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The spectrum of low-lying eigenvalues of the overlap Dirac operator in quenched SUð2Þ lattice gauge
theory with tadpole-improved Symanzik action is studied at finite temperatures in the vicinity of the

confinement-deconfinement phase transition defined by the expectation value of the Polyakov line. The

value of the chiral condensate obtained from the Banks-Casher relation is found to drop down rapidly at

T ¼ Tc, though not going to zero. At T0
c � 1:5Tc � 480 MeV the chiral condensate decreases rapidly

once again and becomes either very small or zero. At T < Tc the distributions of small eigenvalues are

universal and are well described by the chiral orthogonal ensemble of random matrices. In the temperature

range above Tc where both the chiral condensate and the expectation value of the Polyakov line are

nonzero the distributions of small eigenvalues are not universal. Here the eigenvalue spectrum is better

described by a phenomenological model of dilute instanton-anti-instanton gas.
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I. INTRODUCTION

It is well known that in the limit of zero quark masses the
classical action of QCD is invariant under the exchange of
quark fields with different chirality. This classical chiral
symmetry, however, appears to be broken in quantum
theory. Its spontaneous breakdown gives rise to massless
Goldstone particles (pions) and to the nonzero expectation
value of the chiral condensate h �c c i. Since pions are the
only massless hadrons in this limit, one can describe
infrared QCD using an effective chiral theory where pions
are the only degrees of freedom [1,2]. At sufficiently high
temperatures chiral symmetry is restored again and the
effective chiral theory is not valid anymore, which means
that at such temperatures the effective degrees of freedom
are not pions. It is commonly believed that the restoration
of chiral symmetry is associated with the confinement-
deconfinement transition, with the chiral condensate being
the order parameter. For quenched gauge theories the chiral
condensate is not an exact order parameter, since in this
case it does not correspond to the expectation value of any
physical quantity and can be defined only indirectly, via the
Banks-Casher relation [3]:

� � jh �c c ij ¼ lim
�!0

lim
V!1

��ð�Þ
V

; (1)

where �ð�Þ ¼ hPi�ð�� �iÞi is the density of eigenvalues
�i of the Dirac operator and V is the volume of the four-
dimensional box in which the theory is considered. Thus
Eq. (1) relates the chiral condensate and the density of
small eigenvalues of the Dirac operator.

In quenched SUðNÞ gauge theories a commonly used
order parameter is the expectation value of the Polyakov
line, which is associated with ZN center symmetry and
which is equal to zero in the confinement phase, where
center symmetry is unbroken [4]. Thus the Polyakov loop
and the chiral condensate are the proper order parameters
for the deconfinement phase transition in the limits of
infinite and zero quark masses, respectively. However,
numerical simulations indicate that both the chiral conden-
sate and the Polyakov loop can be used as approximate
order parameters even when the corresponding symmetries
are absent. In particular, for QCD with dynamical quarks
the Polyakov line changes rapidly in the vicinity of the
deconfinement phase transition [5]. The measurements of
the chiral condensate using the staggered Dirac operator in
quenched SUð2Þ gauge theory have also shown that it goes
to zero in the deconfinement phase [6]. However, in some
recent lattice studies of quenched SUð2Þ lattice gauge
theory with a chirally invariant lattice Dirac operator it
was found that even above the deconfinement phase tran-
sition there are still some small eigenvalues �i which yield
nonzero chiral condensate in the Banks-Casher relation (1)
[7,8]. To be more precise, it turns out that in the deconfine-
ment phase with spontaneously broken center symmetry
the chiral condensate behaves differently depending on the
sign of the Polyakov loop. For field configurations with
positive Polyakov loop the chiral condensate eventually
goes to zero at some temperature above Tc, while for
configurations with negative Polyakov loops the chiral
condensate stays nonzero at all temperatures which were
considered [8]. Since for SUð2Þ gauge theory with dynami-
cal fermions at temperatures above the deconfinement
phase transition positive values of the Polyakov loop are
favored, at T > Tc it seems reasonable to consider only
field configurations with positive Polyakov loops in order
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to capture this important feature of the full QCD already in
the quenched approximation [7,8].

The value of the chiral condensate is usually extracted
from the results of lattice simulations by measuring the
probability distribution �ð�Þ of the eigenvalues of the
Dirac operator D ¼ ��ð@� � iA�Þ and by using the

Banks-Casher relation (1). A much more precise method
was proposed in [9,10]. This method is based on the fact
that the properly rescaled eigenvalue distribution �ð�Þ at
� ! 0 is universal and coincides with the eigenvalue dis-
tribution of the so-called chiral ensemble of random ma-
trices [2,11]:

lim
V!1

1

�V
�

�
z

�V

�
¼ �SðzÞ: (2)

The form of the function �SðzÞ depends only on the global
symmetries of the Dirac operator and on the topological
charge of the gauge fields. One can also consider the
probability distribution pð�minÞ of the lowest nonzero ei-
genvalue of the Dirac operator, which is also universal if
�min is rescaled by the factor�V. Numerically it was found
that for the low-lying eigenvalues the universality holds
with a good precision already at not very large lattice
volumes, which can be easily achieved in lattice simula-
tions [9]. In this case for �ð�Þ with � of order of ð�VÞ�1

one has the following approximate equalities:

�ð�Þ ¼ 1

�V
�Sð�V�Þ; (3)

pð�minÞ ¼ 1

�V
pSð�V�minÞ: (4)

Thus in order to find the value of � one can fit the lowest
edge of the numerically obtained distributions �ð�Þ or
pð�minÞ with the universal functions A�Sðc�Þ or
ApSðc�minÞ, where A and c are fitting parameters. The
parameter c is related to � as � ¼ cV�1. Since such a
numerical procedure involves fitting lattice data with some
function rather than finding a single value �ð0Þ, the preci-
sion of this method is usually significantly higher than that
of the Banks-Casher relation. Finite-volume corrections
are also believed to be smaller, which allows one to mea-
sure the chiral condensate using such small lattices as 44

[9,10].
In this paper we report on our measurements of the

spectrum of low-lying eigenvalues of the lattice Dirac
operator in quenched SUð2Þ lattice gauge theory with
tadpole-improved Symanzik action (see, e.g., the expres-
sion (1) in [8]) at finite temperatures in the vicinity of the
confinement-deconfinement phase transition defined by the
expectation value of the Polyakov line. In Sec. II we study
the temperature dependence of the chiral condensate using
the Banks-Casher relation [3]. We demonstrate that the
chiral condensate changes rapidly in the vicinity of the
deconfinement phase transition, though not going to zero.
Another interesting effect is a second rapid decrease of the

condensate at T � 1:5Tc � 480 MeV. In Sec. III we check
the applicability of the chiral random matrix theory [2] to
the spectrum of low-lying Dirac eigenvalues at finite tem-
peratures. It is found that at T < Tc the spectrum is uni-
versal and the random matrix theory can be applied, while
above Tc some other model should be used.
The overlap Dirac operator for quarks in the fundamen-

tal representation is used to find the eigenvalue density
�ð�Þ in (3). Advantages of the overlap Dirac operator are
explicit chiral symmetry at all lattice spacings and the
existence of exact zero modes for field configurations
with nonzero topological charge [12]. The parameters of
our lattice simulations are summarized in Table I. We
mostly use the same lattice configurations as in [8], thus
our work can be considered as an extension of the analysis
performed in that work. Specified numbers of lattice con-
figurations are the total numbers of field configurations
with all topological charges. Following [7,8], at tempera-
tures above Tc we consider only gauge field configurations
with positive expectation values of the Polyakov line. For
quenched SUð2Þ gauge theory with tadpole-improved
Symanzik action recent measurements give �c ¼
3:248ð2Þ for NT ¼ 6, which corresponds to Tc ¼
313:ð3Þ MeV [13].

TABLE I. Lattice parameters which were used for simulations.

NL NT � a, fm T=Tc # configurations # eigenvalues

8 4 2.93 0.1863 0.85 2501 30

8 4 2.95 0.1801 0.88 4977 30

10 4 2.93 0.1863 0.85 4987 30

10 4 2.95 0.1801 0.88 4733 30

12 6 3.20 0.1155 0.91 1908 20

12 6 3.23 0.1092 0.96 1792 20

12 6 3.45 0.0741 1.42 93 30

16 6 3.20 0.1155 0.91 999 30

16 6 3.23 0.1092 0.96 910 30

16 6 3.25 0.1053 1.00 400 30

16 6 3.275 0.1007 1.04 519 30

16 6 3.325 0.0921 1.14 183 50

16 6 3.40 0.0807 1.30 149 30

16 6 3.45 0.0741 1.42 123 30

20 6 3.16 0.1276 0.82 99 30

20 6 3.178 0.1219 0.86 95 30

20 6 3.20 0.1155 0.91 98 50

20 6 3.23 0.1092 0.96 299 50

20 6 3.275 0.1007 1.04 89 50

20 6 3.30 0.0960 1.09 40 50

20 6 3.325 0.0921 1.14 101 50

20 6 3.35 0.0880 1.19 123 50

20 6 3.40 0.0807 1.30 155 50

20 6 3.50 0.0681 1.54 99 50

20 6 3.64 0.0527 2.00 99 50

24 6 3.23 0.1155 0.91 96 45

24 6 3.325 0.0921 0.96 115 45

24 6 3.50 0.0681 1.54 77 45
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II. TEMPERATURE DEPENDENCE OF THE
CHIRAL CONDENSATE

In this section we present technical details of our mea-
surements of the chiral condensate and discuss its tempera-
ture dependence as well as finite-volume and finite-spacing
effects.

Our results as well as the results of the previous works
on the spectrum of the overlap Dirac operator [7,14] sug-
gest that in the vicinity of Tc � 320 MeV the spectrum
starts developing a sort of ‘‘plateau’’ for � in the range
100 . . . 400 MeV, which becomes wider and lower at
higher temperatures. At the same time a characteristic
peak gradually emerges near the origin, below approxi-
mately 100MeV. A similar feature of the spectrum of small
eigenvalues in the deconfinement phase was observed in
[7] for quenched SUð2Þ and SUð3Þ gauge theories with
Wilson action and with both staggered and overlap Dirac
operators and in [8] for quenched SUð2Þ gauge theory with
the tadpole-improved Symanzik action and with the over-
lap Dirac operator. The spectra of 30 and 50 lowest Dirac
eigenvalues for 163 � 6 lattice at� ¼ 3:40, T ¼ 401 MeV
and for 203 � 6 lattice at � ¼ 3:325, T ¼ 346 MeV, cor-
respondingly, are plotted on Fig. 1 as an example.

For our data the height of the peak (as measured from the
origin) remains practically constant at different lattice
volumes and lattice spacings. Moreover, a close inspection
of our results as well as of the results presented in [7,14]
suggests that the width of this peak goes to zero in the
continuum limit a ! 0. In order to demonstrate this, we
have fitted the spectra of the Dirac operator at � <
200 MeV by the function Cþ A expð�B�Þ, where the
parameter B was considered as the inverse of the peak
width and C was the value of spectral density at the plateau
(see Fig. 1). The width of the peak extracted in this way is

plotted on Fig. 2 as a function of lattice spacing for 163 �
6, 203 � 6 and 243 � 6 lattices. It can be seen that the peak
width rapidly drops down when the spacing is sufficiently
small and the corresponding temperature is in the vicinity
of the deconfinement phase transition and approaches zero
as lattice spacing becomes smaller. The widths of the peaks
at different lattice sizes agree within error range. We have
also analyzed the same data as the functions of four-
dimensional and three-dimensional lattice volumes in
physical units, but in these cases the agreement between
different lattices was much worse. Thus it seems that this
peak is indeed a lattice artifact, since its width goes to zero
while its height remains practically constant, and in the
continuum limit Dirac eigenmodes which constitute the
peak turn into exact zero modes.
Although it has been suggested in [14] that the height of

the peak diverges, our results in fact do not contradict those
reported in [14]. In [14] the shape of the peak was approxi-
mated by a function of the form �ðEÞ ¼ �ðVÞE�b, where
E ¼ �a is the virtuality � in lattice units, �ðVÞ is some
coefficient which increases with lattice volume V, and the
optimal value of b is b � 0:80. The dependence of the peak
parameters on lattice spacing was not investigated. If one
rewrites the expression for �ðEÞ obtained in [14] in physi-
cal units, one obtains �ð�Þ � �ðVÞa1�b��b. Thus for any
finite value of lattice spacing the spectral density indeed
diverges at � ! 0. However, since b < 1, this divergence
and the peak near zero disappear in the continuum limit
a ! 0. The model of dilute instanton-anti-instanton gas
used in [7] to describe this peak also does not involve any
physical scale, which again indicates that this feature of the
Dirac spectrum might be a lattice artifact.
Taking into account the above considerations, we have

assumed that at finite lattice spacing the spectral density at
� ! 0 in the Banks-Casher relation (1) should be replaced
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FIG. 1 (color online). The rescaled density ð��ð�Þ=VÞ1=3 of eigenvalues of the overlap Dirac operator for the 163 � 6 lattice at
� ¼ 3:40, T ¼ 401 MeV (on the right) and for the 203 � 6 lattice at � ¼ 3:325, T ¼ 346 MeV (on the left). Only the first 30 and 50
lowest eigenvalues were taken into account for the right and the left plots, respectively (see Table I).
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by the best-fitting value, C, of the rescaled spectral density
��ð�Þ=V at the plateau. These values of C are shown on
Fig. 1 with solid horizontal lines.

At temperatures below 400 MeV we have calculated C
by averaging the spectral density over � in the range
100 . . . 200 MeV, which is a typical extent of the plateau
for such temperatures (see Fig. 1, right plot). For higher
temperatures the plateau becomes significantly lower and
wider. Because of limited statistics, this plateau on the
histograms of �ð�Þ typically consists of only a small
number of randomly distributed individual eigenvalues
(see Fig. 1, left plot), and the number of eigenvalues
between 100 MeV and 200 MeV strongly fluctuates. In
order to reduce these fluctuations, for higher temperatures
we have extended the averaging interval up to �max ¼
400 MeV. After such an extension the values of the chiral
condensate above T ¼ 400 MeV agree very well for dif-
ferent lattice volumes. This is an additional argument in
favor of our method to measure the chiral condensate at
finite lattice spacing.

The resulting temperature dependence of � is shown on
Fig. 3. A comparison of the data for different lattice
volumes shows that the finite-volume effects are significant
for 83 � 4 and 103 � 4 lattices. Starting from the 123 � 6
lattice, for T < Tc � 320 MeV the chiral condensate sta-

bilizes at �1=3 � 300 MeV. At T � Tc the condensate

rapidly changes from �1=3 � 300 MeV to �1=3 �
120 MeV and then practically does not change in the
temperature range Tc < T < 1:5Tc � 480 MeV. This
value of � is also practically volume independent for
123 � 6, 163 � 6, 203 � 6, and 243 � 6 lattices, which
suggests that the nonzero chiral condensate above Tc is
not a finite-volume effect. Finally, at T � 1:5Tc �
480 MeV, � quickly decreases once again. Although the
chiral condensate is equal to zero for the highest tempera-
ture that we have considered (T ¼ 494 MeV, the last point

on the right on Fig. 3), this can be just the effect of limited
statistics, as discussed above. This is an interesting aspect
of the theory which deserves further investigations, since in
quenched theory the chiral symmetry is not a symmetry of
the action and strictly speaking there are no theoretical
reasons to expect that the chiral condensate should even-
tually go to zero at some temperature. Nevertheless, our
results suggest that near T � 480 MeV there is at least a
sort of crossover transition associated with rapid change in
the value of the chiral condensate, and that the commonly
accepted deconfinement picture with zero chiral conden-
sate at high temperatures is valid at least approximately.

III. COMPARISON WITH CHIRAL RANDOM
MATRIX THEORYAND THE MODEL OF DILUTE

INSTANTON-ANTI-INSTANTON GAS

In this section we test the universality of the spectra of
low-lying Dirac eigenvalues at different temperatures by
comparing them with the predictions of the chiral random
matrix theory [2]. Nonuniversal spectra are compared with
the model of dilute instanton-anti-instanton gas used in [7].
The chiral ensemble of random matrices which deter-

mines the universal distributions �SðzÞ and pSð�minÞ for the
overlap Dirac operator with SUð2Þ gauge group is the
chiral orthogonal ensemble, an ensemble of real random
matrices with chiral structure [2,15]. For such an ensemble
the function �SðzÞ can be expressed in terms of some rather
complicated integrals which involve Bessel functions [15].
These integrals are rather difficult even for numerical
integration, thus to obtain the function �SðzÞ we have
simply generated 5� 105 chiral random matrices of size
50� 50 for topological charges Q ¼ 0, 1, 2 and used the
interpolated distributions of their eigenvalues. Further in-
creasing the size of the matrices or the number of matrices
in the ensemble does not change the result within the
accuracy of several tenths of a percent. The functions

 0

 50

 100

 150

 200

 250

 300

 250  300  350  400  450  500  550

Σ1/
3 , M

eV

T, MeV

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
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pSðzÞ are known in analytical form for topological charges
Q � 2 [16]:

pSðzÞ ¼ ð2þ zÞ=4 expð�z=2� z2=8Þ; Q ¼ 0;

pSðzÞ ¼ z=4 expð�z2=8Þ; Q ¼ 1:
(5)

For Q ¼ 2 the function pSðzÞ was found numerically,
similar to �SðzÞ.

As an example, the histograms of the distributions �ð�Þ
and pð�minÞ at temperatures T ¼ 264 MeV (103 � 4 lat-
tice, T=Tc ¼ 0:84), and T ¼ 294 MeV (123 � 6 lattice,
T=Tc ¼ 0:94) are plotted on Fig. 4 together with the func-
tions 1

�V �Sð�V�Þ and 1
�V pSð�V�minÞ at the values of �

which best fit the lattice data. These values are summarized
in Table II, where the results obtained using the Banks-
Casher relation are also included for comparison. It can be
seen that for all plots in Fig. 4 the lattice data agrees with
the universal distributions within the range of statistical
errors. For 103 � 4 and 123 � 6 lattices the fits for different
topological sectors give different results for �, and the

Banks-Casher relation also yields a somewhat higher value
of the chiral condensate. For 163 � 6 lattice the agreement
between all measurements is much better. This indicates
that for small lattices finite-volume effects are rather sig-
nificant. These effects, however, influence only the value of
� but not the shape of the distribution of small eigenvalues,
which remains universal.
The distributions of eigenvalues for 163 � 6 lattice at

T ¼ 316 MeV, which is just above Tc, are plotted on
Fig. 5. It can be seen that these distributions are indeed
not similar to those predicted by random matrix theory and
can be characterized by a strong excess of eigenvalues
below approximately 100 MeV. This characteristic peak
in the density of the eigenvalues of the Dirac operator has
already been discussed in Sec. II. Although it is most likely
that this peak is a lattice artifact which disappears in the
continuum limit, it seems useful to compare its shape with
the one predicted by the model of dilute instanton-anti-
instanton gas [7]. In this model instantons and anti-
instantons interact at the scale of several lattice spacings
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FIG. 4 (color online). Distributions of low-lying eigenvalues of the overlap Dirac operator compared with universal distributions for
the chiral orthogonal ensemble of random matrices. At the top: results for the 103 � 4 lattice at � ¼ 2:93, T ¼ 264 MeV; at the
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rather than at a physical scale [7], thus its success can serve
as another argument that a strong excess of small eigen-
values at T > Tc is a lattice artifact.

In the model proposed in [7] each near-zero mode is
associated either with an instanton or anti-instanton and the
matrix elements of the Dirac operator between the modes i
and j are approximated by Tij ¼ h0 expð�dij=DÞ, where

h0 is some energy scale, dij is the minimal distance in

lattice units between the instanton associated with the
mode i and the anti-instanton associated with the mode j,
and D is a typical scale of interactions between instantons
and anti-instantons induced by fermionic fields. Matrix
elements between the modes associated with two instan-
tons or two anti-instantons are assumed to be zero. With h0
being equal to the inverse lattice spacing, the optimal value
of D for our data is D ¼ 1:3� 0:1. Eigenvalue distribu-
tions obtained from this model at the optimal value of D
are also plotted on Fig. 5. These distributions agree well
with lattice data in the range � ¼ 20 MeV . . . 100 MeV,
while for � � 20 MeV the density of eigenvalues of the
lattice Dirac operator is significantly lower.
Thus at high temperatures the distributions of eigenval-

ues within the characteristic peak near � ¼ 0 are well
described by the model used in [7], with the interaction
scale between instantons being fixed in units of lattice
spacing. This again suggests that the modes which con-
stitute this peak should turn into exact zero modes in the
continuum limit. This conclusion immediately rises the
question about the model which could describe the spec-
trum of small eigenvalues of the Dirac operator at not very
high temperatures above Tc in the continuum limit.

IV. CONCLUSIONS

In this work we have measured the spectrum of low-
lying eigenvalues of the overlap Dirac operator and the
value of the chiral condensate in quenched SUð2Þ lattice
gauge theory with tadpole-improved Symanzik action. Our
results suggest that depending on the temperature, the
theory can be in the three regimes: a conventional confine-
ment phase at 0< T < Tc � 320 MeV, for which the
Polyakov line is zero and the chiral condensate is nonzero,
a phase at T > 1:5Tc � 480 MeV, for which the Polyakov
line is nonzero and the chiral condensate is either very

TABLE II. The values of the chiral condensate �1=3 extracted
by fitting the Dirac spectra obtained in lattice simulations with
the universal eigenvalue distributions of chiral orthogonal en-
sembles with different topological charges. The values of �1=3

obtained from the Banks-Casher relation are also shown for
comparison. The symbols ‘‘L’’ or ‘‘A’’ mean that the distribu-
tions of the lowest eigenvalues pð�minÞ or of all eigenvalues �ð�Þ
were fitted.

T, MeV NL Q �1=3, MeV (RMT) �1=3, MeV (B.-C.)

264 10 0 L 221� 3 244� 2
264 10 1 L 228� 3
264 10 2 L 181� 4
264 10 0 A 207� 3
264 10 1 A 220� 10
264 10 2 A 203� 5

294 12 0 L 264� 6 297� 6
294 12 1 L 272� 5
294 12 2 L 228� 6
294 12 0 A 260� 20
294 12 1 A 240� 10
294 12 2 A 230� 20

294 16 0 L 308� 3 304� 5
294 16 1 L 305� 6
294 16 2 L 320� 30
294 16 0 A 290� 10
294 16 1 A 295� 6
294 16 2 A 300� 20
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small or zero and which is therefore very similar to the
conventional deconfinement phase, and a sort of ‘‘transi-
tion regime’’ at Tc < T < 1:5Tc, where the Polyakov line
is nonzero and the chiral condensate is still comparable
with a typical hadron scale. The chiral condensate changes
rapidly at the transitions between all these regimes, which
suggests that even in quenched theory center and chiral
symmetries are closely related [17,18], although in a some-
what more specific way than in the theory with dynamical
fermions.

The distributions of low-lying eigenvalues of the Dirac
operator are universal in the confinement phase up to the
critical temperature Tc and are described by the chiral
orthogonal ensemble of random matrices, as it should be
[2]. On the other hand, in the ‘‘transition regime’’ the
distributions of small eigenvalues become nonuniversal.
This could be expected, since the proof of the universality
of �Sð�V�Þ and pSð�V�minÞ at small � is essentially based
on the validity of the effective chiral theory [1,2], although
it is often claimed in the literature that the spectrum of
small eigenvalues should be universal whenever the eigen-
value density near zero is finite [2]. It is therefore reason-
able to expect that at temperatures above Tc, at which
quarks are not confined in mesons anymore and the effec-
tive chiral theory becomes invalid, these distributions be-
come nonuniversal. In this temperature range the data are
better described by the phenomenological model of dilute
instanton-anti-instanton gas considered in [7]. It could be
interesting to further investigate the applicability of such a
model, since lattice simulations indicate that the density of
topological charge is arranged into fractal-like structures
which do not resemble instantons at all [19–22].
Furthermore, a typical feature of the Dirac spectrum in
the ‘‘transition regime’’ which is described by the model of
[7], namely, the characteristic peak near � ¼ 0, seems to
be a lattice artifact which disappears in the continuum

limit. It is therefore an open question what kind of con-
tinuum model may describe the properties of small Dirac
eigenvalues above Tc and what are the objects responsible
for the persistence of near-zero eigenmodes of the Dirac
operator.
Finally, at temperatures above approximately 1:5Tc the

density of small eigenvalues rapidly drops down once more
to a value which is very close to zero. Unfortunately, due to
limited statistics it is very difficult to measure this density
and to establish whether it is exactly equal to zero or not. It
is an intriguing open question, since for quenched theory
chiral symmetry is not a symmetry of the action at all and
there are no theoretical reasons to expect that the chiral
condensate turns to zero at some temperature. If it really
does, this would mean that in pure gauge theory there are in
fact two finite-temperature phase transitions, and it is not
clear what might be the origin of the second transition. It is
interesting to note here that some gauge theories con-
structed using the gauge/gravity duality, such as the
Sakai-Sugimoto model, indeed exhibit two finite-
temperature phase transitions, a deconfinement one and
the one associated with the spontaneous breaking of chiral
symmetry [23,24].
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