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In this paper we describe gauge invariant multiquark states generalizing the path integral framework

developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows

us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue

exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken

analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous

construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.
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I. INTRODUCTION

Yang-Mills theories are the cornerstone of the standard
model. Their success is largely based upon perturbation
theory where gauge fixing, implemented using the
Faddeev-Popov method [1], plays a key role. However,
Gribov [2] has pointed out that, at a nonperturbative level,
the Faddeev-Popov method fails since there are always
gauge equivalent (Gribov) copies which satisfy a chosen
gauge condition. Initially this was shown for Coulomb
gauge, but Singer has proven that this is in fact a general
problem [3].

There have been various attempts to extend the Faddeev-
Popov method to the nonperturbative regime. For example,
it was suggested that the various Gribov copies, weighted
by the Faddeev-Popov determinant, should contribute to
the functional integral with alternating signs. This ap-
proach can be viewed as the insertion of a topological
invariant into the partition function. Unfortunately, that
topological invariant turns out to be zero in SUðNcÞ
Yang-Mills theory leaving us with the disastrous conclu-
sion that the generalized Faddeev-Popov method results in
physical observables being in indeterminate form [4–6].

This state of affairs is unfortunate as the need for non-
perturbative gauge fixing is widely recognized as physi-
cally desirable. For example, Dyson-Schwinger equations
are widely used in hadron phenomenology, and their con-
struction relies on unambiguous gauge fixing, in particular,
in the infrared regime. Using stochastic quantization to
bypass the Gribov problem [7–9], Zwanziger showed
[10] that the tower of Dyson-Schwinger equations is un-
changed but supplemented with additional constraints re-
flecting that gauge configurations are confined to the first
Gribov region. It turns out that the Green’s functions solv-
ing the Dyson-Schwinger equations [11–13] appear to
agree to a large extent with lattice simulations [14–16].
We note, however, that some initial discrepancies [17–19]

in the infrared [20] behavior of Green’s functions have
been confirmed in large volume simulations [21,22]. It
became clear only recently that these findings can be
accommodated by the Gribov-Zwanziger approach when
the Gribov-Zwanziger action is appropriately modified
while preserving renormalizability [23,24].
To go beyond the Faddeev-Popov method, we will here

use an alternative construction of the partition function
[25,26] which defines a gauge invariant action by integrat-
ing a weight function over the gauge orbit. This method has
been studied on the lattice in the strong coupling expansion
[27,28] and in numerical simulations of the weak-coupling
regime [29]. The phase diagramwas explored in [30], and a
phase transition from the weak to the strong gauge fixing
regime was reported. Finally, it was argued in [31] that the
gluon propagator displays gluon confinement. As we shall
show, in a particular limit, which we call the ice limit, the
weight function constrains the gauge configurations to
unique representatives of each gauge orbit. Altogether,
these form what is called the fundamental modular region.
In a Hamiltonian framework integration over the gauge

group may be used to define projection operators onto the
different non-Abelian charge (superselection) sectors of
the Yang-Mills Hilbert space in the presence of external
charges. This was first emphasized by Polyakov [32] and
Susskind [33] and subsequently worked out in detail by a
number of authors (see e.g. [34,35]). More recently
Zarembo has used this approach to discuss the Yang-
Mills mass gap, confinement, and the interquark potential
[36,37] (see also [38,39]). A thorough study of U(1) quan-
tum mechanics along these lines may be found in [40].
In this paper, we introduce gauge invariant external

fields (such as heavy quarks) through the projection tech-
niques [32–37] into the above alternative construction of
the partition function [25,26]. Using lattice regularization,
we will study the ice limit where the fields are restricted to
the fundamental modular region of Coulomb gauge. As an
illustration, we will calculate the static heavy quark-
antiquark potential.*kurt.langfeld@plymouth.ac.uk
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II. NONPERTURBATIVE GAUGE FIXING

A. The Gribov problem

Recall that gauge fixing amounts to identifying the space
A=G of gauge inequivalent configurations (that is the
space A of all configurations A modulo gauge transforma-
tions g 2 G) with a subset of the total configuration space:
A=G � A. The original idea of gauge fixing (due to Weyl,
see [41] for the historical context) attempts at choosing a
gauge ‘‘slice’’ � (of configurations satisfying the gauge
condition) to be identified with the physical configuration
space. While this works for the Abelian case, it fails for the
non-Abelian theory due to the existence of residual gauge
copies, as shown by Gribov [2], who was also the first to
suggest a possible solution. As the copies only appear as
one moves away from the perturbative small field regime
and reaches what is called the ‘‘Gribov horizon’’ it seems
appropriate to just stay within its interior, i.e. within the
Gribov region. Mathematically, this is defined as that
neighborhood of the classical vacuum (A ¼ 0) where the
Faddeev-Popov operator has a positive spectrum. It turns
out, however, that this ‘‘off-limits’’ prescription is not
sufficient. Let us briefly recapitulate the problem and its
(formal) solution.

Following ‘t Hooft [42] one may formulate the gauge
fixing procedure in terms of distance functionals
Sfix½Ag� � kAgk2 with k:k2 an appropriate L2 norm. As
shown by Semenov-Tyan-Shanskii, and Franke [43] as
well as dell’Antonio and Zwanziger [44] the extrema of
Sfix define the gauge condition while its Hessian (at the
critical points) is the Faddeev-Popov operator such that the
Gribov region is the domain of positive curvature contain-
ing A ¼ 0, known to be convex and to cover all orbits
[43,44]. Its boundary is the Gribov horizon where the
lowest eigenvalue of the Faddeev-Popov operator vanishes.
These authors also realized that there are copies remaining
within the Gribov region, and one has to restrict configu-
rations even further to the set � of global minima,

� � fA 2 A: Sfix½A� � Sfix½Ag�; for all g 2 Gg: (1)

Note that, by construction, this set is included in the Gribov
region and hence the gauge slice. As pointed out by van
Baal [45] one still requires suitable boundary identifica-
tions within @� endowing the subset � � A with the
appropriate topology before it can finally be identified
with the physical configuration space of gauge inequivalent
configurations. In this context the latter is denoted the
fundamental modular region (FMR), see [46,47] for re-
views on this subject. We emphasize at this point that it is
gauge invariant by construction. The details of the embed-
ding A=G � A, however, will depend on the gauge fixing
(functional) chosen as its starting point.

B. An alternative implementation of gauge fixing

As we have discussed, a gauge fixing condition �a½A� ¼
0 can always be identified as a stationary point of a gauge
fixing functional Sfix½Ag� such that

�

��aðxÞSfix½A
g� ¼ 0 ) �a½A� ¼ 0; (2)

where the fields �aðxÞ parametrize the gauge transforma-
tion, gðxÞ ¼ expfi�aðxÞtag, with ta being the generator of
the SUðNcÞ gauge group. The Faddeev-Popov approach is
then based on the usual assumption ([48], Chapter 16) that
one can write 1 as

1 ¼
Z

D��ð�a½Ag�ÞDet
�
��½Ag�
��

�
: (3)

This, though, is not true nonperturbatively (see
Appendix A for more details) as, in fact, the right-hand
side of (3) is zero. We will therefore use a different
approach here [25,26] and, after reviewing it, we will study
a series of examples.
The starting point of this approach is the definition of a

gauge invariant effective action Seff½A� derived from the
gauge fixing functional via the identity

1 ¼ e�Seff ½A�
Z

DgeSfix½Ag�; (4)

where Dg is the Haar measure on the gauge group. As it
stands, this is a purely formal definition and one might ask
if the right-hand side of (4) is genuinely 1. In the contin-
uum this question is hard to address, but using a lattice
regulator it becomes clear that this really is a 1. To this end,
we need to translate into a lattice formulation where the
potential A�ðxÞ is replaced by link variables U�ðxÞ which
transform under a gauge transformation (now convention-
ally written as �ðxÞ) according to

U�
� ðxÞ ¼ �ðxÞU�ðxÞ�yðxþ ae�Þ: (5)

Inserting (4) into the Yang-Mills partition function we
obtain

Z ¼
Z

DU�D�eSfix½U��e�Seff ½U�eSYM½U�: (6)

For such a lattice regulated partition function, we may
interchange the integration over the linksU� and the gauge

transformations �:

Z ¼
Z

D�DU� eSfix½U��e�Seff ½U�eSYM½U�

¼
Z

D�DU�
� eSfix½U��e�Seff ½U��eSYM½U��

¼
�Z

D�

�Z
DU� eSfix½U�e�Seff ½U�eSYM½U�; (7)

from the invariance of the action and the Haar measure.
This means that we have been able to factor out the gauge
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redundancies into a volume factor in much the sameway as
the original Faddeev-Popov trick tried to do. However, as
we shall see, this procedure is valid nonperturbatively.

We will now investigate how this construction is used in
three examples.

C. Three examples

1. The Christ-Lee model

The Christ-Lee partition function [49] is given by the
two dimensional integral

ZCL ¼
Z

d2x eSCLðxÞ; (8)

where SCLðxÞ is a function depending only on r �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Gauge transformations are rotations through an

angle �, which we write x ! x�. Taking, for example,
SCLðxÞ ¼ �x2, one may check that ZCL ¼ 2�� 1=2,
where the 2� comes from the integral over the angle �
and 1=2 is the ‘‘physical’’ partition function. We will
consider the following gauge fixing functional

Sfix½x�� ¼ ��

2
ðx� � vÞ2; (9)

where v is an external ‘‘gauge fixing’’ vector. The corre-
sponding gauge condition

@Sfix½x��
@�

¼ 0 ) v � x�þ�=2 ¼ 0;

exhibits two Gribov copies: x� parallel or antiparallel to v.
The FMR is given by those vectors x which (globally)
maximize the gauge fixing action. In the present case, these
are all vectors of arbitrary length parallel to v. Without
loss of generality, we choose v ¼ ð1; 0Þ so that the gauge
fixing condition becomes y ¼ 0. The FMR is then given by
the positive x-axis (with Gribov copies appearing on the
negative x-axis).

In analogy to (4), we find an effective action

expðSeff½x�Þ ¼
Z

d� expðSfix½x��Þ

¼ 2�I0ð�rÞ exp
�
��

2
r2 � �

2

�
; (10)

with I0 a modified Bessel function of the first kind. The
effective action is manifestly gauge invariant as it depends
only on r. We now insert the associated representation of
unity,

1 ¼ expð�Seff½x�Þ
Z

d� expðSfix½x��Þ

¼ 1

2�I0ð�rÞ
Z

d� expð�x� � vÞ; (11)

into the partition function (8) where it follows from the
discussion in Sec. II B that

ZCL ¼
�Z

d�

�Z
d2x expðSCLðxÞÞ e�x

2�I0ð�rÞ ; (12)

using x � v ¼ x. For SCL ¼ �jxj2, it is a straightforward
matter to perform the d2x integral in (12) and show that we
recover the expected value of 1=2. The important point is
that the Gribov problem does not hamper this calculation.
This can be made explicit by considering the limit of large
�, where the asymptotic behavior of the modified Bessel
function gives

ZCL ’
�Z

d�

�Z
d2x eSCLðxÞ

ffiffiffiffiffiffiffi
�r

2�

r
e��ðr�xÞ: (13)

Importantly, �ðr� xÞ> 0 so that the � dependent terms of
(13) are a Gaussian regularization of the delta function.
The support of the delta function arising in the � ! 1
limit are those vectors x for which

�ðr� xÞ ¼ 0 ) y ¼ 0 and x � 0:

The condition y ¼ 0 corresponds to our chosen gauge
condition, but the condition x � 0 restricts us to only the
FMR, i.e. the Gribov copy at x < 0 is not seen by the
partition function. Explicitly,

lim
�!1

ffiffiffiffiffiffiffi
�r

2�

r
e��ðr�xÞ ¼ jxj�ðxÞ�ðyÞ; (14)

where � is the Heaviside step function. Using this in (13)
our final result for the � ! 1 limit is

ZCL ¼
�Z

d�

�Z
d2x eSCLðxÞ�ðxÞjxj�ðyÞ: (15)

Our approach has not only correctly produced the gauge
fixing constraint in terms of the � function and the
Faddeev-Popov determinant jxj, but also the correct ‘‘hori-
zon function’’ [50,51] �ðxÞ, which singles out the FMR to
the right of the Gribov horizon at x ¼ 0. In Fig. 1 we give
contour plots of the � dependent fraction in (12), at � ¼
16. We clearly see the FMR emerging as the domain of
support. The discussion of a more general class of gauge
fixing functions is left to Appendix B.

2. Example: U(1) Landau gauge

As a second example we consider U(1) gauge theory in
Landau gauge. Although this does not have a traditional
Gribov problem, zero modes must be eliminated in order
for the Faddeev-Popov determinant to be nonzero.
The gauge fields A�ðxÞ change under gauge transforma-

tions as

�ðxÞ ¼ ei�ðxÞ; A�
� ðxÞ ¼ A�ðxÞ þ @��ðxÞ: (16)

We choose Dirichlet boundary conditions:

A�ðxÞjx2@V ¼ 0; �ðxÞjx2@V ¼ �0 (17)

with �0 being constant. The gauge fixing action for Landau
gauge is given by
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Sfix½A� ¼ �m2
Z

d4xA�A
�ðxÞ; (18)

where the ‘‘mass’’m acts as a gauge fixing parameter. This
gauge fixing action generates the Landau gauge condition
via

�

��ðxÞSfix½A
�� ¼ 0 ) @�A�

� ¼ 0: (19)

Given the boundary conditions (17), it follows that any
�ðxÞ may be written

�ðxÞ ¼ �0 þ ��ðxÞ; (20)

where �0 is the surface value of �ðxÞ and ��ðxÞ vanishes on
@V ( �� may be decomposed as a sum over the nonzero
Fourier modes of the Laplace operator). The measure on
the algebra elements � is inherited from the group, so that
D� ¼ d�0D ��. Note that the gauge fixing action (18) is
invariant under constant gauge transformations since A !
Aþ @� ¼ Aþ @ ��. We must adopt some prescription to
deal with the zero modes and to this end we will include in
our measure a delta function �ð�0Þ which kills the zero
mode and makes the d’Alembertian h invertible. We are
therefore led to propose the following form for the effec-
tive action:

eSeff ½A� ¼
Z

D �� expðSfix½A ���Þ
¼ det�1=2ð�m2hÞ expð�Sfix½AT�Þ: (21)

The transverse gauge field AT is defined by

AT
� ¼

�
	�
 � 1

h
@�@


�
A
 (22)

and is gauge invariant. This result may be used in (7) to
obtain the partition function of U(1) gauge theory. We

evaluate

Sfix½A� � Seff½A� ¼ �m2
Z

d4xAL
�A

L�

þ 1

2
logdetð�m2hÞ; (23)

where the longitudinal part of the field is defined by AL �
A� AT . Inserting our representation of unity into the
partition function we find that for this U(1) theory

Z ¼ det�1=2ð�m2hÞ
Z

DA� exp

�
�SYM½A�

�m2
Z

d4xAL
�A

L�

�
: (24)

Note that the gauge fixing parameter m acts as a mass for
the longitudinal gauge fields. In the large mass limit, these
decouple from the partition function leaving us with trans-
verse fields only.

3. Example: SU(2) and weak gauge fixing

In our final example we consider SU(2) Yang-Mills
theory, in lattice regularization, with the gauge fixing func-
tional

Sfix½U�� ¼ �
X
x;�

trU�
� ðxÞ; � ¼ 1 . . . 4; (25)

which implies (lattice) Landau gauge upon extremization.
When applied to the partition function Z, the (local) max-
ima of Sfix give the dominant contributions at large �. We
refer to this as the ‘‘strong gauge fixing’’ limit.
As we have illustrated with our previous models the use

of the effective action approach is not limited to the large �
regime. Here, we take � 	 1, the ‘‘weak gauge fixing’’
limit, and calculate the effective action perturbatively in �.
Expanding the defining Eq. (4) and noting that Sfix is of

FIG. 1 (color online). Contour plots of the � dependent fraction in (12), at � ¼ 16. The support of this combination of Seff and Sfix,
and thus of the partition function ZCL, is restricted to the FMR at large �.
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order �, we find, up to fourth order in �,

Seff½U� ¼ 1
2hS2fixi þ 1

24½hS4fixi � 3hS2fixi2� þOð�6Þ; (26)

hSnfixi :¼
Z

D�Snfix½U��: (27)

For SU(2), terms with an odd power of � vanish upon
integration over�. The term quadratic in � is independent
of the links since there is no gauge invariant combination
of two link variables apart from a constant:

hS2fixi ¼
�2

4
Nl; (28)

where Nl is the number of links on the lattice. The calcu-
lation of the fourth order term is tedious but straightfor-
ward. We find

hS4fixi � 3hS2fixi2 ¼
�4

8
Nl þ �4

64

X
p

1

2
trPp½U�; (29)

where the sum extends over all plaquettes, Pp. Inserting

(28) and (29) in (26), we finally obtain

Seff½U� ¼ Nl

�
1

2

�
�

2

�
2 þ 1

12

�
�

2

�
4
�
þ 1

4

�
�

2

�
4X

p

1

2
trPp½U�

þOð�6Þ: (30)

For sufficiently small �, the effect of Seff½U� is just to
correct the coefficient � of the plaquette in the Wilson
action, showing explicitly that Seff½U� is gauge invariant.
Terms such as the 1� 2 Wilson loop appear at order �6.

III. NONPERTURBATIVE DRESSING

In this section we will introduce gauge invariant heavy
quarks into the above approach to the partition function.
We will adopt a Schrödinger representation, considering
gauge invariant states constructed in a single time slice.
Transition amplitudes between such states will be dis-
cussed in Sec. IV. We begin by briefly reviewing the
construction of gauge invariant charges [52].

A gauge invariant charged state jQi may be constructed
from a fermionic state qðxÞj0i by ‘‘dressing’’ the latter with
an appropriate function h½A� of the gauge field A,

jQi :¼ h½A�ðxÞqðxÞjqi: (31)

From the transformation properties of the fermion, qðxÞ !
�ðxÞqðxÞ, requiring gauge invariance of the state jQi
implies that the dressing h½A� transforms as

h�½A�ðxÞ ¼ h½A�ðxÞ�yðxÞ: (32)

Dressings may be constructed through a field-dependent
gauge transformation which rotates a given field A into a
gauge �½A� ¼ 0. The dressing factor is not unique and
should be selected according to its physical properties
[53,54]. For example, the dressing describing a single

static quark in SUðNcÞ comes from the field-dependent
rotation into Coulomb gauge defined by

@iðhAih
�1 þ ih@ih

�1Þ ¼ 0: (33)

From this example it is clear that the above dressing
approach is sensitive to the Gribov problem of Coulomb
gauge: although a gauge invariant charge may be con-
structed perturbatively from a solution of (33), Gribov
copies imply that the dressing factor is not well defined
nonperturbatively [55]. This offers a route to understanding
confinement as this lack of single observable quarks is in
agreement with experiment. The open dynamical question
is how the Gribov ambiguity produces the physical scale of
hadronic multiquark systems.

A. Dressing by projection

In this section we review the projection, or group inte-
gration, method of [32–37] to construct gauge invariant
states, and then make the connection with the partition
function above. Consider, for illustration, the group inte-
gral

h½A�ðxÞ :¼
Z

D��ðxÞeW½A��; (34)

with an, a priori arbitrary, weight function expðW½A�Þ. It
may be checked that (34) obeys the transformation law
(32) and therefore gives a dressing for a single charge.
Dressings for multifermion states may be similarly con-
structed by inserting the appropriate factors of � or �y
under the group integral. In this paper we propose the
weight functional W ¼ Sfix, which will allow us to com-
bine the projection approach with the construction of the
gauge fixed partition function discussed in Sec. II.
We have made two assumptions in writing down these

dressings: (i) the group integration exists (this is certainly
the case in, e.g., lattice gauge theory) and (ii) the group
integration does not yield a vanishing result for h½A�.
The latter assumption is more restrictive. Indeed, wewill

see below that (ii) is not fulfilled for the Coulomb dressing
and that (34) needs modifications for this important case.
In fact we will see that the required changes allow us,
importantly, to attribute a global charge to our locally
gauge invariant states.
Let us first look at an Abelian example of this.

B. Example: U(1) dressing and zero modes

In this example we construct a U(1) dressing from the
Coulomb gauge fixing functional. To illustrate the impor-
tance of flat directions, i.e. invariance under some class of
gauge transformations, in Sfix, and how they are related to
global charge, we will work in a finite cubic volume V ¼
L3, with boundary @V (recall our states are defined in an
initial time slice). We again take Dirichlet boundary con-
ditions on AiðxÞ and �ðxÞ constant on @V so that we may
write �ðxÞ ¼ �0 þ ��ðxÞ, analogously to (20).

ICE LIMIT OF COULOMB GAUGE YANG-MILLS THEORY PHYSICAL REVIEW D 78, 074511 (2008)

074511-5



The gauge fixing functional for Coulomb gauge is

Sfix½A� ¼ �m
Z
V
d3xAiðxÞAiðxÞ: (35)

We would now like to perform the U(1) analogue of the
group integration (34) to construct a dressing for a U(1)
fermion. Again, the measure is D� ¼ d�0D ��. However,
Sfix½A� is invariant under constant transformations. It there-

fore does not see the zero mode �0, as Sfix½A�� ¼ Sfix½A ���.
It follows that the integral over �0 vanishes, and therefore
so does the dressing. To avoid this we once again add �ð�0Þ
to the group measure and find

h½A�ðxÞ ¼
Z

d�0D ���ð�0Þ expði�ðxÞ þ Sfix½A��Þ

¼
Z

D �� expði ��ðxÞ þ Sfix½A ���Þ
¼ N expðSfix½AT�Þ expði��1@iAiðxÞÞ: (36)

Here N ¼ det�1=2
D ð�mr2Þ exp½��1

xx =4m� is a normaliza-
tion factor which is IR finite but UV divergent. The inverse
Laplacian ��1 is well defined on Ai as the fields obey
Dirichlet boundary conditions. The transverse field AT

i is
gauge invariant while the longitudinal term ��1@iAi is
noninvariant. One may check using any of the expressions
in (36) that the behavior of h under a gauge transformation
�ðxÞ ¼ �0 þ ��ðxÞ is

h½A��ðxÞ ¼ h½A�ðxÞe�i ��ðxÞ: (37)

We see that excluding the zero modes from the integral
(36) has given us a dressing which transforms as in (32)
under local transformations, but is insensitive to global
transformations. It follows that the dressed fermion state
transforms with a constant phase,

jQ�i ¼ h½A�ðxÞe�i ��ðxÞei�ðxÞqj0i ¼ ei�0 jQi; (38)

which allows us to assign a global charge of one to these
states. We now consider the analogous Coulomb dressed
state in SUðNcÞ.

C. Example: multiquark states in SUðNcÞ
The Coulomb gauge fixing functional in SUðNcÞ, using

lattice regularization, is

Sfix½U�� ¼ �
X

x;l¼1...3

1

Nc

trU�
l ðxÞ: (39)

As in the U(1) example above, Sfix is invariant under
constant gauge transformations C because of the cyclic
invariance of the color trace. The corresponding dressing
obeys

h½U� ¼
Z

Dð�CÞ�eSfix½Uð�CÞ�

¼
Z

Dð�CÞð�CÞ eSfix½U�C�Cy ¼ h½U�Cy; (40)

and therefore vanishes. The difference between this and the
Uð1Þ example is that the measure on SUðNcÞ does not allow
us to separate out the constant gauge transformations and
preserve the dressing property (32). For the remainder of
the paper we confine ourselves to multiquark singlet states
which are invariant under global transformations. Let us
concentrate on physically relevant states such as mesons
and baryons adapting the methods of [35] for our purposes.
For example, the dressing for a baryonic state in SU(3)

would be

hð3Þ½U�ikmðz; y; xÞ ¼
Z

D� 
rst�riðzÞ�skðyÞ�tmðxÞ

� eSfix½U��: (41)

The baryonic trial state is invariant under global trans-
formations C since


rstCriCskCtm ¼ detðCÞ
ikm ¼ 
ikm:

The dressing for a quark-antiquark state appears as a
straightforward generalization of (34),

hð2Þ½U�ðy; xÞ ¼
Z

D��yðyÞ�ðxÞeSfix½U��: (42)

This dressing transforms homogeneously,

hð2Þ½UG�ðy; xÞ ¼ GðyÞhð2Þ½U�ðy; xÞGyðxÞ; (43)

and is invariant under constant transformations. The quark-
antiquark state

jQ �Qi :¼ �qðyÞhð2Þ½U�ðy; xÞqðxÞj0i (44)

is therefore gauge invariant.
In the strong gauge fixing limit, the dominant contribu-

tion to the dressing comes from the gauge transformation
which globally maximizes the gauge fixing functional.
This is the transformation �FMR½A�ðxÞ which transforms
a given A to its gauge equivalent configuration in the FMR,
so for the mesonic states

jQ �Qi 
 �qðyÞ�y
FMRðyÞ�FMRðxÞqðxÞj0ieSfix½A�j��1: (45)

In this case, the external quarks are dressed by those gauge
transformations which rotate the gauge field into the FMR.
In the following section we use this result to derive our
main finding—wewill be able to carry out the strong gauge
fixing limit analytically without constructing the FMR
explicitly.
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IV. APPLICATIONS

A. The heavy quark potential

We now use the formalism above to address, in SU(2)
gauge theory, the static potential of a heavy quark-
antiquark pair made gauge invariant via Coulomb dressing.
The ground state energy in this channel depends on the
quark-antiquark separation r and equals the static potential
VðrÞ. Using the ‘‘mesonic dressing’’ (42), we calculate the
matrix element (where r ¼ jx-yj)

��ðr; TÞ ¼ hQ �Qj�e�HTjQ �Qi�
h0je�HTj0i ;

jQ �Qi� ¼ �qðyÞhð2Þðy; xÞqðxÞj0i;
(46)

where H is the Yang-Mills Hamiltonian. Note the depen-
dence of the states on the gauge fixing parameter �. For
Coulomb dressing, the gauge fixing functional is separately
defined at each time slice and depends on time t through
the time dependence of the background field U�ðxÞ:

Sfix½U�ðtÞ ¼ �
X
x;l

1

2
trUlðx; tÞ: (47)

The static quark-antiquark potential VðrÞ can be extracted
from the large T limit of �ðr; TÞ via

��ðr; TÞ ! jh2jQ �Qi�j2e�VðrÞT; (48)

where j2i is the true ground state in the quark-antiquark
channel. Our aim will be to consider the strong gauge
fixing limit � ! 1 for which the quark-antiquark trial
state is dressed with glue from the FMR [see (45)].
Given that the static heavy quark propagator from time 0
to T is proportional to the so-called ‘‘short’’ Polyakov line
[56], i.e.,

P½U�ðx; 0; TÞ ¼ Y
t2½0;T�

U0ðx; tÞ; (49)

we finally obtain for �� in (46)

��ðr; TÞ ¼ h�yðx; 0ÞP½U�ðx; 0; TÞ�ðx; TÞ�yðy; TÞ
� Py½U�ðy; 0; TÞ�ðy; 0ÞiF; (50)

where the latter expectation value is defined by

hOiF ¼ N�1
Z

DU� D�O eSYM½U�þSF½U��;

N �
Z

DU� eSYM½U�:
(51)

Here the integral D� is initially taken over the gauge
transformations in the initial and final time slices, defining
the states. However, with a properly normalized Haar
measure this may be extended to the entire lattice, which
is how we are to understandD� here and below. We have
also introduced the total gauge fixing action by

SF½U� ¼ Sfix½U�ð0Þ þ Sfix½U�ðTÞ: (52)

B. The weak gauge fixing limit

The gauge fixing action (52) contains the gauge fixing
parameter � which controls the overlap of the Coulomb
dressed quark-antiquark state with the true ground state. In
fact, for � ¼ 0, our ansatz for the trial state vanishes,
leaving us with a null result for ��ðr; tÞ in (46). For small
but nonvanishing �, the overlap is nonzero, and we should
be able to recover the full static potential in this limit of
weak gauge fixing.
Let us consider ��ðr; TÞ in (50) in leading order of an

expansion with respect to �. For this purpose, we will first
perform the integration of � using techniques familiar
from the strong coupling expansion of gauge theories. To
leading order, we may expand the gauge fixing action:

e SF½U��¼� Y
x;l

�
1þ�

2
trU�

l

�
; x2ðx;0Þ;ðx;TÞ; l¼1...3:

(53)

Subsequently, we perform the integration over the gauge
transformations restricting to the minimal power of � for
which (53) produces a nonvanishing result. This technique
is standard textbook material [57] so that we only quote our
final result,

��ðr; TÞ ¼
�
�

2

�
2ðr=aþ1Þ

Wðr; tÞ; (54)

whereWðr; tÞ is the rectangular Wilson loop of spatial and
temporal extent r and T, respectively. The static potential
can be recovered in the standard fashion

Wðr; TÞ � jh2jaij2e�VðrÞT; (55)

where jai is the axially dressed quark-antiquark trial state
[58,59], usually associated with a chromoelectric string
joining the quark and antiquark.
There are two important implications of (54): (i) the �

dependent prefactor does not influence the static potential
VðrÞ implying that we analytically find the correct poten-
tial for small but nonzero �; (ii) the overlap of our gauge
invariant trial state with the true ground state is quite poor,
at least in the weak gauge fixing limit:

jh2jQ �Qi�j2 ¼
�
�

2

�
2ðr=aþ1Þjh2jaij2: (56)

The overlap is even lower than that associated with ‘‘thin’’
Wilson lines. For practical calculations using lattice gauge
theory, we will seek values � of order one.

C. Strong gauge fixing and the ice limit

In the last subsection we have shown that we can recover
the static quark-antiquark potential in the weak gauge
fixing limit without being hindered by the Gribov problem.
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We now show that this also holds for strong gauge fixing.
To contrast our approach with the common difficulties
previously encountered we will first show how the
Gribov ambiguity reappears for large values of �.
However, we will then demonstrate how to circumvent
the Gribov problem in the dressing approach by taking
the limit � ! 1 in an appropriate and novel fashion.

Consider the matrix element ��ðr; TÞ given by the func-
tional integral (50) and how we might attempt to perform
the orbit integrations D� before the integration over link
variables, U�. In other words, we integrate over� treating

the links U� as a fixed background configuration. Hence,

in this step, the matrices � are considered as the funda-
mental degrees of freedom of a theory with probability
weight expfSF½U��g. For SU(2) gauge theory we have

� ¼ !0 þ i ~! � ~�; !2
0 þ ~! � ~! ¼ 1;

identifying these degrees of freedom as 4-dimensional
vectors (spins) of unit length such that the associated
partition function possesses a global Oð4Þ symmetry.
These spins interact only with their nearest neighbors. As
the background links provide a nontrivial ‘‘metric’’ for
these interactions the partition function describes a spin
glass. In the strong gauge fixing limit, � ! 1, this spin
glass will approach its ground state. However, for generic
background fields, there exists a variety of highly degen-
erate near ground states leading to frustration of the sys-
tem. Finding the global maximum of SF½U��,

SF½U��!� max (57)

amounts to identifying the true ground state of this spin
glass. It is well known that dealing with this problem is
extremely costly and beyond the scope of standard numeri-
cal techniques such as importance sampling. Hence, the
Gribov problem has reappeared in disguise, as the problem
of simulating a spin glass at low temperatures.

The crucial idea to avoid any Gribov (or spin glass)
problem is to trivialize the orbit integration over � by
factoring it out altogether. This can be done as follows.
First note that in the matrix element �� from (50) we may
write

�yðx; 0ÞP½U�ðx; 0; TÞ�ðx; TÞ ¼ P½U��ðx; 0; TÞ:

Hence, using the gauge invariance of action and Haar
measure, we obtain for N��

Z
DU� D��yðx; 0Þ

� P½U�ðx; 0; TÞ�ðx; TÞ�yðy; TÞ
� Py½U�ðy; 0; TÞ�ðy; 0ÞeSYM½U�þSF½U��

¼
Z

DU� D�P½U��ðx; 0; TÞ
� Py½U��ðy; 0; TÞeSYM½U�þSF½U��

¼
Z

DU�
� D�P½U��ðx; 0; TÞ

� Py½U��ðy; 0; TÞeSYM½U��þSF½U��

¼
�Z

D�

�Z
DU� P½U�ðx; 0; TÞ

� Py½U�ðy; 0; TÞeSYM½U�þSF½U�;

and, indeed, the gauge group integration factors out as a
trivial volume factor,

R
D� ¼ 1. Thus, our final answer

for �� becomes

��ðr; TÞ ¼ N�1
Z

DU�P½U�ðx; 0; TÞ
� Py½U�ðy; 0; TÞeSYM½U�þSF½U�; (58)

N ¼
Z

DU� eSYM½U�: (59)

It remains to discuss the strong gauge fixing limit. In
contrast to (57) we now need to find the maximum of the
gauge fixing action with respect to the links, U�,

SF½U�!U�

max: (60)

Crucially, this does not constitute a spin-glass problem as
the global maximum of (60) is easily obtained:

Ulðx; t ¼ 0Þ ¼ 1; Ulðx; t ¼ TÞ ¼ 1; l ¼ 1 . . . 3:

(61)

Hence, for infinitely large �, the spatial links of the time
slices t ¼ 0 and t ¼ T are both frozen to the perturbative
vacuum. We therefore call the limit � ! 1 the ‘‘ice limit’’
of the integral dressing approach. The (finite length)
Polyakov lines start and end on the frozen time slices.
Figure 2 shows the action density in the cube consisting
of the time axis and two spatial directions.
We now present our numerical results. For finite values

of � (with � not too large to avoid ergodicity problems in
the spin-glass limit), we generated configurations ðU�;�Þ
corresponding to the partition function

Z
DU� eSYM½U�þSF½U� ¼

Z
DU� D�eSYM½U�þSF½U��;

(62)
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SYM½U� ¼ �
X

x;�>


1

2
trP�
½U�ðxÞ; (63)

recalling
R
D� ¼ 1. In order to ensure that the excited

states are sufficiently suppressed, the Euclidean time T
must be chosen large enough. Here, we have considered
all values T � Tth for the straight line fit of

� ln�ðr; tÞ� ¼ VðrÞT � lnjh2jQ �Qij2�; (64)

where the asymptotic form (48) of ��ðr; tÞ was used. Our
final result for VðrÞa using a 164 lattice, � ¼ 2:3 and
10 000 independent configurations is shown in Fig. 3 (left
panel). The line is a fit of the Tth ¼ 4 data to

VðrÞa ¼ �a2
r

a
� �=ðr=aÞ þ V0;

�a2ð� ¼ 2:3Þ ¼ 0:14; (65)

where the known value for the string tension in lattice units
was used. We find that Tth ¼ 4 is sufficient to decouple the
excited states. A good agreement with the potential ob-
tained with standard overlap enhancing techniques is
observed.
We finally study the ice limit � ! 1. In this case,

configurations were generated using the standard partition
function except that the spatial links in time slices t ¼ 0
and t ¼ T were fixed to unity. Using � ¼ 2:3 and a 164

lattice, the static potential was extracted from 10 000 in-
dependent configurations in the ice limit. The result is
shown in Fig. 3 (right panel). We observe that rather large
values for Tth are required to decouple the excited states in
this case. One needs Tth ¼ 6 to achieve good results for
VðrÞ. Note, however, that no smearing was involved and
gauge fixing ambiguities (‘‘Gribov noise’’ [56]) are absent.

V. CONCLUSIONS

Nonperturbative gauge fixing is a key ingredient of
many approaches to Yang-Mills theory. In order to have
full analytic or numerical control all such approaches must
confront and understand the Gribov problem as this un-
avoidably arises in any direct imposition of a gauge fixing
condition. In this paper we have seen how to bypass this
problem both in the definition of an unambiguous partition
function and in the construction of suitable mesonic states.
To this end we have designed a novel and unified frame-
work that combines the properly gauge fixed path integral
introduced in [25,26] and a generalized dressing approach
based on group integration to construct gauge invariant
states. The feasibility of this framework has been explicitly
demonstrated for various examples ranging from the
Christ-Lee model, U(1) gauge theory to SU(2) Yang-
Mills theory.
From our new vantage point, the emergence of the

Gribov problem could be traced back technically to a
problem associated with the order of two integrations
extending over the gauge orbits and field configurations,
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FIG. 3 (color online). The static quark-antiquark potential from simulations with � ¼ 2:0 (left) and in the ice limit � ¼ 1 (right).

FIG. 2 (color online). Illustration of the ice limit: action den-
sity and orientation of the finite length Polyakov lines (vertical
lines). The low action planes (at t ¼ 0 and t ¼ T) are clearly
visible.
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respectively. If the gauge group integration is performed
before the average over the gluon fields, the Gribov prob-
lem arises as the problem to find the ground state of a spin
glass. However, since gauge invariance is manifest in our
approach, the Gribov problem can be avoided by inter-
changing the integrations over gauge group and gluon
fields. In this case, the (‘‘ice’’) limit of strong gauge fixing
can be performed analytically, and the external matter
fields become properly dressed by gauge transformations
unambiguously connected to the FMR of Coulomb gauge.
The numerical feasibility of the method was finally dem-
onstrated by a lattice calculation of the static quark-
antiquark potential from trial states in the ice limit, living
on (initial and final) time slices frozen to the perturbative
vacuum.
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APPENDIX A: FADDEEV-POPOV METHOD AND
GRIBOV PROBLEM

The standard approach to (non-Abelian) gauge fixing is
the Faddeev-Popov method. Let us briefly recall it in the
slightly generalized framework of [4–6]. In this modified
approach one generalizes the usual representation of unity
(3) to the topological invariant

N½A� ¼
Z

D�a DetM½A��
�
�Sfix½A��
��aðxÞ

�
; (A1)

M½A�abðx; yÞ ¼ �2Sfix½A��
��aðxÞ��bðyÞ : (A2)

Under the idealizing assumption that there is a unique
solution to the gauge fixing condition (featuring in the
�-function in (A1)) the standard identity (3) is recovered,

N½A� ¼ 1; (A3)

with a gauge invariant Faddeev-Popov determinant,
DetM½A� ¼ DetM½Ag�. This may in turn be used to remove
the gauge group volume from the partition function,

Z ¼
Z

DA� eS½A�

¼
Z

DA� D�bDetM½A��
�
�Sfix½A��
��aðxÞ

�
eSYM½A�

¼
Z

DA�
� D�bDetM½A���

�
�Sfix½A��
��aðxÞ

�
eSYM½A��;

exploiting the invariance of the Haar measure, the action,
and the Faddeev-Popov determinant. Interchanging the
order of integration and renaming A�

� ! A� finally yields

Z ¼
�Z

D�b
�Z

DA� DetM½A��
�
�Sfix½A�
��aðxÞ

�
eSYM½A�:

(A4)

The latter equation is the desired result: the trivial factor
from the gauge degeneracy has been factored out from the
partition function, and the residual integration can be
straightforwardly evaluated by means of perturbation
theory.
The crucial observation, due to Gribov [2], is that the

gauge fixing condition has many solutions. Hence, the
group integration in (A1) becomes a sum over all residual
gauge transformations which cast a given background field
A� into one of its Gribov copies. Because of the compact-

ness of the group integration this implies that (A3) is
actually replaced by

N½A� ¼ 0; (A5)

so that also this generalized Faddeev-Popov approach re-
mains ill defined [5,6].

APPENDIX B: CHRIST-LEE MODEL REVISITED

In order to make contact with the Faddeev-Popov
method we need to evaluate, from (12), the expression

Seff½x� ¼ Sfix½x� � ln
Z

d� eSfix½x��

for large values of �, and for an arbitrary Sfix. To this end,
let �0 denote the gauge transformation which transports
the vector x along its orbit to the global maximum of the
gauge fixing action. For large �we may use a semiclassical
approximation to evaluate Seff , via

ln
Z

d� eSfix½x�� ¼ Sfix½x�0� � 1

2
lnM½x� þ ln

ffiffiffiffiffiffiffi
2�

p
; (B1)

M½x� ¼ �@2Sfix½x��
@�2

���������¼�0

; (B2)

where M is the gauge invariant ‘‘Faddeev-Popov matrix.’’
It follows that (12) becomes

Z ¼ ð2�Þ
Z

d2x eSCLðxÞeSfix½x��Sfix½x�0 �eð1=2Þ lnM½x��ln
ffiffiffiffiffi
2�

p
:

(B3)

For Sfix½x�� as in (9) with v ¼ ð1; 0Þ and for a given vector
x ¼ ðx; yÞ, �0½x� is defined by

x cos�0 � y sin�0!�0
max:

This implies

x cos�0½x� � y sin�0½x� ¼ r;

Sfix½x�0� ¼ ��

2
ðr� 1Þ2;
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and indeed the Faddeev-Popov matrix is gauge invariant,
M½x� ¼ �r.

Returning to a general Sfix, consider the weight factor
PðxÞ ¼ expfSfix½x� � Sfix½x�0�g. This will restrict the field
(here, x) integration to the FMR for large values of �. To
show this, it is convenient to decompose the vector x into a
part xFMR 2 FMR and a fluctuation along the gauge orbit,

x ¼ x’FMR:

In contrast to the Faddeev-Popov approach, this must not
be done for the 2-dimensional space as a whole but only
locally for x close to the FMR. Since

@Sfix½x’�
@’

��������x2xFMR

¼ 0;

we are led to

e Sfix½x��Sfix½x’0 � ¼ hðxFMRÞ�
�
@Sfix½x’�

@’

��������x2xFMR

�
: (B4)

The weight function hðxFMRÞ can be calculated by integrat-
ing ’ over a small interval around zero. We will assume
that the map x $ ðxFMR; ’Þ is invertible for x in a region
around the FMR. We stress, however, that this depends on

the gauge choice and might not be the case for more
general settings thus hinting at a shortcoming of the
Faddeev-Popov approach. Under the above assumption,
we use

Z
d’MðxFMRÞ�

�
@Sfix½x’�

@’

��������x2xFMR

�
¼ 1

and find

hðxFMRÞ ¼
Z

d’MðxFMRÞeSfix½x��Sfix½x’0 �

¼� MðxFMRÞ
Z

d’ e�ð1=2ÞMðxFMRÞ’2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MðxFMRÞ

q
: (B5)

Inserting (B4) and (B5) in (B3), we finally obtain the
desired result,

Z ¼ ð2�Þ
Z

d2x eSCLðxÞMðxFMRÞ�
�
@Sfix½x’�

@’

��������x2xFMR

�
;

(B6)

which is the starting point of the Faddeev-Popov method.
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