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Volume dependence of spectral weights for unstable particles in a solvable model
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Volume dependence of the spectral weight is usually used as a simple criteria to distinguish single-
particle states from multiparticle states in lattice QCD calculations. Within a solvable model, the Lee
model, we show that this criteria is in principle only valid for a stable particle or a narrow resonance. If the
resonance being studied is broad, then the volume dependence of the corresponding spectral weight
resembles that of a multiparticle state instead of a single-particle one. For an unstable V particle in the Lee
model, the transition from single-particle to multiparticle volume dependence is governed by the ratio of
its physical width to the typical level spacing in the finite volume. We estimate this ratio for practical
lattice QCD simulations and find that, for most cases, the resonance studied in lattice QCD simulations

still resembles the single-particle behavior.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is believed to be the
underlying theory of strong interactions. Because of its
nonperturbative nature, low-energy properties of strong
interaction should be studied with a nonperturbative
method. Typical problems include light hadron spectrum
and low-energy hadron-hadron scattering. Lattice QCD
provides a genuine nonperturbative framework in which
nonperturbative problems can be tackled using numerical
simulations. In a typical lattice calculation for hadron
spectrum, energy eigenvalues of the QCD Hamiltonian
are measured numerically, with different quantum numbers
that are conserved by the strong interaction.' People tend to
interpret these energy eigenvalues as mass values of cor-
responding particles. This seems to provide a nonperturba-
tive definition for the mass value of a hadron. The width of
a hadronic resonance is a more complex issue. Using
Liischer’s formula, scattering phase shifts can also be
calculated from the two-particle energy eigenvalues [1-
12]. However, a direct, model-independent and nonpertur-
bative calculation of the width parameter remains a diffi-
cult task [13-16].

Phenomenologically, a resonance is characterized by its
mass parameter M and the width parameter I'. A common
theoretical definition for these two physical parameters
refers to the pole of the S matrix on the second sheet of
the complex energy plane:

7=MP — P )2, S(z) — oo. (1)
However, experimentalists prefer more tractable defini-
tions such as the scattering phase shift, or the total cross
sections which are in principle measurable physical quan-

k

1Strictly speaking, only the eigenvalues at finite lattice spacing
are measured. To obtain the continuum eigenvalues, one has to
perform the continuum extrapolation of lattice results.
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tities in the scattering experiment. For example, the posi-
tion for the mass of a resonance can be defined to be the
position where total cross section reaches its maximum or
the corresponding phase shift passing 7/ 2.2 The definition
of the width in this case is somewhat ambiguous except for
narrow resonances. In the case of infinitely narrow reso-
nance, when E,,, = M® + T'®) /2 the phase shift exactly
passes through 7/4 and 37/4, respectively. In terms of
total cross section, this also corresponds to the position
where cross section has dropped to half its peak value. For
wide resonances, the peak is usually not symmetric with
respect to the peak position and we may choose to define
the width by demanding the phase shift to be exactly /4
at M® —T® /2. So, using the phase shift, one possible
definition goes

SM©O)=m/2,  SM® -T®/2)=m/4  (2)

It is a well-known fact that, the above-mentioned defini-
tions for the spectral parameters of a resonance, namely the
energy eigenvalues measured in lattice calculations, the
S-matrix pole definition and the phase-shift definition, do
not coincide with one another in general. One expects that
they only agree when the resonance becomes infinitely
narrow. Although it is difficult to show this for a general
theory nonperturbatively, we will show this explicitly in a
totally solvable field theoretical model, the Lee model.
Numerical simulations in lattice QCD are performed
within a finite volume. All energy levels in this finite box
are discrete. Therefore, it is an important and nontrivial
question for the lattice calculations to properly identify
single-particle states and multiparticle states which might
mix within a particular symmetry channel. A typical ex-
ample is the p meson, which is a single resonance that
mixes with two-pion scattering states. To distinguish the

’In this discussion, we have neglected all other background
contributions. We also assume that in the energy range we are
investigating, there is only one resonance.
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single-particle states from multiparticle states, it is sug-
gested that spectral weights of the eigenstates are to be
measured. One expects that spectral weights of single and
multiparticle eigenstates show different volume depen-
dence and thus can be utilized to disentangle the single-
particle states from the multiparticle states. Typically, the
spectral weight of a single-particle state has little volume
dependence if the volume is not too small while the spec-
tral weight of two-particle states will exhibit a typical 1/
dependence which can be captured by performing the
simulation on two different ) which is the three-volume
of the lattice. This strategy has been used in Ref. [17]
where the authors show that the so-called pentaquark states
measured in their lattice calculations are in fact kaon-
nucleon two-particle scattering states. However, this con-
clusion is not so settled even in the first-principle lattice
QCD calculations [18-20].

Although well suited for a stable particle or a narrow
resonance, one also expects the above-mentioned criteria
to be modified when the resonance becomes broad. The
reason for this is quite clear. For a broad resonance, the
scattering states themselves form a complete set in the
corresponding Hilbert space and one thus expects the
spectral weight of a broad resonance to behave more like
that of multiparticle scattering states. Although this sounds
reasonable, the transition of the spectral weight from the
single-particle behavior to the multiparticle behavior has
never been shown explicitly in the literature. In this paper,
we demonstrate this scenario within the Lee model where
everything can be computed explicitly. This result suggests
that, using the volume dependence of spectral weight as the
criteria to distinguish single particle from the multiparticle
states is only valid when the single particle is either stable
or unstable but narrow. In other words, it cannot be applied
to broad resonances without further careful considerations.
Moreover, within the Lee model we can also verify that the
transition from single-particle to multiparticle behavior is
governed by the ratio of the physical width to the typical
level spacing in the finite box. Assuming this ratio is also
the relevant quantity in lattice QCD, we estimate this ratio
for some typical lattice calculations and find that, in most
cases, the resonance studied still resembles the single-
particle behavior for recent lattice simulations and
conclude.

This paper is organized as follows. In Sec. II, we in-
troduce the Lee model and summarize its main results. The
scattering phase shifts and the S-matrix element are also
calculated and various definitions for the spectral parame-
ters of a resonance is compared directly. In Sec. III, we
focus on the Euclidean correlation functions that are mea-
sured in lattice simulations. Spectral weights for the eigen-
states are computed and the volume dependence of the
spectral weights are analyzed. As the resonance becomes
broader, the transition from the single-particle behavior to
the multiparticle behavior is explicitly shown. In Sec. IV,
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we will discuss the possible impact of our results by
estimating the ratio in recent lattice simulations on pion-
pion scattering.

II. THE ENERGY EIGENSTATES AND THE PHASE
SHIFT IN THE LEE MODEL

The Lee model [21] is a completely solvable field theo-
retical model proposed by Lee a long time ago. The model
involves three types of “‘particles”: the so-called V parti-
cle, the N particle, and the 6 particle. The Hamiltonian of
the model is given by

H=H,+H,,

HO = szVng + mNZN;,rNP + Zwkaiak,
P p k

fwy)
H, = [V + Npax + Vi + Niafl

=-y
\/ﬁp,k \/zwk

3)

Here () is a large but finite volume of the system; g is the
bare coupling constant. Vg (Vp), N;,f (Np), and ag (ap) cor-
respond to the creation (annihilation) operators of the V, N,
and 6 particles, respectively. They satisfy the usual com-
mutation relations:’

Vo Vi1 =[Ny, N[1=[ap, af] = 6. (4

We will call my, my in (3) bare mass of the V and N
particle. The energy of the € particle is given by wy =

vu? + k2, where u is the mass of the 6 particle. To make
the whole system well defined, we have enclosed the
system in a three-volume of size () and introduced a
form factor f(w) to regularize the possible ultraviolet
divergences. It is easy to see that the free one N-particle
and one #-particle states remain eigenstates of the full
Hamiltonian. However, the free one V-particle states are
not since it is coupled to the N8 pair states. We will restrict
our discussion in the sector of one V-particle and N6 pair
states.

We are concerned with the following properties of the
Lee model: the exact eigenstates and eigenvalues of the
Hamiltonian, which is what is measured in lattice simula-
tions; the exact S-matrix element and scattering phase
shift, which will be utilized to locate possible resonances
in the model, and the spectral weight from the Euclidean
correlation function whose volume dependence is our ma-
jor concern in this paper. In this section, we will first
summarize the results for the eigenstates, eigenvalues,
and S-matrix elements. Spectral weights will be dealt
with in the next section.

*In the original Lee model, the V particles and N particles are
fermions while 6 particles are bosons. In this paper, we assume
they are all bosons. This does not change the results.
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In the V-N@ sector, the exact eigenstates |n>lJ of the full
Hamiltonian (with eigenvalue E,) can be obtained as [22]

_zn 80~ floy)
1
X m'prk - 6k>]» (%)

my — En = F(En - mN),
_ g(z) ) 1 (6)
F(x) =— —),
=53 ()

2a)k Wi — X
and the normalization factor Z, is also found to be

Z,(E,) =1+ F'(E, — my)

_ g_% (o) 1 2
_1+Q§ 2wy (wk-i-mN—En)‘ @

The function F(x — my) has simple poles at each x =
my + wy and one obtains a series of eigenvalues E,, from
Eq. (6). It is also seen that there is always a root E,
satisfying E, < my + . However, one cannot draw the
conclusion that the V particle is always stable. The fact is
that, if my, is small enough, then a stable V particle exists.
If my is too large, then no stable V particle exists. The
precise condition in the infinite volume limit is [22]

my —my > u+ ¢(w), (8)

where ¢(x) is the principle-valued integral counterpart of
the function F defined in Eq. (6):

$() = g3 f (dBk fz(w“)( 1 ) ©)

27} 2wy \wg —x

Note that the function ¢(x) is a monotonically increasing
function of x. Therefore, if condition (8) is satisfied, V
particles are unstable and they decay into N particle pairs.

At this stage, it is useful to point out the following fact. If
we were to replace the eigenvalues E,, in Eq. (5) by E + i)
with both £ and A being real but A is small, we can
construct an approximate eigenstate of the Hamiltonian.
We find that the value of E has to be one of those E,, values.
However, it is easy to see that the equation for the imagi-
nary part A can never be satisfied exactly for nonvanishing
A. This is due to the fact that the Hamiltonian is Hermitian
and the eigenvalues thus have to be real. However, if we
take E to be one of those E, values but A being small
enough, we indeed obtain an approximate eigenstate of the
Hamiltonian. The approximation becomes better and better
as A — 0. It is well known that a narrow resonance in
scattering theory in fact corresponds to such a scenario.
Nevertheless, one should keep in mind that such a descrip-
tion is in fact only meaningful when the resonance is
narrow.
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Not only the exact energy eigenstates can be obtained,
the scattering phase shifts can also be calculated within this
sector of the Lee model. It can be shown that, when the V
particle is unstable, the N6 scattering states form a com-
plete set in the Hilbert space. These scattering states are the
solution of the corresponding Lippmann-Schwinger equa-
tion:

1
. Hl |Nq0k>

lqk)’ lqk> my +wg, — H=xie

(10)

The states INq0k>+ /— corresponds to well-prescribed
incoming/outgoing waves in the infinite past/future, re-
spectively. These states are also eigenstates of the full
Hamiltonian with eigenvalues my + wy. It can be shown
explicitly that both [N, 6y ). and |[Ny6y)— form a complete
set in this particular Hilbert subspace. They also form an
orthonormal basis:

i(quﬁk/qu0k>i = Sqq’ﬁkk" (11)

The unitary matrix which relates these two sets of ortho-
normal states is nothing but the S matrix whose matrix
elements is defined via

Sq/kl;qk = _<Nq/6kI|Nq6k>+. (12)

For the Lee model, the Lippmann-Schwinger states defined
in Eq. (10) can be computed exactly with the result [22,23]:

f(wy)
IN,6,) = N6, ) — $0 2K
AT avk 2ka

1
mN"‘(l)k_mvil.G“‘F(a)kiif)
80 f(wp)

X ||V - =

[l k+q> m%m

1

Xee—--- Nyt —nby) |-
a)k—wpiiel atk-p p>:|

X

(13)

From this result, one gets the scattering phase shift for the
N@ scattering. It turns out that there is only s-wave scat-
tering in this sector of the Lee model and the corresponding
phase shift satisfies the following equation:

p2i800) — my + o —my + ¢(w) —il(w)/2
my + o —my + ¢lw) +il'(w)/2’
INw)/2
my + o —my + ¢(w)’

(14)
tand(k) = —

where @ = /k* + u? and the function ¢(w) is given by
Eq. (9). If the parameters of the theory is chosen such that
my + u — my + ¢(u) <0 at the threshold, which is the
same condition for the V particle becoming unstable, it is
seen that the real part of the denominator in the S matrix
will vanish at some energy M® above the threshold. At
this particular energy, the model exhibits a typical reso-
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nance. However, the (bare) width of the resonance is in
general not a constant but energy dependent:

2
[(w) =32 PoWo? — p2b@ — u). (15

The total energy at which the phase shift passes through
/2 is given by

M® —my + M — my) =0, (16)

while the definition for the width gives

r® r®
M((s) - T - mv + ¢<M(6) - T - mN)

1 5 I'®
+ 5F(M< ) — - mN) =0. (17)

The pole mass and the corresponding width are given by

Tw

7P =pP — i 2P = my + F@P —my) =0,

(18)

where the function F(z) is given by

jf(z>=f°°M do_ (19)

w 2m ®—z

with the understanding that this pole position should be
solved on the second sheet.” Comparison of the above
explicit formulas shows that they are generally different
if the width of the resonance is not narrow. It is also evident
from the above formulas that, when the width is becoming
infinitely narrow, M® coincides with M) while T'®
coincides with T'?).

III. THE EUCLIDEAN CORRELATION
FUNCTIONS AND THE SPECTRAL WEIGHTS

In this section, we discuss the mass values and the
corresponding spectral weights measured in a lattice
Monte Carlo simulation. In such a calculation, by measur-
ing appropriate Euclidean correlation functions, the eigen-
values (typically a few lowest) of the Hamiltonian are
obtained.” In the Lee model, these eigenvalues are pre-
cisely those E, values given by Eq. (6). It is then clear that
E,, in principle is different from any of M) or M® defined
by the S-matrix pole or the phase shift. But if the resonance
is narrow enough, E, coincides with M or M®. As
pointed out in the Introduction, it is suggested that one

“It can be shown that the above equation can never be satisfied
on the first sheet where the solutions correspond to stable bound
states on the real axis.

5Tn reality, lattice data still contain lattice artifacts caused by
the finite lattice spacing. In this paper, we assume that these
finite lattice spacing errors have already been subtracted, namely
the continuum limit is already taken.
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can distinguish the single-particle, two-particle, and multi-
particle states by inspecting the volume dependence of the
so-called spectral weights for the states [17]. Here we
would like to investigate this possibility within the Lee
model where the eigenstates and the corresponding eigen-
values are explicitly known.

We will first look at an interpolating field V(x). The
correlation function that we are interested in is

D 0lvix, nvi0)lo), (20)

where we have assumed that the fields are now defined on a
lattice with the lattice spacing being set to unity. Inserting
the complete set of states we have

DOV )VHO)I0) < Y Z, (E e 50, (21)

where E, and Z,(E,,) are given by Egs. (6) and (7) respec-
tively. Therefore, the spectral weight function W, for each
eigenstate |n) is simply

W, =Z,(E,)

= (1 + f)%%fzz(:)kk) (wk . niN _ En)z)—l‘ o)

At first sight, the spectral weights in Eqs. (21) and (22) do
not seem to show the expected volume dependence at all.
However, we will show below that if the V particle is stable
or if the width of the unstable V particle is small, Eq. (22)
does provide the expected volume dependence for single-
and two-particle states, respectively.

In general, the volume dependence of W, is quite com-
plicated for a finite (not necessarily large) volume ().
However, if the volume () is sufficiently large, the volume
dependence can be estimated. As Eq. (22) shows, one is led
to consider the function F(x) defined in Eq. (6). The
spectral weight of a particular energy eigenvalue is simply
related to the derivative of this function evaluated at the
exact energy eigenvalue:

W, =1/ + F'(E, — my)). (23)

The behavior of the function F(x) is drastically different
for values of x below the threshold and above the threshold.
If x is below the threshold, i.e. x < u, the contribution to
be summed is bounded in the large volume limit and the
function F(x) goes over to its integration counterpart ¢ (x)
smoothly as the volume goes to infinity. However, if x is
above the threshold (x > w), there exist values of wy
which are sufficiently close to x in the large volume limit
and therefore some contributions are unbounded. We will
discuss this situation in the following.

For large enough three-volume (), a typical spacing
between adjacent energy levels, which we denote as Aw,
can be estimated as follows:
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_em 1
Q glw)’

(wAw =1, —Aw (24)

em®

where g(w) = 4mJw? — p?w is the density of states for
the N@ pairs. Therefore, in the infinite volume limit, the
level spacing is proportional to 1/).

In the definition of F(x), the function to be summed over
factorizes into two parts: the fast-changing part 1/(w — x)
and the slow-changing part f?(w)/(2w). Here the term
slow-changing refers to the fact that when x changes an
amount of the order of Aw, the function changes little (and
likewise for the definition of fast-changing). Note that this
factorization is meaningful only when the volume is large
and hence Aw is small. Assuming that we are in such a
situation, then the summation for the function F(x) may be
separated into two parts:

F(X)=%%< 2 v X )fzz((z)kk)<wk1—x)’

k,|wy —x|=¢€ Kk, |wy—x|<e
(25)

where € is a small positive number within which the
function f?(w)/(2w) is almost a constant, but € > Aw.
The first summation in the above expression is nothing but
the principle-valued integral ¢ (x) once the volume is going
to infinity and the parameter € is going to zero. We will
denote it as ¢ (x). In the second summation, since the
function f%(w)/(2w) can be viewed as a constant, we have

85 f*(x) 1
$e) + 55 D el D)

F(x) =

K, |w, —x|<e

Now that the density of state function g(w) is also a
slow-changing function of the energy, therefore, within the
interval |wy — x| < €, the energy levels can be viewed as
almost equally spaced with the level spacing given by
Eq. (24). Denoting the level closest to x by w*, we have

1 e 1

~

-x :Z:oow*+nAw—x’

Kk, |wy —x|<e Wk n

@27

where we have extended the summation to infinity. Now
the summation can be computed exactly and using the
relation in Eq. (24) and the definition (15) we finally have

F) = ¢,  x<um (28)
el

This expression is a good estimate for the function F(x)
in the large volume limit for x > . Note that, if we set
x — (my — my) + F(x) = 0, which is nothing but the ei-
genvalue equation (6), we would obtain all the energy
eigenvalues: x = E, — my. Using the estimate (28') and
the result for the scattering phase shift (14), we thus arrive

Fx) = ¢(x) —

X = M.

(28/)
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at a relation between the phase shift and the corresponding
energy shift:

— (my + 0*) = —%B(a)*)Aa), (29)

where E is the exact energy eigenvalue perturbed from
(my + ®*). This result was first obtained by DeWitt a long
time ago [24]. It is in fact a quite general result which can
be derived from formal scattering theory.

Let us now come to the discussion of the spectral
weights. According to Eq. (22), the spectral weights are
related to the derivative of the function F(x) evaluated at

x = E, — my. Taking the derivative of Egs. (28) and (28')
and using DeWitt’s relation (29), we get
Fl(x) = ¢'(x), X< u, (30)
( ). u (X)
F'(x) = otd + — —Lesc?(x),
(x) = ¢'(x) — (x) 1, S5 0W 30)

X = M.

It then becomes clear that, for eigenvalues below the
threshold, the spectral weight will contain almost no vol-
ume dependence when the volume is sufficiently large:

1
1+ d)l(En - mN)'

W, = (31)
In the Lee model, this can only happen when the V particle
is below the threshold and thus is stable. For eigenvalues
above the threshold, however, the last term in Eq. (30') is
clearly proportional to the volume (). As a consequence,
the corresponding spectral weight is proportional to 1/£,
provided the energy level is above the threshold. It is
interesting to note that, if we take x to be at the location
of the resonance, i.e. x = E, — my = M® — my, the
spectral weight is

1

~ oC
r
1+ ¢/(x) + 210

[un—

(32)

I'r(x)’
1+3 0

where I'p(x) =T'(x)/[1 + ¢'(x)] is the renormalized
(physical) width of the resonance [23]. As was pointed
out at the beginning of this section, all of the above
discussion assumes that the volume is large enough. To
be more precise, Eq. (30’) shows that this requires
I'r(x)/Aw(x) > 1. Another equivalent form for this con-
dition is, combining Eq. (24),

Fp(x)g(x)Q > 1. (33)

A resonance satisfying this inequality is called a broad
resonance. If this condition is satisfied, then the spectral
weight (32) behaves like W(x) ~1/(T'r(x)g(x)Q). The
physical meaning of the condition I'g(x)/Aw(x) > 1 is
very clear. A resonance can be considered as broad if its
width is much larger than the typical level spacing in the
finite box. That is to say, if the volume is such that within
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the peak of the resonance there are many available scat-
tering states that the resonance can decay into, then the
resonance is a broad one and the corresponding spectral
weight for this resonance will exhibit typical two-particle
state behavior, namely it is proportional to 1/Q. In the
opposite limit,

IMp(x)/Aw(x) <1, or: I'ix)g(x)Q < 1. (34)

The spectral weight (32) behaves like that of a stable single
particle. A resonance satisfying this inequality is therefore
called infinitely narrow. Only in this limit does a resonance
look like a single particle as far as the volume dependence
for the spectral weight is concerned. If the width and the
volume are such that

Fr(x)g(x)Q ~ 1, (35)

then the resonance is neither broad nor infinitely narrow
and the spectral weight (32) for the resonance will also be
different from both single- and two-particle spectral
weights.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied the volume dependence of
spectral weight of an unstable particle within the Lee
model. It is shown that if the V particle is stable or unstable
but narrow, the volume dependence of the particle indeed
behaves like a single particle, namely it is almost volume
independent. However, if the V particle is unstable and the
width is large, then the volume dependence of its spectral
weight exhibits two-particle properties, i.e. proportional to
1/Q, reflecting the fact that all asymptotic states are two-
particle scattering states. Thus, when the resonance
changes from narrow to broad, the volume dependence of
its spectral weight also undergoes a transition from a
single-particle behavior to a multiparticle behavior. This
transition can be computed exactly within the Lee model.
The condition for a broad (or a infinitely narrow) resonance
is also given. In real lattice QCD calculations, the criteria
for a resonance being regarded as narrow or broad will
depend on the specific problem being studied although the
qualitative feature should remain the same.

As an example, let us estimate the ratio ' /A w in lattice
calculations on low-energy pion-pion scattering. We use
this as an example because pion-pion scattering exhibits
both a broad resonance in the scalar channel and a rela-
tively narrow resonance in the vector channel. Recently,
the CP-PACS collaboration has computed the width of the
p resonance in the vector channel [16] using Ny =2
dynamical Wilson fermion lattices of size 123 X 24 with
the lattice spacing given by 1/a = 0.92 GeV. The simu-
lation was done at m#/mp = 0.41 which translates into
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pion mass of about 0.32 GeV in physical unit. It is then
estimated that the first and second Aw to be about 0.5 and
0.35 GeV which is larger than the p meson width (about
0.15 GeV). Therefore, we expect that in this scenario, the p
meson behaves more like a narrow resonance. Indeed, the
authors in Ref. [16] have found a consistent result for the
mass of the p meson using two different methods: one
using the naive vector meson time correlation function, the
other by fitting the phase shifts near the resonance. Note
that the typical level spacing depends on the physical size
of the volume. Since the largest physical size used in
present lattice simulations are in the range of a few
Fermi, we expect that the typical level spacing is usually
larger than the width of the hadron in most cases. An
exceptional case might be the very broad o resonance in
two-pion systems in the scalar channel. In Ref. [25], a
quenched studied is performed and a single-particle behav-
ior is found for a scalar state in this channel. They used
163 X 28 lattices with @ = 0.2 fm and lowest pion mass is
around 0.182 GeV. The first two level spacings for the two-
pion states in this calculation are estimated to be 0.45 and
0.27 GeV which are comparable (or somewhat smaller)
than the expected physical width of the o. Of course, it is
difficult to draw definite conclusions by this naive estimate.
Further studies have to be carried out to clarify the
situation.

To conclude, by studying the volume dependence of the
spectral weight in a simple model, we show how the
volume dependence of the spectral weight changes from
single particle to multiparticle behavior as the width of the
resonance is getting broad. It is found that the ratio of its
physical width I'y, to the typical level spacing Aw in the
finite box controls this transition. Note that this ratio
usually can be estimated before the simulation is actually
performed, assuming the physical width of the resonance is
known. We also demonstrate this by estimating this ratio
for the case of pion-pion scattering in recent lattice calcu-
lations. Although studied in a simple model, we think that
the lessons learned from the model are also relevant and
helpful for realistic lattice simulations on unstable particles
in QCD.
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