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In this paper the problem of high-energy hadron-hadron (dipole-dipole) scattering is approached (for

the first time) from the point of view of lattice QCD, by means of Monte Carlo numerical simulations. In

the first part, we give a brief review of how high-energy scattering amplitudes can be reconstructed, using

a functional-integral approach, in terms of certain correlation functions of two Wilson loops, and we also

briefly recall some relevant analyticity and crossing-symmetry properties of these loop-loop correlation

functions, when going from Euclidean to Minkowskian theory. In the second part, we shall see how these

(Euclidean) loop-loop correlation functions can be evaluated in lattice QCD, and we shall compare our

numerical results with some nonperturbative analytical estimates that appeared in the literature, discus-

sing, in particular, the question of the analytic continuation from Euclidean to Minkowskian theory and its

relation to the still unsolved problem of the asymptotic s dependence of the hadron-hadron total cross

sections.
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I. INTRODUCTION

One of the most important open problems in hadronic
physics (studied since long before the discovery of QCD) is
to explain/predict the (asymptotic) high-energy behavior of
hadron-hadron total cross sections. Present-day experi-
mental observations (up to center-of-mass total energyffiffiffi
s

p ¼ 1:8 TeV) seem to be well described by a Pomeron-
like high-energy behavior (see, for example, Ref. [1] and
references therein):

�ðhhÞ
tot ðsÞ �

s!1�
ðhhÞ
0

�
s

s0

�
�P
; with �P ’ 0:08: (1.1)

This behavior is known in the literature as the soft
Pomeron, to be distinguished from the well-known BFKL

(or hard) Pomeron [2], i.e., �sð�s=�Þ12 log2, with �s ¼
g2=4�, obtained in perturbative QCD. As we believe
QCD to be the fundamental theory of strong interactions,
we also expect that it correctly predicts from first principles
the behavior of hadronic total cross sections with energy.
Anyway, in spite of all the efforts, a satisfactory solution to
this problem is still lacking.

We should also remind the reader at this point that the
Pomeron-like behavior (1.1) is, strictly speaking, theoreti-
cally forbidden (at least if considered as a true asymptotic
behavior) by the well-known Froissart-Lukaszuk-Martin
(FLM) theorem [3] (see also [4]), according to which, for
s ! 1, �totðsÞ � �

m2
�
log2ð ss0Þ, where m� is the pion mass

and s0 is an unspecified squared mass scale. In this respect,
the Pomeron-like behavior (1.1) can, at most, be regarded
as a sort of preasymptotic (but not really asymptotic)
behavior of the high-energy total cross sections (see, e.g.,

Refs. [5–7] and references therein), valid in a certain high-
energy range.
From a general theoretical point of view, the optical

theorem (which is a consequence of unitarity) allows one
to derive hadron-hadron total cross sections from the ex-
pressions of the hadron-hadron elastic scattering ampli-
tudes MðhhÞðs; tÞ (t being the transferred momentum

squared):

�ðhhÞ
tot ðsÞ �

s!1
1

s
ImMðhhÞðs; t ¼ 0Þ: (1.2)

High-energy hadron-hadron elastic scattering processes at
low transferred momentum (usually called soft high-
energy scattering processes) possess two different and
widely separated energy scales: the center-of-mass total
energy squared s, which is a hard scale (s � 1 GeV2:
formally, we consider the limit s ! 1), and the transferred
momentum squared t, which is a soft scale, smaller than (or
nearly equal to) the typical energy scale of strong inter-
actions (jtj & 1 GeV2 � s). In this energy regime we
cannot fully rely on perturbation theory, and a genuine
nonperturbative treatment is in order.
Since Nachtmann’s seminal paper in 1991 [8], a lot of

work has been done on the problem of soft high-energy
scattering in the framework of nonperturbative QCD [9–
13]. Using a functional-integral approach, hadron-hadron
elastic scattering amplitudes are reconstructed from the
correlation functions of certain Wilson loops, defined in
Minkowski space-time (see Sec. II below). As it has been
shown in [14–17] (see Sec. II below), such correlation
functions can be recovered after proper analytic continu-
ation from their Euclidean counterparts, i.e., correlation
functions of certain Wilson loops forming an angle � in
Euclidean space: this has paved the way to the application
of nonperturbative techniques, which are normally avail-
able only in the Euclidean formulation of QCD. Some

*matteo.giordano@df.unipi.it
+enrico.meggiolaro@df.unipi.it

PHYSICAL REVIEW D 78, 074510 (2008)

1550-7998=2008=78(7)=074510(21) 074510-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.074510


calculations of the loop-loop Euclidean correlation func-
tions already exist in the literature (see Sec. IV below),
using the so-called stochastic vacuum model (SVM) [18],
the instanton liquid model (ILM) [19], or the AdS/CFT
correspondence for strongly coupled gauge theories in the
limit of a large number of colors [20–22]. The Euclidean
correlator is then continued to the corresponding
Minkowskian correlation function using the above-
mentioned analytic continuation in the angular variables.
The loop-loop correlation functions (both in the
Minkowskian and in the Euclidean theories) have also
been computed exactly in the first two orders of perturba-
tion theory, Oðg4Þ and Oðg6Þ, in Ref. [5].

Of course, each of these models, used in the calculation
of the Euclidean correlation functions, has its own limita-
tions, which are reflected in the variety of answers in the
literature: someone finds constant cross sections, someone
else finds a soft-Pomeron behavior, someone else finds a
hard-Pomeron behavior . . . [and maybe the true asymptotic
behavior is log2ðs=s0Þ, thus saturating the FLM bound].
Unfortunately, these limitations are often out of control, in
the sense that one does not know how much information is
lost due to the involved approximations. This is surely a
crucial point which, in our opinion, should be further
investigated. (For example, in Ref. [23] it has been shown
that the Euclidean-to-Minkowskian analytic-continuation
approach can, with the inclusion of some extra, more or
less plausible, assumptions, easily reproduce a preasymp-
totic Pomeron-like behavior, like the one in (1.1), which
violates the FLM bound.)

A real breakthrough in this direction could be provided
by a direct numerical calculation of the loop-loop
Euclidean correlation function in lattice gauge theory
(LGT). In particular, one is interested in the dependence
of the correlation function on the angle � between the
loops, from which the energy dependence of the physical
scattering amplitudes can be derived after a proper analytic
continuation to Minkowski space-time. Clearly, a lattice
approach can, at most, give the above-mentioned function
only for a finite set of � values, from which it is clearly
impossible (without some extra assumption on the inter-
polating continuous function) to get, by analytic continu-
ation, the corresponding Minkowskian correlation function
(and, from this, the elastic scattering amplitudes and the
total cross sections). However, the lattice approach, which
provides a real first-principle determination of the loop-
loop correlator in Euclidean space, can be used to inves-
tigate the goodness of a given existing analytic model (such
as SVM, ILM, AdS/CFT, and so on . . .), or even to open the
way to some new models, simply by trying to fit the lattice
data with the considered model. This is exactly what we
shall try to do in this paper.

The plan of this paper is the following. In Sec. II we give
(for the benefit of the reader) a brief review of how high-
energy scattering amplitudes can be reconstructed, using a

functional-integral approach, in terms of certain correla-
tion functions of two Wilson loops, and we also briefly
recall some relevant analyticity and crossing-symmetry
properties of these loop-loop correlation functions, when
going from Euclidean to Minkowskian theory. In Sec. III
we shall see how these (Euclidean) loop-loop correlation
functions can be evaluated in lattice QCD and discuss the
main technical complications. In Sec. IV we shall compare
our numerical results with some analytical nonperturbative
estimates that appeared in the literature, discussing, in
particular, the question of the analytic continuation from
Euclidean to Minkowskian theory and its relation to the
still unsolved problem of the asymptotic s dependence of
the hadron-hadron total cross sections. In Sec. V we draw
our conclusions and show some prospects for the future.

II. HADRON-HADRON (DIPOLE-DIPOLE)
SCATTERING AMPLITUDES FROM
WILSON-LOOP CORRELATORS

It was shown in Refs. [9–11] (for a review see
Refs. [1,12]) that the high-energy meson-meson elastic
scattering amplitude can be approximately reconstructed
in two steps.
(i) One first evaluates, in the functional-integral ap-

proach, the high-energy elastic scattering amplitude
MðddÞ of two q �q pairs (usually called dipoles) of given

transverse sizes ~R1? and ~R2? and given longitudinal-
momentum fractions f1 and f2 of the two quarks in the
two dipoles, respectively. This dipole-dipole scattering
amplitude turns out to be governed by the (properly nor-
malized) correlation function of two Wilson loops, W 1

andW 2, which follow the classical straight lines for quark
(antiquark) trajectories:

MðddÞðs; t; ~R1?; f1; ~R2?; f2Þ

� �i2s
Z

d2 ~z?ei ~q?� ~z?
� hW 1W 2i
hW 1ihW 2i

� 1

�
; (2.1)

where s and t ¼ �j ~q?j2 ( ~q? being the transferred momen-
tum) are the usual Mandelstam variables. The expectation
values hW 1W 2i, hW 1i, hW 2i are averages in the sense

of the QCD functional integral (hO½A�i � 1
Z

R½dA�O½A�	
detQ½A�eiS½A�, Z � R½dA� detQ½A�eiS½A�, with S½A� the
pure-gauge action and detQ½A� the fermion-matrix deter-
minant), and the Wilson loopsW 1 andW 2 are defined as
follows (for Nc-color QCD):

W ðTÞ
1;2 �

1

Nc

Tr

�
P exp

�
�ig

I
C1;2

A�ðxÞdx�
��
; (2.2)

where P denotes the path ordering along the given path C
and A� ¼ Aa

�T
a, Ta being the generators of the SUðNcÞ

Lie algebra in the fundamental representation; C1 and C2
are two rectangular paths which follow the classical
straight lines for the quark [Xqð�Þ, forward in proper time
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�] and the antiquark [X �qð�Þ, backward in �] trajectories,

i.e.,

C1: X
�
1qð�Þ ¼ z� þ p

�
1

m
�þ ð1� f1ÞR�

1 ;

X
�
1 �qð�Þ ¼ z� þ p�

1

m
�� f1R

�
1 ;

C2: X
�
2qð�Þ ¼

p�
2

m
�þ ð1� f2ÞR�

2 ;

X�
2 �qð�Þ ¼

p�
2

m
�� f2R

�
2 ;

(2.3)

and are closed by straight-line paths at proper times � ¼

T, where T plays the role of an infrared (IR) cutoff
[16,24], which can and must be removed in the end, by
letting T ! 1. (In fact, differently from the parton-parton
scattering amplitudes, which are known to be affected by
IR divergences, the elastic scattering amplitude of two
colorless states in gauge theories, e.g., two q �q meson
states, is expected to be an IR-finite physical quantity [25].)

Here p1 and p2 are the four-momenta of the two dipoles,
taken, for simplicity, with the same massm, moving (in the
center-of-mass frame) with speed V and �V along, for
example, the x1 direction:

p1 ¼ m

�
cosh

�

2
; sinh

�

2
; ~0?

�
;

p2 ¼ m

�
cosh

�

2
;� sinh

�

2
; ~0?

�
:

(2.4)

Here � ¼ 2 arctanhV is the hyperbolic angle between the
two trajectories 1q and 2q, i.e., p1 � p2 ¼ m2 cosh�. In the
high-energy limit s ! 1 (i.e., � ! þ1),

s � ðp1 þ p2Þ2 ¼ 2m2ðcosh�þ 1Þ;

i:e:; � �
s!1 log

�
s

m2

�
:

(2.5)

Moreover, R1 ¼ ð0; 0; ~R1?Þ, R2 ¼ ð0; 0; ~R2?Þ, and z ¼
ð0; 0; ~z?Þ, where ~z? ¼ ðz2; z3Þ is the impact-parameter dis-
tance between the two loops in the transverse plane. The
two Wilson loops are schematically shown in Fig. 1.

If we introduce the following notation for the normal-
ized connected loop-loop correlator (in the presence of a
finite IR cutoff T),1

G Mð�;T; ~z?; 1; 2Þ � hW ðTÞ
1 W ðTÞ

2 i
hW ðTÞ

1 ihW ðTÞ
2 i � 1; (2.6)

where the arguments ‘‘1’’ and ‘‘2’’ stand for ‘‘ ~R1?, f1’’ and
‘‘ ~R2?, f2,’’ respectively, the dipole-dipole scattering am-
plitude (2.1) can be rewritten as

MðddÞðs; t; ~R1?; f1; ~R2?; f2Þ
¼ �i2s

Z
d2 ~z?ei ~q?� ~z?

	GM

�
� �
s!1 log

�
s

m2

�
;T ! þ1; ~z?; 1; 2

�
: (2.7)

(ii) The hadron-hadron (in our case, meson-meson)
elastic scattering amplitude MðhhÞ can then be obtained

by averaging the dipole-dipole scattering amplitude (2.7)

over all possible dipole transverse separations ~R1? and ~R2?
and longitudinal-momentum fractions f1 and f2 with two

proper squared hadron wave functions jc 1ð ~R1?; f1Þj2 and
jc 2ð ~R2?; f2Þj2, describing the two interacting mesons:

MðhhÞðs; tÞ ¼
Z

d2 ~R1?
Z 1

0
df1jc 1ð ~R1?; f1Þj2

	
Z

d2 ~R2?
Z 1

0
df2jc 2ð ~R2?; f2Þj2

	MðddÞðs; t; ~R1?; f1; ~R2?; f2Þ: (2.8)

(For the treatment of baryons, a similar, but of course more
involved, picture can be adopted, using a genuine three-
body configuration or, alternatively and even more simply,
a quark-diquark configuration: we refer the interested
reader to the above-mentioned original references [1,9–
12].)
All the above refers to the theory in the (physical)

Minkowski space-time. However, as we have already ob-
served in the Introduction, most of the nonperturbative
methods in field theory are available only in the
functional-integral approach formulated in Euclidean
space: therefore, we are interested in the problem of the
analytic continuation of the loop-loop correlation func-

FIG. 1. The space-time configuration of the two Wilson loops
W 1 and W 2 entering in the expression for the dipole-dipole
elastic scattering amplitude in the high-energy limit.

1The quantity GM in Eq. (2.6) is equal to the quantity GM � 1
of Refs. [16,17,23,26].
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tions into/from Euclidean space. In the Euclidean theory
we can consider the correlation function of two Euclidean

Wilson loops ~W 1 and ~W 2, defined in the same way as
they are in Minkowski space-time, taking into account that
the metric is now Euclidean rather than Minkowskian, and

running along two rectangular paths, ~C1 and ~C2, which
follow the straight-line trajectories

~C1: X
1q
E�ð�Þ ¼ zE� þ p1E�

m
�þ ð1� f1ÞR1E�;

X1 �q
E�ð�Þ ¼ zE� þ p1E�

m
�� f1R1E�;

~C2: X
2q
E�ð�Þ ¼

p2E�

m
�þ ð1� f2ÞR2E�;

X2 �q
E�ð�Þ ¼

p2E�

m
�� f2R2E�;

(2.9)

and are closed by straight-line paths at proper times � ¼

T. Here the Euclidean coordinates are XE� ¼
ðXE1; XE2; XE3; XE4Þ, where XE4 corresponds to the

‘‘Euclidean time,’’ and R1E ¼ ð0; ~R1?; 0Þ, R2E ¼
ð0; ~R2?; 0Þ and zE ¼ ð0; ~z?; 0Þ, where ~R1?, ~R2?, and ~z?
are exactly the same transverse vectors introduced in the
Minkowskian case. Moreover, in the Euclidean theory we
choose the four-vectors p1E and p2E to be

p1E ¼ m

�
sin

�

2
; ~0?; cos

�

2

�
;

p2E ¼ m

�
� sin

�

2
; ~0?; cos

�

2

�
;

(2.10)

� being the angle formed by the two trajectories 1q and 2q
in Euclidean four-space, i.e., p1E � p2E ¼ m2 cos�.

It turns out that the Minkowskian quantity GM (with
� 2 Rþ) can be reconstructed from the corresponding
Euclidean quantity [with � 2 ð0; �Þ],

G Eð�;T; ~z?; 1; 2Þ � h ~W ðTÞ
1

~W ðTÞ
2 i

h ~W
ðTÞ
1 ih ~W

ðTÞ
2 i

� 1; (2.11)

(where h. . .i are now averages in the sense of the Euclidean

functional integral, i.e., hO½AE�i � 1
ZE

R½dAE�O½AE�	
detQE½AE�e�SE½AE�, ZE � R½dAE� detQE½AE�e�SE½AE�,
with SE½AE� the pure-gauge Euclidean action and
detQE½AE� the Euclidean fermion-matrix determinant)2

by an analytic continuation in the angular variables � !
�i� and in the IR cutoff T ! iT, exactly as in the case of
Wilson lines [14–16]. This result [16,17] is derived under

certain hypotheses of analyticity in the angular variables
and in the IR cutoff T. In particular, one makes the as-
sumption [26] that the function GE, as a function of the
complex variable �, can be analytically extended from the
real segment (0< Re� < �, Im� ¼ 0) to a domain DE,
which also includes the negative imaginary axis (Re� ¼
0þ , Im� < 0); therefore, the functionGM, as a function of
the complex variable �, can be analytically extended from
the positive real axis (Re�> 0, Im� ¼ 0þ ) to a domain
DM ¼ f� 2 Cj � i� 2 DEg, which also includes the
imaginary segment (Re� ¼ 0, 0< Im�< �). The validity
of this assumption is confirmed by explicit calculations in
perturbation theory [5,14,17]. The domains DE and DM

are schematically shown in Fig. 2. Denoting with �GM and
�GE such analytic extensions, we then have the following
analytic-continuation relations [17,26]:

�GEð�;T; ~z?; 1; 2Þ ¼ �GMði�;�iT; ~z?; 1; 2Þ; 8 � 2 DE;

�GMð�;T; ~z?; 1; 2Þ ¼ �GEð�i�; iT; ~z?; 1; 2Þ; 8 � 2 DM:

(2.12)

FIG. 2 (color online). The analyticity domains of the function
�GE in the complex variable � and of the function �GM in the
complex variable �.

2We note here that, exploiting the invariance of the theory
under charge conjugation (C), one can show that the correlation
function GE, as well as the quantity CE to be defined below in
Eq. (2.13), is a real quantity (differently from the corresponding
Minkowskian correlator). In fact, under a C transformation,
AE� ! AðcÞ

E� ¼ �At
E� ¼ �A�

E�, the integration measure ½dAE�,
the gauge-field action SE, and the fermion-matrix determinant
detQE½AE� (which are real quantities) are invariant, while a

Wilson loop ~W goes into its complex conjugate ~W �
.
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As we have said above, the loop-loop correlation functions
(both in the Minkowskian and in the Euclidean theories)
are expected to be IR-finite quantities, i.e., to have finite
limits when T ! 1, differently from what happens in the
case of Wilson lines. One can then define the following
loop-loop correlation functions with the IR cutoff re-
moved:

C Mð�; ~z?; 1; 2Þ � lim
T!1GMð�;T; ~z?; 1; 2Þ;

CEð�; ~z?; 1; 2Þ � lim
T!1GEð�;T; ~z?; 1; 2Þ:

(2.13)

It has been proved in Ref. [17] that, under certain analy-
ticity conditions in the complex variable T [conditions
which are also sufficient to make the relations (2.12) mean-
ingful], the two quantities (2.13), obtained after the re-
moval of the IR cutoff (T ! 1), are still connected by the
usual analytic continuation in the angular variables only:

�C Eð�; ~z?; 1; 2Þ ¼ �CMði�; ~z?; 1; 2Þ; 8 � 2 DE;

�CMð�; ~z?; 1; 2Þ ¼ �CEð�i�; ~z?; 1; 2Þ; 8 � 2 DM:

(2.14)

This is a highly nontrivial result, whose general validity is
discussed in Ref. [17]. The validity of the relation (2.14) for
the loop-loop correlators in QCD has also been verified in
Ref. [5] by an explicit calculation up to the order Oðg6Þ in
perturbation theory. However, we want to stress that the
analytic continuation (2.12) or (2.14) is expected to be an
exact result, i.e., not restricted to some order in perturba-
tion theory or to some other approximation, and is valid
both for the Abelian and the non-Abelian cases.

It has also been recently shown in Refs. [23,26] that the
analytic-continuation relations (2.12) allow us to deduce
nontrivial properties of the Euclidean correlator GE under
the exchange � ! �� � and of the Minkowskian corre-
lator GM under the exchange � ! i�� �, corresponding
to the exchange from a loop-loop correlator to a loop-
antiloop correlator, where an antiloop is obtained from a
given loop by exchanging the quark and the antiquark
trajectories:

GEð���;T; ~z?;1;2Þ
¼GEð�;T; ~z?;1; �2Þ¼GEð�;T; ~z?; �1;2Þ; 8 �2ð0;�Þ;

�GMði���;T; ~z?;1;2Þ
¼GMð�;T; ~z?;1; �2Þ¼GMð�;T; ~z?; �1;2Þ; 8 �2Rþ;

(2.15)

where the arguments ‘‘�1’’ and ‘‘�2’’ stand for ‘‘� ~R1?,
1� f1’’ and ‘‘� ~R2?, 1� f2,’’ respectively. These two
relations are known as crossing-symmetry relations for
loop-loop correlators. As they are valid for every value of
the IR cutoff T, completely analogous relations also hold
for the loop-loop correlation functions CM and CE with the
IR cutoff removed (T ! 1), defined in Eq. (2.13):

CEð�� �; ~z?; 1; 2Þ
¼ CEð�; ~z?; 1; �2Þ ¼ CEð�; ~z?; �1; 2Þ; 8 � 2 ð0; �Þ;

�CMði�� �; ~z?; 1; 2Þ
¼ CMð�; ~z?; 1; �2Þ ¼ CMð�; ~z?; �1; 2Þ; 8 � 2 Rþ:

(2.16)

Taking into account the aforementioned analytic-
continuation relations, we can rewrite Eq. (2.8) in terms
of the Euclidean correlation function CE as

MðhhÞðs;tÞ¼�i2s
Z
d2 ~R1?

Z 1

0
df1jc 1ð ~R1?;f1Þj2

Z
d2 ~R2?

	
Z 1

0
df2jc 2ð ~R2?;f2Þj2

Z
d2 ~z?ei ~q?�~z?

	CE

�
�!�i log

�
s

m2

�
; ~z?; ~R1?;f1; ~R2?;f2

�
:

(2.17)

By virtue of the optical theorem, Eq. (1.2), the total cross
section is then given by the expression

�ðhhÞ
tot ðsÞ �

s!1 � 2Re
Z

d2 ~R1?
Z 1

0
df1jc 1ð ~R1?; f1Þj2

	
Z

d2 ~R2?
Z 1

0
df2jc 2ð ~R2?; f2Þj2

Z
d2z?

	 CE

�
� ! �i log

�
s

m2

�
; ~z?; ~R1?; f1; ~R2?; f2

�
:

(2.18)

If one chooses hadron wave functions invariant under
rotations and under the exchange fi ! 1� fi (see
Refs. [12,13] and also [1], Sec. 8.6, and references therein),
the correlation function CE in Eqs. (2.17) and (2.18) can be
substituted (without changing the result) with the follow-
ing averaged correlation function:

CaveE ð�; ~z?; j ~R1?j; f1; j ~R2?j; f2Þ
�

Z
dR̂1?

Z
dR̂2?

1

4
fCEð�; ~z?; ~R1?; f1; ~R2?; f2Þ

þ CEð�; ~z?; ~R1?; 1� f1; ~R2?; f2Þ
þ CEð�; ~z?; ~R1?; f1; ~R2?; 1� f2Þ
þ CEð�; ~z?; ~R1?; 1� f1; ~R2?; 1� f2Þg; (2.19)

where
R
dR̂i? stands for integration over the orientations

of ~Ri?. We note here that, as a consequence of the crossing-
symmetry relations, Eq. (2.16), the function CaveE is auto-
matically crossing-symmetric, i.e., CaveE ð�� �; . . .Þ ¼
CaveE ð�; . . .Þ, for fixed values of the other variables.
In the following, if not specified otherwise, we will take,

for simplicity, the longitudinal-momentum fractions f1 and
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f2 of the two quarks in the two dipoles (and, therefore, also
the longitudinal-momentum fractions 1� f1 and 1� f2 of
the two antiquarks in the two dipoles) to be fixed to 1=2:
this is known to be a good approximation for hadron-
hadron interactions (see Refs. [1,12] and references
therein). We will also adopt the notation

GEð�; T; ~z?; ~R1?; ~R2?Þ � GEð�; T; ~z?; ~R1?; f1 ¼ 1
2 ;

~R2?;
f2 ¼ 1

2Þ, and similarly for CE and CaveE . Note that in this

case the quantity CaveE reduces to the average over the
transverse orientations only:

CaveE ð�; ~z?; j ~R1?j; j ~R2?jÞ
¼

Z
dR̂1?

Z
dR̂2?CEð�; ~z?; ~R1?; ~R2?Þ: (2.20)

In the next section we will show how it is possible to
calculate these Euclidean correlation functions in LGT
and discuss the main technical difficulties of this approach.

III. LOOP-LOOP CORRELATORS ON THE
LATTICE

Being a gauge-invariant quantity, the Wilson-loop cor-
relation function GE is a natural candidate for a lattice
computation; nevertheless, a number of complications
arise because of the explicit breaking of Oð4Þ invariance
on a lattice. The major complication is due to the limited
number of possible orientations of rectangular loops on the
lattice. As straight lines on a hypercubic lattice can be
either parallel or orthogonal, the values of � directly ac-
cessible are limited to 0�, 90�, and 180�. To cover a
significantly large set of angles, we then have to make
use of off-axis (and so, nonplanar) Wilson loops, thus
introducing in our approach another approximation that
should be carefully discussed.

The loops involved in the calculation of GE have one
side (from now on, the longitudinal side) in the ðxE1; xE4Þ
(longitudinal) plane and the other (transverse side) in the
ðxE2; xE3Þ (transverse) plane, and their centers are separated
in the transverse plane so that the problem of reproducing
the loop configuration consists effectively of two distinct
two-dimensional problems. It is reasonable to evaluate the
loop sides on the lattice paths that minimize the distance
from the true, continuum paths, in order to stay as ‘‘close’’
as possible to the continuum limit, adopting essentially the
same strategy as in computer graphics when drawing
straight lines on a screen (see Fig. 3); such ‘‘minimal-
distance paths’’ can be found in a very efficient way by
means of the well-known Bresenham algorithm [27],
which has already been used in lattice calculations (see
e.g. [28], where it is also generalized to the three-
dimensional case). To every straight path, having as end-
points two coplanar lattice points, we can then associate
unambiguously a Wilson line on the lattice by means of the

minimal-distance prescription,3 and then build the Wilson
loops we are interested in. Such loops are identified by the
position of the center and by two two-dimensional lattice

vectors; we thus define ~W Lð~lk; ~r?; nÞ to be the lattice

Wilson loop evaluated on the minimal path that approx-
imates the rectangle having as corners the lattice points
n� l=2� r=2, nþ l=2� r=2, nþ l=2þ r=2, and n�
l=2þ r=2, where n, l, and r are vectors in lattice units, n

is the position of the center, and4 ~lk ¼ ðl1; l4Þ, l2 ¼ l3 ¼ 0,
~r? ¼ ðr2; r3Þ, r1 ¼ r4 ¼ 0.
On the lattice we then define the correlator

GLð~l1k; ~l2k; ~d?; ~r1?; ~r2?Þ

� h ~W Lð~l1k; ~r1?; dÞ ~W Lð~l2k; ~r2?; 0Þi
h ~W Lð~l1k; ~r1?;dÞih ~W Lð~l2k; ~r2?; 0Þi

� 1; (3.1)

where d ¼ ð0; ~d?; 0Þ, ~d? ¼ ðd2; d3Þ. As (full) Oð4Þ invari-
ance is broken, this correlator depends explicitly on the

(two-dimensional) lattice vectors ~lik, ~ri? (i ¼ 1, 2), and ~d?
rather than on their scalar products: indeed, for a given
relative orientation we can find different realizations in
terms of lattice vectors, generally inequivalent as they
involve different Wilson-loop operators. Anyway, as rota-
tion invariance is restored in the continuum limit, we
expect

GLð~l1k; ~l2k; ~d?; ~r1?; ~r2?Þ
’

a!0
GEð�;T1 ¼ aL1=2; T2 ¼ aL2=2; a ~d?;a~r1?; a~r2?Þ;

(3.2)

FIG. 3. The minimal-distance prescription for a line with slope
tan� ¼ 1=2.

3For lines inclined at 45� with respect to an axis, a certain
ambiguity remains, but we can average over equivalent paths.

4The components of l and r must be integers. Note that the
center of the loop may not lie on a lattice point.
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where Li � j~likj are what we define to be the lengths of the
longitudinal sides of the loops in lattice units (from now

on, ‘‘lengths’’), and ~l1k � ~l2k � L1L2 cos�. As it is impos-

sible, in general, to have L1 ¼ L2, we have relaxed this
condition and have considered in Eq. (3.2) the correlation
function with two IR cutoffs, T1 and T2,

G Eð�;T1; T2; ~z?; ~R1?; ~R2?Þ � h ~W
ðT1Þ
1

~W
ðT2Þ
2 i

h ~W ðT1Þ
1 ih ~W ðT2Þ

2 i
� 1;

(3.3)

where, with a little abuse of notation, we have kept the
same notation for the correlation function as in Eq. (2.11).
As already pointed out in Sec. II, the correlator GE is
expected to be an IR-finite quantity, so that we can regu-
larize it considering loops with different lengths T1 and T2

and taking the limits T1, T2 ! 1 independently, obtaining
the same function CE defined in Eq. (2.13).

On top of these field theoretical complications, we have
to face the numerical difficulty (or even feasibility) of a
lattice ‘‘measurement’’ of the relevant correlation function
of Wilson loops. The Wilson-loop expectation value is
known to obey an ‘‘area law,’’ i.e., to vanish exponentially
with its area for large areas; moreover, in the ’t Hooft
large-Nc expansion with g2Nc kept constant, such correla-
tors are known to factorize to leading order, thus giving

GE ¼ h ~W
ðTÞ
1

~W
ðTÞ
2 i

h ~W ðTÞ
1 ih ~W ðTÞ

2 i
� 1

¼
h ~W ðTÞ

1 ih ~W ðTÞ
2 i þOð 1

N2
c
Þ

h ~W
ðTÞ
1 ih ~W

ðTÞ
2 i

� 1

¼ O
�
1

N2
c

�
: (3.4)

We then expect GE to be a small quantity, obtained from
the ratio of two exponentially decreasing quantities as T
becomes large. Moreover, general considerations make

plausible a behavior of the kind GE � e�	j~z?j at large
separations, and thus we expect the noise to overcome
the signal after a few lattice spacings.

We can try to maximize the information obtained from
each thermalized configuration, in order to reduce the
statistical noise, by exploiting the symmetries of the lattice.
It is easy to see that the chosen prescription for the con-
struction of loops is consistent with lattice rotations and
reflections [i.e., the cubic subgroup ofOð4Þ], in the follow-
ing sense. One can perform a cubic transformation on a
Wilson loop (in the continuum), and then construct its
lattice approximation with the given prescription, or alter-
natively construct first the lattice approximation and then
perform the same cubic transformation (this time on the
lattice), and in both cases one would obtain the same result.
We can then average over cubic transformations of the

whole loop configuration and, imposing periodic boundary
conditions, we can average over lattice translations as well;
to further clarify the numerical signal we can also use the
identities

G Lð~l1k; ~l2k; ~d?; ~r1?; ~r2?Þ ¼ GLð~l1k; ~l2k;� ~d?;�~r1?;�~r2?Þ
¼ GLð~l1k; ~l2k;� ~d?; ~r1?; ~r2?Þ
¼ GLð~l1k; ~l2k; ~d?;�~r1?;�~r2?Þ;

(3.5)

which can be proved using invariance under cubic symme-
try and the trivial fact that

~W Lð~lk;�~r?;nÞ ¼ ~W Lð�~lk; ~r?; nÞ: (3.6)

IV. NUMERICAL RESULTS

We have performed a Monte Carlo calculation of the
correlation function GL of two Wilson loops for several
values of the relative angle, various lengths, and different
configurations in the transverse plane, on a 164 hypercubic
lattice with periodic boundary conditions. The link con-
figurations were generated by means of a mixture of
(pseudo)heatbath [29–31] and overrelaxation steps [32]
with the usual Wilson action for SUð3Þ pure-gauge theory
[33], also known in the literature as the quenched approxi-
mation of QCD, which consists in neglecting dynamical
fermion loops by setting the fermion-matrix determinant to
a constant. Even though, of course, we cannot exclude that
the inclusion of dynamical-fermion effects, via the
fermion-matrix determinant, could introduce new features
in the data, in this paper (which, we want to stress, is the
first to approach this problem from the point of view of
lattice QCD) we have preferred to make the easiest and
most convenient choice that gives us the possibility of
collecting large statistics (also considering the various
difficulties in measuring the correlation functions GL, as
explained in the previous section).
We have measured the correlation functions

h ~W L1
~W L2i and the loop expectation values h ~W L1i and

h ~W L2i, with ~W L1 � ~W Lð~l1k; ~r1?; dÞ and ~W L2 �
~W Lð~l2k; ~r2?; 0Þ, on 30 000 thermalized configurations at


 � 6=g2 ¼ 6:0. As it is well known, the lattice spacing a
is related to the bare coupling constant g (i.e., to
) through
the renormalization group equation. The lattice scale, i.e.,
the value of a in physical units, is determined from the
physical value of some relevant (dimensionful) observable
like the string tension or the static q �q force at some fixed
distance (‘‘Sommer scale’’) (see e.g. Ref. [34] and refer-
ences therein): in our case one finds that að
 ¼ 6:0Þ ’
0:1 fm. The choice of 
 ¼ 6:0 on a 164 lattice is made
in order to stay within the so-called ‘‘scaling window’’: in
this sense we are relying in an indirect way on the validity
of the relation (3.2) between Wilson-loop correlation func-
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tions on the lattice and in the continuum (and therefore we
shall use the notation GE=CE of the continuum in all the
figures reporting our lattice data). An explicit test of scal-
ing in our case is more difficult, as one has to keep a large
number of length scales under control while varying the
lattice spacing. A possibility could be to integrate over the
distance and the sizes of the loops and then study the
scaling properties of the resulting quantity, although this
seems to be a very hard task.

To keep the corrections due to Oð4Þ invariance breaking
as small as possible, we have kept one of the two loops on
axis and we have only tilted the other one as shown in

Fig. 4; the on-axis loop ~W L1 is taken to be parallel to the

xE1 axis, ~l1k ¼ ðL1; 0Þ, and of length L1 ¼ 6, 8. We have

used two sets of off-axis loops ~W L2 tilted at tan
�1ð1=2Þ ’

26:565� and 45� with respect to one of the longitudinal

axes; the corresponding lattice vectors ~l2k are listed in

Table I, together with their length and the angle formed

with ~l1k. We have used loops with transverse size j~r1?j ¼
j~r2?j ¼ 1 in lattice units; the loop configurations in the
transverse plane are those illustrated in Fig. 5, namely,
~d? k ~r1? k ~r2? (which we call ‘‘zzz’’) and ~d? ? ~r1? k
~r2? (‘‘zyy’’). As explained in Sec. II, it is interesting to
also measure the orientation-averaged quantity (‘‘ave’’)

defined in Eq. (2.20). The lattice version of this equation
is easily recovered for even (integer) values of the trans-
verse sizes; in our particular case, j~ri?j ¼ 1, we have to use
a sort of ‘‘smearing’’ procedure, averaging nearby loops as
depicted in Fig. 5. Note that in doing so we are actually
averaging over the orientations and over the values fi ¼ 0,
1 (i ¼ 1, 2) of the longitudinal-momentum fractions, ac-
cording to Eq. (2.19).
As explained in Sec. II, we are interested in the T ! 1

limit and so we have to somehow perform it on the lattice.
In practice, we have to look for a plateau of the correlation
function plotted against the loop lengths L1 and L2: in
Fig. 6 we show the dependence of the correlator on the
length L1 ¼ L2 ¼ L of the loops at � ¼ 90�. Of course,
on a 164 lattice it is difficult to have a sufficiently long
loop while at the same time avoiding finite size effects,
and at best we can push the calculation up to L ¼ 8;
nevertheless, a plateau seems to have been practically

FIG. 4. The relevant Wilson-loop configuration. Using the
Oð4Þ invariance of the Euclidean theory, we have put p1E parallel
to the xE1 axis.

ave

ave

FIG. 5. Loop configuration in the transverse plane. In the
‘‘ave’’ case the link orientation is not shown as it is averaged
over.

TABLE I. Longitudinal vector ~l2k and length L2 for the various angles and for the two sets of off-axis loops ~W L2.

� 26.565� 45� 63.435� 90� 116.565� 135� 153.435�

~l2k Set 1 (4,2) (4,4) (2,4) (0,6) ð�2; 4Þ ð�4; 4Þ ð�4; 2Þ
Set 2 (8,4) (6,6) (4,8) (0,8) ð�4; 8Þ ð�6; 6Þ ð�8; 4Þ

L2 Set 1 2
ffiffiffi
5

p
4

ffiffiffi
2

p
2

ffiffiffi
5

p
6 2

ffiffiffi
5

p
4

ffiffiffi
2

p
2

ffiffiffi
5

p
Set 2 4

ffiffiffi
5

p
6

ffiffiffi
2

p
4

ffiffiffi
5

p
8 4

ffiffiffi
5

p
6

ffiffiffi
2

p
4

ffiffiffi
5

p
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reached at about L ¼ Lpl ’ 6–8. As � varies from 90�

towards 0� or 180�, we expect Lpl to grow5; however,

the plots in Figs. 7–9 show that the correlation function
is already quite stable against variations of the loop lengths
at L1, L2 ’ 8 (at least for � not too close to 0� or 180�), and
so we can take the data for the largest loops available as a
reasonable approximation of CL, defined as the asymptotic
value of GL as L1, L2 ! 1. We estimate the uncertainty in
CL due to this approximation from the variation of GL with
the lengths L1, L2 as (using the notation introduced in
Table I)

ð�CLÞsyst ¼ 1
2fjGLðL1 ¼ 8;set¼ 2Þ�GLðL1 ¼ 8; set¼ 1Þj
þ jGLðL1 ¼ 8; set¼ 2Þ�GLðL1 ¼ 6;set¼ 2Þjg:

(4.1)

The errors shown in Figs. 7–9 are the statistical ones only;
in all the other figures we show the total error obtained
adding (in quadrature) the statistical and the ‘‘systematic’’
errors defined above.
As already noticed above, the data are less stable for �

near 0� and 180�: this is a consequence of the relation
between the correlation function GE and the static dipole-
dipole potential V12 [35],

GEð�¼0;T; ~z?; ~R1?; ~R2?Þ
’

T!1exp½�2TV12ð~z?; ~R1?; ~R2?Þ��1 (4.2)

FIG. 6. Dependence of GE on the length L1 ¼ L2 ¼ L (in lattice units) of the loops at � ¼ 90� for d ¼ 0, 1, 2.

5Indeed, Lpl blows up at 0�, 180� due to the relation between
the correlation function and the static dipole-dipole potential to
be discussed below; see Eq. (4.2).
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(note that we have set again T1 ¼ T2 ¼ T), from which we
expect GE to diverge at � ¼ 0�; by virtue of the crossing-
symmetry relations (2.15), a similar singularity is also
expected at � ¼ 180� [26]. In the following we will con-
sider only � � 0�, 180�.

We have considered the values d ¼ 0, 1, 2 for the
distance between the centers of the loops. As expected
(see the previous section), the correlation functions vanish
rapidly as d increases, as can be seen in Fig. 10, thus
making the calculation with our simple ‘‘brute force’’
approach very difficult at larger distances.

From now on we will discuss the issue of the angular
dependence of the correlation function. As already pointed
out in the Introduction, numerical simulations of LGT can
provide the Euclidean correlation function only for a finite
set of � values, and so its analytic properties cannot be

directly attained; nevertheless, they are first-principles cal-
culations that give us (inside the errors) the true QCD
expectation for this quantity. Approximate analytic calcu-
lations of this same function then have to be compared with
the lattice data, in order to test the goodness of the approx-
imations involved. The Euclidean correlation functions we
are interested in have been evaluated in the SVM [18], in
the ILM [19], and using the AdS/CFT correspondence (in
the ‘‘conformal’’ [20] and ‘‘nonconformal’’ cases [21]).
The SVM gives a well-defined quantitative prediction that
can be tested numerically against our data; in the ILM and
conformal-AdS/CFT cases we have qualitative knowledge
of the functional dependence of the correlation functions
on the angle �, and we can test at least the goodness of the
functional form with a fit to the lattice data; in the
nonconformal-AdS/CFT case the explicit � dependence

FIG. 7. Angular dependence ofGE for various lengths of the loops, for d ¼ 0. The numbers in the key refer to the on-axis loop length
and to the off-axis loop set, respectively, as explained in the text and in Table I. (Different data sets have been slightly shifted
horizontally for clarity.)
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is unknown, and we are unable to make any comparison
with our data.

In the SVM [18] the Wilson-loop correlation function in
Nc-color QCD (Nc ¼ 3 in our case) is given by the ex-
pression6

C ðSVMÞ
E ð�Þ ¼

�
Nc þ 1

2Nc

�
exp

�
�
�
Nc � 1

2Nc

�
KSVM cot�

�

þ
�
Nc � 1

2Nc

�
exp

��
Nc þ 1

2Nc

�
KSVM cot�

�
� 1;

(4.3)

where KSVM is a function of ~z?, ~R1?, and ~R2? only, whose
precise expression, which we have used to numerically
evaluate the correlator (4.3) in the relevant cases, is given
in Ref. [18]. The comparison of the SVM prediction for CE
with our data is shown in Figs. 11–13; in the ‘‘ave’’ case
the comparison is made with Cave as defined in Eq. (2.19),
with f1 ¼ f2 ¼ 0 (see discussion above). Although in
some cases the agreement is quite good, at least in the
shape of the curve and in the order of magnitude, in general
it is far from being satisfactory; in particular, in the ‘‘zyy’’
case for d � 0 the SVM prediction is orders of magnitude
smaller than the lattice results. One can also go the other
way around, namely, try to determine KSVM in the ‘‘zzz’’
and ‘‘zyy’’ cases with a one-parameter best fit to the data:
the results are shown in Figs. 11–13. In general, the differ-

FIG. 8. Angular dependence of GE for various lengths of the loops, for d ¼ 1. The notation is the same as in Fig. 7.

6Here and in the following formulas we omit the variables
other than � on which CE depends.
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ence between the predicted and the fitted values for KSVM

is positive, and in some cases the discrepancy is larger than
20%, which can be taken as the accuracy level of the model
parameters (see Ref. [18]). We note that for d ¼ 0, 1, the
main contribution to the value ofKSVM, evaluated using the
SVM expression given in Ref. [18] (which, we recall,
consists of a perturbative plus a nonperturbative compo-
nent), comes from perturbative effects, while at d ¼ 2
nonperturbative effects are equal to or greater than the
perturbative ones. We have also tried a best fit with the
following simple functional form:

C ðpertÞ
E ð�Þ ¼ Kpertðcot�Þ2; (4.4)

which is exactly what one obtains in leading-order pertur-
bation theory [5,17,18]. Notice, however, that the coeffi-

cient Kpert in Eq. (4.4) can also receive nonperturbative

contributions, as one can see, for example, when expanding

the exponentials in the SVM expression (4.3) to first order.7

The values of the chi-squared per degree of freedom
(�2

d:o:f:) of the various fits that we have performed are listed

in Table II.
One-instanton effects in the ILM give the following

analytic expression for the correlation function [19]:

C ðILMÞ
E ð�Þ ¼ KILM

sin�
: (4.5)

Lattice data are not well fitted by such a function, at least at

FIG. 9. Angular dependence of GE for various lengths of the loops, for d ¼ 2. The notation is the same as in Fig. 7.

7This makes sense when KSVM is small, as it happens, for
example, in the large-Nc expansion, where it is KSVM ¼ Oð 1

Nc
Þ.
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d ¼ 0, 1; at d ¼ 2 practically all the fits we have tried are
good, as one can see in Table II, but we interpret this as the
result of the large data errors. We can largely improve the
fits by adding a term proportional to ðcot�Þ2,

C ðILMpÞ
E ð�Þ ¼ KILMp

sin�
þ K0

ILMpðcot�Þ2; (4.6)

which describes contributions both from two-instanton
[19] and, as we have already said above, from leading-
order perturbative effects; in the following, we will refer to
Eq. (4.6) as the ‘‘ILMp’’ expression. Differently from the
SVM case (and also from the AdS/CFT case to be dis-
cussed below), the dependence on � is not affected by the
average over transverse orientations (and longitudinal-
momentum fractions), so it makes sense to try to also fit
the ‘‘averaged’’ data with these functional forms. The

resulting best-fit functions in the d ¼ 0, 1 cases are plotted
in Figs. 14 and 15. As the fit gives K0

ILMp � K2
ILMp, it

seems more likely that K0
ILMp is dominated by perturbative

effects; while K0
ILMp is an order of magnitude larger than

KILMp at d ¼ 0, suggesting that perturbative effects are

dominant, at d ¼ 1 the two parameters are comparable,
and at d ¼ 2 KILMp becomes larger than K0

ILMp, suggesting

that we are entering the nonperturbative region.
Using the AdS/CFT correspondence, one obtains for the

N ¼ 4 SYM theory at large Nc and large ’t Hooft cou-
pling, and at large distances between the loops [20],

CðAdS=CFTÞE ð�Þ
¼ exp

�
K1

1

sin�
þ K2 cot�þ K3 cos� cot�

�
� 1: (4.7)

FIG. 10. Dependence of CEðdÞ (on a logarithmic scale) on the distance d (in lattice units) at � ¼ 45� and � ¼ 90�.
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Although, of course, there is apparently no reason for this
formula to apply in our case, we nevertheless have tried to
fit the lattice data (in the ‘‘zzz’’ and ‘‘zyy’’ cases) also with
this functional form; the results are shown in Fig. 16. The
fit is not good at d ¼ 0; it may seem good at d ¼ 1, 2, but
we must remember that this is a three-parameter fit, i.e.,
there are only 4 degrees of freedom: the ILMp best fit,
which has only two parameters (i.e., 5 degrees of freedom)
achieves a better or comparable �2

d:o:f: and, moreover, we

have explicitly tested some modified versions of the SVM
expression (4.3) with two and three parameters in the
exponents, obtaining smaller values for �2

d:o:f:.

As we have said in the Introduction, the main motivation
in studying soft high-energy scattering is that it can lead to
a resolution of the total cross section puzzle, so it is worth
discussing what the various models have to say on this

point. Using Eq. (2.18) it is easy to see that the SVM, the
ILM, and the lowest order perturbative expressions give
constant cross sections at high energy,8 as in these cases the
high-energy limit can be carried over under the integral
sign, so that the knowledge of the � dependence of the
correlation function is sufficient to completely determine
the high-energy behavior of total cross sections. However,
it may happen that the integrand in Eq. (2.18) has no
definite asymptotic behavior at large s, as it happens,
e.g., for the AdS/CFT expression (4.7), so that the remain-
ing integrations have to be carried out before taking s !
1. Anyway, as the experimentally observed universality

FIG. 11. Comparison of the lattice data to the SVM prediction (4.3) with KSVM calculated according to Ref. [18] (solid line) and to
the one-parameter (KSVM) best fit (for the ‘‘zzz’’ and ‘‘zyy’’ cases only) with the SVM expression (4.3) (dotted line) at d ¼ 0.

8Actually, the ILM expression (4.5) for the correlation func-
tion (where we have to recall that KILM is a real function) results
in an exactly zero total cross section, when inserted in Eq. (2.18).
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suggests that the high-energy behavior is not affected by
the details of the hadron wave functions (and thus by the

detailed dependence of the correlation function on ~Ri? and
fi), we would expect that the high-energy asymptotics
could be read off after integrating only over the distance
j~z?j between the loops, and this would require the detailed
knowledge of the dependence of the correlators on j~z?j. As
already noticed above, however, lattice data show that the
relevant correlation functions vanish rapidly with the dis-
tance: due to our limited numerical knowledge, we post-
pone the detailed discussion of the dependence on the
distance and related issues to subsequent works.

As a final and important remark, we note that our data
show a clear signal of C-odd contributions in dipole-dipole
scattering. As shown in Ref. [26] (and briefly recalled in

Sec. II) the loop-antiloop correlator at angle � in the
Euclidean theory (or at hyperbolic angle � in the
Minkowskian theory) can be derived from the correspond-
ing loop-loop correlator by the substitution � ! �� � (or
� ! i�� � in the Minkowskian theory). Because of this
crossing-symmetry relation, it is natural (see Ref. [23]) to
decompose the Euclidean correlation function CEð�Þ as a
sum of a crossing-symmetric function CþE ð�Þ and a
crossing-antisymmetric function C�E ð�Þ,

C Eð�Þ ¼ CþE ð�Þ þ C�E ð�Þ;

C
E ð�Þ �
CEð�Þ 
 CEð�� �Þ

2
:

(4.8)

Upon analytic continuation from the Euclidean to the

FIG. 12. The same comparison as in Fig. 11, but at d ¼ 1.
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Minkowskian theory, using Eq. (2.16), one can show that
they are related, respectively, to Pomeron (i.e., C ¼ þ1)
and odderon (i.e., C ¼ �1) exchanges in the dipole-dipole
scattering amplitude. A small but nonzero crossing-

antisymmetric component C�E is present in our data, thus
signaling the presence of odderon contributions to the
loop-loop correlation functions and, in turn, to the
dipole-dipole scattering amplitudes. (Such contributions

TABLE II. Chi-squared per degree of freedom for a best fit with the indicated function.

�2
d:o:f: d ¼ 0 d ¼ 1 d ¼ 2

zzz=zyy ave zzz zyy ave zzz zyy ave

SVM 51 � � � 16 12 � � � 1.5 2.2 � � �
Perturbative 53 34 16 13 13 1.5 2.2 4.5

ILM 114 94 14 15 45 0.45 0.35 1.45

ILMp 20 9.4 0.54 0.92 1.8 0.13 0.12 0.19

AdS/CFT 40 � � � 1 0.63 � � � 0.14 0.065 � � �

FIG. 13. The same comparison as in Fig. 11, but at d ¼ 2.
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are absent in meson-meson elastic scattering [23,36], since
in this case the relevant correlation function Cave

E is auto-
matically crossing-symmetric, as already noticed at the end
of Sec. II). In Fig. 17 we show the crossing-antisymmetric
part C�E of the ‘‘zzz=zyy’’ data at d ¼ 0, together with the
corresponding SVM prediction.

V. CONCLUSIONS AND OUTLOOK

In this paper the problem of high-energy hadron-hadron
(dipole-dipole) scattering has been addressed (for the first
time) from the point of view of lattice QCD. We have
performed Monte Carlo numerical computations of
Euclidean Wilson-loop correlation functions in SUð3Þ
pure-gauge LGT. The energy dependence of soft scattering
amplitudes at high energies is encoded in the dependence

of these correlation functions on the relative angle � be-
tween the loops, and can be reconstructed after the analytic
continuation � ! �i logs=m2.
In this paper we have focused on the study of the angular

dependence of the Euclidean correlation function. An in-
teresting and important feature that we have found is the
presence of an asymmetry with respect to � ¼ �=2 in the
plot of the Euclidean correlation function against the rela-
tive angle: this (upon analytic continuation from Euclidean
to Minkowskian theory) is a signal of the presence of
C-odd contributions in dipole-dipole scattering, i.e., a sig-
nal of odderon exchange between the dipoles. Even though
these C-odd contributions are averaged to zero in meson-
meson scattering (at least in our model, as long as the
squared meson wave functions satisfy some reasonable
symmetry properties in their dependence on the dipole
orientations and on the longitudinal-momentum fractions),

FIG. 14. Comparison of lattice data to best fits with the perturbative-like expression (4.4) (solid line), the ILM expression (4.5)
(dotted line), and the ILMp expression (4.6) (dashed line) at d ¼ 0.
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they might play a nontrivial role in more general hadron-
hadron processes in which baryons and antibaryons are
also involved.

Although we cannot determine exactly the angular de-
pendence from a finite set of numerical values, we can
nevertheless compare the prediction of any given model
with the lattice data by direct numerical comparison, if the
model is quantitative, or by testing the given functional
form with a best fit to the data, if at least the � dependence
is known; in this way we can discriminate between various
proposals and thus check the goodness of the approxima-
tions involved in the specific models. [One can, of course,
also try to fit the data with some given arbitrary functions
and then look at the results of the best fits, but in accepting

or rejecting a given function one must also take into
account physical arguments, as two fitting functions can
differ numerically by a small amount and nevertheless
have different analytic structures that can result in com-
pletely different (and sometimes physically unacceptable)
high-energy behaviors after analytic continuation to
Minkowski space-time.]
The comparison of our data with the existing analytic

calculations is not, generally speaking, fully satisfactory.
(i) The SVM prediction (4.3) agrees with our lattice

data in a few cases, at least in the shape and in the
order of magnitude, but, in general, it is far from
being satisfactory. More or less the same conclusion
is reached if one instead performs a one-parameter

FIG. 15. The same comparison as in Fig. 14, but at d ¼ 1.
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best fit with the given expression. This suggests that
corrections to the SVM are in order, which could be
relevant when deriving the high-energy behavior of
the scattering amplitudes, upon analytic continuation
to Minkowski space-time.

(ii) We have then tried best fits with a simple
perturbative-like expression (4.4) and with the ILM
expression (4.5). The results are again not satisfac-
tory. In particular, the ILM expression seems to be
strongly disfavored at d¼0, while at d¼2 it
looks better than the SVM and perturbative-like ex-
pressions. (This suggests that while at d¼0 the
perturbative effects are dominant, at d¼2 nonper-
turbative effects are surely relevant and cannot be
neglected.) By combining the two previous expres-
sions into the ILMp expression (4.6), largely im-
proved best fits have been obtained. It would be
interesting to also have a quantitative numerical

FIG. 16. Comparison of lattice data to a best fit with the AdS/CFT expression (4.7) for various cases.

FIG. 17. The crossing-antisymmetric component C�E , as de-
fined in Eq. (4.8), for the ‘‘zzz=zyy’’ case at d ¼ 0 and the
corresponding prediction using the SVM expression (4.3) (solid
line).
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prediction from the ILM and see how it compares
with the lattice data.

(iii) Finally, we have tried a best fit with the AdS/CFT
expression (4.7), although there is no reason for this
formula to apply in our case since it was originally
derived for the N ¼ 4 SYM theory at strong cou-
pling and large impact parameter. Taking into ac-
count that this is a three-parameter best fit, even this
one is not satisfactory, especially at d ¼ 0. Best fits
with QCD-inspired expressions with only two pa-
rameters, like, e.g., the ILMp expression (4.6) [or
some appropriate modification of the SVM expres-
sion (4.3)], give smaller �2

d:o:f:.

Although the AdS/CFT expression (4.7), as said above,
is not expected to describe real QCD, it nevertheless shows
how nontrivial high-energy behavior could emerge from a
simple analytic dependence on the angle �. However, in
this case, after the analytic continuation into Minkowski
space-time, it is not possible to pass to the high-energy
limit under the integral sign, as the integrand is an oscillat-
ing function of the energy, and one should carry over the
remaining integrals first. As we have already pointed out,
the integration over the distance between the loops should

be the relevant one and, depending on the detailed form of
the various coefficient functions, a variety of behaviors
could emerge. It seems then worth investigating further
the dependence of the correlation functions on the relative
distance between the loops, as well as on the dependence
on the relative angle, as they could combine in a nontrivial
way to determine the high-energy behavior of meson-
meson total cross sections. Moreover, as already recalled
in the previous section [see Eq. (4.2)], the study of the
transverse-distance dependence of the Euclidean correla-
tion functionGE at � ¼ 0, � would allow one to determine
the static dipole-dipole potential. These and other related
issues will be addressed in future works.
In conclusion, the fact that the existing models are not

able to fully explain the lattice data, which inside the errors
represent the true QCD expectation, is a motivation to
further investigate the problem of soft high-energy scatter-
ing, both on the numerical and on the analytical side. We
hope that the interplay of numerical simulations in LGT
and analytic nonperturbative calculations can lead to a
deeper understanding of the long-standing problem of
high-energy scattering in strong interactions.
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1992 (1994).
[10] O. Nachtmann, in Perturbative and Nonperturbative

Aspects of Quantum Field Theory, edited by H. Latal
and W. Schweiger (Springer-Verlag, Berlin, Heidelberg,
1997).

[11] E. R. Berger and O. Nachtmann, Eur. Phys. J. C 7, 459

(1999).
[12] H. G. Dosch, in At the Frontier of Particle Physics—

Handbook of QCD (Boris Ioffe Festschrift), edited by M.
Shifman (World Scientific, Singapore, 2001), Vol. 2,
pp. 1195–1236.

[13] A. I. Shoshi, F. D. Steffen, and H. J. Pirner, Nucl. Phys.
A709, 131 (2002).

[14] E. Meggiolaro, Z. Phys. C 76, 523 (1997).
[15] E. Meggiolaro, Eur. Phys. J. C 4, 101 (1998).
[16] E. Meggiolaro, Nucl. Phys. B625, 312 (2002).
[17] E. Meggiolaro, Nucl. Phys. B707, 199 (2005).
[18] A. I. Shoshi, F. D. Steffen, H.G. Dosch, and H. J. Pirner,

Phys. Rev. D 68, 074004 (2003).
[19] E. Shuryak and I. Zahed, Phys. Rev. D 62, 085014 (2000).
[20] R. A. Janik and R. Peschanski, Nucl. Phys. B565, 193

(2000).
[21] R. A. Janik and R. Peschanski, Nucl. Phys. B586, 163

(2000).
[22] R. A. Janik, Phys. Lett. B 500, 118 (2001).
[23] E. Meggiolaro, Phys. Lett. B 651, 177 (2007).
[24] H. Verlinde and E. Verlinde, arXiv:hep-th/9302104.
[25] I. I. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822

(1978); JETP Lett. 30, 355 (1979).
[26] M. Giordano and E. Meggiolaro, Phys. Rev. D 74, 016003

(2006).
[27] J. E. Bresenham, IBM Systems Journal 4, 25 (1965).
[28] B. Bolder, T. Struckmann, G. S. Bali, N. Eicker, T. Lippert,

B. Orth, K. Schilling, and P. Ueberholz, Phys. Rev. D 63,
074504 (2001).

[29] M. Creutz, Phys. Rev. D 21, 2308 (1980).

MATTEO GIORDANO AND ENRICO MEGGIOLARO PHYSICAL REVIEW D 78, 074510 (2008)

074510-20



[30] N. Cabibbo and E. Marinari, Phys. Lett. 119B, 387 (1982).
[31] A. D. Kennedy and B. J. Pendleton, Phys. Lett. 156B, 393

(1985).
[32] M. Creutz, Phys. Rev. D 36, 515 (1987).
[33] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[34] C. Michael and M. Teper, Phys. Lett. B 206, 299 (1988);

G. S. Bali and K. Schilling, Phys. Rev. D 47, 661 (1993);
M. Guagnelli, R. Sommer, and H. Wittig, Nucl. Phys.

B535, 389 (1998).
[35] T. Appelquist and W. Fischler, Phys. Lett. 77B, 405

(1978); G. Bhanot, W. Fischler, and S. Rudaz, Nucl.
Phys. B155, 208 (1979); M. E. Peskin, Nucl. Phys.
B156, 365 (1979); G. Bhanot and M. E. Peskin, Nucl.
Phys. B156, 391 (1979).

[36] H. G. Dosch and M. Rueter, Phys. Lett. B 380, 177 (1996).

HIGH-ENERGY HADRON-HADRON (DIPOLE-DIPOLE) . . . PHYSICAL REVIEW D 78, 074510 (2008)

074510-21


