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We implement the Wang-Landau algorithm in the context of SUðNÞ lattice gauge theories. We study the

quenched, reduced version of the lattice theory and calculate its density of states for N ¼ 20, 30, 40, 50.

We introduce a variant of the original algorithm in which the weight function used in the update does not

asymptote to a fixed function, but rather continues to have small fluctuations that enhance tunneling. We

formulate a method to evaluate the errors in the density of states, and use the result to calculate the

dependence of the average action density and the specific heat on the ‘t Hooft coupling �. This allows us

to locate the coupling �t at which a strongly first-order transition occurs in the system. For N ¼ 20 and 30

we compare our results with those obtained using Ferrenberg-Swendsen multihistogram reweighting and

find agreement with errors of 0.2% or less. Extrapolating our results to N ¼ 1, we find ð�tÞ�1 ¼
0:3148ð2Þ. We remark on the significance of this result for the validity of quenched large-N reduction of

SUðNÞ lattice gauge theories.
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I. INTRODUCTION

Strongly first-order phase transitions provide a difficult
challenge for numerical simulations. Consider, for ex-
ample, a physical system whose interactions are charac-
terized by a single coupling g. A naive approach to
estimate the transition coupling gt is to perform
Monte Carlo (MC) simulations at couplings that are close
to gt and locate the point at which different observables are
discontinuous. These measurements, however, are affected
by a strong hysteresis whose width grows with the number
of degrees of freedom Ndof . For large enough Ndof , this
width dominates the error in the transition coupling, which
can result in large uncertainties (10–20% in the example
we consider here).

To obtain improved precision the way forward is un-
doubtedly to use reweighting algorithms. For example,
Ferrenberg-Swendsen reweighting (FSR) uses MC simula-
tions to measure the normalized histogram of the action A
for a coupling g ¼ g0, which is close to gt [1]. By con-
struction, this is given by

h0ðAÞ � �ðAÞ � PBoltzmannðg0;AÞ; (1.1)

where �ðAÞ is the density of states, and PBoltzmannðg0;AÞ is
the Boltzmann weight. In the SUðNÞ lattice gauge theories
we consider here, g is typically identified with the bare
lattice ’t Hooft coupling �, and PBoltzmannðg0;AÞ �
expðA=�Þ. A measurement of h0ðAÞ thus provides an esti-
mate for �ðAÞ. Using this, one can estimate the histogram
h�ðAÞ at any other coupling by reweighting

h�ðAÞ � h0ðAÞ � expðA=�� A=�0Þ: (1.2)

One then determines the coupling �t at which the corre-
sponding histogram h�t

ðAÞ takes a double-peak form, as

expected for a first-order phase transition. In practice, this
amounts to calculating the average action A and its asso-
ciated specific heat C as a function of �

A ð�Þ ¼
Z

dAh�ðAÞA; (1.3)

C ð�Þ ¼
Z

dAh�ðAÞðA�Að�ÞÞ2; (1.4)

and finding the coupling �t at which Cð�Þ peaks.
The FSR method has an obvious shortcoming. When

reweighting from �0 to �, one is ‘‘amplifying’’ the con-
tribution to �ðAÞ from field configurations that are impor-
tant at �, while suppressing those relevant at �0. If,
however, the field configurations probed at �0 are substan-
tially different from those important at �, then this ampli-
fication can be dominated by statistical noise. This
‘‘overlap’’ problem can cause a large systematic error
that may be hard to evaluate. To avoid it one needs to
ensure that the field configurations that are important at �
are reasonably sampled when performing measurements at
�0. In ordinary situations this means that the couplings �0

and � need to be sufficiently close. When � ’ �t, however,
there are field configurations that are very hard to probe.
These are the tunneling configurations between the two
phases. Thus, for reweighting to work in the context of
locating a strongly first-order phase transition, one requires
that a sufficient number of tunneling events are observed
while measuring the histograms. This requirement can be
very restrictive when Ndof is large because the tunneling
probability typically falls exponentially as Ndof increases.
Consequently, when performing reweighting, it is crucial
to use an algorithm that encourages tunneling events.
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In this paper we do not discuss all the different alter-
natives to FSR (which are discussed, for example, in
Ref. [2]).1 Instead we choose to study (a variant of) the
Wang-Landau (WL) reweighting algorithm, which was
introduced in the field of statistical mechanics [6], and is
particularly well suited for promoting tunneling. In the
context of gauge theories, this algorithm can be considered
to be a modern incarnation of the early attempts, such as
the ones in Ref. [7], to calculate �ðAÞ of lattice gauge
theories (see also Refs. [8,9]).

A sketch of the WL algorithm is as follows (a more
precise definition will be given in Sec. III). From here on
we use the action density E� A=Ndof as our prime observ-
able, and so denote the density of states by �ðEÞ. We
denote the Monte Carlo time by t and the WL estimate
of the density of states at time t by �tðEÞ.

(1) Begin at MC-time t ¼ 0 with an initial estimate for
the density of states �0ðEÞ.

(2) Use 1=�tðEÞ as a Boltzmann weight to create a
series of field configurations.

(3) Update �tðEÞ ! �tþ1ðEÞ ¼ �tðEÞ þ ��ðEÞ. The
update function ��ðEÞ depends on the MC history
between times t and tþ 1 in a way that biases
against small or null changes of E at time tþ 1,
and so encourages tunnelings. This is an essential
point in Wang-Landau reweighting (WLR), and we
discuss it in greater detail in Sec. III.

(4) Go to step (2).
One can show, with some assumptions, that for large

enough t, �tðEÞ converges to the vicinity of �ðEÞ, and
subsequently fluctuates around it. We provide this demon-
stration in Sec. III B, generalizing the discussion in
Ref. [10]. The fluctuations are an intrinsic part of the WL
algorithm, and are the consequence of the ergodicity en-
forced by the ‘‘biasing’’ in step (3) above. Once converged,
the algorithm generates a chain of field configurations that
are weighted by an approximately flat probability function

PðEÞ � �ðEÞ � 1=�tðEÞ � E� independent: (1.5)

Consequently, all values of E will be accessed with ap-
proximately equal probability, including those correspond-
ing to tunneling events. Using the estimate of �ðEÞ, one can
calculate the specific heat Cð�Þ and locate its peak.

In this paper, we adapt the WL algorithm to SUðNÞ
gauge theories and, in particular, formulate a systematic
way to evaluate errors in derived quantities such as Cð�Þ.

The model we choose to study is obtained from four-
dimensional SUðNÞ lattice gauge theories by ‘‘quenched
reduction’’ to a single lattice site (see, for example,
Ref. [11] and the recent review in Ref. [12]). It is a matrix
model of four SUðNÞ matrices. The interactions between
these matrices are governed by the ‘t Hooft coupling �, and
lead to a nontrivial change in various expectation values as
one moves from strong-to-weak couplings. This behavior
becomes a strongly first-order transition whenN ! 1, and
it is this transition we wish to analyze using the WL
algorithm.
As noted above, we use a variant of the WL algorithm.

The key difference between our variant and the original
WL algorithm (‘‘WL0’’), is that the latter includes an
iterative procedure, which we do not use.2 Namely, in
WL0, the steps (1–4) above are first applied with a given
update function, ��1ðEÞ, for some Monte Carlo time T1.
The time T1 is determined ‘‘on the fly’’ by requiring that
the values of E that are visited are sufficiently uniform.
Once the chosen criterion is fulfilled, the function ��1ðEÞ
is replaced by ��2ðEÞ, which is smaller, i.e. obeys
j��2ðEÞj< j��2ðEÞj. The procedure is then iterated until
the magnitude of ��ðEÞ drop below the machine accuracy.
As shown in [13], and discussed below (for example see
Sec. IV), the tunneling rate, which is what one wishes to
increase in the WL algorithm, decreases as the size of
��ðEÞ is decreased, making theWL0 less and less efficient
as it is iterated. For this reason, we keep ��ðEÞ finite, and
thus always have a Boltzman weight that varies (albeit by a
small amount) so as to maintain the tunneling rate. This
also avoids the need to tune extra parameters, such as the
choice of the flatness criterion. Despite the lack of a fixed
weight, we can measure expectation values, since �tðEÞ
fluctuates around the correct value.
A different solution to the tunneling problem, involving

ultimately fixed weights, is presented in Ref. [14].
The outline of the paper is as follows. We first introduce

the matrix model that we study in Sec. II. We describe the
Wang-Landau algorithm and its properties in Sec. III, and
in Sec. IV, we describe our implementation and, in par-
ticular, the tuning of parameters and the calculation of
errors. In Sec. V, we report our results and compare them
to corresponding data obtained using Ferrenberg-
Swendsen reweighting and standard Monte Carlo simula-
tions. We summarize in Sec. VI, and remark on the impli-
cation of our results to the validity of large-N quenched
reduction of SUðNÞ lattice gauge theories. Appendix A
includes a description of the different update algorithms
that we use, and Appendix B discusses additional technical
issues related to the implementation of the Wang-Landau
algorithm.

1One attractive option is the multicanonical algorithm of
Ref. [3]. We did not use this approach because it had been found
in Ref. [4], which studied a model similar to ours, that a very
delicate tuning of parameters was needed for large enough
systems. One advantage of the WL algorithm is that it is self-
tuning. An alternative, applied successfully in Ref. [5], is to use
the WL algorithm to provide an estimate of the weight function
of the multicanonical algorithm.

2A less important difference is that one must adapt the original
algorithm from systems with discrete variables to those with
continuous degrees of freedom. We describe how this has been
done below.
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Our results for the transition coupling �t were already
quoted in Ref. [12].

II. QUENCHED-REDUCED SUðNÞ LATTICE
GAUGE THEORIES

In this section, we briefly describe the matrix model that
we study. For a discussion of its relevance to SUðNÞ gauge
theories we refer to Ref. [12] and references therein.

A. Definition of the matrix model

The model consists of four SUðNÞ matrices fV�;� ¼
1; 2; 3; 4g. Observables are built from the SUðNÞ ‘‘link
matrices’’ U� defined by

U� � V���V
y
�; (2.1)

where �� are the fixed, diagonal SUðNÞ matrices

�ab � �abeip
a
� : pa

� 2 ½0; 2��; a; b 2 ½1; N�:
(2.2)

The quenched momenta pa
� are drawn from some distri-

bution—various possibilities are discussed in Ref. [12].
Since our focus here is on the algorithm, we pick one
choice of momenta (the ‘‘clock’’ momenta)

pa
� ¼ 2�

N

�
a� N þ 1

2

�
; a 2 ½1; N� (2.3)

and use it throughout. Expectation values of an observable
OðUÞ are calculated via

hOðUÞi � ZðbÞ�1
Z Y

�

DV� expðbAÞOðUÞ; (2.4)

where here the action A is

A ¼ N
X
�<�

2ReTrðU�U�U
y
�U

y
� Þ; (2.5)

and b is the inverse of the ‘t Hooft coupling b ¼ 1=�. The
partition function ZðbÞ is

ZðbÞ �
Z Y

�

DV� expðbAÞ; (2.6)

and DV� is the Haar measure on SUðNÞ. The integral over
V� includes matrices that realize permutations in the in-

dices a of pa
�, and so the construction above is invariant

under such permutations. Thus, one can equally define the
model with any set of pa

� obtained from Eq. (2.3) by

permuting the a indices, independently in each direction.
We take the action density to be

E � A

12N2
; (2.7)

so that it is the average, normalized plaquette. We consider,
for simplicity, only even values ofN, for which E lies in the
range ½�1; 1�.

B. A sketch of the phase diagram

In Ref. [12] we mapped the phase diagram of the model
in b, and saw strong evidence that there exists a first-order
phase transition at b ¼ bt ’ 0:3. This was also seen in
earlier studies of the model (for example in Ref. [15]).
To demonstrate this we present in Fig. 1 our results for
hEiðbÞ, obtained using conventional MC simulations (using
algorithms described in Appendix. B). A clear hysteresis is
seen, with width increasing with N, as expected since
Ndof / N2. Our aim in this paper is to develop a method
that can accurately locate the coupling bt at which this
transition occurs.

III. WANG-LANDAU REWEIGHTING

Reweighting methods start by integrating out all but a
few variables (usually one or two) from the partition
function. We use a single remaining variable, the action
density E

ZðbÞ ¼
Z

DV expðbAÞ �
Z 1

�1
dE�ðEÞ expð12N2bEÞ;

(3.1)

�
Z

dE expð!ðEÞ þ 12N2bEÞ: (3.2)

Here, �ðEÞ is the number density of field configurations
with action density in the range ½E; Eþ dE� and !ðEÞ is
the associated ‘‘entropy’’

!ðEÞ ¼ logð�ðEÞÞ: (3.3)

The expectation value of an observable,OðEÞ, that depends
solely on E can be written as

hOi ¼ Z�1ðbÞ
Z

dE expð!ðEÞ þ 12N2bEÞOðEÞ: (3.4)
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FIG. 1 (color online). Hysteresis plots of the average action
density E versus b ¼ 1=� for SUð50Þ ([blue] crosses), SUð80Þ
([magenta] open squares), and SUð100Þ ([light blue] filled
squares). For details see Ref. [12].
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Thus, calculating the function !ðEÞ can be considered as
solving the theory in the sector that couples to operators of
the form OðEÞ.

The original WL algorithm was introduced in Ref. [6] to
study statistical systems with discrete degrees of freedom.
E then takes discrete values, and this is reflected in the
formulation of the original algorithm. In our case, however,
E is continuous, and we need to adapt WLR accordingly.
Two alternative approaches have been considered in the
statistical-mechanics and molecular-dynamics literature:
(1) Discretize E into bins and then apply the discrete WL
algorithm. This approach has been used, for example, to
study the classical Heisenberg model [16]; (2) Generalize
the WL algorithm so that it updates !ðEÞ treating E as a
continuous variable [17,18].3 Based on preliminary stud-
ies, we chose to pursue only option (2) in detail. We follow
and extend the approach suggested in Ref. [18], which we
next describe and analyze in some detail.

A. The algorithm

The algorithm proceeds by updating an estimate of the
entropy, !tðEÞ, where t is the Monte Carlo (MC) time. It
also updates the histogram of the action htðEÞ, which is an
auxiliary quantity used to estimate convergence. The steps
of the algorithm are as follows [18]:

(1) Make an initial guess for the entropy function at
time t ¼ 0, !0ðEÞ, using any available prior knowl-
edge, such as the results from a related system (e.g. a
smaller value of N in our study). Set the histogram
to zero: ht¼0ðEÞ ¼ 0. Pick any starting con-
figuration.

(2) Propose a new field configuration in an unbiased
way, and accept it with probability

Prob ðE ! E0Þ ¼ min½expð!tðEÞ �!tðE0ÞÞ; 1�;
(3.5)

where E and E0 are, respectively, the action densities
of the original and proposed configurations.

(3) Repeat step (2) Nhit times for equilibration.
(4) Let Et be the final value of the action density after

step (3). Update the entropy as follows:

!tðEÞ ! !tþ1ðEÞ ¼ !tðEÞ þ �F�ðE; EtÞ; (3.6)

where � > 0 and F� is a fixed, positive function,
which smears the update over a range of action
density of width �� centered on Et, and should be
invariant under Et $ E. Possible choices for F� are
discussed in Ref. [18]—we use a simple Gaussian
form

F�ðE;EtÞ ¼ e�ðE�EtÞ2=�2
: (3.7)

(5) Update the histogram

htðEÞ ! htþ1ðEÞ ¼ htðEÞ þ �ðE� EtÞ: (3.8)

(6) Go to step (2).
It is important to understand the meaning of the crucial

step (4): if the simulation has spent some time in the
vicinity of a particular value of E, then step (4) will
increase !t in this region, and the update probability
(3.5) will favor motion to other regions of E—this is how
the WL algorithm encourages tunneling.
As we show in the following section, the WL algorithm

converges in the sense that, for large enough t, !tðEÞ �
!ðEÞ fluctuates around an E-independent constant. This
constant drops out when one uses Eq. (3.4) to calculate
averages of physical observables, and so it is in this sense
that

lim
t!1!tðEÞ ¼ !ðEÞ (3.9)

in the WL algorithm.
In Sec. IV, we suggest practical ways to determine how

large t needs to be, how to evaluate the errors in the
estimate for !ðEÞ, and how to choose appropriate ranges
for the parameters � and �. In our implementation of the
algorithm we restrict E to lie in the interval Emin � E �
Emax, which is a subset of the full range of values E can
take. Apart from the need to begin with a configuration
having E inside this range, the only change to the algorithm
involve certain boundary effects that we discuss in
Appendix B.

B. Theoretical analysis of Wang-Landau reweighting

A theoretical analysis of the original, ‘‘discrete’’ ver-
sion, of theWL algorithm, including some of its systematic
errors, was given in Ref. [10]. In this section we extend that
analysis to the continuous WL algorithm just described.
Consider the probability distribution of the action den-

sity E at MC-time t after step (3) of the algorithm has been
completed. Assuming that Nhit is large enough, this is

ptðEÞ ¼ 1

Zt

expð!ðEÞ �!tðEÞÞ; (3.10)

where the normalization factor Zt ensures thatR
dEptðEÞ ¼ 1 (where here and in the following the E

integral implicitly runs from Emin to Emax). This is the
probability distribution from which Et is drawn. After
updating !tðEÞ according to Eq. (3.6), the function ptðEÞ
changes as follows:

ptðEÞ ! ptþ1ðEÞ ¼ 1

Ztþ1

exp½!ðEÞ�!tðEÞ��F�ðE;EtÞ�;
(3.11)

3Binning is still required to store functions like !ðEÞ in
memory, but does not play an essential role in the algorithm.
See Appendix B for further discussion.
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and a simple manipulation gives

ptþ1ðEÞ
ptðEÞ

¼ exp½��F�ðE;EtÞ�
hexp½��F�ðE; EtÞ�it : (3.12)

Here, the average h; it is with respect to the probability
distribution at time t,

hfðEÞit �
Z

dEptðEÞfðEÞ: (3.13)

In order to understand the convergence properties of the
algorithm, we need a measure of the closeness of the
estimate !tðEÞ to the true !ðEÞ. When !tðEÞ ¼ !ðEÞ,
the probability distribution (3.10) is flat, i.e. ptðEÞ ¼
pflatðEÞ ¼ 1=�E. Thus, one possible measure of conver-
gence is

�t �
Z dE

�E
log

�
ptðEÞ
pflatðEÞ

�
¼

Z dE

�E
log½�EptðEÞ�:

(3.14)

This is adapted from the similar discrete quantity used in
Ref. [10]. It is straightforward to see that�t � 0,4 with the
upper bound saturated only when pt ¼ pflat.

We thus consider the change��t ¼ �tþ1 ��t between
two adjacent time steps:

��t ¼
Z
ðdE=�EÞ log½ptþ1ðEÞ=ptðEÞ�; (3.15)

¼
Z
ðdE=�EÞf��F�ðE;EtÞ � loghexp½��F�ðE;EtÞ�itg:

(3.16)

Our choice of F�, Eq. (3.7), satisfies
R
dEF�ðE; EtÞ ¼

�
ffiffiffiffi
�

p
for all Emin � Et � Emax (This is true even taking

into account any boundary effects—see Appendix B).
Thus,

��t ¼ ���
ffiffiffiffi
�

p
=�E� loghexp½��F�ðE; EtÞ�it: (3.17)

Since � > 0, the logarithm is always negative and ��t is
bounded from below

��t � ���
ffiffiffiffi
�

p
=�E: (3.18)

Had this lower bound had been zero, then a monotonic
convergence of �t ! 0 as t ! 1 would have been pos-
sible. A negative lower bound, however, suggests a more
complicated behavior involving fluctuations. In the rest of
this section we describe the way these fluctuations emerge
and quantify how they effect �t, !tðEÞ and ptðEÞ.

1. ��t as a function of t and its ensemble average

We begin by illustrating the possible values that��t can
take. First, consider the � ! 0 limit, in which, assuming

also that � 	 1, one finds5

��t ¼ ��
ffiffiffiffi
�

p ðptðEtÞ � pflatÞ þOð�2Þ: (3.19)

Thus, if ptðEtÞ is above (below) the flat distribution value
1=�E, then ��t is positive (negative). For large t, as we
will see below, the generic size of jpt � pflatj is � ffiffiffiffi

�
p

, so

that ��t then scales as �3=2.
Second, assume that at time t one has !tðEÞ ¼ !ðEÞ so

that pt ¼ pflat and �t takes its maximum value �t ¼ 0.
Since the algorithm updates the entropy !tðEÞ !
!tþ1ðEÞ ¼ !tðEÞ þ �F�ðE; EtÞ, ��t must be negative.
A simple calculation gives

��t ¼ ��2�
ffiffiffiffi
�

p
�E

ffiffiffi
8

p
�
1� ffiffiffiffiffiffiffi

2�
p �

�E

�
þOð�3Þ: (3.20)

The size of this rather special step is parametrically smaller

than the generic Oð�3=2Þ of the first example. Note that the
exact density of states is not a ‘‘fixed point’’ of the algo-
rithm, which may be surprising at first glance, but is in fact
an essential feature of the algorithm. It ensures that the
simulation explores all values of E in the desired range.
To get a more precise measure of how ��t behaves, we

calculate its expectation value averaged over an ensemble
of simulations all starting with the same !tðEÞ. The result
is

h��ti �
Z

dEt��tptðEtÞ; (3.21)

¼ ���
ffiffiffiffi
�

p
�E

�
Z

dEtptðEtÞ
� log½1� h1� expð��F�ðE;EtÞÞit�: (3.22)

(Here, the internal average is over E.) Using the identity
logð1� xÞ�1 > x we find

h��ti>���
ffiffiffiffi
�

p
�E

þ
Z

dE1dE2ptðE1ÞptðE2Þ
� f1� exp½��F�ðE1; E2Þ�g: (3.23)

The kernel in the curly braces is positive semidefinite, but
decreases rapidly toward zero for jE1 � E2j 
 �. It is also
symmetric under E1 $ E2. Consequently, the double in-
tegral on the right-hand side (r.h.s) of (3.23) provides a
definition of a (smeared) inner product of ptðEÞ with itself.

2. Relation of ��t to ptðEÞ
To make use of Eq. (3.23) we must evaluate the second

term on the r.h.s and relate it back to �t. For that purpose

4Given 1 ¼ R
dEptðEÞ ¼

R
dEelogðptðEÞÞ, use the identityRðdE�EÞefðEÞ � expfRðdE�EÞfðEÞg.

5The assumption � 	 1 is valid for all our calculations since
we use � ’ 10�4–10�6.
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we first use the kernel and define the following squared ‘‘distance’’ between two probability distributions (3.23):

kpa � pbk2 �
R
dE1dE2½paðE1Þ � pbðE1Þ�f1� exp½��F�ðE1; E2Þ�g½paðE2Þ � pbðE2Þ�RðdE1=�EÞðdE2=�EÞf1� exp½��F�ðE1; E2Þ�g : (3.24)

The normalization is chosen so that kpflatk2 ¼ 1.
Equation (3.24) is a generalization of the standard
Euclidean distance used in [10]. In fact, if one takes � !
0, the kernel becomes proportional to �ðE1 � E2Þ, and one
obtains (the continuous E version of) the Euclidean dis-
tance

lim
�!0

kpa � pbk2 ¼
Z �

dE

�E

��
paðEÞ � pbðEÞ

pflat

�
2
: (3.25)

For � > 0, the kernel gives different weights to different
Fourier components (in E space) of ðpaðEÞ � pbðEÞÞ:
wavelengths larger than � are included with full weight,
with the weight decreasing to zero as the wavelength itself
decreases to zero. As a result, UV differences are filtered
out. Indeed this kernel is a natural integration measure for
our purposes because the WL algorithm only makes
changes to !t, which have wavelengths of Oð�Þ or longer.

We can use the distance kpt � pflatk as a measure of the
approach of pt to pflat. To evaluate this distance we need to
calculate the integral in the denominator of Eq. (3.24)

Z
ðdE2=�EÞf1� exp½��F�ðE1; E2Þ�g
� ½1� c��� ffiffiffiffi

�
p

=�E: (3.26)

The constant c obeys 0< c � 1, and for small � is

c ¼ �ffiffiffi
8

p þOð�2Þ: (3.27)

It is independent of E1 up to boundary effects of
Oð�2�=�EÞ. Ignoring these numerically very small ef-
fects, it is straightforward to show that

kpt � pflatk2 ¼ kptk2 � 1: (3.28)

Combining Eqs. (3.23), (3.26), and (3.28), we find

h��ti>��
ffiffiffiffi
�

p ð1� cÞ
�E

ðkpt � pflatk2 � R2Þ; (3.29)

with R2 � c=ð1� cÞ ’ �=
ffiffiffi
8

p
.

From this it follows that
(i) If kpt � pflatk>R then h��ti> 0 and the simula-

tion will, on average, move toward the desired point
pt ¼ pflat, at which !tðEÞ ¼ !ðEÞ.

(ii) If kpt � pflatk<R, then the lower bound on h��ti
is negative and the simulation can move both toward
and away from pt ¼ pflat.

Finally, note that when jðpt � pflatÞ=pflatj 	 1, one can

show from the definition of �t [Eq. (3.14)] that

�t � � 1

2

Z �
dE

�E

��
ptðEÞ � pflatðEÞ

pflat

�
2

� � 1

2
kpt � pflatk2: (3.30)

The first approximate equality assumes that the fluctua-
tions of ðptðEÞ � pflatÞ are small (which is a good approxi-
mation at large t, as we will see shortly). The second
approximate equality assumes that the corrections to the
� ! 0 limit, Eq. (3.25), are small, and is thus only an order
of magnitude approximation.

3. Behavior of pt as a function of t and estimating
fluctuations

Putting together the above ingredients, the following
picture emerges. Consider the infinite dimensional space
of probability distributions ptðEÞ, with distances defined
by the Euclidean metric Eq. (3.24). Let the origin be at
ptðEÞ ¼ pflat, and denote the radial coordinate in this
space, kpt � pflatk, by r. A crucial role is then played by

a ball of radius R �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=

ffiffiffi
8

pq
centered at the origin. The

results above imply that if ptðEÞ lies outside this ball, then
the simulation will perform a directed random walk toward
the ball, with steps in �t [and thus, from Eq. (3.30), also in
r2] of average size proportional to ðr2 � R2Þ � ��=�E.
Since the steps get, on average, smaller as one approaches
the ball, the approach to its surface is exponentially
slowed. Individual steps, however, do not shrink to zero,
so one will eventually end up inside the ball. Once inside,

t

R
pt

ppflat flat

R
p

FIG. 2. Pictorial representation of how the Monte Carlo time
history of the WL algorithm looks in ptðEÞ space (see text). Left
panel: Initial stage—convergence of ptðEÞ toward a ‘‘ball’’ of
radius R around pflat. The step size gets smaller as the algorithm
approaches the ball. Right panel: Second stage—fluctuations
within the ball. If the fluctuations drive pt outside of the ball,
it is driven back inside by the type of motion in the left panel.
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Eq. (3.29) only gives a lower bound on h��ti, so we do not
know its sign. The simulation may move throughout the
ball, or it may cluster near the surface. Combining
Eqs. (3.20) and (3.30), one finds that the typical step size
is �r � �� and thus much smaller than the size of the ball

R� �1=2. One possible behavior is illustrated in Fig. 2.
It is clear from the foregoing that only in the second

stage, when the simulation has reached the ball, can one
use !tðEÞ as an estimate of !ðEÞ. We now calculate the
size of the fluctuations in this estimate. This requires that
we remove the overall uniform growth of!t, which occurs
because of the addition of �F�ðE; EtÞ with a uniform
distribution of Et. To do so we write

!tðEÞ �!ðEÞ ¼ CðtÞ þ�!tðEÞ;
with

Z
dE�!tðEÞ ¼ 0: (3.31)

The E-independent quantity CðtÞ is determined by the

normalization condition on �!t, and is a linear function
of t with slope ��

ffiffiffiffi
�

p
=�E.�!tðEÞ contains the physically

relevant fluctuations, since CðtÞ makes no contribution to
observables.

Once we are inside the ball we have kpt � pflatk & R �ffiffiffiffiffiffiffiffiffiffiffiffi
�=

ffiffiffi
8

pq
	 1. Our task is to use the definition of pt in

Eq. (3.10) to convert this into a result for the fluctuations
in !t. To do so, we assume that once in the ball, the
proximity of ptðEÞ to pflatðEÞ occurs not just on average
(as the smallness of kpt � pflatk implies) but also for each
E separately. Then, we have that

ptðEÞ � pflat

pflat

� log

�
ptðEÞ
pflat

�
¼ ��!tðEÞ þOð�!tðEÞÞ2:

(3.32)

The last step follows by expanding Zt in �!tðEÞ. Inserting
the result (3.32) into Eq. (3.24) we find the desired relation

kpflat � ptk2 �
R
dE1dE2ð!tðE1Þ �!ðE1ÞÞð1� exp½��F�ðE1; E2Þ�Þð!tðE2Þ �!ðE2ÞÞR

dE1dE2ð1� exp½��F�ðE1; E2Þ�Þ � ð�!Þ2: (3.33)

Thus, once in the ball, the fluctuations in!t are the same as
those in pt. Such a ‘‘filtered’’ measure of fluctuations is
sufficient, because the update of !t does not introduce UV

noise. We conclude that �! � R �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=

ffiffiffi
8

pq
. This is the

same parametric behavior as in the discrete WL algorithm
[10].

An important issue for the practical application of our
variant of the WL algorithm is the detailed nature of the
fluctuations !ðEÞ �!tðEÞ. In particular, do they average
to zero for each E once one is inside the ball? The previous
analysis does not directly address this question. We con-
sider it very plausible, however, that the answer is positive.
This is because the algorithm is designed to smooth out
nonuniformities in !ðEÞ �!tðEÞ, although it does so with
some ‘‘overshoot,’’ which leads to the fluctuations. It
would be interesting to extend the analysis of the algorithm
to include such nonequilibrium effects. For the present,
however, we assume that !ðEÞ �!tðEÞ fluctuates sym-
metrically about zero for each E.

We end this section by estimating the parametric depen-
dence of fluctuations in the histogram htðEÞ, at least in
certain limits. The entropy is related to the histogram by a
Gaussian transform

!tðEÞ �!0ðEÞ ¼ �
Z

dE0htðE0Þe�ðE�E0Þ2=�2
; (3.34)

where !0 is the initial guess. We will use a shorthand
notation for this transform and its inverse

ð!t �!0Þ ¼ �GðhtÞ; G�1ð!t �!0Þ ¼ �ht: (3.35)

Using Eq. (3.31), we can write

!tðEÞ �!0ðEÞ ¼ CðtÞ þ ð!ðEÞ �!0ðEÞÞ þ ffiffiffiffi
�

p
ftðEÞ:
(3.36)

For large t, when pt is in the ball, ft ¼ �!t=
ffiffiffiffi
�

p
fluctuates

around zero with an amplitude of Oð1Þ. Substituting
Eq. (3.36) into Eq. (3.35) we obtain

ht ¼ CðtÞ
��

ffiffiffiffi
�

p þ G�1ð!�!0Þ=�þ G�1ðftÞ= ffiffiffiffi
�

p
; (3.37)

where we use that result that an inverse Gaussian transform
of a constant is a constant.
The subsequent analysis depends on the relative size of

the second and third terms in (3.37), and thus on the
accuracy of the initial guess !0ðEÞ. One extreme case is
a poor guess, !0 ¼ 0. In this case, the second term domi-
nates over the third (at least for small enough �), which
means that if one evaluates the variance in ht,

�ht �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðdE=�EÞðhtðEÞ � �htÞ2

s
; (3.38)

�h t �
Z
ðdE=�EÞhtðEÞ: (3.39)
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It will have a t-independent contribution proportional to
1=�.

The other extreme is when one starts with a very good
guess, !0ðEÞ � !ðEÞ, so that the fluctuation term in (3.36)
dominates over the second term on the r.h.s. If so, then we
expect a t-dependent contribution to �ht that scales with
1=

ffiffiffiffi
�

p
. Presumably, if the second and third terms compete,

the scaling will lie somewhere between these two limiting
cases. This appears to be the situation in many of our
simulations.

The result (3.34) tells us nothing, however, about the UV
fluctuations in ht, since these are filtered out by the
Gaussian transform. As discussed further below, we expect
that this UV noise increases with t. In practice it is a small
contribution in our simulations.

C. The effect of a nonequilibrated Wang-Landau
simulation

We close this section by stressing that the analysis just
presented is predicated on letting the simulation equilibrate
after an update to!t is performed. While this equilibration
is guaranteed if we let Nhit ! 1, most of our runs were
done with Nhit ¼ 1. This means that the analysis above
does not directly apply to such simulations—ptðEÞ is
changing after each update,

ptðEÞ ! ptþ1ðEÞ ¼ ptðEÞ þOð�Þ; (3.40)

so exact equilibration cannot occur. Nonetheless, when
� 	 1 and ptðEÞ ’ ptþ1ðEÞ, approximate equilibration is
possible. Thus, we think it is plausible that the analysis just
given remains applicable given � is small enough. We have
checked this in practice by doing runs with Nhit 
 1 and
seeing that the results are unchanged within errors. An
example is shown below.

IV. IMPLEMENTING AND TUNING THE
WANG-LANDAU ALGORITHM

In this section, we describe how we implement the WL
algorithm in practice, how we use it to estimate !ðEÞ and
derived quantities, and suggest criteria for tuning �, �, and
Nhit.

That tuning is necessary is apparent from the analysis of
the previous section. Particularly crucial is the tuning of �,
which involves a balance between two competing effects.
On the one hand, � controls the speed with which the
algorithm explores values of action density. If the simula-
tion has spent some time in the vicinity of a particular value
of E, then !t will be increased in this region, and the
update probability (3.5) will favor motion to other regions
of E. The rate of buildup of !t is proportional to �, so the
rate of motion through ‘‘E space’’ will increase with in-
creasing �. On the other hand, by reducing �, one reduces
the fluctuations in !t (since �! / ffiffiffiffi

�
p

), and correspond-

ingly reduces statistical errors in quantities derived
from !.

A. Algorithm structure and tuning �

For our application we can restrict the range of E to
½Emin; Emax� � ½�1; 1�, since we are only interested in the
transition region. The range should be large enough that the
errors in the quantities of interest due to this truncation are
much smaller than those from statistics. The appropriate
range in our case can be read off from the hysteresis curves
of Fig. 1. One must cover the transition region and add a
conservative cushion on each side, and we typically use
E 2 ½0:1; 0:7� (see below for all our parameter choices).
Working with less than a third of the full range ½�1; 1�
saves considerable computation time.
Having made the choice of range, the algorithm pro-

ceeds in two stages.

1. Initial stage:

During this stage the simulation makes a directed ran-
dom walk toward the ‘‘ball’’ in pt space of radius R
centered on the desired flat distribution. The algorithm
explores the chosen range of E and transforms the starting
guess !0ðEÞ into a reliable estimate of the actual entropy.
The histogram htðEÞ is a useful monitor of progress

during this stage. At the beginning, it will build up non-
uniformly because the guess for the entropy function is
imperfect, but by the end the histogram should be growing
uniformly in E. The variance of the histogram �ht will

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

h(
E

)

E

The first six histograms, separated by 50K full model updates
Histograms measured in the data accumilation stage

FIG. 3 (color online). Comparison of histograms htðEÞ in the
initial stage with !0 ¼ 0 (red pluses) and the data accumulation
stage for a good initial guess for !0 (green crosses). Results
using WLR for SUð20Þ with � ¼ 10�4, � ¼ 0:005. The values
of t that correspond to the bottom six histograms t ¼
½5; 10; 15; 20; 25; 30� � 104 full updates of the model (corre-
sponding to values of 25–150 on the ‘‘MC time’’ axis of the
next figure). The top four histograms were obtained after
½50; 55; 60; 65� � 104 full updates. The definition of a ‘‘full
update’’ in given in Appendix A.
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grow from its initial value of zero and then approximately
saturate. This saturation marks the end of the initial stage.

As discussed in the previous section, the value at which
it saturates depends on the accuracy of the initial guess. We
illustrate in Fig. 3 what happens with both a poor and a
good guess. In the former case (data represented by [red]
pluses), we start with no information on the entropy, i.e.
!0 ¼ 0. The histogram first increases for small E, where
!ðEÞ is large. When !tðEÞ ’ !ðEÞ for these values of E,
the WL random walk gradually starts exploring larger
values of E, which have lower !ðEÞ. Eventually (not
shown), the whole range is covered, and the histogram
grows uniformly, while maintaining in its shape the ‘‘mem-
ory’’ of the initial !0. This shape is the second term in
Eq. (3.37).

The case of a good guess is shown by the [green] crosses.
Here, we show only the histograms starting after 55� 105

updates, so as to avoid cluttering the figure. Earlier histo-
grams are similarly horizontal. For these simulations the
third (fluctuation) term in Eq. (3.37) may dominate over the
second.

The behavior of �ht for the case of the poor guess is
shown in Fig. 4. The stage of rapid growth ends when �ht
saturates to a nearly constant function of t.6 There is a
small but noticeable residual growth in �ht, which is due,
we think, to UV fluctuations in the histogram. As discussed
in Sec. III B, these fluctuations are not suppressed by the
WL algorithm, and we expect them to be Gaussian with a
contribution to �ht growing like

ffiffiffiffiffi
ht

p
.

Once one has obtained a good estimate of !ðEÞ for one
value of N, one can scale it with Ndof / N2 to use as a
guess for a different value of N, or reuse it for the same N
with a different �, �, etc. With a good guess the initial

stage is shorter,7 and, according to Sec. III B 3, the value of
�ht at saturation should scale more like 1=

ffiffiffiffi
�

p
than like

1=�. An example of this situation is shown in Fig. 5, where
it appears that most, if not all, of the data is in the ‘‘satu-
ration regime,’’ although it is hard to pinpoint exactly the
beginning of this regime because of the fluctuations. Note
that the � ¼ 10�4 data correspond to the ‘‘good guess’’
histograms in Fig. 3 above. The figure shows clearly that
the saturated �ht grows with decreasing �. The saturated
values are approximately 5� 10�4, 8� 10�3, and 2:5�
10�3, which are roughly consistent with the expected �
scaling.
Finally, we note that we found it useful to experiment

during this initial stage with values for �, and determine a
lower bound such that the range ½Emin; Emax� can be ex-
plored repeatedly with the available computational
resources.

2. Data accumulation stage:

The simulation is now fluctuating around the actual
!ðEÞ (it is in the ball—see Sec. III B 3). We propose that
one perform Nmeas measurements of !tðEÞ separated by a
fixed number updates. In our case of a first-order transition,
the gap between measurements should ideally include, on
average, several tunneling events.8 The average of these
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FIG. 4 (color online). The average histogram variance, �ht, for
the !0 ¼ 0 data presented in Fig. 3.
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FIG. 5 (color online). The standard deviation in the average
histogram, �ht, versus MC time, for SUð20Þ and � ¼ 10�4,
10�5, 10�6 (shown by [red] pluses, [green] crosses and [blue]
stars, respectively). This data uses a good initial guess!0ðEÞ and
so has a very short initial stage. Thus, �ht is mostly or com-
pletely saturated. Results are for � ¼ 0:005 and Nhit ¼ 1. The
corresponding plot for Nhit ¼ 20 and � ¼ 10�5 is similar.

6As noted in the previous section, we expect the amplitude at
saturation to scale with 1=�, although we have not checked this
in this case.

7Ref. [18] reports that introducing an update to!tðEÞ, which is
applied simultaneously to all values of E, can also reduce the
computational cost of this initial stage by an order of magnitude.
We did not test this extensively.

8We define a tunneling event as motion from Emin to Emax and
back again. This is a conservative definition since a tunneling
can occur without motion all the way to the edges of the range.
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measurements provides an estimate for !ðEÞ (up to an
overall irrelevant constant). The deviation of this estimate

from the true entropy will then scale as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=Nmeas

p
.

For derived quantities such as the specific heat (1.4), we
propose calculating the errors using the jackknife or simi-
lar method applied to the set of Nmeas measurements of
!tðEÞ. This has the advantage of automatically taking into
account correlations in cases where we have two few
tunneling events between measurements. We expect the

errors in derived quantities to also scale as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=Nmeas

p
.

We show an example of the behavior of E during this
data accumulation stage in Fig. 6. The runs are the same as
for Fig. 5, except that we show only the smallest and largest
values of � for the sake of clarity. Tunneling is clearly
seen9 with a frequency that decreases with decreasing �.

This time history allows one to understand the large
fluctuations in �ht seen for small � in Fig. 5. Before a
tunneling event takes place, the histogram grows only for
low (high) values of E, and consequently �ht grows. After
the tunneling, the previously unvisited high (low) range of
E is explored and �ht drops. Thus, a tunneling event is
manifest in the MC time history of �ht as a peak. Indeed,
we have confirmed that the peaks in Fig. 5. coincide with
tunneling events seen in the time histories of E shown in
Fig. 6.

The data accumulation stage can also be used to further
tune the value of �. Decreasing � reduces errors, but also,
for fixed computer time, decreases tunneling rates and thus
Nmeas. One should choose � to optimize the error in the

derived quantities of most interest, which, as we have

noted, are expected to scale like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=Nmeas

p
.

One must also determine how to scale an optimized �
between different values of N. One criterion is to maintain
the same tunneling rate. Since !ðEÞ is an extensive quan-
tity scaling like Ndof , we expect that � must be scaled
similarly if it is to lead to a similar rate of motion through
E space, and, in particular, to the same tunneling rate. We
have found that such a scaling rule works reasonably well
in practice. As an example, we show in Fig. 7 the com-
parison of the time history for SUð20Þ with � ¼ 10�5 and
SUð50Þ with � ¼ 3� 10�5. The ratio of the �’s is 3 while
the ratio in the number of degrees of freedom is ð50=20Þ2 ’
6. Thus, they are of the same order of magnitude, and we
expect the tunneling rate for SUð50Þ to be similar to that for
SUð20Þ. As the figure shows this is approximately true.
This should be contrasted with standard MC simulations in
which the tunneling rate for SUð50Þ is exponentially
smaller, reduced in the present case by about a factor of
500 compared with SUð20Þ. This is a striking example of
the efficacy of the WL algorithm at overcoming the sup-
pression of tunneling events.

B. Tuning �

The parameter � determines the width of the smearing
function �F�ðE; EtÞ that is added to !tðEÞ. Since the area
under �F� is proportional to �� �, it is this product that
determines how fast the simulation moves through E space.
Indeed, this product enters in the bound on the steps in
��t, Eq. (3.29). By contrast, the size of fluctuations in !t,
and thus in derived quantities, depends only on � and not

on � (since R2 � �=
ffiffiffi
8

p
). In light of this one wants to make

� as large as possible before tuning �.
The upper limit on � is set by different considerations.

As � increases, the resolution with which one obtains!ðEÞ
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FIG. 6 (color online). The MC time history of the action
density E for SUð20Þ with � ¼ 10�4 (red pluses) and � ¼
10�6 (green crosses). In both cases � ¼ 0:005 and Nhit ¼ 1.
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FIG. 7 (color online). The MC time history of the action
density E using the WL algorithm. Red pluses: SUð20Þ with � ¼
10�5. Green crosses: SUð50Þ with � ¼ 3� 10�5. In both cases
� ¼ 0:005 and Nhit¼1.

9It is important to keep in mind that these tunneling histories
inevitably look different from those in canonical simulations
running at or near the transition coupling. In the latter the
fluctuations in each phase are over a very limited range of E,
while in the WL algorithm the simulation must, by construction,
move out to the boundaries of the E range so that all values of E
are equally populated.
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is decreased, and it must not approach the width of the
region, which makes the important contributions to observ-
ables like the specific heat. Thus, we propose that one must
keep � 	 �, with � the width in E of each branch of the
canonical distribution PCðEÞ

PCðEÞ � expð!ðEÞ þ 12N2btEÞ (4.1)

in the vicinity of the transition coupling. This guarantees
that the integral in Eq. (3.4) can be evaluated accurately.
We note that � can be estimated with a standard MC
simulation.

In practice we choose a value � ¼ 0:005, which clearly
satisfies � 	 � (see Fig. 9 below) and do not undertake
extensive investigations of the sensitivity to this choice.

C. Tuning Nhit

Finally, we discuss the tuning of Nhit, which we recall is
the number of updates one does with a given !tðEÞ before
updating to !tþ1ðEÞ. To reduce computational effort, one
wants to choose Nhit as small as possible. This, however,
can introduce a sizable systematic error, since the conver-
gence of the WL algorithm is formally only guaranteed if
Nhit ! 1. The lower limit Nhit depends on �. This is
because for large values of �, the update of Eq. (3.6) is
very abrupt, and the system will require more hits to
equilibrate into the new distribution ptþ1ðEÞ. Cor-
respondingly, for the very small values of � that we use,
the system may be able to equilibrate even with Nhit ¼ 1.
In fact, we use this value for most of our runs.

Lacking a firm theoretical foundation, it is clearly im-
portant to do numerical checks of the dependence on Nhit.
What we find (as will be shown below) is that Nhit ¼ 1 is

acceptable (i.e. gives the same results as with larger values)
if � is small enough. A possible explanation for this is that
the number of effective hits between updates of the entropy
is larger than Nhit. This is because the typical change in E
in an individual update is, in our simulations, an order of
magnitude smaller than �. Thus, the system performs a
random walk ‘‘inside’’ the Gaussian F�. So, in an approxi-
mate sense, the simulations are being done with effective
values of Nhit and � that are 2 orders of magnitude larger
than the assigned values.
We conclude this section by stressing that this system-

atic error should be estimated explicitly. This can be done
by comparing results for derived quantities to those ob-
tained using standard MC simulations at values of b away
from the transition (so that the latter are reliable), and/or by
checking the sensitivity of the results obtained with WLR
to changes in � and Nhit. Details of such checks will be
described at the end of the next section.

V. RESULTS

We have undertaken long runs with N ¼ 20–50
using the parameters listed in Tables I, II, III, and IV.
(The parameter we denote by Nbin is discussed in
Appendix B.) In all cases the measurements were separated
by 10 000 full updates of the model (for a definition of a
full update see Appendix A), except for the data in the last
two rows of Table I, where the separation was by 100 000
full updates. Thus, for each choice of N and algorithm
parameters, we perform in total ð1–3Þ � 106 full updates.
To present our results we first define the logarithm of the

canonical probability function, calculated at the transition
coupling bt

�!ðEÞ ¼ !ðEÞ þ 12N2btðNÞE: (5.1)

We write btðNÞ in Eq. (5.1) to emphasize that the transition
coupling bt depends on N. Presenting �!ðEÞ and not !ðEÞ
makes the N dependence more apparent. We calculate
!ðEÞ by averaging over the measurements. In Fig. 8, we
present �!ðEÞ=N2 for the gauge groups we studied. The
values of btðNÞ used to generate this figure appear in
Table VI, and we discuss how we obtained them below.
In Fig. 9, we show the canonical probability function itself,
i.e. expð �!ðEÞÞ. We do not show statistical errors in either
figure since the meaning of such an error for both �!ðEÞ or
its exponent is nontrivial: only differences of �!ðEÞ and
ratios of expð �!ðEÞÞ have physical meaning. Meaningful
errors can be computed using a simple scheme of error
propagation but this is not necessary for our purposes
here.10 An indication of the size of the uncertainty is given,
however, from the ‘‘wiggles’’ in Fig. 9. Note that these are
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FIG. 8 (color online). Our most reliable estimates of �!ðEÞ=N2.
All results were obtained with Nhit ¼ 1 and � ¼ 0:005, except
for N ¼ 50 where � ¼ 0:0025. The values of � were 10�4,
1:4� 10�5, 2:5� 10�5, 3� 10�5 for N ¼ 20, 30, 40, 50,
respectively. For presentation purposes we shift the maximum
of �!ðEÞ to zero for each N. Note that a smaller Emax was used for
N ¼ 50.

10For example, one can estimate the statistical error in the ratio
of expð �!ðEÞÞ between adjacent values of E and propagate it in a
stochastic manner to find the error in expð �!ðE1Þ � �!ðE2ÞÞ for a
finite difference jE1 � E2j.
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much larger than those in Fig. 8, because of the exponential
enhancement.
The expected double-peak structure is clearly seen, yet

the WL algorithm has done its job by providing the density
of states in the intermediate regime. It is noteworthy that
the dip in �!=N2 grows with increasing N. This is contrary
to the usual behavior in field theories where the dip in this
normalized quantity decreases as the Ndof increases.
Using our estimates of !ðEÞ we can calculate the aver-

age action density E and the corresponding specific heat C

E ðbÞ ¼ Z�1ðbÞ
Z

dE exp½!ðEÞ þ 12N2bE�E; (5.2)

C ðbÞ ¼ Z�1ðbÞ
Z

dE exp½!ðEÞ þ 12N2bE�ðE� EðbÞÞ2;
(5.3)

ZðbÞ ¼
Z

dE exp½!ðEÞ þ 12N2bE� (5.4)

TABLE I. Results using WLR for SUð20Þ, using the range E 2 ½0:1; 0:7�, and setting � ¼ 0:005 and Nhit ¼ 1. The row denoted by a
star was obtained by adding explicit permutations to the update of the SUðNÞ matrices, which were found to be accepted 20% of the
time. For further details on the importance of permutations we refer to Ref. [12].

� Nbin Nmeas Total number of tunnelings bt Ct

10�4 1000 108 �140 0.29 585(45) 3:222ð128Þ � 10�3

10�4 1000? 110 �400 0.29 597(21) 3:336ð55Þ � 10�3

10�4 4000 100 �120 0.29 544(37) 3:399ð55Þ � 10�3

10�5 1000 18 �80 0.29 509(37) 3:260ð83Þ � 10�3

10�6 1000 20 �40 0.29 585(13) 3:402ð35Þ � 10�3

TABLE II. Results from WLR for SUð30Þ, using the range E 2 ½0:1; 0:7�. All calculations were done with � ¼ 0:005 except for that
presented in the last row, for which � ¼ 0:0008.

� Nhit Nbin Nmeas Total number of tunnelings bt Ct

2:25� 10�4 1 1500 108 �140 0.30 557(55) 5:974ð50Þ � 10�3

2:25� 10�4 1 50000 100 �180 0.30 652(80) 5:051ð260Þ � 10�3

2:25� 10�4 1740 1500 114 �20 0.30 539(35) 6:276ð120Þ � 10�3

1:4� 10�5 1 1500 102 �60 0.30 569(17) 6:395ð230Þ � 10�3

1:4� 10�4 1 1500 110 �20 0.30 551(30) 6:453ð120Þ � 10�3

TABLE III. Results fromWLR for SUð40Þ, using the range E 2 ½0:1; 0:7�, and obtained with � ¼ 0:005, Nbin ¼ 1875, and Nhit ¼ 1.

� Nmeas Total number of tunnelings bt Ct

4� 10�4 151 �850 0.30 965(75) 6:67ð30Þ � 10�3

2:5� 10�5 355 �75 0.30 968(20) 8:24ð10Þ � 10�3

TABLE IV. Results from the WLR for SUð50Þ, using the range E 2 ½0:1; 0:6�, and obtained with � ¼ 0:0025, Nbin ¼ 2100, and
Nhit ¼ 1.

� Nmeas Total number of tunnelings bt Ct

3� 10�5 108 �45 0.31 119(19) 9:02ð12Þ � 10�3
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FIG. 9 (color online). Our most reliable estimates of
expð �!ðEÞÞ. The parameters are as in Fig. 8.
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as a function of inverse ‘t Hooft coupling b, at least for the
range of b where E lies well within our range ½Emin; Emax�.
The results of doing so are shown in Figs. 10 and 11. All
statistical errors are obtained using the jackknife method,
dropping single measurements of ! in turn from the
average.

We define the transition coupling bt to be the location of
the peak in CðbÞ and give the resulting values of btðNÞ in
Tables I, II, III, and IV. TheWL algorithm is clearly able to
determine bt with high accuracy (0.1–0.2%). We note that
the error in bt is roughly constant as N increases, as long as
we scale � so that the tunneling rate stays approximately
the same (as discussed in the previous section). Since the
number of full updates is approximately the same for all N,

this means that the computational effort is growing pro-
portional to N2. This is a much milder dependence than the
exponential growth required for canonical simulations.
All results for bt for a givenN are consistent, despite the

use of different values of the parameters of the algorithm.
As a further check we have used the Ferrenberg-Swendsen
multihistogram reweighting method, which works well for
N ¼ 20, 30, but fails forN � 40. The values of bt obtained
with FSR are given in Table V, and agree within the very
small errors with those from the WL algorithm.
The situation is different for the results for the peak

value of the specific heat Ct � Cðb ¼ btÞ. Although results
in Table I for N ¼ 20 are consistent, those in Tables II and
III for N ¼ 30 and 40 are not. In addition, we find discrep-
ancies with results from canonical MC simulations. These
are exemplified by Fig. 12, where we present the estimates
of Eðb * 0:305Þ from WLR for SUð30Þ together with the
values obtained from direct MC simulations. What we find
is that we obtain agreement with FSR and/or canonical MC
results only if either � is small enough or Nhit is large. This
is presumably the realization of the systematic error dis-
cussed in Sec. IV and illustrates the importance of having
results at more than one value of � or Nhit.
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FIG. 10 (color online). Final results for EðbÞ obtained using
WLR. Error bars are shown at selected values of b, and are
highly correlated.
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FIG. 11 (color online). Final results for CðbÞ obtained using
WLR.

TABLE V. Results from FSR multihistogram reweighting. For
N ¼ 20ð30Þ each histogram contains an average of 104 (5� 104)
measurements, separated by 5 full model updates from each
other.

N Reweighting using bt Ct

20 40 histograms 0.295 980(48) 3:32ð3Þ � 10�3

30 17 histograms 0.30 551(30) 6:45ð5Þ � 10�3
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FIG. 12 (color online). Comparison of WLR results for the
average action density for SUð30Þ, with direct measurements
from standard MC simulations. The systematic error discussed in
Sec. III C is clearly seen.
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VI. SUMMARY

In this paper, we present an implementation of a variant
of the Wang-Landau reweighting algorithm in the context
of SUðNÞ lattice gauge theories.11

This algorithm was introduced in the field of statistical
mechanics to calculate the density of states of discrete spin
systems. We use a generalization of the original algorithm
to systems with continuous degrees of freedom and apply it
to a matrix model that is obtained by quenched reduction
from four-dimensional SUðNÞ lattice gauge theory. This
matrix model consists of four SUðNÞ matrices with inter-

actions governed by the ‘t Hooft coupling �, and has a first-
order strong-to-weak coupling phase transition in its
large-N limit at � ¼ �t. An accurate measurement of �t

at N ¼ 1 is what we aimed to achieve using WLR.
Our variant of theWL algorithm does not extrapolate the

fluctuations in the Boltzman weights toward zero, but
rather retains these fluctuations at a small, nonzero value,
in order to maintain tunneling at a first-order transition.
Assuming these fluctuations are symmetric around zero,
we can systematically estimate the error in the density of
states and in derived quantities such as the specific heat.
We have studied the systematic errors associated with
choosing the various parameters of the algorithm. Our
most reliable WL estimates of �t for gauge groups with
N ¼ 20, 30, 40, 50 are summarized in Table VI and plotted
in Fig. 13 versus 1=N2. We fit our data to the form

ð�tÞ�1
N ¼ ð�tÞ�11 þ A

N
þ B

N2
; (6.1)

and present the results of these fits in Table VII. We also
plot the result of the linear fit in 1=N2 (i.e. the fit with A ¼
0 whose results are presented in the first row of Table VII)
in Fig. 13.
We find that in the large-N limit ð�tÞ�11 ¼

0:3142ð2Þ–0:3148ð10Þ, depending on the way we fit.
These results are many standard deviations away from
the value of ð�Þ�1

Bulk ’ 0:36 where the strongly first-order

‘‘bulk’’ transition takes place in four-dimensional SUð1Þ
lattice gauge theories. This discrepancy is one of several
pieces of evidence adduced in Ref. [12] for the breakdown
of large-N quenched reduction in four-dimensional SUðNÞ
lattice gauge theories, and we refer the reader to that paper
for further discussion. Such a discrepancy was not seen in
past explorations of the matrix model partly because the
phase transition is so strong that it is very hard to measure
its transition coupling by conventional means. The Wang-
Landau algorithm allowed us to solve this problem and to
determine that there is a discrepancy. We conclude that the
Wang-Landau algorithm can be a useful and feasible way
to study SUðNÞ lattice gauge theories.
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TABLE VI. A summary of our most reliable WL results for btðNÞ ¼ ð�tÞ�1
N .

N 20 30 40 50

btðNÞ ¼ ð�tÞ�1
N 0.29 544(37) 0.30 569(17) 0.30 968(20) 0.31 121(19)
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FIG. 13 (color online). The strong-to-weak transition cou-
pling, bt ¼ 1=�t, plotted versus 1=N2. Red squares show our
results using the Wang-Landau algorithm from Table VI. The
solid blue curve is the linear fit described in the text (with
parameters listed in the first row of Table VII).

TABLE VII. The fit parameters ð�tÞ�11 , A, and B, obtained
from fitting the Wang-Landau data in Table VI to the form
Eq. (6.1). The first row shows results from a fit linear in 1=N2

(i.e. with A ¼ 0).

Type of fit ð�tÞ�11 A B 	2=d:o:f:

A ¼ 0, B � 0 0.3142(2) - �7:59ð18Þ 1:45=2
A � 0, B � 0 0.3148(10) �0:037ð65Þ �7:06ð97Þ 1:1=1

11The original WL algorithm was implimented for Uð1Þ gauge
theory in Ref. [5], and used to provide an input weighting
function for a multicanonical simulation.
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APPENDIX A: ALGORITHMS FOR SIMULATING
QUENCHED, REDUCED SUðNÞ LATTICE GAUGE

THEORY

In our standard (non Wang-Landau) MC simulations of
the model we used several different algorithms to update
the matrices V�. We use a standard Metropolis algorithm

(M), a ‘‘hybrid’’ heat bathþMetropolis (HM), and a full
heat bath—the latter including different types of over
relaxations. For the M and HM algorithms we generate a
set of random SUð2Þ matrices at the beginning of the run
and keep them in memory. For each matrix in this list we
add to the list its inverse. The M algorithm is completely
standard. We randomly choose an SUð2Þmatrix u from the
list, extend it to an SUðNÞ matrix by adding 1’s along the
diagonal, update V� ! uV�, and accept this proposed

update with the usual Metropolis probability. This is re-
peated 5 times for equilibration. This process is then
repeated, following Cabibbo and Marinari [19], for each
of the [NðN � 1Þ=2] SUð2Þ subgroups of SUðNÞ in turn,
and for each V� in turn.

We now describe the other algorithms, which are less
standard.

1. Hybrid heat-bath algorithm

Here, we use the prescription suggested in Ref. [20] to
make the action linear in the link matrices U�. This

requires a Hubbard-Stratonovich Gaussian field Q�� for

each plaquette. It results in an effective action
AeffðU�;Q��Þ that is quadratic in Q�� and linear in

U�—and thus quadratic in V�. We then update one of

the V� as follows:

(1) First update the matrices Q�;�. This update is trivial

since Q has a (shifted) Gaussian distribution.
(2) Update V� as in the M algorithm using all SUð2Þ

subgroups but now with the action Aeff .

This is repeated in turn for each of the links.

2. Heat-bath and over-relaxation algorithms

The heat-bath algorithm requires the use of two auxil-
iary fields in order to obtain an action that is linear in the
V�. It is not quite as simple as applying the approach of

Ref. [20] twice, and so we give some details.
We begin by recalling the action

A ¼ 2N
X
�<�

ReTrðU�U�U
y
�U

y
� Þ; (A1)

where U� ¼ V���V
y
� and ð��Þab ¼ �ab expðipa

�Þ. We

next define two sets of unitary matrices

A�� � Vy
�V� ¼ Ay

��; B�� � A����A
y
�� � By

��;

ð� � �Þ (A2)

in terms of which the action can be written as

A ¼ 2N
X
�<�

ReTrðA����A
y
���y

�A���
y
�A

y
����Þ; (A3)

¼ 2N
X
�<�

ReTrðB���
y
�B

y
����Þ: (A4)

For each plaquette, i.e. for each �< � we introduce aux-

iliary complex fields ~Q�� and ~P��, with Boltzmann

weights

exp½�bNTrð ~Q��
~Qy
��Þ � bNTrð ~P��

~Py
��Þ�: (A5)

These are then shifted as follows:

Q�� ¼ ~Q�� þ fB��;�
y
�g; (A6)

Q�
�� ¼ fQ��;��g

¼ f ~Q��;��g þ 2B�� þ��B���
y
� þ�y

�B����;

(A7)

P�� ¼ ~P�� þ A���
y
� þQ�y

��A��: (A8)

The staplelike quantity X�� can then be calculated

X�� ¼ �y
�P

y
�� þ Py

��Q
�y
��; X�� ¼ Xy

��;

ð�< �Þ:
(A9)

Finally, the action can be written in a form suitable for a
heat bath or overrelaxed update

A0 ¼ A� N
X
�<�

½Trð ~Q��
~Qy
��Þ þ Trð ~P��

~Py
��Þ þ const:�;

(A10)

¼ N
X
���

TrðV�X��V
y
� Þ � N

X
�<�

½TrðQ��Q
y
��Þ

þ TrðQ�
��Q

�y
��Þ þ TrðP��P

y
��Þ�: (A11)

In summary, to evaluate an observable that depends only
on the gauge fields one can use

hOðUÞi ¼ 1

Z

Z Y
�

DV�e
bAOðUÞ; (A12)

¼ 1

Z0
Z Y

�

DV�

Y
�<�

D ~Q��D ~Qy
��D ~P��D ~Py

��e
bA0

OðUÞ;

(A13)

¼ 1

Z0
Z Y

�

DV�

Y
�<�

DQ��DQy
��DP��DPy

��ebA
0
OðUÞ;

(A14)

where
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Z0 ¼
Z Y

�

DV�

Y
�<�

D ~Q��D ~Qy
��D ~P��D ~Py

��e
bA0

: (A15)

The form (A14), together with the expression for A0 in
Eq. (A11), shows how the auxiliary fields decouple the V’s.
To get the correctly distributed V’s and P’s, one can update
V� using the ‘‘staple’’ part of the action

AstapleðV�Þ ¼ 2N
X
���

ReTrðV�X��V
y
� Þ; (A16)

where we stress that in this case the sum is now only over �.
This form is suitable for a heat-bath update, which we
implement in each SUð2Þ subgroup in turn.

To generate the correct distribution of the P’s is straight-
forward. Given the Q’s and V’s, one can generate ~P’s with
the Gaussian measure and make the shifts given in
Eq. (A8). This leads to the correct linear and quadratic
terms in P�� in the action of Eq. (A11).

To update the Q’s one must be more careful. Simply

generating ~Q’s with Gaussian measure and using the shift
of Eq. (A6) leads to the wrong distribution: neither the
quadratic or the linear terms in Eq. (A11) are reproduced.
Instead, one should ‘‘complete the square’’ using the terms
that are present in Eq. (A11). To do so requires that one first

generate the ~Q’s using the Gaussian measure, but then
shifts and rescales as follows:

ðQ��Þab ¼ 
abð ~Q��Þab þ 
2
abðfA��P

y
��;�y

�gÞab; (A17)


ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2 cosðpa

� � pb
�Þ

q : (A18)

Thus, the structure of the algorithm is as follows. One
begins with an initial choice of V ’s and Q’s. Then one can
update all the P’s, update all theQ’s, and finally update the
V’s (updating all directions for given Q’s and P’s). To
return to the beginning of the loop one needs to store not
only the V’s but also the Q’s. One could also interchange
the ordering and roles of the P’s and Q’s.

Once one has an effective action that is linear in the
UðNÞ matrices V� the way is open for over-relaxation

algorithms. We have thus implemented both an over re-
laxation in all the SUð2Þ subgroups of SUðNÞ as well as a
full SUðNÞ over relaxation of the type described in [21].

3. Update scheme in the Wang-Landau algorithm

In the WL algorithm we need to propose changes to the
V�. This we do as in the Metropolis and HM algorithms,

i.e. one SUð2Þ subgroup at a time. Such an update is what
we refer to as a ‘‘hit,’’ so ifNhit ¼ 1, we change!tðEÞ after
each individual SUð2Þmultiplication. We also checked that
updating !ðEÞ in between full SUðNÞ updates (for all four
V�) gives similar results—this givesNhit ¼ 2� NðN � 1Þ.

In either case, we call a ‘‘full update’’ the update of all
SUð2Þ subgroups for all four links.
Finally, we have considered an extra type of update that

permutes the angles pa
� $ pb

� for randomly chosen pairs

of indices a and b. This was motivated by the importance
of permutations in this quenched-reduced model [12].

APPENDIX B: MORE PRACTICAL ISSUES

In this section, we list several practical issues relevant to
the implementation of WLR.

1. A initial guess for !t¼0ðEÞ
We suggest performing the first implementation of the

WLR with a relatively low value of Ndof ¼ Nð0Þ
dof . This run

can begin with a ‘‘blind’’ initial guess of !0ðE;Nð0Þ
dofÞ ¼ 0.

We then found it useful to appropriately scale the best

estimate of !ðE;Nð0Þ
dofÞ with Ndof , so as to use it as a good

initial guess for Ndof >Nð0Þ
dof . Since !ðEÞ is an extensive

quantity this means setting

!t¼0ðE;Nð1Þ
dofÞ ¼

Nð1Þ
dof

Nð2Þ
dof

!t¼1ðE;Nð2Þ
dofÞ: (B1)

In our case, with Ndof � N2, this corresponds to

!t¼0ðE;N2
1Þ ¼ ðN1

N0
Þ2!t¼1ðE;N2

0Þ. The generalization for

a field theory in a finite lattice volume is obvious. We
found that this procedure shortens the initial stage of
WLR considerably.

2. Boundary effects

As we mention in Sec. IV, it is useful to use WLR in a
subset of the full range of E. This is sufficient if at the
values of b of interest, the average action density E is
localized far from the regime’s boundaries.
This modification complicates the theoretical analysis of

Sec. III B in a way we only partially addressed.
The presence of the boundaries raises two practical

questions:
(1) What do we do when the update Eold ! Enew results

in a value Enew that is outside of the region
½Emin; Emax� ?

(2) What do we do when we update !t ! !tþ1 and the
update function F�ðE; EtÞ extends outside the de-
sired region?

In this work, we generalize the proposals of Ref. [22]. The
answer to the first question is that we reject Enew and thus
perforce stay inside the desired region. This means setting
Enew ¼ Eold and updating !tðEnewÞ as in a regular update.
This is the standard approach, which one can understand as
follows. If one were simulating the full range of E then
every time one left the range ½Emin; Emax� one would even-
tually return. We are just dropping the MC-time history of
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the WL algorithm for which E was outside the desired
range. Since at time t theWL algorithm updates!tðEÞ only
around Et, performing WLR in this way gives an estimate
for !ðEÞ, which is correct away from the boundaries E ¼
Emin;max.

Our answer to the second question is to ‘‘reflect’’ the
part of F�ðE; EtÞ that lies outside of the desired range back
into the range. The precise definition of the reflection is as
follows. For all E (even those outside ½Emin; Emax�) perform

!ðE0Þ ! !ðE0Þ þ �FðE;EoldÞ; (B2)

with

E0 ¼
8><
>:
E for E 2 ½Emin; Emax�;
2Emin � E for E< Emin;
2Emax � E for E> Emax:

(B3)

Here, we assume that E0 always obeys E0 2 ½Emin; Emax�.
This is valid as long as the interval size ðEmax � EminÞ is
larger than the average change jEnew � Eoldj, which is very
well satisfied in practice.12

The reflected update has two important properties. First,
it maintains the result that the area

R
dEF�ðE; EtÞ is inde-

pendent of Et. Second, for our Gaussian choice of F�, the
definition remains symmetric: F�ðE; EtÞ ¼ F�ðEt; EÞ.

We find that if one does not perform the updates that
correspond to last two rows in Eq. (B3), then theWLR fails
to converge, and effectively overestimates !ðEÞ near the
boundaries. This is easy to understand: if we do not reflect
the contribution of the Gaussian in Eq. (B2) then effec-
tively the update to !ðEÞ close to the boundary is smaller
than it would be in the absence of the boundary.13 Thus, the
force that drives one away from the boundary is too weak

and one spends too much time updating !tðEÞ near the
boundary.

3. Storing the functions !tðEÞ and htðEÞ
Despite the continuous fashion in which we implement

the WL algorithm, one still needs to store the functions
!tðEÞ and htðEÞ in memory, as well as to update them. We
do this by dividing the range ½Emin; Emax� into Nbin bins.
The criterion that determines the bin size �E ¼ ðEmax �
EminÞ=Nbin is the same as that for � (see Sec. IVB). In order
for the error in the numerical evaluation of the integral
Eq. (3.4) by binning to remain small, one must have

�E 	 �; (B4)

where � is the width in E of the canonical distribution
function PCðEÞ of Eq. (4.1). Assuming that �!ðEÞ=N2 is
quadratic about the peak and has a good N ! 1 limit
(which appears to hold for the ‘‘outside’’ branches of the
peaks—see Fig. 8), then one can show that� / 1=N. Thus,
one must increase the number of bins as Nbin / N, as we
have done (see Tables I, II, III, and IV).
Another criterion one might consider using is to enforce

a relationship between �E and the average step size.
Naively, one might think that the bins should be smaller
than the average step size, so that discretization effects do
not hinder the motion in E space. This would be an onerous
requirement, since our step size, which is �ð1–5Þ � 10�4,
would require significantly more bins than we use in most
simulations. In fact, it turns out that the acceptance rate,
and thus the motion through E space is almost independent
of the bin size. We have seen this numerically for SUð30Þ,
where we have one simulation with 50 000 bins. But one
can also understand this analytically if the step size is much
smaller than �, which is the case for our simulations. We
do not present the derivation, but the essential point is that
with bins much larger than the step size the smaller accep-
tance when jumping between bins (when the step is to
lower E) is exactly counterbalanced by the free motion
(without rejection) within the bins.
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Sabhapandit, and S.N. Coppersmith, Phys. Rev. Lett. 92,
097201 (2004);

[15] M. Okawa, Phys. Rev. Lett. 49, 705 (1982).
[16] G. Brown and T. C. Schulthess, J. Appl. Phys. 97, 10E303

(2005); S. Sinha and S.K. Roy, arXiv:0711.1031.

[17] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A.
99, 12562 (2002), www.pnas.org/cgi/doi/10.1073/pnas.
202427399; Y. Wu, J. D. Schmitt, and R. Car, J. Chem.
Phys. 121, 1193 (2004).

[18] Chenggang Zhou, T. C. Schulthess, Stefan Torbrügge, and
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