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The so-called supersymmetric flavor and CP problems are deeply related to the origin of flavor and

hence to the origin of the standard model Yukawa couplings themselves. We show that realistic SUð3Þ
flavor symmetries with spontaneous CP violation reproducing correctly the standard model Yukawa

matrices can simultaneously solve both problems without ad hoc modifications of the supersymmetric

model. We analyze the leptonic electric dipole moments and lepton flavor violation processes in these

models. We show that the electron electric dipole moment and the decay � ! e� are naturally within

reach of the proposed experiments if the sfermion masses are measurable at the LHC.
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I. INTRODUCTION

The so-called supersymmetry (SUSY) flavor and CP
problems are usually taken as the main naturalness prob-
lems SUSY has to face up to [1,2]. The formulation of the
supersymmetric flavor problem is well known: since we
have no information regarding the structure of SUSY soft-
breaking terms, we could, in principle, expect that entries
in a soft-mass matrix are all of the same order. In particular,
this can happen in the basis where the Yukawa couplings
are diagonal. In such a situation, flavor-changing neutral
current (FCNC) and flavor-dependentCP violation observ-
ables would receive too large contributions from loops
involving SUSY particles to satisfy the stringent phenome-
nological bounds on these processes [1,2]. We can formu-
late the SUSY CP problem in a similar way. If CP is not a
symmetry of the model, we naturally expect all complex
parameters in the model to have Oð1Þ phases. In this case,
the phases in flavor-independent terms typically generate
too large contributions to the so-far unobserved electric
dipole moment (EDM) of the electron and neutron [3,4].

The basis of both problems clearly lies in our total
ignorance about the origin of the observed flavor and CP
violation in our theory. However, notice that these prob-
lems are not restricted to supersymmetry. Even the stan-
dard model (SM) shares the flavor problem with SUSY in
exactly the same terms. If we had not measured the quark
and lepton masses and mixings, we would naturally expect
all the elements in the Yukawa matrices to be Oð1Þ. Yet, if
one gives such a structure to the Yukawa matrices, the
predicted fermion masses and mixings would never agree
with the observed ones. Therefore, we have to conclude
that there is a much stronger flavor problem in the SM than
in the minimal supersymmetric standard model (MSSM).
The real flavor problem is simply our inability to under-

stand the complicated structures in the quark and lepton
Yukawa couplings, and likewise for the soft-breaking fla-
vor structures in the MSSM. On the other hand, there
seems to be no direct analog of the SUSY CP problem in
the SM. In fact, the phases in the SM Lagrangian are
already Oð1Þ without being in conflict with the experimen-
tal measurements. However, this apparent ‘‘fact’’ is also
misleading. Notice that, due to the particle content of the
SM, the only complex parameters in the Lagrangian are the
Yukawa couplings themselves and we have measured them
to be small. Once more, if we had not known the fermion
masses and mixings beforehand and wrote arbitrary com-
plex Yukawa parameters, we would also have a severe SM
CP problem. Since the SUSY CP problem is basically due
to the flavor-independent phases in the MSSM, both facts
can suggest the idea that the flavor and the CP problems
are indeed related, and solving the flavor problem while
restricting the CP phases to the flavor sector would also
solve the CP problem.
A particularly attractive solution to these problems (both

in the SM and in SUSY) is found in models based on flavor
symmetries. In these models, the flavor structure of the
Yukawa matrices is only generated after the breaking of a
flavor symmetry [5–14], and the flavor structure of the
SUSY soft-breaking terms would also originate from the
same mechanism [15–19]. Thus, finding a solution to the
SM flavor problem will generally solve, at the same time,
the so-called SUSY flavor problem to a sufficient degree,
although probably still allowing naturally suppressed con-
tributions that might bring more information about the
flavor sector. Regarding the SUSY CP problem, if we
want to restrict all CP phases in SUSY to the flavor sector,
this can be achieved by postulating an exact CP symmetry
spontaneously broken in the flavor sector. This would
remove all flavor-independent phases, but still produce
interesting observable sources of CP violation.
In this work we shall analyze how a flavor symmetry can

solve the flavor and CP problems in a SUSY scenario. We
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shall also distinguish typical signatures of such a symmetry
in the lepton sector.1 In Sec. II we shall analyze a general
flavor symmetry model which can solve both problems,
based on [18]. In Sec. III we shall identify the most
important flavor-dependent contributions to leptonic
EDMs, in order to quantify the expected amount of CP
violation in such models. In Sec. IV we shall study in a
similar manner the relevant lepton flavor violation (LFV)
processes. Finally, in Sec. V we will show the regions of
the supergravity parameter space that are sensitive to future
EDM and LFV experiments.

II. FLAVOR SYMMETRIES AND SPONTANEOUS
CP BREAKING

Following the original ideas of Froggatt and Nielsen [6],
flavor symmetries explain the peculiar structure of the SM
Yukawa couplings as the result of a spontaneously broken
symmetry associated with flavor. The three generations of
SM fields are charged under this symmetry such that the
SM Yukawa couplings are not allowed in the limit of exact
symmetry. One or several scalar vacuum expectation val-
ues (vevs) breaking this symmetry must be inserted in a
nonrenormalizable operator, suppressed by a heavy media-
tor mass, to compensate the charges. If the scalar vev is
smaller than the mediator scale, this provides a small
expansion parameter that can be used to explain the hier-
archy of the observed Yukawa couplings.

In the context of a supersymmetric theory, an unbroken
flavor symmetry would apply equally to the fermion and
scalar sectors. This implies that in the limit of exact
symmetry the soft-breaking scalar masses and the trilinear
couplings must be invariant under the flavor symmetry.
This has different implications in the case of the scalar
masses and the trilinear couplings.

The scalar masses are couplings ��y; thus flavor-
diagonal couplings are clearly invariant under any symme-
try, i.e. diagonal soft-masses are always allowed by flavor
symmetry. Therefore diagonal scalar masses will be of
the order of the SUSY soft-breaking scale. However, in
general, this does not guarantee that they are family uni-
versal. Being universal or not will depend on the consid-
ered family symmetry. In the case of an Abelian
[6,7,10,12,13,21–23] family symmetry, the symmetry
does not relate different generations and therefore diagonal
masses can be different. In this case, FCNC and CP
violation phenomenology set very strong constraints on
the differences between these flavor-diagonal masses, and
Abelian family symmetries have serious difficulties satis-
fying these constraints [24]. On the other hand, a non-
Abelian family symmetry groups two or three generations
in a single multiplet with a common mass, thus solving the
FCNC problem. This was one of the main motivations for

the construction of the first SUð2Þ flavor models [11,25],
where the first- and second-generation sfermions, facing
the strongest constraints, share a common mass. In the case
of an SUð3Þ flavor symmetry [18,26–28], all three gener-
ations have the same mass in the unbroken family symme-
try limit. For this reason, in the following we will consider
non-Abelian family symmetries and, more precisely,
SUð3Þ flavor symmetries.
On the contrary, trilinear couplings are completely

equivalent to the Yukawa couplings from the point of
view of the symmetry because they involve exactly the
same fields (scalar or fermionic components). Thus, they
are forbidden by the symmetry [with the possible exception
of the (3, 3) component in SUð2Þ models] and generated
only after symmetry breaking as a function of small vevs.
In addition to the renormalizable mass operators in the

Lagrangian, we can construct nonrenormalizable operators
that are neutral under flavor symmetry inserting an appro-
priate number of flavon fields. The flavon fields, charged
under the symmetry, are responsible for the spontaneous
symmetry breaking once they acquire a vev. Then, higher
dimensional operators involving two SM fermions and a
Higgs field, with several flavon vevs suppressed by a large
mediator mass, generate the observed Yukawa couplings.
In the sameway, these flavon fields will couple to the scalar
fields in all possible ways allowed by the symmetry and,
after spontaneous symmetry breaking, they will generate a
nontrivial flavor structure in the soft-breaking parameters.
Given that they are generated by insertions of the same
flavon vevs, we can expect the structures in the soft-
breaking matrices and the Yukawa couplings to be related.
Our starting point in our analysis of the soft-breaking terms
must then involve an analysis of the texture in the
Yukawas, in order to reproduce first the correct masses
and mixings.
To fix the Yukawa couplings, we accept that the small-

ness of Cabibbo-Kobayashi-Maskawa (CKM) mixing an-
gles is due to the smallness of the off-diagonal elements in
the Yukawa matrices with respect to the corresponding
diagonal elements, and we make the additional simplifying
assumption of choosing the matrices to be symmetric. With
these two theoretical assumptions, and using the ratio of
masses at a high scale to define the expansion parameters

in the up and down sectors as �" ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mb

p
and " ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mc=mt

p
, we can fix the Yukawa textures in the quark

sector to be

Yd /
0 b �"3 c �"3

b �"3 �"2 a �"2

c �"3 a �"2 1

0
B@

1
CA;

Yu /
0 b0"3 c0"3

b0"3 "2 a0"2
c0"3 a0"2 1

0
B@

1
CA;

(1)

1Observables in the quark sector, such as the neutron EDM,
shall be studied in a future work [20].
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with �" ’ 0:15, " ’ 0:05, b ¼ 1:5, a ¼ 1:3, c ¼ 0:4, and
with a0, b0, c0 poorly fixed from experimental data
[18,22,29]. Unfortunately, the Yukawa couplings in the
leptonic sector cannot be determined from the available
phenomenological data. The left-handed neutrino masses
and mixings cannot unambiguously fix the neutrino
Yukawa couplings in a seesaw mechanism. Therefore
only the charged-lepton masses provide useful information
on leptonic Yukawas. For simplicity, we choose to work
with a grand unified model at high scales, a possibility
which is favored by the unification of the bottom and tau
Yukawa couplings. In this case, charged-lepton and down-
quark (and the neutrino and up-quark) flavor matrices are
the same except for the different vev of a Georgi-Jarlskog
Higgs field [30] to unify the second- and first-generation
masses.

With this Yukawa structure as our starting point, we will
generate the flavor structure of the soft-breaking terms in
an explicit example based on SUð3Þ flavor symmetry.
Under this symmetry, the three generations of SM fields,
including both SUð2ÞL doublets and singlets, are triplets 3
and the Higgs fields are singlets. Therefore Yukawa cou-
plings and trilinear terms, 3� 3� 1, are not allowed by
SUð3Þ. In the theory, we have several flavon fields, that we
call �3, �23 (antitriplets �3), ��3, and ��23 (triplets 3). The
symmetry is broken in two steps: first �3 and ��3 get a vev,
/ ð0; 0; 1Þ, breaking SUð3Þ into SUð2Þ. Subsequently, a
smaller vev of �23 and ��23, / ð0; 1; 1Þ, breaks the remaining
symmetry [26].

To reproduce the Yukawa textures, the large third-
generation Yukawa couplings require a �3 (and ��3) vev
of the order of the mediator scale, Mf (slightly smaller in

the up sector and tan� dependent in the down sector as
shown in the Appendix), while �23=Mf (and ��23=Mf) have

vevs of order " in the up sector and �" in the down sector,
with different mediator scales in both sectors. In this way,

third-generation Yukawa couplings are generated by �i3�
j
3,

while couplings in the 2–3 block of the Yukawa matrix are

always given by �i23�
j
23ð�3 ��3Þ2 (possibly with the Georgi-

Jarlskog field � to unify quark and leptonic Yukawa
couplings, not included here for simplicity; see
Refs. [18,26,27]). The couplings in the first row and the
first column of the Yukawa matrix are given by

�ikl ��23;k ��3;l�
j
23ð�23 ��3Þn, where to reproduce the texture in

Eq. (1) we must force n ¼ 1. Unfortunately, the SUð3Þfl
symmetry is not enough to reproduce the textures in
Eq. (1), and we must impose some additional global sym-
metries (typically ZN symmetries) to guarantee the correct
power structure and to forbid unwanted terms, like a mixed

�i3�
j
23 term, in the effective superpotential. The basic struc-

ture of the Yukawa superpotential (for quarks and leptons)

is then given by

WY ¼ Hc ic
c
j½�i3�j3 þ �i23�

j
23ð�3 ��3Þ

þ �ikl ��23;k ��3;l�
j
23ð�23 ��3Þ þ . . .�; (2)

where, to simplify the notation, we have normalized the
flavon fields to the corresponding mediator mass; i.e., all
the flavon fields in this equation should be understood as
�i=Mf. This structure is quite general for the different

SUð3Þ models we can build, and for additional details we
refer to [18,26,27].
In the same way, after SUð3Þ breaking, the scalar soft

masses deviate from exact universality. As explained

above, �y
i �i is completely neutral under gauge and global

symmetries and gives rise to a common contribution for the
family triplet. However, after SUð3Þ breaking, terms with
additional flavon fields give rise to important corrections
[18,31–33]. Any invariant combination of flavon fields can
also contribute to the sfermion masses. In this case, it is
easy to see that the following terms will always contribute
to the sfermion mass matrices3:

ðM2
~f
Þij ¼ m2

0

�
�ij þ 1

M2
f

½�y3;i�3;j þ ��i3
��jy3 þ �y23;i�23;j

þ ��i23
��jy23� þ

1

M4
f

ð�ikl ��3;k ��23;lÞyð�jmn ��3;m ��23;nÞ

þ . . .

�
; (3)

where f represents the SUð2Þ quark and lepton doublets or
the up (neutrino) and down (charged-lepton) singlets.
Notice that we have three different mediator masses,Mf ¼
ML, Mu, Md, because the flavor symmetry must commute
with the SM symmetry and therefore the vectorlike media-
tor fields must have the SM quantum numbers of the usual
particles.4 With these terms, we can see some similarities
between the flavor structures of the Yukawa and soft-mass
matrices. In particular, the off-diagonal (2, 3) elements in
the Yukawa matrix are given by ��223

��323=M
2
f ’ �2f [the term

ð�3 ��3Þ factorizes from all the contributions in the Yukawa

matrix], while in the soft masses it is ��iy23 ��
j
23=M

2
f, also of

order �2f. Still, it is possible to build other invariant combi-

nations with different flavon fields that cannot be present in
the superpotential. This is due to the fact that the super-
potential must be holomorphic, i.e. cannot include dag-
gered fields, while the soft masses, coming from the Kähler

2Notice that we add the scalar product ð�3 ��3Þ to this operator
with respect to Refs. [18,26,27] to be able to generalize to
different tan� ¼ ðh�u3i=h�d3iÞ2 values.

3Discrete non-Abelian subgroups of SUð3Þ [34–41] would
have a similar leading order structure in the soft-mass matrices.

4Nevertheless, in all our numerical calculations below we take
only two different mediator masses, Md and Mu ¼ ML, for
simplicity
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potential, are only a real combination of fields. In some
cases, the global symmetries can allow a contribution like

�23;i ��
j
3 þ H:c: to the soft masses, even though the combi-

nation �23;i�3;j is forbidden by global symmetries in the

superpotential. This structure would strongly affect the
phenomenology of third-generation physics [20]. In any
case, although possible, this situation is very rare and
usually the structure of the soft terms follows the
Yukawa structure. It is important to emphasize at this point
that these deviations from universality in the soft-mass
matrices proportional to flavor symmetry breaking always
come through corrections in the Kähler potential.
Therefore, these effects will be important only in gravity-
mediation SUSY models where the low-energy soft-mass
matrices are mainly generated through the Kähler potential
[42]. In other mediation mechanisms, such as gauge me-
diation [43] or anomaly mediation [44–46], where these
Kähler contributions to the soft masses are negligible,
flavor effects in the soft-mass matrices will be basically
absent.

In the case of the trilinear couplings we have to empha-
size that from the point of view of flavor symmetry these
couplings are completely equivalent to the corresponding
Yukawa coupling. This means that they necessarily involve
the same combination of flavon vevs, although order one
coefficients are generically different because they require
at least an additional coupling to a field mediating SUSY
breaking (in general, coupled in different ways in the
various contributions). Therefore, from our point of view,
we expect that the trilinear couplings have the same struc-
ture as the Yukawa matrices in the flavor basis. However, in
general, they are not proportional to the Yukawas, because
of different Oð1Þ coefficients in the different elements.
Thus, we can expect that going to the super-CKM
(SCKM) basis does not diagonalize the trilinear matrices.
In fact, the trilinear matrices maintain the same structure as
in the flavor basis, and only the Oð1Þ coefficients are
modified.

We should now take into account, especially in a
gravity-mediated scenario, the canonical normalization of
the kinetic terms (Kähler potential). However, as shown in
Refs. [32,47] these canonical transformations do not mod-
ify the general structure of the different flavor matrices and
change only the unknown Oð1Þ coefficients. As these co-
efficients cannot be fixed by flavor symmetry at this level,
the previous discussion on the different flavor matrices
remains valid in the canonical basis.

We have now fixed the flavor structure that we can
expect in the soft-breaking matrices. Now, we are ready
to consider the problem of CP violation in these flavor
matrices. In fact, in the SM, CP violation is deeply related
to flavor. The only possible complex parameters in the SM
are the Yukawa couplings themselves, and all observed CP
violation is consistent with a single observable phase in the
CKM matrix. Therefore, we need complex flavon vevs to

reproduce the observed CP in the CKMmixing matrix. On
the other hand, the supersymmetric CP problem concerns
the fact that, in the presence of flavor-independent phases
in the� term and trilinear couplings, supersymmetry gives
rise to contributions to the EDMs at one-loop order with no
suppression associated with flavor [48–55]. These one-
loop contributions, for SUSY masses below several TeV,
can easily exceed the present experimental bounds shown
in Table I by 1 or 2 orders of magnitude. This fact forces
most models to demand unnatural requirements, such as
vanishing phases, very large mediator masses, or engi-
neered cancellations between different contributions to
the process [64].
In this aspect, flavor symmetries with spontaneous

breaking of CP provide an interesting solution. CP is an
exact symmetry of the theory before the breaking of flavor
symmetry. Thus, above the scale of flavor breaking, all
terms in the Kähler potential, which give rise to the soft
masses and the � term (by the Giudice-Masiero mecha-
nism [65]), are real. Even after the breaking of flavor and
CP symmetries, � receives flavor-suppressed complex
corrections only at the two-loop level [66]. Finally, trilinear
terms are only generated after symmetry breaking with the
same phase structure as the Yukawa couplings, and it can
be proven that diagonal elements in Aij are real at leading

order in the SCKM basis [18]. In this way, the supersym-
metric CP problem is naturally solved. Nevertheless,
flavor-dependent phases do exist and can contribute to
the fermion EDMs as we will see below.
In the following sections, even though we use exact

expressions to calculate all our observables, we shall use
the mass insertion (MI) approximation [67,68] to quantify
and explain all important contributions (as in [69]). In
terms of the slepton mass matrix terms, these MIs are
defined as

ð�e
LRÞij ¼

vdffiffiffi
2

p
M2

~e

½A�
e;ij � �ijYi� tan�� ¼ ð�e

RLÞ�ji;

ð�e
LLÞij ¼

ðm2
~L
Þij

M2
~e

; ð�e
RRÞij ¼

ðm2
~eÞji

M2
~e

;

(4)

where M2
~e is the average slepton mass. From the soft

slepton mass matrices of Eq. (A1), we can read the ap-
proximate MIs in the �� e, �� e, and ��� sectors,
respectively:

TABLE I. Current constraints to EDMs (left) and reach of
future experiments (right).

EDM Current bound (e cm) Future bound (e cm)

jdej � 1:4� 10�27 [56] �10�32 [57]

jd�j � 7:1� 10�19 [58] �10�23 [59]

jd�j � 2:5� 10�17 [60] �10�20 [61]

jdnj � 2:9� 10�26 [62] �10�28 [63]
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ð�e
LLÞ12 �

�2 ��

3
; ð�e

RRÞ12 �
��3

3
; ð�e

LRÞ12 � A0

m�

M2
~e

��3; (5a)

ð�e
LLÞ13 � ��3y	33; ð�e

RRÞ13 �
��3

3
; ð�e

LRÞ13 � A0

m�

M2
~e

��3; (5b)

ð�e
LLÞ23 � ��2y	33; ð�e

RRÞ23 � ��2; ð�e
LRÞ23 � A0

m�

M2
~e

3 ��2; (5c)

where we have not included the renormalization group
(RG) running from the unification scale down to low
energy. Such running effects can be sizable in the LL and
LR sectors, due to the presence of heavy right-handed
neutrinos with large Yukawa couplings [70–72].
Moreover, in the present case there are new contributions
to the running given by the nonuniversality of the soft-mass
and trilinear matrices. These effects can be important even
in the RR sector. As an example, the element ðm2

~eÞ32 of the
right-handed slepton mass matrices gets the following RG
correction in the SCKM basis:

ðm2
~eÞ32ðMSUSYÞ ’

�
ðm2

~eÞ32ðMUÞ
�
1� 1

16
2
ð2y2�Þ

�

� 4
Ae
33A

ey
32

16
2

�
log

�
MU

MSUSY

�
(6)

where MU is the unification scale, MSUSY the average
SUSY mass, and the matrix elements are evaluated at
MU using the SCKM expressions given in the Appendix.
In the SCKM basis we have Ae

13=A0 � ðY	Þ13 �Oð ��3Þ,
Ae
23=A0 � ðY	Þ23 �Oð ��2Þ, A3

33=A0 �m�=ðv cos�Þ and
ðY	Þ33 �Oð1Þ, and ye �Oð ��4Þ, y� �Oð ��2Þ, y� �Oð1Þ.
Therefore, we expect sizable corrections from the running
only in the ��� and �� e sectors, i.e. where the third
generation is involved.

III. EDMS AND FLAVOR PHASES

Fermion EDMs, dc , are induced through effective

dimension-six operators (with an implicit Higgs insertion
providing the chirality charge) of the form

L ¼ �dc

2
½ �c��	�5c �F�	; (7)

being related to the imaginary part of a chirality-changing,
flavor-diagonal loop process. In the SM these processes are
greatly suppressed: the prediction for the electron EDM is
lower than Oð10�40Þe cm [73]. This makes EDMs very
convenient observables in which to look for new physics
related to CP violation.

As we have seen above, ifCP is spontaneously broken in
the flavor sector, the usual flavor-independent phases com-

ing from � and Af are approximately zero and we expect

EDMs to be under control.5 Nevertheless, flavor-dependent
phases in the soft-mass matrices and trilinears can also give
large contributions [74,75]. In order to be sure that the
SUSY CP problem is solved, it will be necessary to
quantify the expected order of magnitude of the EDMs
produced by Oð1Þ phases on these terms. If the current
constraints are respected, we can then contrast these pre-
dictions with the expected sensitivity of future EDM ex-
periments, shown also in Table I.
In order to identify the dominant terms in de, one needs

to know the size and phases of the different mass inser-
tions. In fact, observable phases will correspond to
rephasing-invariant combinations of mass insertions and
Yukawa elements [76]. Even in the general SUð3Þ frame-
work presented in the previous section, these combinations
depend strongly on the particular model one takes into
account. Thus, as a first step, it is of interest to study the
magnitude of each potential contribution to de assuming a
generic phase of order 1 for the whole rephasing-invariant
combination, using the expected size of the off-diagonal
elements in flavor symmetry. We will then proceed with a
second analysis, considering the explicit model by Ross,
Velasco-Sevilla, and Vives (RVV) [18] presented in the
Appendix.
One-loop MSSM contributions to charged-lepton EDMs

dl (l ¼ e, �, �) involve diagrams with neutralinos and
charginos [77,78]. However, the chargino contribution
only involves a flavor-diagonal left-handed sneutrino
propagator, and, due to Hermiticity, the sensitivity to the
phases within the sneutrino mass matrix is lost. With a
vanishing phase for �, we can neglect the chargino con-
tribution to dl, and concentrate on neutralinos completely.
Neutralino contributions to de are

d�
0

e ¼
�

e

16
2

�
=mðAL

eijA
R
eijÞ

1

m�0
j

F

�m2
�0
j

m2
~li

�
; (8)

AL
eij ¼ YeN �

3jR~eRi �
g0ffiffiffi
2

p N �
1jR~eLi �

gffiffiffi
2

p N �
2jR~eLi;

(9)

5Notice that, since we are assuming gaugino mass unification,
we can always take the unified gaugino mass as real, correspond-
ing to the usual convention in the constrained MSSM.
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AR
eij ¼ YeN �

3jR
�
~eLi

þ ffiffiffi
2

p
g0N �

1jR
�
~eRi

(10)

with R~ei and N kj being elements of the charged slepton

and neutralino mixing matrices [77], respectively, and the
loop function FðxÞ ¼ x

2ðx�1Þ3 ðx2 � 1� 2x logxÞ.
In terms of mass insertions, the most relevant contribu-

tions from Eq. (8) can be written as

de
e
¼ M1

8
cos2�WM
2
~e

=m½ð�e
LLÞ1ið�e

LRÞi1f1
þ ð�e

LRÞ1ið�e
RRÞi1f2 þ ð�e

LLÞ1ið�e
LRÞijð�e

RRÞj1f3� (11)

where M2
~e is the average slepton mass and the loop func-

tions fi can be derived from [69].
Let us explain briefly why these are the relevant contri-

butions, and identify the dominant ones. All phases in this
SUð3Þ flavor model are contained within the sfermion mass
matrices and thus we shall need at least one mass insertion
on the slepton line. Since all flavor-conserving insertions
ð�e

LRÞii are real to leading order, we will need to combine at
least two flavor-changing mass insertions, ð�e

ABÞij.
Regardless of the number of mass insertions, we shall

always have two situations: one in which the neutralino
line couples to the fermion through a gaugino and a
Higgsino, and one that couples through two b-inos
(although interactions with two Higgsinos also contribute,
they are suppressed by at least an additional Yukawa
coupling, so we shall not discuss them). In the gaugino-
Higgsino case, the slepton line will need to maintain its
handedness and again, due to the Hermiticity of the full
slepton mass matrix, loses all dependency on the flavon
phases. Thus, de is due entirely to diagrams with pure
b-inos as the vertices, where a LR transition is required.

With two mass insertions, the only contribution with
physical phases comes from a combination of insertions
like ð�e

LRÞ1ið�e
RRÞi1 or ð�e

LLÞ1ið�e
LRÞi1. With three mass in-

sertions, we consider only contributions with a single LR
insertion. It is well known that each �e

LR insertion is sup-
pressed by a cumulative factor m�=M~e. Therefore the
dominant contribution comes from ð�e

LLÞ1ið�e
LRÞijð�e

RRÞj1.
Obviously, the largest contribution is the one that involves
a central ð�e

LRÞ33, due to the m� tan� enhancement. Thus,
the most important contribution to de with three mass
insertions is the pure b-ino ð�e

LLÞ13ð�e
LRÞ33ð�e

RRÞ31.
Regarding whether the two- or three-insertion contribu-

tion dominates, it shall depend on the magnitude of tan�
and the size of the off-diagonal terms in the trilinears.
Evidently, for a large enough tan�, the three-insertion
contribution shall dominate no matter what the size of
ð�e

LRÞij is, but for low values the situation is not so clear,

especially if A0 is large. Using Eq. (A1) in the Appendix,
we can quantify the magnitude of each insertion as

ð�e
LRÞ1ið�e

RRÞi1 � A0 ��
6 m�

M2
~e

; (12)

ð�e
LLÞ13ð�e

LRÞ33ð�e
RRÞ31 � ��6y	33

m�

M~e

tan�; (13)

and therefore for A0 ’ M~e the triple mass insertion is
dominant except for small values of y	33 tan�.
It is also important to take into account that Eq. (12) has

the same structure for the 12 and 13 elements. This means
that, with a maximum phase on each element, we can
double the two-insertion contribution. In any case, as these
terms are all proportional to A0, in order to do an appro-
priate study one needs to take the case where A0 ¼ 0 as a
standard, and then understand further deviations when
A0 � 0.
Let us turn now to d�. For A0 ¼ 0, the structure of the

dominant terms for d� shall be quite similar to the one for

de. We shall have the main contribution coming from the
triple mass insertion ð�e

LLÞ23ð�e
LRÞ33ð�e

RRÞ32, which is en-
hanced by m� tan�. However, due to the flavor structure of
our model, we should expect a suppression of order ��4,
instead of ��6. Thus, d� is about 2 orders of magnitude

larger than de. This is similar to the usual mass scaling
relation, which predicts d� to be larger by m�=me, also 2

orders of magnitude. When A0 � 0, the double insertion
can be relevant for low tan�, similar to the case of de
analyzed in Eqs. (12) and (13). However, contrary to de,
where both ð�e

LRÞ12ð�e
RRÞ21 and ð�e

LRÞ13ð�e
RRÞ31 are of the

same order ð ��6Þ, in this case the dominant contribution only
comes from ð�e

LRÞ23ð�e
RRÞ32, which is again of order ��4.

The situation for d� is critically different when A0 ¼ 0.
In this case the m� tan� enhancement is lost, and the main
triple MI contribution is due to ð�e

LLÞ32ð�e
LRÞ22ð�e

RRÞ23. This
would be smaller than d� by a factor m�=m�, almost 2

orders of magnitude, and thus d� clearly violates the naive
scaling relation. In contrast, when A0 � 0, the main con-
tributions from the double MIs with a flavor-changing �LR

insertion are identical in magnitude to those for d�, and so

we expect d� to be of a size comparable to d�. In this case,

we should take into account the possible presence of sub-
dominant phases in the SCKM basis in flavor-diagonal
trilinear couplings [31]. In any case, this breaks again the
mass scaling relation, even though not so drastically as in
the previous situation. The observation of such bizarre
behavior would be a very clear signal favoring these types
of flavor models.

IV. LEPTON FLAVOR-VIOLATING DECAYS

As discussed in the previous sections, supersymmetric
flavor models are characterized by nonuniversal scalar
masses at the scale where the SUSY breaking terms appear.
Moreover, the trilinear Af matrices are, in general, not

aligned with the corresponding Yukawa matrices. This
leads to the appearance of potentially large mixing among
flavors. In particular, in the lepton sector, the same mass
insertions which induce EDMs are sources of lepton flavor
violation, again via neutralino or chargino loop diagrams

L. CALIBBI, J. JONES PÉREZ, AND O. VIVES PHYSICAL REVIEW D 78, 075007 (2008)

075007-6



[79]. As a consequence, we expect a correlation between
EDM and LFV processes and the allowed parameter space
to be strongly constrained by the experimental limits on
LFV decays such as BRðli ! lj�Þ.

The branching ratio of li ! lj� can be written as

BRðli ! lj�Þ
BRðli ! lj	i �	jÞ ¼ 48
3

G2
F

ðjAij
L j2 þ jAij

R j2Þ; (14)

with the SUSY contribution to each amplitude given by the
sum of two terms AL;R ¼ An

L;R þ Ac
L;R, where An

L;R and

Ac
L;R denote the contributions from the neutralino and

chargino loops, respectively. In the mass insertion approxi-
mation, and taking only the dominant terms, we can write
the amplitudes as follows:

Aij
L ¼ 2

4


ð�e
LLÞij
m2

~l

�
�M2 tan�

ðM2
2 ��2ÞF2LLða2; bÞ

þ tan2�W
�M1 tan�

ðM2
1 ��2ÞF1LLða1; bÞ

�

þ 1

4


ð�e
RLÞij
m2

~l

�
M1

mli

�
F1LRða1Þ; (15)

Aij
R ¼ 1

4


�ð�e
RRÞij
m2

~l

�M1 tan�

ðM2
1 ��2ÞF1RRða1; bÞ

þ ð�e
LRÞij
m2

~l

�
M1

mli

�
F1LRða1Þ

�
; (16)

where �W is the weak mixing angle, a1;2 ¼ M2
1;2= ~m

2, b ¼
�2=m2

~l
, and the loop functions F1LL, F2LL, F1RR, and F1LR

can be obtained from the expressions in Refs. [80,81].
Here we can see that ð�e

LLÞij and ð�e
RRÞij contributions

are tan� enhanced. In contrast to minimal flavor violation
models with RH neutrinos, in our model the largest con-
tribution to � ! e� comes from the RR sector, being
ð�e

RRÞ12 ’ �"3 while ð�e
LLÞ12 ’ "2 �" (see Sec. II). The � !

�� and � ! e� decays shall have similar LL and RR
contributions.

On the other hand, the only term proportional to ð�e
LRÞij

arises from pure ~B exchange and it is completely indepen-
dent of tan�. However, in these flavor models LR mass
insertions can still be important. In the case of the� ! e�
decay and taking into account the necessary chirality
change in the amplitude, we have to compare
ð�e

RRÞ12m� tan� with ð�e
LRÞ12M1, as we can see from

Eq. (16). Using the expression for the mass insertions of
Eq. (5c), we see that in these models

ð�e
RRÞ12mli tan�

ð�e
LRÞ12M1

’ ð �"3=3Þm� tan�

�"3A0ðm�=M
2
~eÞM1

¼ m� tan�

3m�

M2
~e

A0M1

:

(17)

Therefore, we can see that if M2
~e=ðA0M1Þ �Oð1Þ, the

LR mass insertion will dominate the � ! e� decay up to
tan�� 30. In fact, these contributions can easily bring
BRð� ! e�Þ to the level of the present experimental

reach, and therefore, we expect that the A0 � 0 scenarios
will be very strongly constrained by the present and future
limits on BRð� ! e�Þ. This is the main consequence of
the misalignment between Ae and Ye. Let us notice that
here the LR contribution, even if not enhanced by tan�,
becomes dominant due to an enhancement by a factor of
order m�=m� with respect to the other contributions to the

amplitude. This is clearly peculiar of � ! e�, and it is not
verified in the case of � ! ��. For � ! ��, even with
A0 � 0 the LR contribution is subdominant with respect to
the other ones, mainly proportional to ð�e

LLÞ32, which are
tan� enhanced. Therefore, we expect the BRð� ! ��Þ for
A0 � 0 to be approximately equal to the case A0 ¼ 0.
It is also interesting to compare the different LFV chan-

nels. In the case A0 ¼ 0, the dominant LFV source should
be �e

LL, which contributes to both chargino and neutralino
diagrams. Thus a rough estimation for the relative sizes of
the branching ratios can be

BRð� ! e�Þ
BRð� ! e�Þ �

�
m�

m�

�
5 ��

��

ð�e
LLÞ213

ð�e
LLÞ212

� Oð1Þ; (18)

BRð� ! ��Þ
BRð� ! e�Þ �

�
m�

m�

�
5 ��

��

ð�e
LLÞ223

ð�e
LLÞ212

� Oð103Þ (19)

where �� (��) is the � (�) full width. Given the present

limit BRð� ! e�Þ< 1:1� 10�7 [82], we can see from
Eq. (18) that � ! e� is not able to constrain the parameter
space of the model better than � ! e� whose experimen-
tal bound is BRð� ! e�Þ< 1:2� 10�11 [83] (which will
be improved by 2 orders of magnitude by MEG [84]). On
the other hand, we expect from Eq. (19) that the present
constraints given by� ! e� and � ! �� are comparable,
once the combined BABARþ Belle limit BRð� ! ��Þ<
1:6� 10�8 is considered [85,86].
It is important also to clarify the dependence of our

results on the chosen value of Y	. Notice that, in our
SUð3Þ model, the values of the neutrino Yukawa couplings
are fixed by the symmetry following [18]. However, differ-
ent values of Y	 could be possible in other examples with
respect to observed values of neutrino masses and mixings.
In any case, as can be seen in Eqs. (A4), only the (1, 3) and
(2, 3) elements of m2

~L
depend on the value of y	33 at one

loop. Therefore only the predictions on � ! li� can be
affected by a change on y	33, and even in this case the

contributions from m2
~e, independent of y	33, will be of a

similar size.

V. NUMERICAL RESULTS

In the following, we shall use the expressions for de and
LFV processes to put bounds on the supergravity parame-
ter space through a scan in m0 andM1=2 for fixed values of

tan� and a0 ¼ A0=m0. Since all of our predictions will
depend on arbitrary Oð1Þ coefficients, it is not possible to
provide a precise numerical result. Thus, the following
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discussion intends to point out the expected order of mag-
nitude for these observables, and factors of 2 or even 4 can
appear.

Our numerical analysis presented below is done defining
the Yukawa, trilinear, and soft-mass matrices at Mflav ¼
2� 1016 GeV, as explained in Sec. II and explicitly shown
in the Appendix. Then we evolve the different flavor
matrices to the electroweak scale using one-loop renormal-
ization group equations (RGEs) [87]. Oð1Þ coefficients in
the Yukawa matrices are determined by requiring a good fit
on the fermion masses and quark mixings atMZ [29]. Other
Oð1Þ terms in the soft matrices are taken as random,
varying between 0.5 and 2. The different values of tan�
are fixed by the ratio of the vevs ðau3=ad3Þ, which in our

model are global factors in the Yukawa (and trilinear)
matrices.

After running the resulting structures down to the MZ

scale, we diagonalize the Yukawas in order to obtain the
left and right mixing matrices and rotate the soft matrices
into the SCKM basis. Notice that this SCKM rotation
generates the off-diagonal elements in the first row and
the first column in all soft-mass matrices, and in the case of
left-handed sleptons it also generates the dominant contri-
bution to ðM2

~L
Þ23. At this scale, we apply the CERN LEP

bounds on the lightest sparticle and Higgs masses, and we
require a neutral lightest supersymmetric particle (LSP). In
the plots, regions that fail to satisfy any of these require-
ments are shown in dark brown (black). Then, we also
apply the constraints set by the current bounds from de,
LFV processes, and FCNC measurements on the hadronic
sector: �mK, �K, �mD, �mB, �mBs

, and b ! s� [88], as

shown in Table II. Nonetheless, only � ! e�, � ! ��,
and �K shall exclude regions in the parameter space above
the LEP and LSP bounds; we show these regions, stretch-
ing above the dark brown regions at low m0, in green
(gray).

Initially, we present the results in a generic SUð3Þmodel
with phases Oð1Þ in the flavor soft terms, as shown in the
Appendix, Eq. (A1). Then, we take the RVV model as an
explicit example with a well-defined phase structure, as
shown in Eqs. (A4).6

A. Generic SUð3Þ model

In this model, we assume generic Oð1Þ phases in the
soft-mass matrices at the flavor-breaking scale as specified
in Eq. (A1) of the Appendix. In this way, we try to include
generic models with different numbers of flavons or differ-
ent contributions to the soft-mass matrices.
As concluded on Sec. III, the most important contribu-

tions to de come first from the ð�e
LLÞ13ð�e

LRÞ33ð�e
RRÞ31 in-

sertion, and then from ð�e
LRÞ1ið�e

RRÞi1. How significant the

latter is depends on the values of A0 and tan�. In the
numerical analysis we assume one Oð1Þ phase on each
rephasing-invariant combination, and thus, here it is
enough to put it on ð�e

RRÞ31. This allows us to estimate

the largest area in the m0-M1=2 plane into which EDM

experiments could probe.
In Figs. 1 and 2 we show contours for expected values of

jdej in the m0-M1=2 plane. The red, orange, and yellow

(dark gray, medium gray, and light gray) regions show
contours for jdej equal to 1� 10�28, 5� 10�29, and 1�
10�29e cm, respectively.
Figure 1 takes A0 ¼ 0 and tan� ¼ 10, 30. In this case all

off-diagonal �LR terms are generated by the running, and
are thus small. de is then basically due to ð�e

LLÞ13ð�e
LRÞ33 �

ð�e
RRÞ31 insertions. It is important to emphasize that the

present bound on de does not provide a constraint on the
SUSY parameter space even for tan� ¼ 30. However, by
reaching a sensitivity of 10�29e cm, we can explore values
of M1=2 and m0 of the order of 1500 GeV. A value of 5�
10�29e cm for the electron EDM would explore the pa-
rameter space up to values of M1=2 and m0 of order

700 GeV. In other words, a reasonable value of the electron
EDM in these flavor models in the presence of large phases
would be of the order of 1:1� 10�28e cm for tan� ¼ 10
and 3:0� 10�28e cm for tan� ¼ 30 with ðm0;M1=2Þ ¼
ð500; 300Þ GeV in both cases, corresponding to an acces-
sible sfermion spectrum at the LHC with squark masses
around 900 GeV. Thus, if large flavor phases are present
and SUSY is to solve the SM hierarchy problem, we can
hope to find some signature of de in the upcoming experi-
ments, even for low values of tan� [20].
In Fig. 2 we set A0 ¼ m0 (a0 ¼ 1). As expected, the

ð�e
LRÞ13ð�e

RRÞ31 insertion comes into play especially for

large m0, due to the influence of the trilinears (remember
we take A0 ¼ m0, i.e. it is not fixed to a single value), as
they lower slepton masses in the RGEs. The expected

TABLE II. Applied constraints coming from EDMs and LFV (left) and the neutral meson sector (right).

Observable Bound Observable Bound

de <1:4� 10�27e cm �mK <3:48� 10�15 GeV
BRð� ! e�Þ <1:2� 10�11 �mD <4:61� 10�14 GeV
BRð� ! ��Þ <4:5� 10�8 �mB <3:34� 10�13 GeV
BRð� ! e�Þ <1:1� 10�7 �mBs

<1:17� 10�11 GeV
BRðb ! s�ÞSUSY <0:88� 10�4 �K <2:239� 10�3

6In this model, even though each term in the soft matrices
receives corrections from the RGEs, the leading terms from these
corrections have an identical phase structure, so we can expect
the phases not to change much by the running.
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FIG. 2 (color online). Contours of jdej and current constraints in the m0-M1=2 plane for tan� ¼ 10, 30 and a0 ¼ 1. See caption of
Fig. 1 for the meaning of different regions.

FIG. 1 (color online). Contours of jdej ¼ 1� 10�28e cm (red/dark gray), jdej ¼ 5� 10�29e cm (orange/medium gray), and jdej ¼
1� 10�29e cm (yellow/light gray) in the m0-M1=2 plane for tan� ¼ 10, 30 and A0 ¼ 0. Current FCNC constraints and direct LEP

bounds are also shown in green ( gray) and dark brown (black), respectively.
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values of de are now similar to the values found in the A0 ¼
0 case, although they can be slightly increased in the
regions of low tan� and large m0 (A0 for a0 ¼ 1). For
comparison with the A0 ¼ 0 case, with ðm0;M1=2Þ ¼
ð500; 300Þ GeV we obtain de ’ 1:2� 10�28e cm for
tan� ¼ 10 and 3:4� 10�28e cm for tan� ¼ 30. There-
fore, we see that, in general, they are slightly increased,
although we must keep in mind that having a positive or
negative interference will depend on the phases.

Figure 3 gives details on the current constraints given by
LFVexperiments and �K, which were shown previously in
green ( gray). We show the bounds of � ! e� (green/
medium gray), � ! �� (yellow/light gray), and �K (red/
dark gray). It is interesting to notice that, even though
strong, the bounds still allow a very large area of the
parameter space which is compatible with the observation
of SUSYat the LHC. The reach of the MEG experiment is
also shown in Fig. 3, dotted in green (medium gray). We
assume it is capable of reaching a sensitivity to the � !
e� branching ratio of 10�13 [84]. We also show the reach
of � ! �� experiments at the Super Flavour Factory,
hatched in yellow (light gray). We assume the experiment
will be able to measure the branching ratio down to 2�
10�9 [89].

The impact of MEG in these SUð3Þ flavor models on the
evaluated parameter space is impressive, covering values
ofM1=2 & 1500 GeV andm0 & 2500 GeV for tan� ¼ 30.
Thus, if any evidence of SUSY is to be found at the LHC,

� ! e� decay should be seen at MEG. The same can be
said for � ! �� at the Super Flavour Factory, even though
such constraints are not as strong for low tan�.
The main effect of A0 � 0 can be clearly seen in Fig. 4

in the decay � ! e�. The appearance of a ð�e
LRÞ12 term

implies a considerable new neutralino contribution. This
new contribution can then interfere with the previous
neutralino-chargino diagrams. Positive or negative inter-
ference depends on the relative sign (phase) between
ð�e

LRÞ12 and ð�e
LLÞ12, as can be seen in Eqs. (15) and (16).

From this figure we can see that this new contribution is
indeed large and even dominant for a0 ¼ 1, especially for
low values of tan�.
This new contribution is almost tan� independent, so we

are allowed to put strong bounds directly on the value of
A0. Notice that the constraints coming from the current
bounds of � ! e� at small m0 and M1=2 are already very

strong. The MEG prediction, shown in Fig. 4, will now
cover the parameter space up to values of M1=2 &

1500 GeV and m0 & 1000 GeV for tan� ¼ 10 and
M1=2 & 1500 GeV and m0 & 2500 GeV for tan� ¼ 30.
The � ! �� branching ratio is not affected as much by

the flavor violating trilinear terms. The reason for this is
that the other dominant insertions are proportional to
m� tan�, as explained in Sec. IV. In contrast, d� and d�,

even though larger than de, cannot be probed by the
upcoming experiments. As explained in Sec. III, in these
flavor models, the muon EDM is typically 2 orders of

FIG. 3 (color online). Current constraints due to � ! e� (green/medium gray), � ! �� (yellow/light gray), and �K (red/dark gray)
in them0-M1=2 plane for tan� ¼ 10, 30 and A0 ¼ 0. The green (medium gray) dotted region corresponds to the reach of� ! e� in the

MEG experiment, while the yellow (light gray) hatched region is the reach of � ! �� at the Super Flavour Factory.
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magnitude larger than the electron EDM. In this case this
would imply that d� can be at most of the order of

10�26e cm, still orders of magnitude below the reach of
the proposed experiments.

B. Generalization of the RVV model with spontaneous
CP

In this section, we analyze a variation of the model
defined in [18] and presented in the Appendix. As can be
seen in Eqs. (A4), we have only one physical phase at
leading order in the soft-mass matrices in the lepton sector:
ð�3 � �Þ. Notice that this is due to the fact that, in this
model, the soft-breaking terms have the ‘‘minimal’’ struc-
ture given by Eq. (3). This can change if different operators

like �23;i ��
j
3 þ H:c: contribute to the soft-mass matrices.

With A0 ¼ 0, we can see that the leading phases in the
ð�e

LLÞ13 and ð�e
RRÞ31 are equal, and therefore they cancel inð�e

LLÞ13ð�e
LRÞ33ð�e

RRÞ31.7 The most significant contribution
to de shall depend on the phase of the subleading term L1,
2ð�3 � �Þ. Because of this fact, and taking into account
"= �" ¼ 1=3, we can expect de to be smaller than in the
generic case roughly by a factor of 10. This is confirmed by
the numerical results shown in Fig. 5.

On the other hand, for A0 � 0, the phase 2ð�3 � �Þ
appears at leading order in the combination ð�e

LRÞ13 �
ð�e

RRÞ31. As we have seen in the previous section, with

phases Oð1Þ in all MIs, this contribution is comparable to
the ð�e

LLÞ13ð�e
LRÞ33ð�e

RRÞ31 contribution in the largem0 (and

thus large A0) region. Therefore, in this model, where
ð�e

LLÞ13ð�e
LRÞ33ð�e

RRÞ31 is reduced by roughly an order of
magnitude with respect to the generic case, we can expect
the double mass insertion to dominate in most of the
parameter space. In fact, for small tan�, the moduli of
this double MI is of the same order of magnitude as the
triple MI and so we can expect to reach de values similar to
those obtained in the generic case. Even for larger tan� ’
30 the double MI is comparable to the triple MI in the large
m0 region where again the results for de are similar to those
obtained in the generic case. Therefore, with A0 � 0 we
can expect similar values for de as in the generic model.
This can be seen in Fig. 6.
The discussions of the constraints coming from MEG

and Super Flavour Factories are completely analogous to
those of the generic model, since these LFV processes do
not depend heavily on the presence of sizable phases.
Therefore Figs. 3 and 4 remain valid also in this model.
In summary, in this generalization of the RVV model

with fixed phases, we would explore values ofM1=2 andm0

of the order of 800 and 600 GeV with a value of 1�
10�29e cm for the electron EDM with tan� ¼ 10 and
A0 ¼ 0. This means we would need an increase of 10 in

FIG. 4 (color online). Current constraints due to � ! e� (green/medium gray), � ! �� (yellow/light gray), and �K (red/dark gray)
in them0-M1=2 plane for tan� ¼ 10, 30 and a0 ¼ 1. The green (medium gray) dotted region corresponds to the reach of� ! e� in the

MEG experiment, while the yellow (light gray) hatched region is the reach of � ! �� at the Super Flavour Factory.

7Notice that these phases are observable and will contribute to
other CP violation observables [76].
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the sensitivity to de to explore the same region of parame-
ter space as in the generic model. However, if a0 ¼ 1 we
would explore a region very similar to the region explored
in the generic SUð3Þ model, with similar values of M1=2

and values of m0 roughly smaller by a factor of 2.

Reasonable values of the electron EDM in this explicit
example for ðm0;M1=2Þ ¼ ð500; 300Þ GeV and A0 ¼ 0
would be of the order of 1:8� 10�29e cm for tan� ¼ 10
and 8:3� 10�29e cm for tan� ¼ 30. Thus, we see de is
reduced by roughly a factor of 5 with respect to the generic

FIG. 6 (color online). Contours of jdej as in Fig. 1, for A0 ¼ m0, but with phases following the RVV model.

FIG. 5 (color online). Contours of jdej as in Fig. 1, for A0 ¼ 0, but with phases following the RVV model.

L. CALIBBI, J. JONES PÉREZ, AND O. VIVES PHYSICAL REVIEW D 78, 075007 (2008)

075007-12



model. For the same scalar and gaugino masses and A0 ¼
m0, de ’ 5:6� 10�29e cm for tan� ¼ 10 and de ’ 1:7�
10�28e cm for tan� ¼ 30, i.e., only a factor of 2 smaller
than in the generic model.

VI. CONCLUSIONS

We have shown that the flavor and CP problems in the
supersymmetric extensions of the SM are deeply related to
the origin of flavor (and CP) in the Yukawa matrices. It is
natural to think that the same mechanism generating the
flavor structures and giving rise to CP violation in the
Yukawa couplings is responsible for the structure and
phases in the SUSY soft-breaking terms. A flavor symme-
try with spontaneous CP violation in the flavor sector can
simultaneously solve both problems.

In this paper, we have analyzed the phenomenology of
non-Abelian SUð3Þ flavor symmetry. In this model, flavor-
independent phases are naturally zero and only flavor-
dependent phases are present in the soft-breaking terms.
We have studied the contributions to the leptonic electric
dipole moments from these flavor phases, and we have
shown that the future bounds on the electron EDM will be
able to explore a large part of the SUSY parameter space in
these models. Simultaneously, we have analyzed the reach
of the future MEG and Super Flavour Factories through
lepton flavor violation processes. We have shown that we
can expect signals of new physics both in EDM and LFV
experiments if the SUSYmasses are accessible at the LHC.
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APPENDIX: SOFT MATRICES IN THE SCKM
BASIS

In this appendix we present the structure of the soft-mass
matrices in the SCKM basis in generic flavor symmetry
models with a symmetric texture in the Yukawa matrices.
We then present an explicit example based on the model of
Ref. [18].

In order to make a mass insertion analysis of a given
process, one must have all soft matrices in the SCKM basis
where Yukawa matrices are diagonal at the electroweak
scale. However, we present here the structure of the soft
matrices in the SCKM basis at the flavor scale, and we will
add the running effects later. For a generic model, assum-
ing general phases (although taking into account that

Yukawa and trilinear matrices are symmetric) and neglect-
ing Oð1Þ constants, we have

Ye ¼
�"4

3 0 0

0 3 �"2 0

0 0 1

0
BB@

1
CCAye33; (A1a)

Ae

A0

¼
�"4

3 �"3ei1 �"3ei�1

�"3ei1 3 �"2 3 �"2ei�1

�"3ei�1 3 �"2ei�1 1

0
BB@

1
CCAye33; (A1b)

ðm2
~eR
ÞT

m2
0
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1þ �"2ye33

1
3 �"

3ei2 1
3 �"

3ei�2

1
3 �"

3e�i2 1þ �"2 �"2ei�2

1
3 �"

3e�i�2 �"2e�i�2 1þ ye33

0
BB@

1
CCA; (A1c)

m2
~L

m2
0

¼
1þ "2y	33

1
3"

2 �"ei3 �"3y	33e
i�3

1
3"

2 �"e�i3 1þ "2 �"2y	33e
i�3

�"3y	33e
�i�3 �"2y	33e

�i�3 1þ y	33

0
BB@

1
CCA (A1d)

where ye33 ¼ ðh�d3i=MdÞ2 ¼ m�=ðv cos�Þ and y	33 ¼
ðh�u3i=MdÞ2 ¼ mt=ðv sin�Þ.
In the following we will present an explicit example of

an SUð3Þ flavor symmetry model with spontaneous CP
violation and the phase structure of the different matrices
completely determined. This model is a generalization of
the RVV model of Ref. [18] with arbitrary values of tan�.
The charges of the different flavon fields under the SUð3Þ
and global symmetries are shown in Table III.
After spontaneous breaking of the flavor symmetry (and

CP symmetry), the vevs of the different fields are

h�3i ¼
0

0

1

0
BB@

1
CCA � au3 0

0 ad3e
i�

 !
;

h ��3i ¼
0

0

1

0
BB@

1
CCA � au3e

iu 0

0 ad3e
id

 !
;

h�23i ¼
0

b23

b23e
i�3

0
BB@

1
CCA;

h ��23i ¼
0

b23e
i�0

2

b23e
ið�0

2
��3Þ

0
BB@

1
CCA;

(A2)

TABLE III. Charges required to build satisfactory Yukawa
matrices in the RVV model.

Field c c c H � �3 �23 ��3 ��23

SUð3Þ 3 3 1 1 �3 �3 3 3

R 1 1 0 3 �2 �2 �1 2

Uð1Þ 1 1 �2 �1 0 1 �1 0

Z3 1 1 2 0 1 1 �1 2
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where we require the following relations:�
au3
Mu

�
2 ¼ y	33;

�
ad3
Md

�
2 ¼ ye33;

b23
Mu

¼ ";
b23
Md

¼ �":

(A3)

In the SCKM basis, and still neglecting Oð1Þ constants,
the SUSY breaking matrices are

Ae

A0
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where the terms E, L1, and L2 include important subdo-
minant contributions with physical phases [L1 and L2

differ by Oð1Þ constants]:
E ¼ 1� 3ye33e

�2ið�3��Þ; (A5)

Li ¼ 1� 1

3y	33

"2

�"2
e�2ið�3��Þ: (A6)

In order to reproduce down-quark and electron masses for
all values of tan�, we take ye33 ¼ h�d3i2 different from
y	33 ¼ h�u3i2.
Notice that, within this structure, the only physical phase

is �3 � �. This is an additional phase with respect to the
CKM phase ! in [18].

[1] A. Masiero and O. Vives, Annu. Rev. Nucl. Part. Sci. 51,
161 (2001).

[2] A. Masiero, S. K. Vempati, and O. Vives,
arXiv:0711.2903.

[3] M. Pospelov and A. Ritz, Ann. Phys. (N.Y.) 318, 119
(2005).

[4] M. Raidal et al., arXiv:0801.1826.
[5] For a review and further references see G.G. Ross,

Prepared for Theoretical Advanced Study Institute in
Elementary Particle Physics (TASI 2000): Flavor
Physics for the Millennium, Boulder, Colorado, 2000.

[6] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277
(1979).

[7] M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B398, 319
(1993).

[8] M. Dine, R. G. Leigh, and A. Kagan, Phys. Rev. D 48,
4269 (1993).

[9] D. B. Kaplan and M. Schmaltz, Phys. Rev. D 49, 3741
(1994).

[10] A. Pomarol and D. Tommasini, Nucl. Phys. B466, 3
(1996).

[11] R. Barbieri, G. R. Dvali, and L. J. Hall, Phys. Lett. B 377,

76 (1996).
[12] P. Binetruy, S. Lavignac, and P. Ramond, Nucl. Phys.

B477, 353 (1996).
[13] E. Dudas, C. Grojean, S. Pokorski, and C.A. Savoy, Nucl.

Phys. B481, 85 (1996).
[14] F. Plentinger and G. Seidl, Phys. Rev. D 78, 045004

(2008).
[15] Y. Nir and N. Seiberg, Phys. Lett. B 309, 337 (1993).
[16] M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B420, 468

(1994).
[17] Y. Nir and R. Rattazzi, Phys. Lett. B 382, 363 (1996).
[18] G. G. Ross, L. Velasco-Sevilla, and O. Vives, Nucl. Phys.

B692, 50 (2004).
[19] A. S. Joshipura, R. D. Vaidya, and S.K. Vempati, Phys.

Rev. D 62, 093020 (2000).
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