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We computed potentials between static color sources from the six lowest representations of G2 lattice

gauge theory, in numerical simulations with the Wilson action on asymmetric lattices with nonperturba-

tively estimated values of the bare anisotropy. We present evidence for (approximate) Casimir scaling of

the obtained intermediate string tensions. The agreement with the Casimir-scaling prediction improves by

increasing the coupling � in the weak-coupling region above the crossover observed in G2 gauge theory.

The result naturally fits into confinement models with magnetic disorder and vacuum domain structure,

but may represent a challenge for other approaches.
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I. INTRODUCTION

Any theory aiming to explain the mechanism of color
confinement in quantum chromodynamics has to face a
would-be simple—but rather nontrivial in reality—task: to
describe qualitative features of potentials between static
charges from various representations of the gauge group. If
one neglects dynamical quarks in the first approximation,
the static quark-antiquark potential in SUðNÞ gauge theory
exhibits distinct behavior in three ranges of interquark
distances. At short distances, the interaction is dominated
by gluon exchange and the potential is Coulomb-like, its
strength being proportional to the eigenvalue of the qua-
dratic Casimir operator in the given representation of color
sources. At intermediate distance scales, from the onset of
confinement to the onset of color screening, the potential is
expected to be linearly rising, and the corresponding string
tensions for different representations are again approxi-
mately proportional to the quadratic Casimir.1 This effect,
dubbed Casimir scaling in Ref. [4], was observed in nu-
merical simulations of both SU(2) [3,5,6] and SU(3) [7–
11] lattice gauge theories.2 Finally, at asymptotic distances,
the string tensions depend only on the N-ality k of the
representation: representations with k ¼ 0 are screened
and their potentials are asymptotically flat; k � 0 repre-
sentations are confined and their potentials continue to rise
linearly.

A confinement scenario which naturally accounts for
both Casimir scaling at intermediate distances and the
asymptotic N-ality dependence is based on condensation
of center vortices in the QCD vacuum (see [12] for a
review and summary of numerical evidence for the model).
The vacuum is filled with percolating thick vortices carry-

ing color magnetic flux quantized in terms of elements of
the gauge group center. Asymptotically largeWilson loops,
linked to center vortices, ‘‘feel’’ the total (center) flux; this
is how N-ality shows up easily in asymptotic string ten-
sions. On the other hand, Wilson loops of intermediate size
cross thick-vortex cores and enclose only a part of their
magnetic flux. As a consequence, intermediate string ten-
sions can exhibit approximate Casimir scaling. A simple
model of how and why it happens was suggested in
Ref. [13] (some numerical support was provided by [14]).
Recently, G2 Yang-Mills (YM) theory has attracted con-

siderable attention [15–22] as a means to look at the
physics of confinement from a fresh new angle. The G2

group has a trivial center; the center of its universal cover-
ing group is also trivial [15], and there seems to be no
reason to believe that the group center plays any important
role in G2 gauge theory at all. In the strict sense of the
word, the theory is only temporarily confining, since po-
tentials for static color charges from any representation,
including the fundamental one, must be asymptotically flat.
Unlike SUðNÞ, even a ‘‘quark’’ from the fundamental (f7g)
representation of G2 can be screened by a bunch of ‘‘glu-
ons’’ (from the 14-dimensional adjoint representation).
However, this fact does not really contradict the center-
vortex confinement scenario: G2 does not possess non-
trivial center vortices, and the asymptotic string tension
is zero if they are not present. As argued by the authors of
Ref. [21], the G2 temporary vs permanent confinement
issue is more semantics than physics; the really important
point is that, even in the G2 gauge theory, one expects that
the static potentials grow linearly over a certain range of
distances, from the scale where perturbation theory breaks
to the onset of screening. The linear rise of the fundamental
potential in this intermediate region was clearly demon-
strated in numerical simulations [21].
All asymptotic string tensions are zero in G2—what

about Casimir scaling at intermediate distances?
Dimensional reduction could be invoked to argue in its
favor. However, if it holds true and if finite thickness of
center vortices is able to successfully explain Casimir
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1This proportionality is exact in two dimensions, and can be

extended to D ¼ 3 and 4 by dimensional reduction arguments;
see e.g. [1–3].

2Reference [10] contains an extensive bibliography of earlier
references.
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scaling in SUðNÞ, what can this be attributed to in a theory
with a trivial center? Is there any origin of Casimir scaling
common for ‘‘centerless’’ and ‘‘centerful’’ gauge models?
The answer given in [21] was affirmative; the authors
provided a model—an extension and improvement of that
of Ref. [13]—in which the Yang-Mills vacuum state has a
domain structure, with the color magnetic flux in each
domain quantized in units of the gauge group center (be
it trivial or not), and Casimir scaling results from random
spatial fluctuations of the flux in each domain.

The aim of the present paper is to subject the Casimir-
scaling hypothesis and predictions of the model of [21] to a
test in numerical simulations of G2 gauge theory on a four-
dimensional Euclidean lattice. First, in Sec. II, we will
briefly summarize elements of the model. Then, in
Sec. III, we sum up a few facts about the exceptional G2

group, explain the applied lattice methods, and present a
subset of technical details on the enhancement of the
ground-state overlap via smearing, and the determination
of renormalized anisotropies. Section IV summarizes re-
sults, in particular, Sec. IVB summarizes the fundamental-
representation potential, while Sec. IVC summarizes po-
tentials for higher representations. We conclude with a
brief discussion and summary (Sec. V). A few technical-
ities are relegated to the appendixes.

II. A MODEL OF THE YANG-MILLS VACUUM:
RECAPITULATION

An essential element of the derivation of Casimir scaling
in the D ¼ 2 Yang-Mills theory is the following: the YM
action is quadratic in the field strength tensor Fij and

contains no derivatives of or constraints on Fij; therefore,

field strengths of vacuum fluctuations in different points
are uncorrelated, and disorder all-representation Wilson
loops. This cannot be true for an effective action in D>
2 dimensions. Even though the leading term of a derivative
expansion of the Yang-Mills effective action is again qua-
dratic in field strengths [1],3 the fields are constrained by
Bianchi identities and higher-order corrections contain
derivatives. This is not a drawback, but desired: constraints
and derivative terms must somehow contrive, in D> 2
dimensions, to change the proportionality of string tensions
to quadratic Casimirs to the asymptotic N-ality
dependence.

In the simple model of Ref. [21] it is assumed that if we
take a 2D slice of the four-dimensional volume, we can
split it into (partly) overlapping domains (‘‘patches’’) of a
typical area Ad. Within each domain color magnetic fields
fluctuate randomly and (almost) independently, with a
short length of correlation l. Each domain is a bunch of
small independently fluctuating subregions of area l2 �
Ad. The only weak constraint on fluctuating fields bounds
the total integrated magnetic flux over each domain to

correspond to an element of the center of the gauge group.
In SU(2), there are two types of domains—the center-
vortex type and the vacuum type. The former correspond
to the nontrivial element of the center, �I, and represent a
cross section of a thick center vortex; the latter carry a zero
total magnetic flux. In G2 all domains will be of the
vacuum type, since the center contains the identity element
only. How to distinguish overlapping vacuum domains in
2D snapshots of theG2 vacuum remains an unresolved task
for future reflection and/or numerical experiments.
Without going into details, let us briefly summarize

conclusions of the model. If the center of the gauge group
contains N elements, there are N types of vacuum domains
enumerated by the value k 2 f0; 1; . . . ; N � 1g, each as-
sumed to appear with a probability fk centered at any given
plaquette in the plane of the loop. The effect of a domain (a
2D cross section of the kth vortex) on a planar Wilson loop
is to multiply the loop by a group element,

G ð�ðkÞ;SÞ ¼ S exp½i ~�ðkÞ � ~H �Sy; (2.1)

where fH ig are generators of the Cartan subalgebra, S is a

random element of the group, and angles ~�ðkÞ depend on
the location of the vortex/domain with respect to the loop.
If the domain is all contained within the loop area, then

exp½i ~�ðkÞ � ~H � ¼ zkI; (2.2)

where zk is the kth element of the center, and I is the unit
element. If the domain is outside the loop, it has no effect
on the Wilson loop, i.e.

exp½i ~�ðkÞ � ~H � ¼ I: (2.3)

For a Wilson loop from the representation r, the averaged
contribution of a domain is simply

G rð�ðkÞÞIdr ¼
1

dr
�rðexp½i ~�ðkÞ � ~H �ÞIdr ; (2.4)

where dr is the dimension of the representation r and Idr is
the dr � dr unit matrix.
One further assumes that probabilities of finding do-

mains of any type centered at two different plaquettes are
independent, and that for loops smaller than the typical size
of the domain, the r.m.s. of phases � is proportional to the
area of the vortex contained in the interior of the loop. Then
it is a simple exercise to show that, both in SUðNÞ and G2,
the static potential VrðRÞ of the representation r will be
linearly rising for distances l � R � ffiffiffiffiffiffi

Ad

p
, with a string

tension approximately proportional to its quadratic
Casimir:

�r � Cr ðintermediate distancesÞ: (2.5)

For very large Wilson loops most vortices will be con-
tained within the loop, the average phases are proportional
to the corresponding total magnetic flux through the do-
main, and the prediction is, for R � ffiffiffiffiffiffi

Ad

p
,3See recent arguments in [23] and references therein.
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�r � F½kr; ffkg� ðasymptotic distancesÞ (2.6)

for SUðNÞ, where kr is the N-ality of the representation r,
and

�r ¼ 0 ðasymptotic distancesÞ (2.7)

for theG2 gauge group. The function F above depends also
on the set of probabilities ffkg; these can be tuned to get a
desired form of k scaling of asymptotic string tensions (see
[24] for a discussion of this point).

Thus, the domain model of the YM vacuum with mag-
netic disorder [21], containing only a handful of adjustable
parameters, predicts Casimir scaling of higher-
representation potentials at intermediate distances both
for SUðNÞ and (centerless) G2 gauge theory. To verify
the prediction for G2, numerical simulation of the theory
in lattice formulation is the appropriate tool.

III. G2 ON A LATTICE: PRELIMINARIES

A. G2 group

G2 is the smallest of the five exceptional simple Lie
groups, at the same time the simplest for which the uni-
versal covering group is the group itself, and both have a
trivial center [15]. The basic information on the group can
be found e.g. in [15,17]; a part is summarized here for the
sake of completeness. The G2 group has rank 2 and 14
generators. Its fundamental representation is 7 dimen-
sional. G2 is real and a subgroup of SO(7) of rank 3 with
21 generators, a group of 7� 7 orthogonal matricesDwith
unit determinant. G2 matrices satisfy seven additional cu-
bic constraints:

Tabc ¼ TdefDdaDebDfc;

T127 ¼ T154 ¼ T163 ¼ T235 ¼ T264 ¼ T374 ¼ T576 ¼ 1;

(3.1)

where T is an antisymmetric tensor, nonzero elements of
which are listed above (up to permutations of indices).

For a study of higher representations we will need tensor
decompositions of various tensor products. Group theory
provides the following relations4:

f7g � f7g ¼ f1g 	 f7g 	 f14g 	 f27g;
f7g � f14g ¼ f7g 	 f27g 	 f64g;
f14g � f14g ¼ f1g 	 f14g 	 f27g 	 f77g 	 f770g;
f7g � f27g ¼ f7g 	 f14g 	 f27g 	 f64g 	 f77g:

(3.2)

Assume now thatDfDgðgÞ is a matrix corresponding to an
element g 2 G2 in its D-dimensional irreducible represen-
tation. Then the relations (3.2) imply that traces of higher-

representation matrices can be expressed through traces of
the fundamental- and adjoint-representation matrices5,6:

TrDf27g ¼ �1� TrDA � TrDF þ ðTrDFÞ2;
TrDf64g ¼ 1þ TrDA þ TrDA � TrDF � ðTrDFÞ2;
TrDf77g ¼ �TrDA � TrDF � 2TrDA � TrDF � ðTrDFÞ2

þ ðTrDFÞ3;
TrDf770g ¼ TrDA þ ðTrDAÞ2 þ 2TrDF þ 2TrDA � TrDF

� ðTrDFÞ3: (3.3)

The adjoint-representation matrix is constructed from the
fundamental one:

D A
abðgÞ ¼ 2Tr½DFðgÞytaDFðgÞtb�: (3.4)

The eigenvalue of the quadratic Casimir operator for the
D-dimensional irreducible representation fDg of the G2

group can be computed from its Dynkin coefficients
½�1; �2� (see e.g. [26]; we adopted the convention used in
[25]). The dimension D of a representation of G2 with
Dynkin coefficients ½�1; �2� is given by [27]

D ¼ 9

40
ð‘21 � ‘22Þð‘22 � ‘23Þð‘23 � ‘21Þ; (3.5)

where ‘1 ¼ 1
3 ð1þ �1Þ, ‘2 ¼ 1

3 ð4þ �1 þ 3�2Þ, and ‘3 ¼
1
3 ð5þ 2�1 þ 3�2Þ, while the ratio of its quadratic Casimir

operator to that of the fundamental representation is [27]

dfDg 

CfDg
CF

¼ 1

4

�
‘21 þ ‘22 þ ‘23 �

14

3

�
: (3.6)

Explicit values for the six lowest representations of G2 are
listed in Table I.

B. G2 lattice gauge theory

We closely follow the lattice formulation of G2 gauge
theory outlined in [16]. On links of a space-time lattice,
one puts matrices U�ðxÞ from the fundamental (f7g) rep-
resentation of G2. Those are represented by 7� 7 complex
matrices in a parametrization suggested by [28], which
makes explicit the separation into the G2=SUð3Þ coset
group and the SU(3) subgroup.7 (Details of the parametri-
zation can be found in Pepe’s review [16].) Generators of

4The decompositions were obtained using LiE, a clever com-
puter algebra package for Lie group computations. For details,
see [25].

5We suppressed the argument g and used F and A instead of
f7g and f14g to denote the fundamental and adjoint representa-
tions, respectively. The symbol Tr is understood in the usual
matrix sense, i.e. TrDfdg ¼ P

d
a¼1 D

fdg
aa .

6A careful reader might notice that, in the case of SU(3), a
well-known decomposition f3g � f3g ¼ f6g 	 f�3g leads to
TrDf6g ¼ ðTrDFÞ2 � ðTrDFÞ�, while Refs. [9,10] used TrDf6g ¼
1
2 ½ðTrDFÞ2 þ TrðDFÞ2�. Both formulas [and similar pairs for
other representations of SU(3)] can be shown equivalent using
the Cayley-Hamilton theorem.

7Another parametrization of G2 matrices, via Euler angles [29]
using real matrices, was described in Appendix B of Ref. [21].
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the G2 algebra corresponding to this parametrization are
listed in Appendix A.8

We use the Wilson action

S ¼ ��

7

X
x;i>0

�0 Re Tr½Pi0ðxÞ�

� �

7

X
x;i>j>0

1

�0

Re Tr½PijðxÞ�; (3.7)

where P�	ðxÞ ¼ U�ðxÞU	ðxþ �̂ÞUy
� ðxþ 	̂ÞUy

	 ðxÞ.
Thermalized lattice configurations can be generated by a
combination of pure-SU(3) Cabibbo-Marinari updates fol-
lowed by random G2 transformations, and overrelaxation
sweeps; see [22] for a more detailed description.

In most cases we work on asymmetric lattices with
different lattice spacings in time (at) and space (as) direc-
tions; therefore the action (3.7) contains a parameter �0

called the bare anisotropy. To reproduce the usual classical
gauge action in the naive continuum limit, the bare anisot-
ropy has to be chosen as �0 ¼ as=at. However, what we
need to achieve is a certain fixed ratio of lattice spacings in

space and time directions in physical units, � ¼
aphyss =aphyst . The renormalized anisotropy � is a function
of �0 and � in the Wilson action (3.7); below we will
discuss a nonperturbative determination of �0 ¼ fð�;�Þ
to get a desired value of � for a given coupling �. Before
that, we will recall a few basic facts about the determina-
tion of the static potential from rectangular Wilson loops.

C. Static potentials from the lattice

Let us start from a symmetric lattice with lattice spacing
a. On a set of thermalized lattice configurations, we mea-
sure expectation values Wðr; tÞ of Wilson loops of spatial
extent r ¼ r � a and a temporal separation t ¼ t � a.9 For
large time separations

Wðr; tÞ ¼ cðr; aÞ exp½�Vðr; aÞt� for large t: (3.8)

The static potential

Vðr; aÞ ¼ � lim
t!1

1

t
lnWðr; tÞ (3.9)

consists of two contributions: the true r-dependent static
potential due to the interaction of a color source and
antisource, and the self-energy contribution (independent
of r) divergent in the continuum limit. Thus we can write

Vðr; aÞ ¼ 1

a
½V̂ intðr; aÞ þ V̂selfðr; aÞ�: (3.10)

(Potentials with a hat are dimensionless.)
On an asymmetric lattice one can introduce three differ-

ent potentials, defined as

Vssðr; asÞjr¼x ¼ � lim
y!1

1

y
lnWssðx; yÞ

¼ � 1

as
lim
y!1

1

y
lnWssðx; yÞ; (3.11)

Vstðr; asÞjr¼x ¼ �lim
t!1

1

t
lnWstðx; tÞ

¼ � 1

at
lim
t!1

1

t
lnWstðx; tÞ; (3.12)

Vtsðr; atÞjr¼t ¼ � lim
y!1

1

y
lnWstðy; tÞ

¼ � 1

as
lim
y!1

1

y
lnWstðy; tÞ: (3.13)

The Wilson loop Wss has both sides in spatial directions,
while the second side of Wst lies in the temporal direction
(i.e. the one in which the lattice is discretized more
densely).
One can argue for a simple relation between the inter-

action potentials [10,30]:

V̂ int
ss ðr; asÞ ¼ �V̂ int

st ðr; asÞ þ �V̂self ; (3.14)

V̂ int
ss ðr; asÞ ¼ V̂ int

ts ð�r; atÞ: (3.15)

D. Renormalization of the anisotropy

Arguments for the usefulness of working on an asym-
metric lattice have been clearly discussed e.g. in [10,31]: a
reduction of lattice artifacts, a certain hope to decrease

errors due to the influence of the self-energy V̂self , etc. The
determination of static potentials at a fixed separation of
sources relies on relations like (3.8) and requires one to
evaluate W at as many t values as possible. Our main
motivation for using asymmetric lattices thus was to have
more data points available in the physical t window. We
worked with lattices L3 � ð2LÞ, but wanted to keep the
total physical length of the lattice in all directions the same,

i.e. the renormalized anisotropy � ¼ aphyss =aphyst ¼ 2. To
determine the bare anisotropies �0 ¼ fð�; �Þ that lead to

TABLE I. Group theoretical factors for G2. fDg is the repre-
sentation, D its dimension, ½�1; �2� are its Dynkin coefficients,
and dfDg ¼ CfDg=CF denotes the ratio of its quadratic Casimir to

that of the fundamental representation.

fDg f7g f14g f27g f64g f77g f770g
½�1; �2� [1, 0] [0, 1] [2, 0] [1, 1] [3, 0] [0, 2]

dfDg 1 2 2:�3 3.5 4 5

8We are grateful to Axel Maas for deriving explicit
expressions.

9Boldface symbols, x; t; . . . , denote variables with the dimen-
sion of length/time, and x; t; . . . are used for dimensionless
quantities, i.e. x; t; . . . , divided by a, or as, at on an asymmetric
lattice.
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� ¼ 2 at the used values of the coupling �, we applied the
procedure of [31]. One requires that the static potentials,
which one can introduce on an asymmetric lattice, fulfill
conditions (3.14) and (3.15). To avoid the nontrivial task of

reliable determination of�V̂self in Eq. (3.14), we estimated
�0 using the latter condition.

In practice, we computed, for a given � and lattice size,
the quantities

Rssðr; yÞ ¼ Wssðr; yÞ
Wssðrþ 1; yÞ ; Rstðr; tÞ ¼ Wstðr; tÞ

Wstðrþ 1; tÞ ;
(3.16)

and searched for a value of �0 to fulfill

Rssðr; yÞ ¼ Rstðr; t ¼ 2yÞ: (3.17)

Of course, the obtained value of �0 somewhat depends on
the chosen pair of side lengths ðr; yÞ in Eq. (3.17). Since
larger Wilson loops have smaller values and larger errors,
we restricted ourselves to combinations (2� 3, 2� 3)
only.

The described nonperturbative determination of �0 was
performed in simulations for� ¼ 9:5 (about 3000 configu-
rations at each trial �0) and 9.7 (1000 configurations at
each �0) on a 12

3 � 24 lattice. The results are summarized
in Table II. For production runs we chose values close to
�0ð2; 3Þ, but checked a rather weak dependence of results
on its precise value. The value chosen for � ¼ 9:6 was
obtained by linear interpolation.

Our final set of bare anisotropies used in production runs
was �0 ¼ 1:590, 1.615, 1.640, for � ¼ 9:5, 9.6, 9.7,
respectively.

E. Smearing

Another problem of the determination of static poten-
tials from Wilson loops is the insufficient overlap of the
trial quark-antiquark state with the ground state, especially
at larger spatial distances. An accepted remedy for this
disease is not to construct Wilson loops directly from link
matrices, but to use smeared links instead. Various variants
of smearing have been proposed in the literature; we used
the stout smearing procedure of Morningstar and Peardon
[32]. The smearing is performed in several steps: First we
calculate a weighted sum S�ðxÞ of staples neighboring the

link U�ðxÞ:

S�ðxÞ ¼ 

X
���

½U�ðxÞU�ðxþ �̂ÞUy
� ðxþ �̂Þ

þUy��ðxÞU�ðx� �̂ÞU�ðx� �̂þ �̂Þ�; (3.18)

where 
 is a free parameter of smearing. We sum over
directions � depending on the potential studied (perpen-
dicular to the Wilson loop, used for calculation of the
potential). In the second step we project the product
��ðxÞ ¼ S�ðxÞUy

�ðxÞ (no sum over �) into the G2 algebra

using

Q�ðxÞ ¼
X
a

ImðTr½��ðxÞta�Þta; (3.19)

where ta are generators of the algebra (see Appendix A). In
the last step the smeared link is calculated as

Usm
� ðxÞ ¼ exp½iQ�ðxÞ�U�ðxÞ: (3.20)

The exponential function of matrices was calculated by
means of spectral representation and LAPACK subroutines.
After an extensive exploration of the effect of the free

parameter 
 and of the number of smearing steps Nsm used
on the ground-state overlap, we chose 
 ¼ 0:1. The opti-
mal number of smearing steps was determined for each
kind of potential: Nsm ¼ 20 for Vst, Nsm ¼ 15 for Vss, and
Nsm ¼ 5 for Vts (see Appendix B for details). In production
runs we always applied all three smearing procedures on
each thermalized configuration separately, i.e. each time
we smeared a new configuration using different staples and
different numbers of smearing steps to get the best overlap
for a given potential.
As expected, smearing did enhance the ground-state

overlaps considerably for all studied types of potentials.
Not to overcrowd the main body of the paper with techni-
calities, some illustrative examples are supplied in
Appendix B.

IV. G2 ON A LATTICE: POTENTIALS

A. Determination of potentials and setting the physical
scale

As discussed earlier (Sec. III C), on an asymmetric
lattice one can determine three kinds of potentials from
the expectation values of Wilson loops of various orienta-
tions,W�ðr; tÞ, where the index � assumes values ss, st, or
ts. The corresponding potentials (in lattice units) can be
determined [cf. Eq. (3.8)] by fitting logarithms of the
measured loops by linear functions in t:

� lnW�ðr; tÞ ¼ C� þ V̂�ðrÞ � t; � 2 fss; st; tsg;
(4.1)

in an appropriate interval of t values, from tmin to tmax.
Usually, to get a reasonable fit, one has to seek a compro-
mise between two conflicting requirements: on one hand,
to have a sufficiently long t interval, i.e. to use as small tmin

and as large tmax as possible, and, on the other hand, not to

TABLE II. The bare anisotropy �0ðr; yÞ obtained from differ-
ent ðr; yÞ pairs entering Eq. (3.17).

� �0ð2; 2Þ �0ð2; 3Þ �0ð3; 2Þ �0ð3; 3Þ
9.5 1.572(14) 1.586(45) 1.580(41) 1.596(279)

9.7 1.626(22) 1.638(47) 1.627(50) 1.631(155)

CASIMIR SCALING IN G2 LATTICE GAUGE THEORY PHYSICAL REVIEW D 78, 074501 (2008)

074501-5



use too large t values, to avoid loops measured with
unacceptably large error bars. In practice, however, with
smeared links the problem turned out to be less severe:
logarithms of Wilson loops were, to a good approximation,
linear down to t ¼ 1 (see below), so we could choose for
our fits tmin ¼ 1. The upper limit tmax was chosen as a
value, at which the quantity used to monitor the ground-
state overlap (see Appendix B) dropped considerably or its
error was of the size of its value.

A linear fit (4.1) in a fixed ðtmin; tmaxÞ interval using the
standard least-square method provides an expected value

of V̂�ðrÞ together with an estimate of its statistical error,

�V̂�ðrÞ. This is almost certain to be an underestimate of the
true error of the determination of the potential: there exists
also a systematic error due to the unavoidably subjective
nature of the choice of the fitting interval. To make at least
a rough estimate of the order of magnitude of this system-
atic error, we used a kind of ‘‘jackknife-like’’ procedure:
From the interval ð1; tmaxÞwe omit in turn the 1st, 2nd, etc.,
and jth point and make a linear fit (4.1) to data points
without the omitted point. In this way we obtain an en-

semble of fit values for V̂�ðrÞ, and estimate the systematic
error of the procedure as the square root of the variance of
this ensemble. It turns out that at small r values the system-
atic error is of the order of the statistical one, but at large r
values it is often an order of magnitude larger.

Finally, if we want to compare potentials at different
values of the coupling �, we need to fix the physical scale.
Usually, lattice spacings as are expressed in units of the
Sommer scale r0 defined via the relation [33]

r 2 dV

dr

��������r¼r0

¼ r2
dV̂

dr

��������r¼r0=as

¼ 1:65: (4.2)

In lattice QCD, one uses for the Sommer scale a phenome-
nological value of r0 ¼ 0:5 fm; in the case of G2 we leave
this scale unfixed. In fact, for illustrative purposes it suffi-
ces to use approximate proportionality of asð�Þ=r0 toffiffiffiffiffiffiffiffiffiffiffi
�̂ð�Þp

, where �̂ð�Þ is the string tension measured in
lattice units (see Figs. 7 and 8 in Sec. IVC). A small
correction due to the Coulomb coupling constant does
not change the picture qualitatively.

B. Potential for fundamental representation

In this subsection we summarize selected results for
potentials between static quarks and antiquarks from the
fundamental representation, and the main purpose is to
calibrate our procedure and compare with results of an
earlier investigation [21]. Results for higher representa-
tions are deferred until Sec. IVC.

Our simulations were performed at three values of the
coupling � on the weak-coupling side of the crossover
region observed in Ref. [17]. Parameters of the production
runs are summarized in Table III.

Figure 1 clearly illustrates the fact that has been men-
tioned in Sec. IVA: logarithms of Wilson loops computed
from smeared links are almost perfect linear functions of t.
The example showsWstðr; tÞ for a series of t values at fixed
r. The corresponding value of the potential was then ob-
tained by a fit (4.1). The resulting potentials were then
parametrized by the usual Coulomb plus linear form:

V̂ �ðrÞ ¼ ĉ� � ��

r
þ �̂�r; � 2 fss; st; tsg: (4.3)

(A hat over a number again indicates that it is a dimen-
sionless lattice quantity; no hat is needed on �.)
To compare with results in the existing literature, we

computed � and �̂ in runs on a symmetric, 144 lattice. The
result is summarized in Table IV. The values of the string
tension are in reasonable agreement with those of
Ref. [21], obtained on a 124 lattice. The slight discrepancy
between � values can be attributed to the different smear-

TABLE III. Simulation parameters. (Smearing parameters
were listed in Sec. III E. In runs on symmetric lattices, thermal-
ized configurations were separated by 20 sweeps consisting of
five updates described in Sec. III B and one overrelaxation step;
on asymmetric lattices we used configurations separated by 15
such sweeps.)

� �0 Lattice size Nconf

Symmetric lattices

9.5 1 144 400

9.6 1 144 400

9.7 1 144 400

Asymmetric lattices

9.5 1.590 143 � 28 960

9.6 1.615 143 � 28 940

9.7 1.640 143 � 28 960
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FIG. 1. Logarithm of the expectation value of the fundamental
Wilson loopWstðr; tÞ for fixed r values as a function of t. (143 �
28 lattice, � ¼ 9:6. Loops were computed from smeared links.
Lines are drawn to guide the eye.)
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ing procedures adopted. (Reference [21] used a variant of
the procedure of [34].) The purpose of smearing is to
reduce ultraviolet noise in lattice configurations that
mostly influences the self-energy and Coulombic parts of
the static potential, and efficiency of various procedures
differs in achieving this goal. At � ¼ 9:7 also string ten-
sions seem not to be compatible within errors. However,
both numbers are quoted with statistical errors only, and
may in fact agree if finite-size effects and/or systematic
errors are taken into account. To support this claim, we
determined the string tension by our procedure also on a
124 lattice, and obtained a value of 0.109(2). Finally, using
tmin ¼ 2 instead of 1 in potential fits (cf. the discussion in
Sec. IVA), we went further down to �̂ ¼ 0:105ð2Þ. It
should be clear that, though statistical errors on string
tensions are as low as 2%–3%, the actual error may be of
the order of 10%.

Next we turn to asymmetric lattices and determine pa-
rameters of the three potentials (3.11), (3.12), and (3.13).
Those are summarized in Table V.10 When looking at these
numbers, one should keep in mind that the errors quoted
are just statistical. We did not attempt to estimate system-
atic errors, which were discussed in Sec. IVA. The most
reliable determination of parameters of the static potential
comes from Wilson loops Wst with the t direction of the
loop along the long lattice direction (in which the lattice is
more finely discretized).

One can now verify the correctness of the chosen values
for the bare anisotropy �0 (cf. Table II). On the basis of

Eq. (3.14) one expects �̂ss  2�̂st and �ss  2�st, which
is satisfied to a surprising accuracy. From the numerical
values of the string tensions, one obtains the renormalized
anisotropies � ¼ 2:00ð7Þ, 1.97(12), and 1.96(16) for � ¼
9:5, 9.6, and 9.7, respectively. Similar relations should hold
between ss and ts parameters [see Eq. (3.15)]. However,
they are fulfilled with worse accuracy because of the
systematic errors mentioned above. The available t inter-
vals for the determination of these potentials are short,
since the overlap with the ground state drops fast with t
at larger values of r (see Fig. 11 in Appendix B).
The fulfillment of relations (3.14) and (3.15) is visually

displayed in Fig. 2 for � ¼ 9:6. The difference between

V̂ss and �V̂st is expected to be a constant independent of r
(difference between self-energies), and our data support
the expectation; see Fig. 3.

TABLE IV. Parameters of the static potential between fundamental-representation charges,
Eq. (4.3), symmetric lattice (144). The physical scale as=r0 was set using Eq. (4.2).

Our results Reference [21]

� � �̂ as=r0 � �̂

9.5 0.291(8) 0.232(3) 0.414(3) 0.28(5) 0.24(2)

9.6 0.294(4) 0.148(1) 0.331(2) 0.313(2) 0.14(1)

9.7 0.291(4) 0.112(2) 0.287(2) 0.318(8) 0.102(3)

TABLE V. Parameters of the static potential between fundamental-representation charges, Eq. (4.3), asymmetric lattice (144 � 28).
The physical scale as=r0 was set using Eq. (4.2) from V̂st.

V̂st V̂ss V̂ts

� �st �̂st as=r0 �ss �̂ss �ts �̂ts

9.5 0.118(5) 0.1997(19) 0.532(12) 0.249(31) 0.399(13) 0.194(5) 0.2482(22)

9.6 0.124(4) 0.1303(18) 0.427(15) 0.264(34) 0.257(15) 0.231(7) 0.1784(30)

9.7 0.122(5) 0.0999(21) 0.372(18) 0.264(36) 0.196(15) 0.244(8) 0.1452(33)
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FIG. 2. Potentials V̂st, V̂ss, and V̂ts. Distances r are measured
in units of as. (14

3 � 28 lattice, � ¼ 9:6, � ¼ 1:97.)

10We have some data on static potentials for the fundamental
representation also from simulations on a 163 � 32 lattice, albeit
with lower statistics. The estimated string tensions agree with
those quoted above; no strong finite-size effect was observed in
this case. E.g., our preliminary values from the 163 � 32 lattice
are �̂st ¼ 0:199ð2Þ, 0.129(2), 0.097(2) at � ¼ 9:5, 9.6, 9.7,
respectively.
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Finally, we checked that the exact value of the bare
anisotropy �0 is not of vital importance on asymmetric
lattices. There were no large differences between the ob-

tained potentials and their string tensions when we used
�0 ¼ 1:61 instead of 1.59 at � ¼ 9:5, or �0 ¼ 1:62 instead
of 1.64 at � ¼ 9:7.
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FIG. 3. Differences between potentials V̂ss and V̂st (multiplied
by �). (143 � 28 lattice: � ¼ 9:5, � ¼ 2:00; � ¼ 9:7, � ¼
1:96.)
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C. Higher representations

After subjecting our procedure for determination of
potentials to a number of tests in the case of the funda-
mental representation, we are ready to proceed to the main
subject of the present paper: potentials between static color
sources from higher representations of the G2 group. For

this purpose we will concentrate on potentials V̂st which
can be determined most accurately. The procedure is now,
in principle, straightforward. A thermalized configuration
on an L3 � ð2LÞ lattice is a set of link matrices in the
fundamental representation. We smeared these links over
‘‘short’’ directions using the procedure described in
Sec. III E. Then, we compute a fundamental Wilson loop
as a product of smeared link matrices along a closed loop
(one side in a short direction, the other in the ‘‘long’’ one).
Before taking a trace, we compute the matrix representing
this loop in the adjoint representation using Eq. (3.4). Then
we trace both the fundamental and adjoint Wilson loop
matrices, and from these traces determine also those of the
loop matrices in higher representations via the set of for-
mulas (3.3). Finally, to obtain the expectation values of
traces of Wilson loops of size ðr� tÞ, we average over loop
positions on a lattice, and over an ensemble of thermalized
configurations in the usual way.

Illustrative results for Wilson loops in higher represen-
tations are displayed in Fig. 4 for� ¼ 9:6. The results look
very much the same as in the case of the fundamental
representation (Fig. 1). Values of the potential at various
separations r are obtained by fits of the form (4.1). The
results for � ¼ 9:6 are shown in Fig. 5. It is clear that all
higher potentials show a linear rise similar to the funda-
mental representation in the same range of distances.11

TABLE VI. String tensions �̂st for different representations. (14
3 � 28 lattice. Because of large error bars, it was not possible to

determine reliably string tensions for the f77g and f770g representations at � ¼ 9:5.)

Fundamental Adjoint f27g
� �̂ �̂=�̂F �̂ �̂=�̂F �̂ �̂=�̂F

9.5 0.1997(19) 1 0.376(6) 1.883(35) 0.429(8) 2.148(45)

9.6 0.1303(18) 1 0.253(4) 1.942(40) 0.292(6) 2.241(55)

9.7 0.0999(21) 1 0.196(4) 1.962(57) 0.228(5) 2.282(69)

Casimir ratio: 1 2 2.333

f64g f77g f770g
� �̂ �̂=�̂F �̂ �̂=�̂F �̂ �̂=�̂F

9.5 0.612(25) 3.065(129) � � � � � � � � � � � �
9.6 0.436(8) 3.346(77) 0.488(20) 3.745(162) 0.596(22) 4.574(180)

9.7 0.347(11) 3.473(132) 0.396(16) 3.964(181) 0.492(16) 4.925(191)

Casimir ratio: 3.5 4 5

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6  7

V
st

,{
D

} /
 V

st
,F

r/as

β=9.5
{14}
{27}
{64}

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7

V
st

,{
D

} /
 V

st
,F

r/as

β=9.6

{14}
{27}
{64}
{77}
{77’}

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7

V
st

,{
D

} /
 V

st
,F

r/as

β=9.7

{14}
{27}
{64}
{77}
{77’}

FIG. 6. Ratios V̂st;fDg=V̂st;F for different representations fDg
are shown as functions of the dimensionless r. Horizontal lines
show Casimir-scaling predictions. (143 � 28 lattice. A few
points from off-axis Wilson loops are also included; those
were not used in string-tension determination.)

11Though the string breaks in all representations of G2, we had
no ambition to observe it in our simulations. It is well known
from earlier studies (see e.g. [35]) that it is of utmost difficulty to
see string breaking on a lattice. Such a task is currently far
beyond our possibilities, and is also not relevant to the main
message of the paper.
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The obtained potentials were fitted again by the
Coulomb plus linear form (4.3). The resulting values of
string tensions are summarized in Table VI. The measured
values lie very close to predictions based on Casimir scal-
ing, and the agreement with Casimir scaling tends to
improve by increasing �, i.e. the deeper we enter the
weak-coupling region above the crossover. In Fig. 6 this

fact is exemplified on ratios of different representation
potentials to the fundamental one at fixed r. At all dis-
tances, the ratios are close to the Casimir-scaling predic-
tion, even though we made no attempt to get rid of the self-
energy contributions.
In this context, the question of systematic errors again

pops up: Could they not invalidate the above agreement
with Casimir scaling? As discussed in detail in Sec. IVA,
the main source of the systematic error is the choice of the t
interval for linear fits of the form (4.1). To produce results
in Table VI, tmin ¼ 1 was used. The same analysis with
tmin ¼ 2 for the three lowest representations leads to values
given in Table VII. The Casimir-scaling result comes out to
be quite robust against this modification: though string
tensions changed in all representations by up to 10%,
they went in the same direction, and thus their ratios
changed only slightly. In fact, at the largest available �,
the agreement with the Casimir-scaling prediction even
improved.
Finally, we display the static potential for color charges

in the fundamental (Fig. 7) and adjoint representations
(Fig. 8) together for all three � values, expressed in physi-
cal units defined by the fundamental string tension. All
potentials nicely follow a universal curve.

V. CONCLUSIONS

Alice, in Lewis Carroll’s Through the Looking-Glass,
and What Alice Found There, enters a garden, where
flowers speak to her and mistake her for a flower. Does
the gauge theory with the exceptional group G2 belong to
the same species of flowers with ‘‘ordinary’’ confining
SUðNÞ gauge theories, or is it different and only mistaken
for a flower? Many results of recent investigations suggest
the answer that all non-Abelian gauge theories, including
G2, share many properties in the infrared. Thermodynamic
properties are similar [17], and Ref. [22] provided further
numerical evidence: a qualitative agreement among
Landau-gauge ghost and gluon propagators and the
Faddeev-Popov operator eigenspectrum in SU(2), SU(3),
and G2 gauge theories, though only in two and three
Euclidean dimensions.
From the point of view of the center-vortex confinement

mechanism, theories also behave similarly. When center
vortices are present and percolate, in theories with a non-
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TABLE VII. Same as Table VI, from potential fits (4.1) with tmin ¼ 2.

Fundamental Adjoint f27g
� �̂ �̂=�̂F �̂ �̂=�̂F �̂ �̂=�̂F

9.5 0.192(1) 1 0.358(6) 1.866(34) 0.406(8) 2.120(43)

9.6 0.121(1) 1 0.237(3) 1.960(30) 0.273(4) 2.255(41)

9.7 0.090(1) 1 0.181(3) 2.015(40) 0.209(4) 2.328(54)

Casimir ratio: 1 2 2.333
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trivial center, they cause the expected N-ality dependence
of asymptotic string tensions for static potentials for color
charges from different representations of the gauge group.
In a theory with a trivial center, the asymptotic string
tension for all representations is zero. But even if a center-
less theory possesses no nontrivial center-vortex-like ob-
jects, its vacuum can contain domain structures.
Reference [21] suggested a universal and simple model
in which such vacuum domains—assuming color magnetic
fields fluctuating almost independently in each domain,
only fulfilling a constraint that the total flux corresponds
to an element of the center—cause Casimir scaling of static
potentials in the intermediate distance interval, until color
screening sets on. Casimir scaling was observed in lattice
simulations of SU(2) and SU(3) gauge theories long ago;
the model prediction called for verification also in the G2

lattice gauge theory.
Our results convincingly demonstrate (approximate)

Casimir scaling for static potentials between color charges
from the six lowest representations of G2. The agreement
between measured values of intermediate string tensions
with predictions based on values of quadratic Casimirs is
quite striking; they differ by at most 10%–15%, and this
can hardly be just a numerical coincidence. The results of
course cannot prove that the model is right, but combined
with the solid evidence for Casimir scaling in SU(2) and
SU(3), they provide support for its main ingredients (com-
mon for all groups)—a magnetically disordered vacuum
with a domain structure. How to identify such domains is
another question; in theories with a nontrivial center one
can apply the method of center projection in the maximal
center gauge [36], thus fitting extended (‘‘thick’’) vacuum
structures by thin center vortices. The identification of
vacuum-type domains with trivial total flux remains
problematic.

The observed Casimir scaling, coming out so naturally
within models with magnetic disorder and vacuum domain
structure, may pose a challenge to approaches that invoke
disparate ideas to explain the phenomenon of confinement.
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APPENDIX A: G2 GENERATORS

The G2 algebra for our representation (based on [28]) is
defined by the following generators:

t1 ¼ 1ffiffiffi
8

p ðP12 þ P21 � P56 � P65Þ;

t2 ¼ iffiffiffi
8

p ðP21 � P12 � P56 þ P65Þ;

t3 ¼ 1ffiffiffi
8

p ðP11 � P22 � P55 þ P66Þ;

t4 ¼ 1ffiffiffi
8

p ðP13 þ P31 � P57 � P75Þ;

t5 ¼ iffiffiffi
8

p ðP31 � P13 � P57 þ P75Þ;

t6 ¼ 1ffiffiffi
8

p ðP23 þ P32 � P67 � P76Þ;

t7 ¼ iffiffiffi
8

p ðP32 � P23 � P67 þ P76Þ;

t8 ¼ 1ffiffiffiffiffiffi
24

p ðP11 þ P22 � 2P33 � P55 � P66 þ 2P77Þ;

t9 ¼ 1ffiffiffiffiffiffi
24

p ðP16 � P25 þ
ffiffiffi
2

p
P34 þ

ffiffiffi
2

p
P43 �

ffiffiffi
2

p
P47 � P52

þ P61 �
ffiffiffi
2

p
P74Þ;

t10 ¼ iffiffiffiffiffiffi
24

p ðP25 � P16 þ
ffiffiffi
2

p
P34 �

ffiffiffi
2

p
P43 �

ffiffiffi
2

p
P47 � P52

þ P61 þ
ffiffiffi
2

p
P74Þ;

t11 ¼ 1ffiffiffiffiffiffi
24

p ð ffiffiffi
2

p
P24 � P17 þ P35 þ

ffiffiffi
2

p
P42 �

ffiffiffi
2

p
P46 þ P53

� ffiffiffi
2

p
P64 � P71Þ;

t12 ¼ iffiffiffiffiffiffi
24

p ðP35 � P17 �
ffiffiffi
2

p
P24 þ

ffiffiffi
2

p
P42 þ

ffiffiffi
2

p
P46 � P53

� ffiffiffi
2

p
P64 þ P71Þ;

t13 ¼ 1ffiffiffiffiffiffi
24

p ð ffiffiffi
2

p
P14 þ P27 � P36 þ

ffiffiffi
2

p
P41 �

ffiffiffi
2

p
P45

� ffiffiffi
2

p
P54 � P63 þ P72Þ;

t14 ¼ iffiffiffiffiffiffi
24

p ð ffiffiffi
2

p
P14 � P27 þ P36 �

ffiffiffi
2

p
P41 �

ffiffiffi
2

p
P45

þ ffiffiffi
2

p
P54 � P63 þ P72Þ; (A1)

where ðPijÞab ¼ �ia�jb. The generators are normalized to

satisfy

Tr ðta � tbÞ ¼ 1
2�ab: (A2)

APPENDIX B: OVERLAP WITH THE GROUND
STATE

In optimizing our smearing procedure and monitoring
the overlap with the ground state, we were inspired by [37].
We investigate, at fixed r, a function of expectation values
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of Wilson loops defined as

c0ðr; tÞ ¼ Wðr; tÞtþ1

Wðr; tþ 1Þt : (B1)

This is an approximant to the ground-state overlap (to be
reached in the t ! 1 limit), and decreases monotonically
(in t) to its asymptotic value. So an indication of the
closeness to asymptotia is when the quantity reaches a
plateau as a function of t.

Another quantity of interest is

Meffðr; tÞ ¼ � 1

2
ln

�
Wðr; tþ 1Þ
Wðr; t� 1Þ

�
; (B2)

which approaches, from above, the ground-state potential
for t ! 1.

For an asymmetric lattice, we can define three different
types of quantities c0ðr; tÞ, corresponding to three different
potentials:

c0;stðr; tÞ ¼ Wstðr; tÞtþ1

Wstðr; tþ 1Þt ; (B3)

c0;tsðr; tÞ ¼ Wstðt; rÞtþ1

Wstðtþ 1; rÞt ; (B4)
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FIG. 10. The quantity c0ðr; tÞ as a function of t in the un-
smeared case for the fundamental representation. (143 � 28
lattice, � ¼ 9:6.)
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c0;ssðr; tÞ ¼ Wssðr; tÞtþ1

Wssðr; tþ 1Þt ; (B5)

and likewise three types of Meffðr; tÞ.
The smearing procedure described in Sec. III E depends

on the parameter 
 and the number of smearing steps Nsm.

Our aim was to tune the set to maximize the ground-state
overlap and to minimize Meff . Typically, the optimal num-
ber of smearing steps grows by decreasing the value of 
.
After a few trials we fixed 
 ¼ 0:1 and looked for the
optimal value of Nsm. The typical behavior of c0;stðr; tÞ and
Meff;stðr; tÞ for three sets of ðr; tÞ is displayed in Fig. 9. In
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FIG. 12. The quantity c0;stðr; tÞ as a function of t in the
smeared case for the representations f14g; f27g; f64g. (143 � 28
lattice, � ¼ 9:6.)
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this particular case, the optimal number of smearing steps
comes out to be Nsm ’ 20, and depends only weakly on �
and �0. In a similar way we found the optimal values of
Nsm quoted in Sec. III E.12

As a final illustration, we present here the behavior of
the achieved ground-state overlaps as functions of t for

� ¼ 9:6. (For � ¼ 9:5 and � ¼ 9:7 we observed the same
behavior; only error bars were slightly different.) Results
are shown in Figs. 10–12. In all figures only data with
reasonably small errors are shown, for the sake of read-
ability. In Figs. 10 and 11 the approximants of ground-state
overlaps are shown in the unsmeared and smeared cases,
respectively, for the fundamental representation: we see
clearly that the smearing procedure significantly increases
the overlaps and the length of plateaus for all potentials. In
Fig. 12 we display the behavior of c0;stðr; tÞ for higher

representations and see a similarly good enhancement of
the overlap with the ground state. Of course, the overlaps
worsen when going to higher representations.
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2603 (1998).
[14] M. Faber, J. Greensite, and Š. Olejnı́k, Acta Phys. Slovaca
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