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It is shown that the stratified or ‘‘doubly lopsided’’ mass matrix structure that is known to reproduce

well the qualitative features of the quark and lepton masses and mixings can arise quite naturally in the

context of grand unification based on the groups SUðNÞ with N > 5. An SUð8Þ example is constructed

with the minimal anomaly free, three-family set of fermions, in which a realistic flavor structure results

without flavor symmetry.
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I. INTRODUCTION

A still unanswered question is why the quarks and
leptons of different families have different masses even
though they transform in exactly the same way under the
symmetries of the standard model. Most proposed answers
are based on the idea that there are flavor symmetries that
distinguish fermions of different families. There is another
idea, however, suggested long ago [1] but much less
studied, which is that there is a grand unified gauge group
G, under which different families transform differently. If
G ¼ SUðNÞ, then N must be greater than 5, since under
SUð5Þ every family transforms the same way, namely, as
10þ �5. Under SUðNÞ, with N > 5, however, families or
parts of families can come from multiplets of various sizes.

For instance, consider SUð6Þ with fermion multiplets
that include totally antisymmetric rank-2 and rank-3 ten-
sors c AB ¼ 15 and c ABC ¼ 20. Both the 15 and the 20
contain a 10 of SUð5Þ and therefore contain fermions with
the quantum numbers of uL, dL, u

c
L, and eþL . Suppose

further that the weak interactions were broken only by a
Higgs field that is in a 15 of SUð6Þ. Then, the only mass
term for the up-type quarks allowed by SUð6Þ would be of
the form c ABc CDhHEFi�ABCDEF, i.e. 15 15 h15Hi ,
which gives mass only to the up-type quark in the 15, but
not to the up-type quark in the 20. Therefore, without any
‘‘flavor symmetry,’’ a hierarchy of fermion masses would
result. (SUð6Þ is not large enough to give interesting or
realistic examples; but simple realistic examples can be
constructed with SUðNÞ groups with N � 7. A realistic
SUð8Þ example will be presented below. For models im-
plementing a similar ‘‘flavor without flavor symmetries’’
idea using the group SOð10Þ, see [2]).

There are several ways that hierarchies can arise among
the light fermion masses in such schemes. In a fermion
mass matrix, some elements may arise from renormaliz-
able Yukawa terms [like the 15 15 15H term in the
SUð6Þ example)], some may arise from higher-dimension
operators generated by tree diagrams, and some may arise
from higher-dimension operators generated by loop dia-
grams. Even elements that arise from operators of the same
dimension and at the same loop level can still have very

different magnitudes if the operators that produce them
involve Higgs fields that transform differently under G.
In SUðNÞ with the normal embedding of the standard

model group, there are no exotic fermions if all the fermion
multiplets are totally antisymmetric tensors. A rank p
totally antisymmetric tensor will be denoted by (p) and

its conjugate tensor by ½p� or by (N � p). If the set of
fermions multiplets is anomaly free, then, as is well known,
they decompose under the SUð5Þ subgroup as some num-
ber of 10þ �5 families together with a vectorlike set of

multiplets that can contain 10þ 10 pairs, 5þ �5 pairs, and
singlets. As there is typically no symmetry to prevent it, the
conjugate pairs in the vectorlike set ‘‘mate’’ with each
other to acquire superheavy mass. The 10þ �5 families,
however, being chiral, are forbidden to obtain mass and
remain light. (This is Georgi’s well-known ‘‘survival hy-
pothesis’’ [3].) Therefore, the fact that the observed light
fermions fit neatly into some number of 10þ �5 families of
SUð5Þ, which is often seen as pointing to SOð10Þ unifica-
tion, has just as simple an explanation in terms of SUðNÞ
unification. Moreover, SUðNÞ has the following theoretical
advantage over SOð10Þ: In SOð10Þ, the simplest possibility
is that all the 10þ �5 come from 16 spinor multiplets, so
that the gauge group does not distinguish among the fam-
ilies. But for SUðNÞ, as we will see in the SUð8Þ example
described below, it can happen that even with the simplest
anomaly free three-family set of fermion multiplets, the
three light families do not transform in the same way under
the SUðNÞ group.
Before describing what happens in SUðNÞ, it will be

useful to set the stage by reviewing some recent ideas for
explaining the gross features of the observed patterns of
quark and lepton masses and mixings in the context of
SUð5Þ. It will be seen below that the SUð5Þ structures
postulated by these recent ideas emerge automatically in
SUðNÞ unification.
The recent SUð5Þ-based idea is that of ‘‘doubly lop-

sided’’ mass matrices. (The first paper proposing the lop-
sided mass matrix idea [4] actually proposed the doubly
lopsided structure. Singly lopsided—or just ‘‘lopsided’’—
models were independently proposed by several groups to
explain the large atmospheric neutrino-mixing angle [5].
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For a review see [6]. Then doubly lopsided models were
taken up again by several groups as an explanation of the
fact that both the atmospheric and solar angles are large
[7,8].) The doubly lopsided structure emerges naturally as
follows.

Imagine that some symmetry distinguishes the three
light 10’s of quarks and leptons and prevents them from
mixing strongly with each other. Let the mixing of 101 with
102 be controlled by the small parameter � and the mixing
of 102 with 103 be controlled by the small parameter �. On
the other hand, imagine that no symmetry distinguishes the
light �5’s from each other, so that they are allowed to mix
strongly. If the masses of the third family occur directly
and the others through mixing, one would expect the
following structures for the three types of mass matrices
(the entries in the matrices give only the order of magni-
tude of the elements):

ð101; 102; 103Þ
�2�2 ��2 ��
��2 �2 �
�� � 1

0
B@

1
CA

101
102
103

0
@

1
Ah5Hi;

ð101; 102; 103Þ
�� �� ��
� � �
1 1 1

0
@

1
A

�51
�52
�53

0
B@

1
CAh�5Hi;

ð�51; �52; �53Þ
1 1 1
1 1 1
1 1 1

0
@

1
A

�51
�52
�53

0
B@

1
CA h5Hih5Hi

MR

:

(1)

This structure is characteristic of the kind of doubly lop-
sided models discussed in Refs. [4,7]. This structure would
give mass matrices for the up-type quarks, down-type
quarks, charged leptons, and neutrinos (denoted, respec-
tively, by the subscripts U, D, L, and �) of the form

MU �
�2�2 ��2 ��

��2 �2 �

�� � 1

0
BB@

1
CCAm;

MD �
�� �� ��

� � �

1 1 1

0
BB@

1
CCAm0;

ML �
�� � 1

�� � 1

�� � 1

0
BB@

1
CCAm0

M� �
1 1 1

1 1 1

1 1 1

0
BB@

1
CCAm�:

(2)

From these forms several things are immediately apparent:
(a) the neutrino-mixing angles will be of order 1, (b) the
quark mixing angles will be small (the 12 mixing of order
�, the 23 mixing of order �, and the 13 mixing of order ��),
(c) the masses of the up-type quarks will have a strong

family hierarchy ð��Þ2: ð�Þ2: 1, (d) the masses of the down-
type quarks and charged leptons will have a weaker family
hierarchy ��: �: 1, and (e) the neutrino masses will have
the weakest family hierarchy, since all the neutrino masses
will be of roughly the same order. These five features are
just exactly what is observed.
As we will see below, SUðNÞ unification naturally leads

to exactly the result that the 10’s of fermions are distin-
guished from each other by symmetry—symmetries in
SUðNÞ=SUð5Þ—whereas the �5’s of fermions are not dis-
tinguished by symmetry.

II. AN SUð8Þ MODEL: PARTICLE CONTENT

We shall now describe a model based on SUð8Þ where
the SUð8Þ symmetry is sufficient to produce a nontrivial
flavor structure very much like that observed in nature.
[Other unification schemes based on the group SUð8Þ have
been proposed in the literature [9]. Some of these involve a
unification within SUð8Þ of a vertical SUð5Þ group and a
family SUð3Þ.]
If the number of left-handed fermion multiplets of type

(p) and ½p� is denoted by np and n�p, respectively, then the

condition that the SUð8Þ anomalies cancel is ðn1 � n�1Þ þ
4ðn2 � n�2Þ þ 5ðn3 � n�3Þ ¼ 0, and the condition for
three families is ðn2 � n�2Þ þ 2ðn3 � n�3Þ ¼ 3. The gen-
eral solution is ðn1 � n�1Þ ¼ �12þ 3p, ðn2 ¼ n�2Þ ¼
3� 2p, ðn3 � n�3Þ ¼ p. The most economical set, as
measured by the total number of components, is n�1 ¼
9, n2 ¼ 1, n3 ¼ 1, i.e. the set ½3� þ ½2� þ 9� ½1� ¼ 56þ
28þ 9� �8. This is precisely the set of fermions that will
be assumed in the model presented below.
These fermion multiplets decompose under SUð5Þ as

follows:

½2�L ¼ c ½AB� ! c �� þ c �I þ c IJ

28 ! 10þ 3� 5þ 3� 1;

½3�L ¼ c ½ABC� ! c ��� þ c ��I þ c �IJ þ c IJK

56 ! 10þ 3� 10þ 3� 5þ 1;

9� ½1�L ¼ c ðmÞA ! c ðmÞ� þ c ðmÞI
9� �8 ! 9� �5þ 27� 1;

(3)

The subscripts L on (p) indicate that these are left-handed
fermion multplets. The indices A, B,C, etc. run from 1 to 8;
the indices �, �, �, etc. run from 1 to 5; and the indices I,
J, K, etc. run from 6 to 8. All of the foregoing are SUð8Þ
gauge indices. The index m ¼ 1; . . . ; 9, on the other hand,
just labels the nine different antifundamental fermion mul-
tiplets. One sees from Eq. (3) that there are altogether four

10 and one 10 of SUð5Þ, for a ‘‘net’’ of three 10, and nine �5
and six 5 of SUð5Þ, for a net of three �5. [It should be
emphasized that we refer to SUð5Þ multiplets as a conve-
nient way to keep track of the fermion families, even
though the actual sequence of breaking of SUðNÞ to the
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standard model group may not go through SUð5Þ. The
sequence of breaking depends on the relative magnitudes
of the superlarge vacuum expectation values (VEVs) of the
model]. Which of the 10 and which of the �5 remain light
after SUðNÞ breaks to the standard model depends on the
Higgs content of the model, to which we now turn.

In the model it is assumed that the Higgs fields are in the

following multiplets: ½1�H ¼ HA ¼ 8, ½2�H ¼ H½AB� ¼ 28,

½4�H ¼ H½ABCD� ¼ 70, and AdjH ¼ �A
B ¼ 63. The ½1�H

and ½2�H are assumed to have superlarge VEVs in all the
directions that leave the SUð5Þ unbroken: i.e. HI and HIJ,
I, J ¼ 6, 7, 8. The ½4�H has no SUð5Þ-singlet components
and so must not obtain a superlarge VEV. The adjoint
Higgs field has a superlarge diagonal VEV, which is
needed for the breaking to the standard model. The struc-
ture of the Higgs potential and the breaking of SUð8Þ down
to the standard model gauge group are briefly discussed in
Appendix A.

All three kinds of antisymmetric-tensor Higgs fields,
½1�H, ½2�H, and ½4�H participate in the breaking of
SUð2ÞL �Uð1ÞY at the weak scale via the weak doublets
they contain,Hi,HiI, andHiIJK, where i ¼ 1, 2. Of course,
actually there is only one light Higgs doublet, which is a
linear combination of these fields.

III. YUKAWATERMS AND SUPERHEAVY
FERMION MASSES

The renormalizable Yukawa terms that are allowed by
SUð8Þ are the following:

ð½3�L½1�LÞ½2�H ¼ Ymðc ½ABC�c ðmÞAÞH�
½BC�

ð½2�L½2�LÞ½4�H ¼ Yðc ½AB�c ½CD�ÞH�
½ABCD�

ð½2�L½1�LÞ½1�H ¼ ymðc ½AB�c ðmÞAÞH�
B

ð½1�L½1�LÞ½2�H ¼ amnðc ðmÞAc ðnÞBÞH½AB�:

(4)

A term of the form ð½3�L½3�LÞ½2�H vanishes by the anti-
symmetry of the tensors. For the same reason, the Yukawa
coupling matrix amn in the fourth line of Eq. (4) is anti-

symmetric. Note that H�
½ABCD� ¼ �½ABCDEFGH�H½EFGH�=4!.

Of course, repeated indices of all kinds are summed over
throughout this paper.

The first task is to determine how the vectorlike fermion
pairs ‘‘mate’’ to obtain superlarge mass, and which ones
do, so as to identify the fermion multiplets that remain
light. The ‘‘mating’’ of the vectorlike pairs 5þ �5 that gives
them superheavy masses is done by terms like
ymðc �Ic ðmÞ�ÞhHIi and Ymðc �IJc ðmÞ�ÞhHIJi. It is clear

that if there is only a single ½1�H the former term mates
only one of the three 5’s that are contained in the ½2�L,
namely, the linear combination hHIic �I. (It mates it with

one of the �5’s from among the nine ½1�L, namely, the linear
combination ymc ðmÞ�). In order for all three 5’s that are

contained in the ½2�L to be mated by renormalizable terms,

there would have to be three distinct ½1�H multiplets. In that
case, the mass term would be written ymaðc �Ic ðmÞ�Þ�
hHðaÞIi, a ¼ 1, 2, 3, and for each value of a one 5þ �5
pair would get mated. However, it is not necessary for
the Higgs sector to be enlarged in that way. Even
with only a single ½1�H of Higgs, all the 5’s in the ½2�L
get mated if higher-dimension operators induced by
one-loop diagrams are taken into account. For example,
the one-loop diagrams shown in Fig. 1(a) and 1(b) induce
the effective operators ym0am0mðc �Ic ðmÞ�ÞH�

IJH
J and

ym00am00m0am0mðc �Ic ðmÞ�ÞH�
IJ�

J
J0H

J0 .

In a similar way, if there is only a single ½2�H
Higgs multiplet, the term ymðc �IJc ðmÞ�ÞhHIJi only mates

a single 5 from the ½3�L with a �5; but loop diagrams
induce higher-dimension operators that mate the
remaining two 5’s from the ½3�L. The mating of the

10 that is in the ½3�L with a 10 is not done by any
renormalizable operator, but is done by such higher-

dimension operators as ������IJKðc ���c ��I0 Þ�I
I0H

JK

and ������IJKðc ���c ��ÞHIHJK. (The adjoint Higgs in

the first operator is needed to prevent it from vanishing
identically by antisymmetry of indices.) These operators

also come from one-loop diagrams. They mate the 10 with
some linear combination of the 10’s from the ½3�L and ½2�L.

IV. THE LIGHT FAMILIES AND THEIR MASSES

One sees, then, that even the small set of Higgs multip-

lets given above, HA, H½AB�, H½ABCD�, and �A
B, with one of

FIG. 1. Typical one-loop diagrams that ‘‘mate’’ fermions in 5
and �5 multiplets of SUð5Þ to give them superheavy mass.
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each type, is enough to mate all of the conjugate pairs of
fermion multiplets and make them superheavy. This is not
surprising; indeed, it is just an illustration of the survival
hypothesis [3]. Since there is no symmetry to prevent it,
one expects all the vectorlike fermions to mate and get
large mass. Which fermion multiplets mate determines
which multiplets remain light.

The three 10’s that remain light are linear combinations
of the one that is in ½2�L and the three that are in ½3�L.
Without loss of generality, we can choose the flavor basis
of the light fermions so that 103 comes partly from ½2�L,
but that 101 and 102 come purely from ½3�L. This shows
that for the 10’s one family is automatically selected out as
different by virtue of coming partly from a different SUð8Þ
multiplet than the other families. This will allow an expla-
nation of why the t quark is so much heavier than the u and
c quarks. Moreover, even though the 101 and 102 come
entirely from the same SUð8Þ multiplet, namely ½3�L, they
come from different components of that multiplet. That is,
they are given by c ��I with different values of the
SUð8Þ=SUð5Þ index I and are thus distinguished from
each other by SUð8Þ. Thus, SUð8Þ can suppress the mixing
of these 10’s, as will be seen.

By contrast, one sees that all three light �5’s must come

from the same kind of SUð8Þ multiplet, namely ½1�L. In
other words, the three light �5’s are simply three particular
linear combinations of the nine c ðmÞ�. (For simplicity, we

could take the basis in the space of these nine fields to be
such that the light ones corresponded to the values m ¼ 1,
2, 3). Since c ðmÞ� has only an SUð5Þ index and a label (m)

that has nothing to do with the gauge symmetry, the SUð8Þ
does not distinguish among the three light �5’s in any way.
One would therefore expect that these �5’s would be able to
mix strongly with each other, since such mixing is not
prevented by any symmetry.

It is interesting that the large mixing among �5’s that is an
ingredient of the lopsided and doubly lopsided models
emerges naturally in the context of SUðNÞ unification

with N > 5. The reason has to do with anomaly cancella-
tion. The 10’s of SUð5Þmust come from tensors that have a
rank of at least 2, which tend (for large N) to make a large
positive contribution to the anomaly. In the most economi-
cal solutions of the anomaly conditions, this large contri-
bution tends to be cancelled by large numbers of
antifundamental multiplets (since fundamental and anti-
fundamental representations have the largest anomalies per
component). This, in turn, gives the result, in many cases,
that the light �5’s all come from antifundamentals, as in the
present SUð8Þ example. To take another example, in SUð9Þ
the most economical three-family solutions to the anomaly

conditions are (a) ½3� þ 9� ½1� (165 components) and

(b) 3� ½2� þ 15� ½1� (243 components). Both of these
solutions have numerous antifundamentals, and in both
solutions all of the �5 are contained in these
antifundamentals.
The masses of the up-type quarks, u, c, and t come from

operators that (in SUð5Þ terms) couple 10L to 10L. There is
only one renormalizable operator of this type, namely,

O A ¼ ð½2�L½2�LÞ½4�H ¼ c ABc CDH�
ABCD; (5)

which contains the term ðc ��c ��ÞH�
����. (Note that

H�
���� ¼ ������678H

�678.) However, only one of the light

10L’s, namely, the one that we have labeled 103, contains
some of ½2�L, i.e. of c ��; the other two light 10’s, namely,
101 and 102, are purely in ½3�L. Consequently, the operator
OA contributes only to the 33 element of MU, the mass
matrix of the up-type quarks. This element, which will be
denoted A, is the only element of MU that arises at tree
level, thus explaining the relatively large magnitude of the
t-quark mass.
At one-loop level, however, many higher-dimension

operators are induced that contribute to the other elements
of MU. In particular, one has the following classes of
operators:

O� ¼ ð½2�L½3�LÞ½1�H½2�H; ð½2�L½3�LÞ½1�H½4�H; . . .
¼ �ABCDEFGHðc ABc CDEÞHFHGH; �ABCDEFGHðc ABc CDIÞHIH

EFGH; . . .

O� ¼ ð½3�L½3�LÞAdjH½2�H; ð½3�L½3�LÞ½2�H½4�H; . . .
¼ �ABCDEFGHðc ABCc DEIÞ�F

I H
GH; �ABCDEFGHðc ABCc DEIÞHIJH

JFGH; . . .

O� ¼ ð½3�L½3�LÞ½1�H½1�H½2�H; ð½3�L½3�LÞ½1�H½1�H½4�H; . . .
¼ �ABCDEFGHðc ABCc DEIÞHIH

FHGH; �ABCDEFGHðc ABIc CDJÞHIHJH
EFGH; . . .

(6)

The operators of typeO� couple ½2�L to ½3�L, and therefore
couple 103 to 101 and 102. These operators thus contribute
to the 13 (31) and 23 (32) elements of MU, which will be
denoted �0 and �, respectively. (The operators O� will
also contribute to the 33 element A.)

The operators of type O� couple ½3�L to ½3�L, and there-
fore couple any of the 10i to any other of the 10i. They
cannot, however, contribute to any diagonal element of
MU, because of the antisymmetry of the epsilon symbol.
These operators therefore contribute to the 12 (21) element
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of MU, which is denoted �, as well as to the elements
�, �0.

Finally, operators of the typeO�, which also couple ½3�L
to ½3�L, can contribute to any elements of MU, including
the 11 and 22 elements, which are denoted �0 and �,
respectively.

In sum, the mass matrix of the up-type quarks has the
form

MU ¼
�0 � �0
� � �
�0 � A

0
@

1
A: (7)

There is no reason a priori why the different types of
operators induced at one-loop level must all make contri-
butions to MU of the same order of magnitude. For ex-
ample, the operators of type O� are of dimension 6 or
higher, whereas some of the operators of type O� are only

of dimension 5. So it could be that �, �0 � �, �0.
Moreover, the superheavy VEVs of Higgs fields in differ-
ent representations of SUð8Þ could be of quite different
magnitudes, so that even operators of the same dimension
but involving different types of Higgs multiplets could
make very different contributions.

If it were the case that �, �, �0 � �, �0, then the matrix
MU would have the observed threefold hierarchy among its
eigenvalues, i.e. mu � mc � mt.

Turning now to the masses of the down-type quarks and
charged leptons, these come from operators that [in SUð5Þ
terms] couple 10L to �5L. At first glance, there seem to be
dimension-4 operators that do this, namely,

ymðc ��c ðmÞ�ÞH�
�; Ymðc ��Ic ðmÞ�ÞH�

�I: (8)

However, the first of these operators is related by SUð8Þ to
the operator ymðc �Ic ðmÞ�ÞH�

I , which mates precisely the
�5L that is the linear combination ymc ðmÞ� to a 5 to make it

superheavy. So that the first term in Eq. (8) is not a
contribution to the light fermion mass matrices, but is a
coupling of light fermions to superheavy fermions. In the
same way, the second operator in Eq. (8) is related by
SUð8Þ to the operator Ymðc �IJc ðmÞ�ÞH�

IJ, which mates

precisely the �5L that is the linear combination Ymc ðmÞ�
to a 5 to make it superheavy. The second term in Eq. (8) is
thus also not a contribution to the mass matrices of the light
fermions.
The mass matrices of the down-type quarks and charged

leptons, which will be denoted MD and ML, respectively,
do not arise until one loop. There are two kinds of operators
that contribute:

O� ¼ ð½2�L½1�LÞAdjH½1�H; ð½2�L½1�LÞ½2�H½1�H; . . .
¼ ðc AB0

c ðmÞAÞ�B
B0HB; ðc AB0

c ðmÞAÞHB0CH
C; . . .

O� ¼ ð½3�L½1�LÞ½1�HAdjH½1�H; ð½3�L½1�LÞAdjH½2�H; . . .
¼ ðc ABC0

c ðmÞAÞHB�
C
C0HC; ðc ABC0

c ðmÞAÞ�C
C0HBC; . . .

(9)

The operators of typeO� couple ½2�L to ½1� and therefore
103 to �5i, i ¼ 1, 2, 3. Thus, they contribute to the 3i
elements of MD and the i3 elements of ML, which we
denote �i. The operators of type O� couple ½3�L to ½1� and
therefore can contribute to all the elements of the mass
matrices MD and ML. We denote the resulting nonvanish-
ing 2i elements ofMD and i2 elements ofML by �i, and the
resulting nonvanishing 1i elements of MD and i1 elements
of ML by � 0i . These matrices consequently have the form,

MD ¼
� 01 � 02 � 03
�1 �2 �3
�1 �2 �3

0
@

1
A; ML �

� 01 �1 �1
� 02 �2 �2
� 03 �3 �3

0
@

1
A:

(10)

The matrixML is not exactly the transpose ofMD, because
of SUð5Þ-breaking effects from the adjoint Higgs VEVs
that come into the one-loop diagrams [e.g. the factors of
�B

B0 in Eq. (9)]. That is why a ‘‘�’’ is used in the equation
for ML rather than an equal sign. These SUð5Þ-breaking
effects can explain the well-known Georgi-Jarlskog factors
[10], i.e. the deviations of ms=m� and md=me from 1.

The notation used in writing elements of the mass ma-
trices is as follows:
(a) Elements that come from operators of the same class

are denoted by the same Greek letter. For example,
� and �0 in Eq. (7) both come from the operators of
classO�, and �1, �2, �3, �

0
1, �

0
2, and �

0
3 all come from

the operators of class O� . Consequently, elements

that are denoted by different Greek letters, since
they come from entirely different operators, have
no reason to be comparable in magnitude.

(b) Elements that are denoted by the same Greek letter
but differ by a prime, such as � and �0 or �i and � 0i ,
come from the same operators, containing the
same SUð8Þmultiplets, but involve different compo-
nents of those multiplets. For example, suppose that
101 ¼ c ��8 and 102 ¼ c ��7. Then the elements �
and �0 would both come from the operatorsO�, but

� would come from the terms ðc ��c ��7ÞH�H86,
ðc ��c ��7ÞH7H

�678, etc., whereas �0 would
come from the terms ðc ��c ��8ÞH�H67,
ðc ��c ��8ÞH8H

�678, etc. Since different compo-
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nents of the same SUð8Þ multiplet of Higgs fields—
such as H6, H7, and H8—can have vacuum expec-
tation values that are very different from each other
if there is a hierarchy of scales involved in the
breaking of SUð8Þ down to the standard model
group, elements that differ by a prime can also be
of very different magnitude. In other words, we see
that a hierarchy among elements of a mass matrix of
light fermions, i.e. a ‘‘flavor hierarchy,’’ can arise in
part from a hierarchy of scales in the breaking of the
grand unified group.

(c) Elements that are distinguished only by a subscript,
such as � 02 and � 03, come from the same kinds of

operators, and the same SUð8Þ components of the
multiplets within those operators, but involve differ-
ent antifundamental multiplets of fermions. For ex-
ample, �1, �2, and �3 all come from the same

operators O� [such as c AB0
c ðmÞA�B

B0HB] and with

the SUð8Þ indices taking the same values; but they
involve different linear combinations of the nine
antifundamental multiplets c ðmÞA, m ¼ 1; . . . ; 9. In

other words, SUð8Þ gauge symmetry in no way
distinguishes among the elements �1, �2, and �3. If
there are no preferred directions in the nine-
dimensional space spanned by the index m—i.e. if
the Yukawa couplings Ym, ym, and amn are ‘‘ran-
domly’’ oriented in that space—then one expects
that �1 � �2 � �3, �1 � �2 � �3, and � 01 � � 02 � � 03.

We have given in Eqs. (7) and (10) the general forms of
the quark and lepton mass matrices, without making spe-
cific assumptions about the pattern of SUð8Þ breaking and
the hierarchies among the VEVs. In Appendix B, a con-
crete example is given of the kind of mass matrix forms
that can result from specific patterns of breaking.

As a consequence of the general form given in Eqs. (7)
and (10), one expects the matrices MD and ML to have a
stratified structure characteristic of the doubly lopsided
models of Refs. [4,7]. All the elements of a row of MD

(or a column of ML) should be comparable in magnitude;
whereas the different rows of MD (or columns of ML)
should typically be quite different in magnitude. As was
explained in the Introduction, such a stratified structure
leads to a situation where the mixing angles of the left-
handed quarks (the CKM angles) are small, while the
mixing angles of the left-handed leptons (the MNS
neutrino-mixing angles) are of order one. This is clear
from a direct inspection of the mass matrices: the
CKM angles evidently involve ratios of elements of
different rows of MD (e.g. Vcb would involve �3=�3 �
1), while the MNS angles involve elements of dif-
ferent rows of ML (e.g. U�3 ¼ sin	atm involves the ratio

�2=�3 � 1).
The same stratified structure of ML and MD typically

leads to a interfamily hierarchy of masses for the charged
leptons and down-type quarks. An even larger hierarchy

should exist among the up-type quarks for two reasons.
First, since both the left-handed and right-handed up-type
quarks come from 10’s of SUð5Þ, the hierarchy of masses
inMU arises from interfamily hierarchies among both rows
and columns. Second,MU contains one element that arises
at tree level, while the others arise at one loop.
Turning to the mass matrix of the light neutrinosM�, it is

apparent that all of its elements should be comparable,
since the three light neutrinos are not distinguished in
any way by SUð8Þ, but only by which antifundamental
fermion multiplets they are contained in. That is, they all
come from the same kind of multiplets c ðmÞ�. This would
imply that the ratios of neutrino masses should not
exhibit a large hierarchy, which is consistent with the

fact that ð�m2
solÞ1=2 and ð�m2

atmÞ1=2 only differ by about a

factor of 5.
The mass matrix M� comes, of course, from a seesaw

mechanism involving superheavy right-handed neutrinos.
In an SUðNÞ grand unified model, the fermion multiplets
typically contain large numbers of fermions that are sin-
glets under the standard model group, and which therefore
play the role of right-handed neutrinos. For example, in
this SUð8Þ model there are 31 such singlets, consisting of
the following: three in the ½2�L (namely, c 67, c 78, and

c 86); one in the ½3�L (namely, c 678); and 27 in the ½1�L’s
(namely, c ðmÞI, with m ¼ 1; . . . ; 9 and I ¼ 6, 7, 8). It is

interesting that only 24 of these 31 singlet fermions get
mass at tree level. The other seven obtain mass from
various one-loop diagrams. This is shown in Appendix C.
The reason that some remain massless at tree level is
essentially the same as the reason that some of the quarks
and charged leptons remain massless at tree level: with an
economical set of Higgs fields, there are simply not enough
types of Yukawa terms allowed by SUð8Þ to generate
masses for all of the fermions. [Typically, in nonsupersym-
metric SUðNÞ models, there are more likely to be ‘‘acci-
dentally’’ massless fermions at tree level than accidentally
massless bosons, because the Yukawa couplings, being no
more than cubic and having a certain chiral structure, are
much more constrained than is the Higgs potential. For
example, in this model only the four Yukawa terms in
Eq. (4) are allowed by SUð8Þ, whereas 32 terms are al-
lowed in the Higgs potential, as discussed in Appendix A.]
The seven right-handed neutrinos that get mass from loops
would typically have mass of order 1

16
2 MGUT, while those

that get mass at tree level would typically have masses of
order MGUT. The ones with loop masses would therefore
tend to dominate in the seesaw formula for M�. This may
be an attractive feature of the model, because it is a way of
explaining why the right-handed neutrino mass scale in-
ferred from the seesaw formula tends to come out some-
what smaller than the GUT scale inferred from running of
couplings.
Computing the mass matrix M� would be very messy.

Even if one considered only the contributions from the
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right-handed neutrinos that obtain mass at one-loop level,
the mass matrix of the right-handed neutrinosMR would be
7-by-7 and the Dirac neutrino mass matrixMDirac would be
3-by-7. Moreover, identifying the lightest seven right-
handed neutrinos in terms of the parameters of the model
is complicated, as can be seen from Appendix C. Finally,
both MR and MDirac would have complicated forms, since
they get contributions from several kinds of operators.
Therefore, getting a useful quantitative prediction for the
neutrino masses and mixings would be unlikely; too
many parameters of the model would enter both Yukawa
couplings and (through loops) couplings in the Higgs
potential.

One might wonder whether the reasoning that led to the
conclusion that all the elements of M� are naturally of the
same order would be invalidated by some property of MR,
given the complexity of the right-handed neutrino sector.
This seems highly unlikely, however. It is true that in some
models there is a nontrivial structure in M� even in the
absence of any symmetry that distinguishes among the left-
handed neutrinos. But in the known examples this is be-
cause the right-handed neutrino sector is especially simple,
for example, by M�1

R being approximately rank 1, as in
models with ‘‘single right-handed neutrino dominance’’
[11]. In that case, M� would tend to be approximately of
rank 1 also, giving a hierarchy among the light neutrino
masses. In the present case, the right-handed neutrino
sector is more complicated than usually considered, with
more than three right-handed neutrinos contributing im-
portantly in the seesaw formula. There is therefore no
reason to expect M� to have a strong hierarchy.

It also should be noted that in models of this type,
because all the entries of M� are of the same order, there
is no reason a priori that the neutrino angle 	13 should be
particularly small. In this respect, these models are differ-
ent from those doubly lopsided models in which the neu-
trino mass matrixM� is hierarchical and the large neutrino-
mixing angles come primarily from large off-diagonal
elements in the charged lepton mass matrix ML (as in the
model of [8]). In those models, 	13 is predicted to be small,
giving naturally a ‘‘bi-large’’ structure. In the kind of
SUðNÞ model proposed here, however, the three neutrino
angles are, in effect, all random angles that are naturally of
order 1. That does not conflict with the observation that 	13
is less than or of order 0.2, since there is a reasonably high
probability that this would happen in a random unitary
matrix, as noted in [7]. However, if 	13 were found to be
much closer to zero, it would strongly disfavor these
models.

V. CONCLUSIONS

It has been shown that a realistic grand unified model
can be constructed based on SUðNÞ, N > 5, in which the
SUðNÞ symmetry and its pattern of breaking is sufficient to
create a nontrivial flavor structure for the light quarks and

leptons, without there being any flavor symmetry at all.
What makes the fermions of different families different
from each other is the way they transform under the
SUðNÞ. This is, in particular, true of the three light 10’s
of SUð5Þ, which do not all come from the same kinds of
multiplets of SUðNÞ. On the other hand, in this model the
three light �5’s of SUð5Þ do all come from the same kind of
multiplet of SUðNÞ, and thus are not distinguished from
each other. Since the left-handed neutrinos are all con-
tained in the �5’s, no fundamental symmetry distinguishes
the light neutrinos from each other, and as a consequence
large neutrino mixing naturally results, and the neutrino
masses should not exhibit a strong hierarchy. For the mass
matrices of the down-type quarks and the charged leptons a
stratified or ‘‘doubly lopsided’’ structure results, leading to
a stronger hierarchy for their masses. The strongest mass
hierarchy of all is that of the up-type quarks. (In the SUð8Þ
model we present as an example, only the top quark obtains
mass at tree level.)
The fact that the three light �5’s are not distinguished by

any symmetry (which is what gives the realistic stratified
structure to the mass matrices) stems from the fact that they
all come from antifundamental multiplets of SUðNÞ. That
in turn can be traced to the requirements of anomaly
cancellation. For SUðNÞ models containing only
antisymmetric-tensor multiplets of fermions, the most eco-
nomical sets of fermions that have three families and are
anomaly free tend to have many antifundamental multip-
lets, and it is usually the case that all of the �5’s come from
these multiplets.
The model described above is a nonsupersymmetric

grand unified theory. It is also possible to construct models
based on the same ideas that have low-energy supersym-
metry. In such models, all the masses of the light families
would have to come from tree-level diagrams. However,
there could still be mass hierarchies, since tree diagrams
can generate operators of different dimensions and of
different types. Moreover, there can be a hierarchy among
the scales at which SUðNÞ breaks down to the standard
model group, and this hierarchy can be reflected in the
mass matrices of the light quarks and leptons, as the model
presented here illustrates.
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APPENDIX A: THEHIGGS POTENTIAL AND SUð8Þ
BREAKING

The part of the Higgs potential that is relevant for the
breaking of SUð8Þ down to the standard model does not
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involve the rank-4 Higgs multiplet ½4�H ¼ HABCD, since
all components of that multiplet are nonsinglet under the
standard model group and therefore cannot have superlarge
vacuum expectation values. Thus, to find the
SUð8Þ-breaking minimum it would be sufficient to con-
sider only those terms not involving the ½4�H. Call this
truncated potential V 0

H. Assuming that only one Higgs
multiplet exists of each of the other types (½1�H, ½2�H,
and AdjH), one has as the most general form of V 0

H con-
sistent with SUð8Þ

V 0
H ¼ V 0

2 þ V 0
3 þ V 0

4;

where

V 0
2 ¼ jHAj2 þ jHABj2 þ�A

B�
B
A;

V 0
3 ¼ HA�B

AH
�
B|fflfflfflfflffl{zfflfflfflfflffl}

�X3

þHAB�C
BH

�
AC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�Y3

þ�A
B�

B
C�

C
A;

V 0
4 ¼ 6 products of quadraticsþHA�B

A�
C
BH

�
C|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�X4

þHAB�C
B�

D
CH

�
DA|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�Y4

þHAB�C
A�

D
BH

�
CD|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�Y0
4

þHAH�
ABH

BCH�
C|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�Z4

þ ðHAHBH�
AC�

C
B þ H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T4

þHABH�
BCH

CDH�
DA þ�A

B�
B
C�

C
D�

D
A ;

where the coefficients of the terms have not been shown.
The terms referred to as ‘‘products of quadratics’’ are
simply all quartic terms that can be constructed as products
of the terms in V 0

2. There are 19 terms in V 0
H and another 13

terms in VH that involve the field HABCD.
We do not try to minimize this potential, which would be

a tedious undertaking. However, it should be obvious that
with 19 parameters and nine components that can get
superlarge VEVs the potential is complicated enough to
allow many patterns of breaking from SUð8Þ down to GSM.
One important question that arises is whether this breaking
leaves any goldstone (or pseudo-Goldstone) bosons. These,
especially if colored, could lead to disasters, such as rapid
proton decay.

The way a goldstone boson would arise is by having the
same gauge symmetry broken by the VEVs of two scalar
fields that are in multiplets that lie in sectors of the Higgs
potential that do not couple to each other. Each of the two
multiplets would contain a Goldstone boson corresponding
to the broken generator, but only one linear combination of
them would get ‘‘eaten’’ by the gauge boson. On the other
hand, if the two sectors do couple to each other, what
typically happens is that the would-be Goldstone bosons
of the two sectors get mass terms with each other in such a
way that only the true Goldstone boson (the one that gets

eaten) remains without a mass from the Higgs potential.
Another way to say this is that the couplings of the various
sectors of the Higgs potential to each other prevent any
accidental global symmetries from arising.
There are three sectors of Higgs in V 0

H: the sectors ofH
A,

HAB, and �A
B. The fields H

A and HAB are coupled to each
other by the term denoted Z4. The fields HAB and �A

B are
coupled to each other by the terms denoted Y3, Y4, and Y0

4.
The fields HA and �A

B are coupled to each other by the
terms denoted X3 and X4. And finally, all three fields are
coupled together by the term denoted T4.
The generators that are broken when SUð8Þ breaks to

SUð5Þ transform either as singlets or as 5 and �5 of SUð5Þ.
There are potential Goldstone bosons that transform as 5 in
H�, HI�, and ��

I . There are potential Goldstone bosons
that transform as �5 in the conjugates of these. As an
example of how these are coupled together by the terms
that link the various sectors, consider the term T4. It con-
tains the terms hHIihHJiH�

I��
�
J , hHIiH�hH�

IJi�J
�, and

H�hHIiH�
�Ih�I

Ii.
In the discussion of possible Goldstone modes (though

not in the minimization) the multipletHABCD also has to be
taken into account. It contains fields that can obtain mass
with potential Goldstone bosons. However, it is not neces-
sary to discuss these, as the foregoing makes clear that,
except for the modes that are eaten by the gauge bosons, all
components of the Higgs multiplets will get mass from the
Higgs potential.
It should be noted that the possibility of unwanted

Goldstone bosons is usually only a serious issue in super-
symmetric GUTs (see, for example, the analysis in [12],
since there the scalar potential has a very restricted form
due to the fact that the F-term part comes from a super-
potential that is only cubic and must be analytic in the
chiral superfields. In nonsupersymmetric GUTs the poten-
tial is not so restricted and generally has so many terms that
the problem does not usually arise, unless global symme-
tries are put in ‘‘by hand.’’

APPENDIX B: FLAVOR HIERARCHY FROM
GAUGE HIERARCHY

In Sec. IV, it was shown that a nontrivial flavor structure
would typically arise in the illustrative SUð8Þ model even
in the absence of any flavor symmetry. The exact pattern of
quark and lepton masses depends, however, on many pa-
rameters, and, in particular, on the pattern of gauge sym-
metry breaking. Thus, there is no possibility in this
particular model of quantitative predictions.
In this appendix, in order to illustrate in more detail the

possibilities of the general scheme, a particular hierarchy
among the vacuum expectation values will be assumed.
Suppose that at a scaleM531 nearMP‘ the group SUð8Þ is

broken to SUð5Þ � SUð3Þ �Uð1Þ by the adjoint Higgs
VEV h�A

Bi ¼ diagð00 000 111ÞM531. Suppose that the
group is then sequentially broken down to SUð5Þ in these
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steps: (a) to SUð5Þ � SUð2Þ �Uð1Þ by the VEVs hH8i and
hH67i, (b) to SUð5Þ �Uð1Þ by the VEVs hH7i and hH86i,
and (c) to SUð5Þ by the VEVs hH6i and hH78i. Finally, the
group breaks to the standard model group at MSM.

Assume that the superheavy VEVs satisfy these condi-
tions: hH78i, hH68i � hH67i; hH6i � �hH7i, where � ¼ 1

20 ,

and hH7i � hH8i. The fact that hH78i, hH68i � hH67i im-
plies that the light 10’s of SUð5Þ are predominantly 103 ¼
c ��, 102 ¼ c ��7, and 101 ¼ c ��6. (The c ��8 gets su-
perheavy mass with the c ��� through the coupling
c ���c ��8H67�6

6.)

As for the VEVs that break the weak interaction group
SUð2ÞL �Uð1ÞY , assume that hH26i, hH27i, hH28i �

hH2i � �2hH2678i, and hH2678i ffi v=
ffiffiffi
2

p
. [Of course, at

low energy there is just one Higgs doublet, which has the
VEV; but this standard model doublet is a linear combina-
tion of several doublets that are in SUð8Þ multiplets of
different rank].
With these very specific assumptions, one may write for

each quark and lepton mass element the operator that is
expected to give the dominant contribution and the order of
magnitude of that contribution. These are given in the
following equation, along with the operators that are sub-
dominant:

ðMUÞ33Odom ¼ ðc ��c ��ÞhH2678i � v

ðMUÞ23Odom ¼ ðc ��c ��7ÞhH7ihH2678i � 1

16
2

hH7i
MGUT

v

Osubdom ¼ ðc ��c ��7Þ½hH2ihH68i; hH6ihH28i; hH8ihH26i�

ðMUÞ13Odom ¼ ðc ��c ��6ÞhH6ihH2678i � 1

16
2

hH6i
MGUT

v

Osubdom ¼ ðc ��c ��6Þ½hH2ihH78i; hH7ihH28i; hH8ihH27i�

ðMUÞ22Odom ¼ ðc ��7c ��7ÞhH7ihH7ihH2678i � 1

16
2

hH7i2
M2

GUT

v

Osubdom ¼ ðc ��7c ��7Þ½hH7ihH2ihH68i; hH7ihH6ihH28i; hH7ihH8ihH26i�

ðMUÞ12Odom ¼ ðc ��6c ��7ÞhH6ihH7ihH2678i � 1

16
2

hH6ihH7i
M2

GUT

v

Osubdom ¼ ðc ��6c ��7ÞhH28ihð�6
6 ��7

7Þi; ðc ��6c ��7ÞhH67ihH2678i

ðMUÞ11Odom ¼ ðc ��6c ��6ÞhH6ihH6ihH2678i � 1

16
2

hH6i2
M2

GUT

v

Osubdom ¼ ðc ��6c ��6Þ½hH6ihH2ihH78i; hH6ihH7ihH28i; hH6ihH8ihH27i�

ðMDÞ3mOdom ¼ ðc �2c ðmÞ�ÞhH2ih�2
2i �

1

16
2

h�2
2i

MGUT

v

Osubdom ¼ ðc �2c ðmÞ�Þ½hH28ihH8i; hH27ihH7i; hH26ihH6i�

ðMDÞ2mOdom ¼ ðc �27c ðmÞ�ÞhH2ihH7ihð�2
2 ��7

7Þi �
1

16
2

hð�2
2 ��7

7ÞihH7i
M2

GUT

v

Osubdom ¼ ðc �27c ðmÞ�ÞhH27ihð�2
2 ��7

7Þi

ðMDÞ1mOdom ¼ ðc �26c ðmÞ�ÞhH2ihH6ihð�2
2 ��6

6Þi �
1

16
2

hð�2
2 ��6

6ÞihH6i
M2

GUT

v

Osubdom ¼ ðc �26c ðmÞ�ÞhH26ihð�2
2 ��6

6Þi:

Note that there is an operator written in boldface that
contributes to ðMUÞ12. Actually, the assumed hierarchy of
VEVs does not imply that this operator is subdominant. As
it would lead to an unrealistically large contribution, one
must assume that this operator is suppressed for some other
reason: say, a smallness of a dimensionless coupling in the

diagram that produces it. This operator does not contribute
importantly anywhere else.
The hierarchy among the elements produced under these

specific assumptions about VEVs is qualitatively realistic.
However, no quantitative predictions are possible, because
of the large number of parameters involved. For example,
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the masses denoted ‘‘MGUT’’ in the estimates given in the
previous equation depend on the masses of the heaviest
particles appearing the loops, and the spectrum of super-
heavy particles depends on many parameters in the Higgs
potential and elsewhere.

It should also be emphasized that higher-dimension
operators may arise not only from loop diagrams but also
from Planck-scale physics. For the mass matrix elements
that involve the third family, which are suppressed by only
one power of ‘‘MGUT,’’ it is possible that the same opera-
tors arising from Planck-scale physics (and therefore sup-
pressed by one power ofMP‘) may be comparable, or even
slightly larger, if ‘‘MGUT’’ is greater than MP‘=16


2. This
would not qualitatively affect the hierarchy. On the other
hand, there may be models of the type presented in this
paper where operators induced by Planck-scale physics
may play a dominant role. In fact, in models with low-
energy supersymmetry, loop-diagrams involving GUT-
scale particles would be extremely suppressed, and so
Planck-scale effects would be the dominant contributions
to the masses of the lighter families [13].

APPENDIX C: THE RIGHT-HANDED NEUTRINOS

In the SUð8Þ model whose fermion content is given by
Eq. (3), there are altogether 31 fermions that are singlets
under SUð5Þ and the standard model group GSM. These are
the 27 fields NmI � c ðmÞI, with m ¼ 1; . . . ; 9 and I ¼ 6, 7,
8; the 3 fields NI � 1

2 �IJKc
JK, with I, J, K ¼ 6, 7, 8;

and the 1 field N � c 678. All of these can be considered
‘‘right-handed neutrinos.’’

They have a mass matrix MR that at tree level is of the
form

ðNmI; NI; NÞ
MmI;NJ MmI;J MmI

MI;nJ 0 0
MnJ 0 0

0
@

1
A NnJ

NJ

N

0
@

1
A:

The mass submatrices in the above come from the tree-
level Yukawa terms in Eq. (4) as follows:

Ymðc IJKc ðmÞIÞH�
JK ) MmI ¼ 1

2
Ym�

IJKH�
JK

ynðc JKc ðnÞJÞH�
K ) MI;nJ ¼ 1

2
yn�

IJKH�
K

amnðc ðmÞIc ðnÞJÞHIJ ) MmI;nJ ¼ amnH
IJ:

The submatrix MmI;nJ is 27-by-27, but it only has rank

16 as will now be shown. In determining the rank of these
matrices, it is convenient to go to the following bases. For
the SUð3Þ subgroup of SUð8Þ corresponding to the indices
6, 7, 8, go to the basis where hH78i � 0, hH67i ¼ 0,
hH68i ¼ 0. For the nine-dimensional vectorspace spanned
by the nine antifundamentals labeled by m ¼ 1; 2; . . . ; 9,
go to the basis where amn has the ‘‘normal form,’’ in which

a2p;2pþ1 ¼ �a2pþ1;2p � 0, where p ¼ 1, 2, 3, 4, and

where all other elements vanish, including a1m and am1.
(Since amn is a 9-by-9 antisymmetric matrix it has rank 8.)
With these choices of bases, the matrix MmI;nJ, which is

given by amnH
IJ, obviously vanishes unless m and n take

values in the range 2; . . . ; 9 and I and J take values in the
range 7, 8. Thus, mI and nJ each have only 16 possible
values that can lead to nonzero entries for the matrix
MmI;nJ.

The 11 fields NmI that have only zero entries in MmI;nJ

are just N1I, I ¼ 6, 7, 8, and Nm6, m ¼ 2; . . . ; 9. One may
thus write the 31-by-31 mass matrix of the right-handed
neutrinos as

011�11 j 011�16 j M11�4

� j � � � j �
j j

016�11 j A16�16 j M16�4

j j
� j � � � j �

M4�11 j M4�16 j 04�4

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The last 4 rows and columns refer to the four fields NI and
N. The remaining 27 rows and columns refer to the NmI

The middle 16 rows and columns refer to those fields NmI

that have nonzero entries in the matrix MmI;nJ. Those

nonzero entries are in the matrix that is called A. The first
11 rows and columns refer to those fields NmI that have
only zero entries in MmI;nJ.

One sees that in this matrix there are submatrices that are
4� 11 and 11� 4 (which are transposes of each other). By
a choice of basis these can obviously be made to vanish
except for a 4� 4 submatrix. Consequently, one sees by
inspection that the full matrix has at least 7 zero eigenval-
ues. Unless certain Yukawa couplings vanish for no sym-
metry reason, there are only 7 vanishing eigenvalues.
Thus, at tree level, 7 of the 31 ‘‘right-handed neutrinos’’

remain massless. It can be shown that there are enough
one-loop diagrams to give mass to all 7 of these states. One
such diagram is shown in Fig. 2. (There are several other
types of diagram.) Thus, one expects that 24 right-handed
neutrinos have mass of order MGUT and 7 have mass of
order 1

16
2 MGUT.

FIG. 2. A diagram that gives mass to right-handed neutrinos
that do not get mass at tree level.
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