlai hbd �ej þ ðADÞijqaxi hbd
�djx

þ ðAUÞijqaxi hbu �ujx þ B�hadh
b
u þ Bi�il

a
i h

b
u�; (5)

where lowercase letters stand for scalar components of the
respective chiral superfields, and 3� 3 matrices A as well
as B� and Bi are the soft breaking coupling constants.

II. NEUTRINO-NEUTRALINO MIXING

The inclusion of the bilinear RpV terms imply mixing
between neutrinos and neutralinos. In the basis ð�e; ��; ��;
~B; ~W3; ~H0

d;
~H0
uÞ the full 7� 7 neutrino-neutralino mixing

matrix may be written [5] in the following form:

M�~�0 ¼ 03�3 m
mT M~�0

 !
; (6)

where

m ¼
� 1

2g
0!e

1
2g!e 0 ��e

� 1
2g

0!�
1
2g!� 0 ���

� 1
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0!�
1
2g!� 0 ���

0
B@

1
CA (7)

and M~�0 is the standard MSSM neutralino mass matrix:

M~�0 ¼
M1 0 � 1

2g
0v1

1
2g

0v2

0 M2
1
2gv1 � 1

2gv2

� 1
2g

0v1
1
2gv1 0 ��

1
2g

0v2 � 1
2gv2 �� 0

0
BBB@

1
CCCA: (8)

The matrix (6) has the seesaw-like structure and contains
the sneutrino vacuum expectation values (vevs) !i. These
are in general free parameters which contribute to the
gauge boson masses via the relation

v2
1 þv2

2 þ
X

i¼e;�;�

!2
i ¼ v2 ¼

�
2MW

g

�
2 ’ ð246 GeVÞ2; (9)

where v1 and v2 are the usual down-type and up-type
Higgs boson vevs, respectively. By introducing the angle
	 defined by tan	 ¼ v2=v1 we obtain four free parameters
of the theory: tan	 and !i. Fortunately it turns out that in
order to obtain proper electroweak symmetry breaking the
sneutrino vevs cannot be arbitrary. We give the details in
the next section.

III. HANDLING THE FREE PARAMETERS

The RpV MSSM model introduces several new free
parameters when compared with the usual MSSM.
Fortunately their number can be constrained by imposing
GUT unification and renormalization group evolution
(RGE). In this paper we restrict ourselves to the bilinear
RpV couplings only, setting all trilinear couplings (�, �0,
�00) to zero. This assumption simplifies some of the RGE
equations, which we list below. Such an approach leads at
the end to the following set of free parameters: m0, m1=2,

A0, tan	, sgnð�Þ, and �GUT
i (i ¼ 1, 2, 3).

A. Masses and soft breaking couplings

The masses of all the supersymmetric scalars are unified
at mGUT to a common value m0, and of all the supersym-
metric fermions to m1=2. The values of the trilinear soft

SUSY breaking couplings are set according to the follow-
ing relations [7]:

A E;D;U ¼ A0YE;D;U; (10)

B ¼ B1;2;3 ¼ A0 � 1: (11)

The RGE equations for the A couplings can be found
elsewhere [8–14]. The B couplings are evolved down to
the low-energy regime according to the renormalization
group equations

16
2 dB

dt
¼ 6TrðAUY

y
UÞ þ 6TrðADY

y
DÞ

þ 2TrðAEY
y
EÞ þ 6g22M2 þ 2g21M1; (12)
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16
2 dB1;2

dt
¼ 6TrðAUY

y
UÞ þ 6g22M2 þ 2g21M1; (13)

16
2 dB3

dt
¼ 6TrðAUY

y
UÞ þ 2TrðAEY

y
EÞ þ 6g22M2

þ 2g21M1; (14)

where g21 ¼ 5=3g02=ð4
2Þ and g2 ¼ g2=ð4
2Þ, 5=3 being
the GUT normalization factor.

B. Bilinear �i couplings

The three �GUT
i couplings at GUT scale remain free in

our model. After setting them the couplings are evolved
down to the mZ scale according to the renormalization
group equations which in our case take the following
simple form:

16
2 d�i

dt
¼ �ið3TrðYUY

y
UÞ � 3g22 � g21Þ

þX3
j¼1

�jðYEY
y
EÞij: (15)

An example of the running of �i is presented in Fig. 1.
One sees that for higher tan	 the couplings vary rather
weakly (notice the logarithmic scale on the energy axis) for
the whole energy range between the electroweak scale mZ

and mGUT. For small tan	< 10 the difference between the
mGUT and mZ values are of the order of � 35%. The value
1 MeV at the GUT scale was chosen arbitrarily; we will
show later that this is the typical order of magnitude for

which agreement with experimental data on neutrino
masses and mixing may be obtained.

C. Vacuum expectation values

At the beginning of the numerical procedure we set the
down and up Higgs vevs to

v1 ¼ v cos	; v2 ¼ v sin	; (16)

while the initial guess for the sneutrinos vevs is

!i ¼ 0: (17)

The actual values of !i are calculated from the condition
that at the electroweak symmetry breaking scale the linear
potential is minimized. By taking partial derivatives of the
potential one obtains the so-called tadpole equations [7],
which are zero at the minimum.
In our procedure we solve three equations, which can be

written as (i ¼ 1, 2, 3)

�iðv1�� v2BiÞ ¼
X3
j¼1

!j�ji; (18)

where

�ji ¼ �j�i þ ðm2
LÞji þ �jiD; (19)

�ji being the Kronecker delta, and

D ¼ 1

8
ðg2 þ g02Þðv2 � 2v2

2Þ: (20)

Notice that they are linear in !1;2;3 and therefore this set

has only one solution. After finding it, we use the trigono-
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FIG. 1. An example of RG running of the bilinear �i couplings. The unification scenario was m0 ¼ 200 GeV, m1=2 ¼ 500 GeV,
A0 ¼ 200, sgnð�Þ ¼ 1. All �GUT

i were equal to 1 MeV.
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metric parametrization [7], which preserves the definition
of tan	,

v1 ¼ v sin�1 sin�2 sin�3 cos	; (21)

v2 ¼ v sin�1 sin�2 sin�3 sin	; (22)

!1 ¼ v cos�1 sin�2 sin�3; (23)

!2 ¼ v cos�2 sin�3; (24)

!3 ¼ v cos�3; (25)

to calculate new values of v1 and v2. We return back to the
tadpoles with these new values and continue in this way
until self-consistency of the results is reached. It turns out
that due to the expected smallness of the!i vevs, the initial
guess Eq. (17) is quite a good approximation. It usually
suffices to repeat the whole procedure three times to obtain
self-consistency at the level of Oð10�4Þ, which is more
than enough for our purposes. The so-obtained set of vevs
is used during the determination of the mass spectrum of
the model.

IV. FEYNMAN DIAGRAMS WITH RPV
COUPLINGS ON THE EXTERNAL NEUTRINO

LINES

It is well known that, once allowing for R-parity viola-
tion, particle-sparticle 1-loop diagrams give important cor-
rections to the usual tree-level neutrino mass term. These
processes have been extensively discussed in the literature
[15–21], mainly in the context of constraining the tree-
level alignment parameters � or the trilinear RpV cou-
plings � and �0 [19,22].

In general, the explicit RpV effects may be taken into
account in three different ways. One may include the bi-
linear RpV couplings or the trilinear couplings, or both. Of
course the most complete one is the third possibility, which
is at the same time the most complicated. Therefore it is
customary to limit the discussion to either tri- or bilinear
terms only. In this paper we are interested in bilinear
couplings and set all trilinear couplings to zero.

In order to discuss the possible magnitude of the bilinear
RpV couplings �i we extend the simplest diagrams by
including the neutrino-neutralino mixing on the external
lines.

The topology of the basic type of 1-loop diagrams we
will consider is presented in Fig. 2(a). These diagrams lead
to a Majorana neutrino mass term, where the effective
interaction vertex is expanded into the RpV particle-
sparticle loop. These diagrams and their more complicated
versions with the Higgs bosons and sneutrinos inside the
loop were classified in, e.g., Ref. [18] and discussed in
details elsewhere (see [15–22] among others). In the
present paper we add the possible neutrino-neutralino mix-
ing on the external lines (Fig. 2(b)), which leads to other
contributions to the neutrino mass. Obviously this addi-
tional contribution must be in agreement with the present
experimental data. We discuss two main cases, in which
either lepton and slepton or quark and squark are in the
loop (in the case of higgsino ~Hu only the up-type quarks
count). At the same time the neutrino may mix either with
the gauginos: bino ~B or wino ~W3, or with the neutral up-
type higgsino ~Hu. All the nine cases together with the
relevant bi- and trilinear coupling constants have been
gathered in Table I and depicted in Fig. 3.
The contributions from individual diagrams have been

calculated using the same technique as in Refs. [19,20]. In
Ref. [20] we have discussed the possible influence of
including the quark mixing in the calculations. Here we
neglect this effect.
The neutrino mass matrix resulting from the bilinear

processes only can be written as the following sum:

M ab ¼
X9
i¼1

Mi
ab; (26)

where the separate contributions read

M i
ab ¼ 1

16
2

C1C2C3C4

mImIII

FII: (27)

The masses of the neutralinosmI andmIII and the coupling

FIG. 2. (a) The basic 1-loop diagram giving rise to the
Majorana neutrino mass in the R-parity violating MSSM.
(b) 1-loop diagram with RpV neutrino-neutralino couplings
included on the external lines.

TABLE I. Nine diagrams with neutrino-neutralino mixing on
the external lines leading to Majorana neutrino mass. I and III
are the neutralinos, which mix with the neutrinos on the external
lines of the diagram depicted in Fig. 3. II defines the content of
the loop (u~u stands for the up-type (s)quarks, d~d stands for the
down-type (s)quarks,q~q for all (s)quarks, and l~l for (s)leptons).

I II III C1 C2 C3 C4

1 ~Hu u~u ~Hu �a

ffiffiffi
2

p
mu=vu

ffiffiffi
2

p
mu=vu �b

2 ~Hu u~u ~B �a

ffiffiffi
2

p
mu=vu �g0=ð3 ffiffiffi

2
p Þ g0!b

3 ~Hu u~u ~W3 �a

ffiffiffi
2

p
mu=vu �g=

ffiffiffi
2

p
g!b

4 ~B q~q ~B g0!a �g0=ð3 ffiffiffi
2

p Þ �g0=ð3 ffiffiffi
2

p Þ g0!b

5 ~B l~l ~B g0!a �g0=
ffiffiffi
2

p �g0=
ffiffiffi
2

p
g0!b

6a ~W3 u~u ~W3 g!a �g=
ffiffiffi
2

p �g=
ffiffiffi
2

p
g!b

6b ~W3 d~d ~W3 g!a g=
ffiffiffi
2

p
g=

ffiffiffi
2

p
g!b

7 ~W3 l~l ~W3 g!a g=
ffiffiffi
2

p
g=

ffiffiffi
2

p
g!b

8a ~B u~u ~W3 g0!a �g0=ð3 ffiffiffi
2

p Þ �g=
ffiffiffi
2

p
g!b

8b ~B d~d ~W3 g0!a �g0=ð3 ffiffiffi
2

p Þ g=
ffiffiffi
2

p
g!b

9 ~B l~l ~W3 g0!a g0=
ffiffiffi
2

p
g=

ffiffiffi
2

p
g!b

GÓŹDŹ AND KAMIŃSKI PHYSICAL REVIEW D 78, 075021 (2008)

075021-4



constants have to be taken from Table I. The functions F
represent the contributions from the particle-sparticle
loops. They read

Fu~u ¼
X
i;j

�
3
sin2�j

2
muifðxij2 ; xij1 Þ

�
; (28)

Fd~d ¼
X
i;j

�
3
sin2�j

2
mdifðxij2 ; xij1 Þ

�
; (29)

Fq~q ¼
X
i;j

�
3
sin2�j

2
mqifðxij2 ; xij1 Þ

�
; (30)

Fl~l ¼
X
i;j

�
sin2j

2
mlifðyij2 ; yij1 Þ

�
; (31)

where �j and j are the j-th squark and slepton mass
eigenstates’ mixing angles, respectively. For simplicity

we have defined dimensionless quantities xab1;2 ¼
ðmqa=m~qb

1;2
Þ2, which are the a-th quark mass over the b-th

squark first or second mass eigenstate ratios. An analogous
expression involving the lepton and slepton masses has
been named yabi . The function coming from integrating
over loop momentum is fðx; yÞ ¼ ½logðyÞ=ðy� 1Þ �
logðxÞ=ðx� 1Þ�. The j-sums run over all squarks in Fu~u,
Fd~d, and Fq~q, and over all sleptons in Fl~l. The i-sums count

all quarks in Fq~q, up-type quarks only in Fu~u, down-type

quarks in Fd~d, and all leptons in Fl~l. The factor 3 in Fu~u,
Fd~d, and Fq~q accounts for summation over the quarks’

colors. It is absent in the case of leptons.
We do not discuss the Mi contributions separately. The

reason is that for different cases the couplings C2 and C3

enter with opposite signs causing cancellations between
such terms. Since none of theMi can show up without the
others, only the full sum Eq. (26) gives a meaningful
picture.

V. PHENOMENOLOGICAL MAJORANA
NEUTRINO MASS MATRIX

The neutrino mass matrix can be constructed from the
Pontecorvo-Maki-Nakagawa-Sakata mixing matrix UPMNS

under certain assumptions. The matrix UPMNS is usually
parametrized by three angles and three (in the case of
Majorana neutrinos) phases as follows:

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA

1 0 0
0 ei2 0
0 0 ei3

0
@

1
A; (32)

where sij � sin�ij, cij � cos�ij. Three mixing angles �ij (i < j) vary between 0 and 
=2. The � is the CP-violating Dirac
phase and 2, 3 are CP-violating Majorana phases. Their values vary between 0 and 2
. The explicit expression for the
phenomenological mass matrix Mph

�	 in terms of mi, �ij, �, 2, 3 is given by [20]

Mee ¼ c213c
2
12m1 þ c213s

2
12m2e

�i22 þ s213e
2i�m3e

�i23 ;

Me� ¼�c12c13ðc23s12þ c12s23s13e
�i�Þm1 þ c13s12ðc23c12 � s23s12s13e

�i�Þm2e
�i22 þ c13s23s13e

i�m3e
�i23 ;

Me� ¼�c12c13ð�s23s12þ c23c12s13e
�i�Þm1 � c13s12ðc12s23 þ c23s12s13e

�i�Þm2e
�i22 þ c23c13s13e

i�m3e
�i23 ;

M�� ¼ ðc223s212 þ 2c23c12s23s12s13e
�i� þ c212s

2
23s

2
13e

�2�Þm1 þðc223c212 � 2c23c12s23s12s13e
�i� þ s223s

2
12s

2
13e

�2�Þm2e
�i22

þ c213s
2
23m3e

�i23 ;

M�� ¼�ðc23s23s212 � c223c12s12s13e
�i� þ c12s

2
23s12s13e

�i� � c23c
2
12s23s

2
13e

�2i�Þm1

�ðc23c212s23þ c223c12s12s13e
�i� � c12s

2
23s12s13e

�i� � c23s23s
2
12s

2
13e

�2i�Þm2e
�i22 þ c23c

2
13s23m3e

�i23 ;

M�� ¼ ðs223s212� 2c23c12s23s12s13e
�i� þ c223c

2
12s

2
13e

�2i�Þm1 þðc212s223þ 2c23c12s23s12s13e
�i� þ c223s

2
12s

2
13e

�2i�Þm2e
�i22

þ c223c
2
13m3e

�i23 : (33)

In order to calculate numerical values of elements of this matrix one needs some additional relations among the mass
eigenstates m1;2;3. Experiments in which neutrino oscillations are investigated allow to measure the absolute values of

differences of neutrino masses squared and the values of the mixing angles. The best-fit values of these parameters read
[1,23]

FIG. 3. Diagrams with bilinear neutrino-neutralino interac-
tions leading to the Majorana neutrino mass.
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jm2
1 �m2

2j ¼ 7:1� 10�5 eV2;

jm2
2 �m2

3j ¼ 2:1� 10�3 eV2;

sin2ð�12Þ ¼ 0:2857;

sin2ð�23Þ ¼ 0:5;

sin2ð�13Þ ¼ 0:

(34)

The present experimental outcomes are in agreement with
two scenarios:

(i) the normal hierarchy (NH) of masses imply the
relation m1 <m2 <m3,

(ii) the inverted hierarchy (IH) of masses imply the
relation m3 <m1 <m2.

Notice that in order to keep the same notation for the
differences of masses squared and the mixing angles, the
neutrino mass eigenstates are labeled differently in the NH
and IH cases.

At this point we are left with four undetermined parame-
ters, which are the phases and the mass of the lightest
neutrino. To obtain most stringent limits on the new phys-
ics parameters the later is taken to be zero. As far as the
phases are concerned we consider two separate cases. First
we take all possible combinations of phases and for each
entry of the matrix we pick up its highest possible value. In
this way we obtain unphysical matrices, which give, how-
ever, some idea about the upper limits on the nonstandard
parameters. The maximal matrices for the NH and IH
scenarios read as follows [20]:

jMjðNHÞmax �
0:00452 0:00989 0:00989
0:00989 0:02540 0:02540
0:00989 0:02540 0:02540

0
@

1
A eV; (35)

jMjðIHÞmax �
0:0452 0:0312 0:0312
0:0312 0:0240 0:0239
0:0312 0:0239 0:0240

0
@

1
A eV: (36)

The more conservative approach assumes that the CP
symmetry is preserved which can be achieved by neglect-
ing the phases present in the UPMNS matrix. In such a case
the NH and IH matrices take the following forms:

jMjðNHÞ ¼
0:00240 0:00269 0:00269
0:00269 0:02553 0:01951
0:00269 0:01951 0:02553

0
@

1
A eV; (37)

jMjðIHÞ ¼
0:045267 0:000249 0:000249
0:000249 0:022801 0:022801
0:000249 0:022801 0:022801

0
@

1
A eV:

(38)

Yet another possibility is to construct M using con-
straints from nonobservability of the neutrinoless double
beta decay (0�2	). The study of the 0�2	 decay [24] is

one of the most sensitive ways known to probe the absolute
values of neutrino masses and the type of the spectrum.
The most stringent lower bound on the half-life of 0�2	
decay was obtained in the Heidelberg-Moscow 76Ge ex-

periment [25] (T0��exp
1=2 � 1:9� 1025 yr). By assuming the

nuclear matrix element of Ref. [26] we end up with
jm		j ¼ U2

e1m1 þU2
e2m2 þU2

e3m3 � 0:55 eV, where U

is the neutrino mixing matrix Eq. (32). The element
jm		j coincides with the ee element of the neutrino mass

matrix in the flavor basis and fixing it allows to construct
the full maximal matrix, which reads

jMjðHMÞ
max �

0:55 1:29 1:29
1:29 1:35 1:04
1:29 1:04 1:35

0
@

1
A eV: (39)

In the next section we present the results for each of these
five cases.

VI. CONSTRAINING � COUPLINGS FROM THE
NEUTRINO MASS MATRIX

Our aim is to find constraints on the �i coupling con-
stants coming from the neutrino mass matrices. As an
example of the unification conditions we take the following
input:

A0 ¼ 200; m0 ¼ 200 GeV; m1=2 ¼ 500 GeV;

(40)

and additionally

tan	 ¼ 10; sgnð�Þ ¼ 1: (41)

We do not expect great differences in the results if the GUT
conditions were changed. The only exception may be the
tan	 parameter (defined at mz scale) which dominates the
running of the �’s. By looking at Fig. 1 only very low
values of this parameter will influence the results
significantly.
We proceed in two steps. First, we find such values of

�GUT
i which will reproduce the diagonal elements of the

mass matrices. This can be achieved with good accuracy,
but it turns out that some of the elements (off-diagonal, see
remarks in Table II) of the resulting matrix exceed the
allowed values. It means that the �’s will not take their
maximal values simultaneously.
Second, we go down with the �GUT

i to lower the off-
diagonal elements to the acceptable level. This, however,
can be done in many different ways. Some explicit ex-
amples are listed in Table II but to find the full allowed
parameter space we have prepared scatter plots which are
presented on Figs. 4–8. Each of the plots consists of
roughly 2000 points chosen randomly from the intervals
between zero and 1.1 times the assessed upper limit for
given �GUT

i .
The boundaries of the allowed parameter space for �i

in the case of unphysical neutrino mass matrices
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TABLE II. Some results for the SUSY scenario tan	 ¼ 10, A0 ¼ 200, m0 ¼ 200 GeV, m1=2 ¼ 500 GeV.

�GUT
1 [MeV] �GUT

2 �GUT
3 Resulting mass matrix [eV] Compare with Remarks

9.50 14.80 14.80

0:553927 0:864372 0:861090
0:865038 1:349844 1:344714
0:859783 1:341638 1:336555

0
@

1
A MðHMÞ

max �� elements to big

9.46 13.02 13.02

0:548762 0:757606 0:753587
0:757853 1:046272 1:040721
0:752398 1:038740 1:033237

0
@

1
A MðHMÞ

max

0.85 2.03 2.03

0:004520 0:010728 0:010698
0:010734 0:025474 0:025404
0:010686 0:025361 0:025292

0
@

1
A MðNHÞ

max e� and e� elements to big

2.72 1.98 1.98

0:045316 0:032954 0:032976
0:032945 0:023958 0:023974
0:032951 0:023963 0:023978

0
@

1
A MðIHÞ

max e� and e� elements to big

0.62 2.03 2.03

0:002402 0:007824 0:007802
0:007821 0:025474 0:025404
0:007787 0:025361 0:025292

0
@

1
A MðNHÞ e�, e� and �� elements to big

0.62 0.70 0.70

0:002402 0:002691 0:002687
0:002688 0:003011 0:003007
0:002684 0:003007 0:003003

0
@

1
A MðNHÞ

2.72 1.92 1.93

0:045316 0:032053 0:032118
0:032065 0:022680 0:022726
0:032084 0:022694 0:022740

0
@

1
A MðIHÞ e� and e� elements to big

0.27 0.19 0.19

0:000453 0:000320 0:000321
0:000320 0:000226 0:000227
0:000320 0:000226 0:000227

0
@

1
A MðIHÞ
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FIG. 4. Allowed parameter space in the maximal HM case.
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FIG. 8. Allowed parameter space in the IH case with conserved CP symmetry.
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jMjðHM;NH;IHÞ
max are nearly box-shaped, except for a small

region of excluded values in the upper right-hand corner of
some of the plots. This behavior is expected, as the mass
matrices to be reproduced contain on each entry the maxi-
mal allowed value for it.

Much more interesting shapes are obtained for the CP
conserved cases (Figs. 7 and 8). The projections onto the
ð�1; �2Þ and ð�1; �3Þ planes are nearly identical and contain
nonlinear boundary parts. The most constrained is the
inverted hierarchy case with conserved CP (Fig. 8) due
to 2 orders of magnitude differences between the diagonal
�� and �� and off-diagonal e� and e� elements.

VII. THE TRANSITION MAGNETIC MOMENT

The RpV loop diagrams provide not only an elegant
mechanism of generating Majorana neutrino mass terms,
but also, after a minor modification, may be the source of
the transition magnetic moment �ab. This quantity repre-
sents roughly the strength of the electromagnetic interac-
tion of the neutrino. Since the latter is electrically neutral,
the interaction must take place between an external photon
and a charged particle from inside the virtual RpV loop. In
practice, only the photon-fermion interactions are taken
into account, since the photon-boson (squark or slepton)
interaction would be strongly suppressed by the big mass
of the SUSY particle. The relevant Feynman diagram is
presented in Fig. 9.

The contribution to the Majorana neutrino magnetic
moment from the discussed diagrams is given by (in
Bohr magnetons �B)

�ab ¼ ð1� �abÞ me1

4
2

�
C1a

C2C3

mImIII

C4b

�

�X
i;j

�
3
wðqÞ

ij

mqi
Qqi þ

wð‘Þ
ij

m‘i
Q‘i

�
�B: (42)

Here we have denoted the electric charge of a particle (in
units of e) by Q. The dimensionless loop functions w take
the forms

wðqÞ
ij ¼ sin2�j

2
gðxij2 ; xij1 Þ; wð‘Þ

ij ¼ sin2j

2
gðyij2 ; yij1 Þ;

(43)

where �,, x1;2, and y1;2 are the same as in Eqs. (28)–(31),

and gðx; yÞ ¼ ðx logðxÞ � xþ 1Þð1� xÞ�2 � ðx ! yÞ. The
sum over i and j in Eq. (42) accounts for all the possible
quark-squark and lepton-slepton configurations for given

neutralinos. The factor 3 in front of wðqÞ counts the three
quark colors.
The results for the already discussed GUT parameters

are presented in Table III. The last column contains for
comparison upper bounds for the magnetic moment in the
case when only trilinear interactions are taken into account.
One sees that they are at least 1 order of magnitude
stronger than the discussed bilinear contributions. In
Tables IVand V we show the results of similar calculations
for two other sets of parameters. In Table IV the unification
parameters are ‘‘low,’’ while in Table V their values are
‘‘higher.’’ The last column is given as previously for com-
parison. Also here the conclusion is clear, that the dis-
cussed contribution to the main process is at best of the
same order of magnitude, in most cases being at least an
order of magnitude weaker. The reason for such a situation
is due to the high masses of the neutralinos, which enter the
formula Eq. (42) in the denominator. It was in principle
possible that cancellations among contributions (some of
them are negative, cf. Table II) from different diagrams
will change this picture. Our explicit calculation showed
that it is not the case. Also the observed differences be-
tween the values of �ab, reaching not more than 1 order of
magnitude, are mainly due to the changed value of the
parameter tan	, and only partially due to different values
of the remaining parameters.

TABLE III. Contribution to the Majorana neutrino transition magnetic moments coming from
the bilinear neutrino-neutralino mixing, for the GUT scenario: A0 ¼ 200, m0 ¼ 200 GeV,
m1=2 ¼ 500 GeV, tan	 ¼ 10.

�e� �e� ��� Trilinear only

IH 7:0� 10�22 7:0� 10�22 6:0� 10�20 � 10�19

IH-max 8:8� 10�20 8:5� 10�20 6:5� 10�20 � 10�17

NH 7:6� 10�21 7:6� 10�21 5:5� 10�20 � 10�18

NH-max 2:8� 10�20 2:8� 10�20 7:0� 10�20 � 10�17

HM-max 2:4� 10�18 2:3� 10�18 2:9� 10�18 � 10�15

FIG. 9. Feynman diagram with neutrino-neutralino mixing on
the external lines, leading to the Majorana neutrino transition
magnetic moment.
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VIII. SUMMARY

The R-parity violating MSSM has many free parameters
which lower its predictive power. On the other hand this
fact makes the model very flexible. In this paper we have
presented a method of constraining the bilinear RpV cou-
plings �.

We have calculated the contributions to the neutrino
mass matrix coming from the neutrino-neutralino mixing
in processes in which the effective vertex is expanded into
a virtual quark-squark or lepton-slepton loop. These con-
tributions have been compared with the phenomenological
mass matrices derived using the best-fit experimental val-
ues of the neutrino mixing angles and differences of
masses squared. We discuss four cases in which normal
and inverted hierarchy are explored both with conserved
CP symmetry and with maximal values of each matrix
element. We also present the fifth case in which the neu-
trino mass matrix is calculated from the data published by
the Heidelberg-Moscow neutrinoless double beta decay
experiment.

In general we have found that setting the � couplings at
the unification scale to values of the order of& Oð1 MeVÞ
renders the mass contributions correctly below the experi-
mental upper bound. Another observation is that the bi-
linear RpV mechanism alone is not sufficient to reproduce
the whole mass matrix. This is, however, acceptable be-
cause in the general RpV loop mechanism one has to sum
up the contributions from the tree-level [15],

M tree
ii0 ¼�i�i0g

2
2

� M1 þM2tan
2�W

4ð�m2
WðM1 þM2tan

2�WÞ sin2	�M1M2�
2Þ ;

(44)

where �i ¼ �!i � vd�i are the so-called alignment pa-
rameters, as well as contributions coming from the 1-loop
diagrams (see Fig. 2(a)), which are proportional to the
totally unconstrained trilinear couplings � and �0. These
parameters may be easily fine-tuned to reproduce the full
mass matrix, and we shift this discussion to an upcoming
paper.
The knowledge of the bounds on the � coupling con-

stants allows one to discuss many exotic processes, like the
neutrino decay and the interaction of a neutrino with a
photon, to mention only a few. The former may occur as a
two-step process, first through bilinear mixing with neu-
tralinos, and then the decay of the actual neutralino. The
later has been presented in the previous section showing by
explicit calculation that this contribution does not exceed
the main 1- loop mechanism.
In our calculations we have fixed the GUT unification

parameters. Because of technical difficulties in performing
a full scan over the allowed parameter space we have
picked only three representatives for which the calcula-
tions were performed. We expect that the results will not
change qualitatively with the changes of the input parame-
ters, which is of course an assumption that may be worth
checking.
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TABLE IV. Like in Table III but with A0 ¼ 100, m0 ¼ 150 GeV, m1=2 ¼ 150 GeV, tan	 ¼
19.

�e� �e� ��� Trilinear only

IH 3:0� 10�21 2:9� 10�21 2:5� 10�19 � 10�18

IH-max 3:7� 10�19 3:6� 10�19 2:7� 10�19 � 10�18

NH 3:2� 10�20 3:1� 10�20 2:2� 10�19 � 10�18

NH-max 1:2� 10�19 1:1� 10�19 2:9� 10�19 � 10�18

HM-max 1:0� 10�17 9:8� 10�18 1:2� 10�17 � 10�16

TABLE V. Like in Table III but with A0 ¼ 500, m0 ¼ 1000 GeV, m1=2 ¼ 1000 GeV, tan	 ¼
19.

�e� �e� ��� Trilinear only

IH 3:7� 10�22 3:7� 10�22 3:3� 10�20 � 10�20

IH-max 4:6� 10�20 4:6� 10�20 3:5� 10�20 � 10�20

NH 4:0� 10�21 4:0� 10�21 2:9� 10�21 � 10�20

NH-max 1:4� 10�20 1:5� 10�20 3:7� 10�20 � 10�20

HM-max 1:3� 10�18 1:2� 10�18 1:5� 10�18 � 10�18
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