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We perform a Faddeev calculation for the three-meson system �K �K, taking the interaction between

two pseudoscalar mesons and between a vector and a pseudoscalar meson from the chiral unitary

approach. We obtain a neat resonance peak around a total mass of 2150 MeV and an invariant mass

for the K �K system around 970 MeV, very close to the f0ð980Þ mass. The state appears in I ¼ 0 and

qualifies as a �f0ð980Þ resonance. We enlarge the space of states including ���, since �� and K �K build

up the f0ð980Þ, and find moderate changes that serve to quantify theoretical uncertainties. No state is seen

in I ¼ 1. This finding provides a natural explanation for the recent state found at BABAR and BES, the

Xð2175Þ, which decays into �f0ð980Þ.
DOI: 10.1103/PhysRevD.78.074031 PACS numbers: 14.40.Cs, 21.45.�v, 25.75.Dw

I. INTRODUCTION

The discovery of the Xð2175Þ 1�� resonance in eþe� !
�f0ð980Þ with initial state radiation at BABAR [1,2], also
confirmed at BES in J=� ! ��f0ð980Þ [3], has stimu-
lated research around its nontrivial nature in terms of quark
components. The possibility of it being a tetraquark s�ss �s is
investigated within QCD sum rules in [4], and as a gluon
hybrid s�sg state has been discussed in [5,6]. A recent
review on this issue can be seen in [7], where the basic
problem of the expected large decay widths into two
mesons of the states of these models, contrary to what is
experimentally observed, is discussed. The basic data on
this resonance from [1,2] are MX ¼ 2175� 10 MeV and
� ¼ 58� 16� 20 MeV, which are consistent with the
numbers quoted from BES MX ¼ 2186� 10� 6 MeV
and � ¼ 65� 25� 17 MeV. In Ref. [2] an indication of
this resonance is seen as an increase of the KþK�KþK�
cross section around 2150 MeV. A detailed theoretical
study of the eþe� ! �f0ð980Þ reaction was done in
Ref. [8] by means of loop diagrams involving kaons and
K�, using chiral amplitudes for the K �K ! �� channel
which contains the f0ð980Þ pole generated dynamically
by the theory. The study revealed that the loop mechanisms
reproduced the background but failed to produce the peak
around 2175 MeV, thus reinforcing the claims for a new
resonance around this mass.

In the present paper, we advocate a very different picture
for the Xð2175Þ resonance which allows for a reliable
calculation and leads naturally to a very narrow width
and no coupling to two pseudoscalar mesons. The picture

is that the Xð2175Þ is an ordinary resonant state of
�f0ð980Þ due to the interaction of these components.
The f0ð980Þ resonance is dynamically generated from the
interaction of �� and K �K treated as coupled channels
within the chiral unitary approach of [9–11], qualifying
as a kind of molecule with �� and K �K as its components,
with a large coupling to K �K and a weaker one to ��
[hence, the small width compared to that of the �ð600Þ].
Similar studies for the vector-pseudoscalar interaction
have also been carried out using chiral dynamics in
[12,13], which lead to the dynamical generation of the
low-lying axial vectors. We shall follow the approach of
Ref. [13] to deal with this part of the problem and will use
the �K and �� amplitudes obtained in that approach.
To study the �f0ð980Þ interaction, we are thus forced to

investigate the three-body system �K �K considering the
interaction of the three components among themselves and
keeping in mind the expected strong correlations of theK �K
system to make the f0ð980Þ resonance. For this purpose we
have solved the Faddeev equations with coupled channels
�KþK� and �K0 �K0. The picture is later complemented
with the addition of the ��� state as a coupled channel.
The study benefits from previous ones on the � �KN and
��N along with their coupled channels done in [14,15],
where many 1=2þ, strange, and nonstrange low-lying
baryon resonances of the Particle Data Group [16] were
reproduced. This success encourages us to extend the
model of Refs. [14,15] to study the three-meson system,
i.e., �K �K. One of the interesting findings of Refs. [14,15]
was a cancellation of the off-shell part of the amplitudes
with the genuine three-body forces that one obtains from
the same chiral Lagrangians. This simplified technically
the approach, and we shall stick to this formalism also
here.
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II. FORMALISM

To study the �K �K system, it is required to solve the
Faddeev equations. The procedure followed is (1) we solve
coupled-channel Bethe-Salpeter equations for
pseudoscalar-pseudoscalar meson (PP) interaction as
done in [9] and for pseudoscalar-vector meson (PV) inter-
action as in [13]; (2) then we solve the Faddeev equations
for the three-body, i.e., vector-pseudoscalar-pseudoscalar
(VPP) mesons, system using the model developed in [14].
We describe the input and the formalism for this latter part
briefly in this section.

We calculate the three-body T matrix as obtained in
Ref. [14] in terms of TR, i.e.,

TR ¼ T12
R þ T13

R þ T21
R þ T23

R þ T31
R þ T32

R ; (1)

where

Tij
R ¼ tigijtj þ ti½GijiTji

R þGijkTjk
R �;

i � j � k ¼ 1; 2; 3;
(2)

corresponds to the sum of all of the diagrams with the last
two t matrices being tj and ti. The tiðtjÞ in Eq. (2) denotes
the two particle scattering matrix where the particle iðjÞ is
a spectator. In the chiral formalism of [9,13], these t
matrices in L ¼ 0, which we consider here, depend on
the total energy in the center of mass of the interacting

pair. The Tij
R can be related to the Faddeev partitions Ti as

Ti ¼ ti�3ð ~k0i � ~kiÞ þ Tij
R þ Tik

R ; (3)

where Ti sums all of the diagrams with the particle i as a

spectator in the last interaction and ~ki ( ~k
0
i) is the initial

(final) momentum of the ith particle in the global center of
mass.

The propagator gij in Eq. (2) can be expressed as

gij ¼
�YD
r¼1

1

2Er

�

� 1ffiffiffi
s

p � Eið ~kiÞ � Ejð ~kjÞ � Ekð ~ki þ ~kjÞ þ i�
; (4)

where
ffiffiffi
s

p
is the total energy in the global center of mass

system, El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2l þm2

l

q
is the energy of the particle l, and

D is the number of particles propagating between two
consecutive interactions. The model in Ref. [14] has been
built by writing the terms including more than two t
matrices by replacing the ‘‘gij’’ propagator by a function
Gijk, thus leading to Eq. (2). The function Gijk is given by

Gijk ¼
Z d3k00

ð2�Þ3
1

2El

1

2Em

Fijkð ffiffiffi
s

p
; ~k00Þffiffiffiffiffiffiffi

slm
p � Elð ~k00Þ � Emð ~k00Þ þ i�

;

(5)

where i � j, j � k, i � l � m,
ffiffiffiffiffiffiffi
slm

p
is the invariant mass

of the (lm) pair, and Fijk is defined as

Fijk ¼ tjð ffiffiffiffiffiffiffi
sint

p ð ~k00ÞÞ
�
gjkjoff-shell
gjkjon-shell

�
½tjð ffiffiffiffiffiffiffi

sint
p ð ~kj0 ÞÞ��1: (6)

This Gijk is a loop function of a propagator, in the three-
body scattering diagrams, in which the dependence on the
loop variable of an anterior t matrix and propagator has
been included in the form of an off-shell factor Fijk. This
simplifies technically solving Eq. (1) and induces regroup-
ing of the three-body diagrams giving six Faddeev parti-
tions [Eq. (2)] instead of three (see [14] for a more detailed
discussion).
We label� as particle 1 and K and �K as particle 2 and 3,

respectively. The invariant mass of the K �K system
ffiffiffiffiffiffi
s23

p
is

taken as an input to the three-body calculations and is
varied around the mass of the f0. The K �K interaction t1

in this region contains the pole of the f0ð980Þ [9,10]. The
other invariant masses s12 and s13 can be then calculated in
terms of the

ffiffiffiffiffiffi
s23

p
and total energy [14]. Thus, there are two

variables of the calculations, i.e., the total energy and the
invariant mass of the K �K system.
We shall now discuss the input, i.e., the two-body t

matrices for the PP and PV meson interaction. For the PP
case, the Bethe-Salpeter equation

t ¼ V þ V ~Gt (7)

has been solved for five coupled channels, i.e., KþK�,
K0 �K0, �þ��, �0�0, and �0�. The potentials V are calcu-
lated from the lowest order chiral Lagrangian, and the

loops ~G have been calculated using dimensional regulari-
zation as in [9]. The authors of [9–11] found poles in the t
matrices, in the isospin 0 sector, corresponding to the �
and the f0 resonances, and also the one corresponding to
the a0ð980Þ for the isospin 1 case. It was also found that the
f0 resonance is dominated by the K �K channel and the pole
for the f0 appears at �973 MeV even when the ��
channel is eliminated. The matrix element corresponding
to the K �K ! K �K scattering is used as an input t1 to solve
Eqs. (1) and (2). In the two-body problem, the f0ð980Þ pole
appears below the K �K threshold. It corresponds to total
energies of the K �K system below 2mk and in the momen-
tum representation to purely imaginary kaon momenta if
we take p2

K ¼ m2
K (which is not the case in a bound state).

To avoid using unphysical complex momenta in the three-
body system, we give a minimum value of about
50 MeV=c to the kaon momentum in the K �K center of
mass system. It should be mentioned that the results are
almost insensitive to this choice of the minimum momen-
tum. For example, a change in this momentum by about
40% changes the position of the peak merely by�5 MeV.
For the VP meson interaction, Eq. (7) is calculated with

�K, !K, �K, K��, and K�� as coupled channels. The
potential for the VP meson-meson interaction has been
obtained from the lowest order chiral Lagrangian and
projected in the s wave [13], and then the �K ! �K
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element of the resulting coupled-channel tmatrix is used as
an input in Eq. (2).

Coming back to the three-body problem, we take the
� �KðKÞ ! � �KðKÞ t-matrix element as t2ðt3Þ to solve
Eqs. (1) and (2). Our interest is to check the possibility
of existence of a resonance or a bound state with isospin
zero in the�K �K system; thus the full TR matrix [Eq. (1)] is
to be projected to total isospin 0. When adding the ���
channel, we must deal with the �� and �� interactions
which are part of the coupled-channel study of the scalar
and axial vector resonances, respectively.

III. A DISCUSSION ON POSSIBLE COUPLED
CHANNELS

In the construction of the K �K and �K two-body t
matrices, we have used the full space of coupled channels
as indicated in Sec. II. We shall argue here that in the three-
body basis we can omit some states. The �K system
couples to !K, �K, K��, and K��. We shall bear in
mind that we are looking for a state with I ¼ 0 and withffiffiffiffiffiffi
s23

p ’ 980 MeV, as found in the experiment [1,2]. When

adding the �K of the three-body�K �K system to the coupled
channels of the �K, we obtain the following states: !K �K,
�K �K, K�� �K, and K�� �K. If we want the subsystem of two
pseudoscalar mesons to build up the f0ð980Þ, which is
dynamically generated in the K �K and �� interaction, we
must exclude the K�� �K and K�� �K states. The �K �K state
is also excluded because when K �K couples to the f0ð980Þ
the total isospin of the state is I ¼ 1. Only the!K �K state is
left over. We could add this channel to the �K �K, but the
!K �K channel lies �400 MeV below the Xð2175Þ reso-
nance mass and hence is not expected to have much
influence in that region. In more technical words, a channel
which lies far away from the energy region under inves-
tigation would only bring a small and smooth energy-
independent contribution to the final amplitude because
of the large off-shellness of the propagators.

Thus the introduction of the !K �K channel can only
influence mildly the results obtained with the�K �K system
alone, and thus we neglect it in the study. Furthermore we
have also seen that the �K ! !K and !K ! !K ampli-
tudes are weaker than the �K ! �K one.

Even though we argue above that �K��K and �K��K
channels should be neglected, we have also investigated
the effect of including the �K��K channel, as an example.
This is a channel where the �K interaction (together with
the �K channel) leads to the scalar � resonance, and
actually there are works which hint towards a possibility
of �K�� forming a molecule with mass around 1576 MeV
[17]. What we find can be summarized as follows:

(i) In the energy region of our interest, we find a small
transition amplitude from �K ! K�� as compared
to �K ! �K, indicating a small mixture of the
�K �K and �K��K components.

(ii) Studying the �K��K system alone, we find that the
corresponding amplitudes are much smaller in size
than those found in the �K �K system in the energy
region around 2150 MeV.

(iii) In the region of energies around 1600 MeV, the
�K��K amplitudes can be bigger than around
2150 MeV, but they are still smaller than the �K �K
amplitude at 2150 MeV.

From these findings we conclude that, although more
detailed work needs to be done at energies around
1600 MeV to check the suggestion of [17], the amplitude
of the �K��K channel in this energy region seems too weak
to support bound states. On the other hand, we can be more
assertive by stating that the effect of the �K��K channel
around 2150 MeV is negligible.
We can now stick to having the � as the vector meson

and K �K as the main meson-meson channel. Yet, K �K and
�� are strongly coupled in I ¼ 0, both the K �K ! K �K and
�� ! �� amplitudes are strong, and it is only the intri-
cate nonlinear dynamics of coupled channels of the Bethe-
Salpeter equations that produces at the end two states, the
� that couples strongly to the �� channel and the f0ð980Þ
that couple strongly to K �K. Hence, we find advisable to
include ��� as a coupled channel.

IV. RESULTS

In Fig. 1, we show the squared amplitude jTRj2 and its
projection, as a function of the total energy (

ffiffiffi
s

p
) and the

invariant mass of the K �K system (
ffiffiffiffiffiffi
s23

p
), in the isospin zero

configuration. We have made the isospin projection of the
amplitude of Eq. (1) using the phase convention jK�i ¼
�j1=2;�1=2i as

j�K �K; I ¼ 0; IK �K ¼ 0i ¼ 1ffiffiffi
2

p ½j�KþK�i þ j�K0 �K0i�:
(8)

 960
 970

 980
√s23 (MeV) 

 2050 2100 2150 2200 2250 2300

√s (MeV)

 0

 20

 40

 60

 80

|TR|2 (MeV-4)

FIG. 1. The �K �K squared amplitude in the isospin 0 configu-
ration.
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A clear sharp peak of jTRj2 can be seen at 2150 MeV,
with a full width at half maximum �16 MeV. In order to
make a meaningful comparison of this width with the
experimental results, we have folded the theoretical distri-
bution with the experimental resolution of about 10 MeV,
and then we find an appropriate Breit-Wigner distribution
with a width �� 27 MeV. The peak in jTRj2 appears for
the

ffiffiffiffiffiffi
s23

p � 970 MeV, which is very close to the pole of the
f0 resonance [9].

The total mass, the invariant mass of the K �K subsystem,
and the quantum numbers IGJPC ¼ 0�1�� of the reso-
nance found here are all in agreement with those found
experimentally for the Xð2175Þ [1,2]. These findings
strongly suggest that this resonance can be identified
with the Xð2175Þ.

Yet, our approach can go further, and we can make an
evaluation of the production cross section and compare it
with the experimental results of [1,2]. For this we make use
of the theoretical evaluation of the �f0ð980Þ production in
the eþe� reaction studied in [8]. The authors in [8] studied
the production of the� and f0ð980Þ as plane waves (pw) in
the final state and could reproduce the background but not
the peak structure around Xð2175Þ mass. Since our reso-
nance develops from the interaction of the � and f0, the
consideration of the final state interaction (fsi), in addition

to the uncorrelated �f0 production amplitude (T�f0
pw ) of

[8], could explain the experimental data in the peak region.
We show here that this is indeed the case. We implement

the �f0 fsi by multiplying T
�f0
pw by the factor [18–21]

Ffsi ¼ ½1þ ~G�f0ðsÞt�f0ðsÞ�; (9)

where t�f0 is the scattering matrix for � and f0 and
~G�f0ðsÞ is the loop function of the � and f0 propagators.

For ~G�f0 we use the standard formula for two mesons [9]

with a cutoff (�) of the order of the sum of the two meson
masses, as was the case in [9], and hence �� 2 GeV here.
We do not have the t�f0 , but in the vicinity of the resonance

it must be proportional to the three-body TR [Eq. (1)],
implying T�f0 ¼ 	TR. The proportionality coefficient 	

is readily obtained using a relation based on unitarity,

ImfT�1
�f0

g ¼ �Imf ~G�f0g, implicit in Eq. (7). Assuming

the �f0 channel to be the main source of ImfTRg, as the
experimental study suggests [1,2], we have

Im fT�1
�f0

g ¼ 	�1 ImfT�1
R g ¼ �Imf ~G�f0g ¼

k�
8�

ffiffiffi
s

p ; (10)

which determines 	. In Eq. (10), k� is the�momentum in

the �f0 center of mass system.
With this information we evaluate the eþe� ! �f0

production cross section taking the results for the �f0
production in the plane wave approximation from [8],
and we show the results in Fig. 2. We can see that taking

a cutoff of the order of 2–2.5 GeV for the ~G�f0 , we obtain

results for the production cross section which are in fair

agreement with the experimental ones. In order to compare
the results with the experimental cross sections in the
Xð2175Þ mass region, the energy argument of the ampli-
tude TR has been shifted by�25 MeV. Note, however, that
the difference of 25 MeV in the energy position (1% of the
mass) represents a remarkable agreement for a hadronic
model of meson spectra.
We would like now to comment on the effects of includ-

ing the ��� channel, as discussed in Sec. III. We observe
a similar peak as in Fig. 1 (see Fig. 3); however, the
position of the peak in the total energy has been displaced
by about 38 MeV downwards to an energy of 2112 MeV.
At the same time, the peak shows up around

ffiffiffiffiffiffi
s23

p ’
965 MeV, about 15 MeV below the nominal energy of
the f0ð980Þ. These differences with the nominal values of
the masses of the resonances are typical of any hadronic
model of resonances, and, thus, the association of the
resonance found to the Xð2175Þ, which has the same
quantum numbers as the resonance found, is the most
reasonable conclusion. In any case, the different options
taken along the work have always led to a clean peak
around the same position, and the difference found could
give us an idea of the theoretical uncertainties.
Finally, it should be mentioned that the TR matrix for the

isospin 1 does not show any structure.
We have checked the sensitivity of the resonance found

to the change in the cutoff (�� 1000 MeV) used in the
calculation of the input two-body t matrices [Eq. (7)],
which gives the same results as dimensional regularization.
There is not much freedom to change the � in this case,

2000 2200 2400 2600 2800

s (MeV)

0.1

0.2

0.3

0.4

0.5

0.6

σ 
(φ

f 0) 
(n

b)

FIG. 2 (color online). The cross section for the eþe� ! �f0
reaction. The dashed-dotted line shows the result of the calcu-
lation of the cross section in the plane wave approximation [8].
The dashed (solid) line shows the result of multiplying the
amplitude from Ref. [8] by the final state interaction factor
[Eq. (9)] calculated using a cutoff of 2 (2.5) GeV for the
~G�f0 ðsÞ. The data, which corresponds to the eþe� !
�ð��ÞI¼0 reaction (triangles for charged pions and boxes for
neutral pions), have been taken from [1,2].
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because it has been constrained by reproducing the data on
the respective two-body scattering. We thus change � by
�20 MeV for calculating Eq. (7), which still guarantees a
reasonable agreement with the two-body cross sections,
and find that it gives rise to a change in the peak position
(in Fig. 1) in

ffiffiffi
s

p
by �8 MeV. The cutoff is also needed to

evaluate the G functions of Eq. (5), and we use the same
cutoff of about 1 GeV. Since this function involves loops
with three-meson propagators, it is very insensitive to the
cutoff. The same change of�20 MeV (or more) in� leads
to negligible changes in the results in this case.

V. OFF-SHELL EFFECTS AND THREE-BODY
FORCES

Our approach makes explicit use of the cancellation of
the off-shell parts of the two-body t matrices in the three-
body diagrams with the genuine three-body forces, which
arise from the same chiral Lagrangians . The off-shell part
of a scattering matrix is unphysical and can be changed
arbitrarily by performing a unitary transformation of the
fields.

Inside the loops, the off-shell part of the chiral ampli-
tudes, which behaves as p2 �m2 (where p is the four
vector of the off-shell particle) for each of the meson
legs, cancels a propagator leading to a diagram with the
topology of a three-body force [14]. It is also a peculiar
feature of the chiral Lagrangians that there is a cancellation
of these three-body forces with those arising from the
PPV ! PPV contact terms of the theory. Examples of
similar cancellations are well known in chiral theories
[22,23]. The detailed derivation of the cancellation of the
off-shell part of the t matrices and the three-body force
arising from the chiral Lagrangian can be seen in the
appendix [15] for the ��N interaction. In the present
case, the cancellation also occurs, but it is slightly different
technically. In fact, its derivation is easier than in the case
studied in [15], and we discuss it in the appendix for a case
in which the leading order contribution to the VP transition

is not null. However, in the �K ! �K case, the potential
is zero. In this case, the t matrix is generated by rescatter-
ing through K�� and K�� states, and the cancellation is
found in the transition potentials.
We find also instructive to see what one gets if the off-

shell part of the two-body t matrices is retained. Following
Refs. [9,13] we find, for the s wave,

VK �KðI ¼ 0Þ ¼ � 1

4f2

�
3s23 �

X
i

ðp2
i �m2

i Þ
�
; (11)

V�K ’ 3

2
s12 � 1

2

X
m2

i �
1

2

X
i

ðp2
i �m2

i Þ: (12)

The (p2
i �m2

i ) terms in Eq. (11) are ineffective in the
loops of the two-body t matrix [Eq. (7)] [9] but will show
up in the external legs of the two-body t matrix used as an
input in the Faddeev equations. Hence

tK �KðI ¼ 0Þ ¼ ton

�
1�

P
i
ðp2

i �m2
i Þ

3s23

�
; (13)

t�K ¼ ton

�
1�

P
i
ðp2

i �m2
i Þ

3s12 �
P
i
m2

i

�
; (14)

where ton denotes the corresponding on-shell t matrix. If
we use these amplitudes, instead of the on-shell ones we
find a very similar result to that depicted in Fig. 1, with the
amplitude peaking at

ffiffiffi
s

p ¼ 2110 MeV and
ffiffiffiffiffiffi
s23

p ¼
975 MeV. Thus, the K �K still appears very correlated
around the f0ð980Þ, but the total energy has been shifted
by 40 MeV. This is the result we obtain by using the off-
shell t matrices and neglecting the effect of the PPV !
PPV contact term of the theory, which as mentioned above
cancels the effect of the off-shell part of the t matrix. In
other words, we could say that the three-body forces of the
chiral Lagrangian are responsible for a shift of the reso-
nance mass from 2110 to �2150 MeV, thus leading to a
better agreement with the mass of the Xð2175Þ, but, of
course, the result holds for the particular choice of fields of
the ordinary chiral Lagrangians.

VI. POLE IN THE COMPLEX PLANE

One might want to see if a peak obtained in the three-
body T matrix corresponds to a pole in the complex plane.
The peak is so clean and close to a Breit-Wigner for a fixedffiffiffiffiffiffi
s23

p
that it can only be reflected by a pole in the complex

plane. Yet, we have looked at it in more detail through in a
simplified way. We keep the variable

ffiffiffiffiffiffi
s23

p
as real, and we

fix its value to the one where the peak appears and then
study the �K �K amplitude as a function of the complex

ffiffiffi
s

p
variable. We must move to the second Riemann sheet in the
�f0ð980Þ amplitude which is accomplished by changing

 960
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√s23 (MeV) 
 2040  2080  2120  2160  

√s (MeV)

 0

20

40
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80
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FIG. 3. The squared amplitude in the isospin 0 configuration
including the ��� channel.
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k� ! �k� in the �f0 loop function. We proceed as ex-

plained below.
The unitarity condition allows us to write [24]

T�1
�f0

¼ V�1
�f0

� ~G�f0 ; (15)

with V�f0 the real potential and
~G�f0 the�f0 loop function

used in Eq. (9).
Going to the second Riemann sheet implies substituting

~G�f0 by ~GII
�f0

, where ~GII
�f0

is obtained changing k� by

�k� in the analytical expression of ~G�f0 [13]

~G�f0ð
ffiffiffi
s

p Þ ¼ 1

16�2

�
að
Þ þ ln

m2
�


2
þm2

f0
�m2

� þ s

2s
ln
m2

f0

m2
�

þ k�ffiffiffi
s

p ½lnðs� ðm2
� �m2

f0
Þ þ 2k�

ffiffiffi
s

p Þ

þ lnðsþ ðm2
� �m2

f0
Þ þ 2k�

ffiffiffi
s

p Þ
� lnðs� ðm2

� �m2
f0
Þ � 2k�

ffiffiffi
s

p Þ

� lnðsþ ðm2
� �m2

f0
Þ � 2k�

ffiffiffi
s

p Þ � 2�i�
�
:

(16)

Thus we can write

ðT�1
�f0

ÞII ¼ ðV�1
�f0

Þ � ð ~G�f0ÞII ¼ ðT�1
�f0

ÞI þ ~G�f0 � ð ~G�f0ÞII

¼ ðT�1
�f0

ÞI � i
k�

4�
ffiffiffi
s

p ; (17)

where I and II indicate the first and second Riemann sheet,
respectively. We can approximate TR of Eq. (2) by a Breit-
Wigner form as

TR ’ g2

s� so þ iM�ðsÞ (18)

from where, by means of Eq. (10), since 	 is real

ðT�1
�f0

ÞI ¼ ð	�1T�1
R ÞI ¼

�
k�

8�
ffiffiffi
s

p
ImfT�1

R g
�
ffiffi
s

p ¼M
T�1
R ; (19)

which leads to

ðT�1
�f0

ÞII ¼
�

k�
8�

ffiffiffi
s

p 1

M�

�
ffiffi
s

p ¼M
ðs� so þ iM�Þ � i

k�
4�

ffiffiffi
s

p ;

(20)

which upon taking into account that

� ¼ 1

8�s
g2k�; (21)

with k� being real, results in

ðT�1
�f0

ÞII ¼ 1

g2

�
s� s0 � i

k�
8�

�
2

ffiffiffi
s

p �M

s

�
g2
�
: (22)

Then ðT�1
�f0

ÞII has a pole at

s� s0 � i
k�
8�

�
2

ffiffiffi
s

p �M

s

�
g2 ¼ 0; (23)

which appears indeed very close to Re
ffiffiffi
s

p ’ ffiffiffiffiffi
s0

p
and

Im
ffiffiffi
s

p ’ �=2 as we have checked numerically, taking s0
and g2 from the shape of TR. We also get the complex
conjugate pole taking another branch of the logarithm.

VII. SUMMARY

In summary, the interaction of the �K �K system studied
with the Faddeev equations leads to a rearrangement of the
K �K subsystem as the f0ð980Þð0þþÞ resonance. Then the
f0ð980Þ together with the � forms a narrow resonant 1��
state with a mass bigger than m� þ 2mK, which decays

into�f0ð980Þ and hence is most naturally associated to the
recently discovered Xð2175Þ resonance. The narrow width
of around 27 MeV obtained here is compatible within
errors with the experimental width 58� 16� 20 MeV.
We have also included ��� as a coupled channel of
�K �K and find a peak very similar to the one found with
the �K �K channel alone, except that the peak is displaced
by 38 MeV down to smaller masses. We also noted that the
theoretical uncertainties are of this order of magnitude.
The typical differences of our results with the experi-

mental ones are in the range of 50 MeV for the mass and
the width are roughly compatible. These are typical differ-
ences found in successful models of hadron spectroscopy.
The theory also shows that there is no resonance in
�a0ð980Þ. Although a complete study of this state would
require the addition of the��� channel, we found that the
strength of the�K �K amplitude in I ¼ 1 is much smaller in
magnitude than that of the �K �K in I ¼ 0, far away from
developing a pole upon reasonable changes of the input
variables. It would be most interesting to test experimen-
tally this prediction.
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APPENDIX

In [15], a cancellation between the three-body force
whose origin is in the off-shell part of the t matrices and
the one arising from the chiral Lagrangian was shown for
the ��N system (as an example of a two-meson–one-
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baryon system). Here we are going to show that the same
cancellation also occurs in the case of one vector and two
pseudoscalar mesons. In this article, we have considered
��� and �K �K as the main coupled channels. However,
the�� and�K ( �K) tmatrices have been calculated taking
the coupled channels of [13], since the potentials for
�� ! �� and �Kð �KÞ ! �Kð �KÞ are zero. This means
that the�� and�Kð �KÞ interactions proceed through other
coupled channels. Therefore, in order to see the mentioned
cancellation for the ��� and �K �K channels, we must
consider at least one loop for the�� ! �� and�Kð �KÞ !
�Kð �KÞ interaction in which the intermediate state is one of
the coupled channels of [13]. The cancellations in this case
have to be seen in the terms involving the transition to these
intermediate states of the coupled channels. This can be
done in the same way as it will be shown below, but for the
sake of clarity we have taken a simple case to show the
cancellation between the contribution of the off-shell part
of the t matrices and the contact term vector-pseudoscalar-
pseudoscalar of the corresponding chiral Lagrangian. We
consider the channel �þ�þ��, for which the
�þ�þð��Þ ! �þ�þð��Þ transition is not zero at leading
order, as an example. In order to simplify the formulation,
we take �þ�þ�� as the only channel of the system.

The interaction of a vector and any number of pseudo-
scalar mesons is described by the chiral Lagrangian [13]

L ¼ �Trf½V
; @�V
���g; (A1)

where

V
 ¼
1ffiffi
2

p �0 þ 1ffiffi
2

p w �þ K�þ

�� � 1ffiffi
2

p �0 þ 1ffiffi
2

p w K�0

K�� �K�0 �

0
B@

1
CA




;

�� ¼ 1

2
ðuy@�uþ u@�u

yÞ; u2 ¼ ei
ffiffi
2

p
=fP;

P ¼
1ffiffi
2

p �0 þ 1ffiffi
2

p �8 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p �8 K0

K� �K0 � 2ffiffi
6

p �8

0
BB@

1
CCA:

If we expand u in series up to terms containing two
pseudoscalar fields P, we obtain

�� ¼ 1

4f2
½P; @�P�; (A2)

and Eq. (A1) becomes

L VP ¼ � 1

4f2
Trf½V
; @�V
�½P; @�P�g: (A3)

For the case under consideration, i.e., �þ�þ ! �þ�þ
and �þ�� ! �þ��, Eq. (A3) has the form

L ¼ � 1

2f2
ð@
��

� �
þ� � ��

� @

�þ�Þð@
���þ

� ��@
�þÞ (A4)

leading to (see Fig. 4)

V�þ�þ!�þ�þ ¼ � 1

2f2
ðk1 þ k1

0Þðk2 þ k2
0Þð� � �0Þ;

V�þ��!�þ�� ¼ �V�þ�þ!�þ�þ :

(A5)

From [15], we have

V�þ��!�þ�� ¼ � 1

6f2

�
3s�� �X

i

ðk2i �m2
i Þ
�
; (A6)

where ki and mi represent the momentum and mass, re-
spectively, of the external particles for the �þ��
interaction.
In this way, the contribution of the first diagram in Fig. 5

is given by

Ta ¼ � 1

6f2
½3ðk02 þ k03Þ2 � ðk02 �m2

�Þ� 1

k02 �m�
2

�
�
� 1

2f2
ðk1 þ k01Þð2k2 þ k0 � k2Þ

�
ð� � �0Þ

¼ Ton
a þ Toff

a ; (A7)

with Ton
a (Toff

a ) being the contribution which comes from
the on-shell (off-shell) part of the t matrices:

Ton
a ¼ 1

2f4
ðk02 þ k03Þ2

1

ðk1 þ k2 � k01Þ2 �m2
�

� ðk1 þ k01Þk2ð� � �0Þ;

Toff
a ¼

�
1

4f4
ðk02 þ k03Þ2ðk1 þ k01Þ

�
k0 � k2
k02 �m2

�

�
k0¼k1þk2�k0

1

� 1

12f4
k02 �m2

�

k02 �m2
�

ðk1 þ k01Þðk2 þ k0Þk0¼k1þk2�k0
1

�

� ð� � �0Þ: (A8)

In analogy with the findings of [15], the contribution of
the off-shell part for the different diagrams of Fig. 5,
together with one of the vector-pseudoscalar-pseudoscalar
contact terms of the chiral Lagrangian, is expected to
vanish in the limit of equal masses for the pseudoscalars
and equal masses for the vectors. From Eq. (A7) and

FIG. 4. Lowest order diagram contributing to the �þ�þ inter-
action.
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following [15],

Toff
a ¼

�
1

4f4
ðk02 þ k03Þ2ðk1 þ k01Þ

�k1
ð�k1Þ2 þ 2k2�k1

� 1

12f4
ðk1 þ k01Þð2k2 þ �k1Þ

�
ð� � �0Þ; (A9)

with �k1 ¼ k1 � k01. Using that

ðk1 þ k01Þ�k1 ¼ k21 � k021 ¼ m2
1 �m02

1 (A10)

is zero in the limit of equal masses, we have

Toff
a ¼ � 1

6f4
ðk1 þ k01Þk2ð� � �0Þ: (A11)

By analogy, for the rest of the diagrams in Fig. 5 we have

Toff
b ¼ 1

6f4
ðk1 þ k01Þk3ð� � �0Þ;

Toff
c ¼ 1

6f4
ðk1 þ k01Þk03ð� � �0Þ;

Toff
d ¼ � 1

6f4
ðk1 þ k01Þk02ð� � �0Þ;

Toff
e ¼ 0; Toff

f ¼ 0:

Adding all Toff we get

Xi¼6

i¼1

Toff
i ¼ 1

6f4
ðk1 þ k01Þðk03 � k2 þ k3 � k02Þð� � �0Þ:

(A12)

In order to evaluate the VPP contact term, we have to
expand �� up to terms with four pseudoscalar fields

�� ¼ 1

32f4

�
1

3
@�PP

3 � P@�PP
2 þ P2@�PP� 1

3
P3@�P

�
;

(A13)

and, therefore, using Eq. (A1), the chiral Lagrangian for
the VPP contact term for the �þ�þ�� interaction is
(Fig. 6)

L VPP ¼ � 1

12f4
ð@
��

� �
þ� � ��

� @

�þ�Þ

� ð�����þ@
�þ � ��@
���þ�þÞ;
(A14)

which implies

T3b
�þ�þ�� ¼ � 1

6f4
ðk1 þ k01Þðk03 � k2 þ k3 � k02Þð� � �0Þ:

(A15)

The sum of Eq. (A12) and (A15) results in

X6
i¼1

Toff
i þ T3b

�þ�þ�� ¼ 0: (A16)
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