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We compute the Oð�2
sÞ corrections to the differential rate of the semileptonic decay b ! c‘�‘ at the

‘‘intermediate recoil’’ point, where the c-quark mass and the invariant mass of the leptons are equal. The

calculation is based on an expansion around two opposite limits of the quark masses mb;c: mc ’ mb and

mc � mb. The former case was previously studied; we correct and extend that result. The latter case is

new. The smooth matching of both expansions provides a check of both. We clarify the discrepancy

between the recent determinations of the full NNLO QCD correction to the semileptonic b ! c rate, and

its earlier estimate.
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I. INTRODUCTION

Approximately one out of five decays of the b-quark
produces a c-quark accompanied by leptons. Those semi-
leptonic decays provide information about quark masses,
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
Vcb, as well as properties of hadrons containing heavy
quarks. In order to access that information, measurements
of the decay probability and distributions are compared
with theoretical predictions that account for radiative cor-
rections, quark masses, and nonperturbative effects of
strong interactions. Given that the strong coupling constant
at the mass-scale of the b-quark is quite large, �sðq2 ¼
m2

bÞ ’ 0:2, and that the present uncertainty in Vcb ap-

proaches the one-percent level [1], it is important to de-
termine the second-order effects, Oð�2

sÞ.
The full Oð�2

sÞ correction to the decay rate was first
calculated in the limit of a massless produced quark (rele-
vant for the decay b ! u‘�‘) [2]. Effects of the c-quark
mass were known, until recently, only in the so called
Brodsky-Lepage-Mackenzie (BLM) approximation [3,4],
estimating the largest part of the second-order corrections
using the running of �s. The remaining, non-BLM correc-
tions, are usually smaller and much more difficult to de-
termine. They were known only in three special points of
lepton kinematics: the zero recoil, where the leptons are
emitted back-to-back and the produced quark remains at
rest [5–7]; the maximum recoil, with the vanishing invari-
ant mass of the leptons [8,9]; and the intermediate recoil,
where the invariant mass of the leptons equals that of the
c-quark [10]. In the latter study, the information from all
three points was used to estimate the Oð�2

sÞ correction to
the total decay rate with a massive c-quark.

Very recently, two independent studies determined the
full mass dependence of the non-BLM corrections: in [11],
the calculation was performed numerically for arbitrary
quark masses, and in [12] an expansion around small
mc=mb was obtained analytically. The two methods are
very different, with the former being more accurate at
large, and the latter at small mc, but they agree very

well in the physically interesting region of mc ¼
ð0:25 . . . 0:30Þmb. Unfortunately, the resulting non-BLM
correction disagrees almost by a factor of 2 with the
estimate found in [10].
The goal of the present paper is twofold. First, we want

to check the intermediate-recoil expansion presented in
[10]. Among the three kinematical points on which the
estimate [10] of the total correction was based, the
intermediate-recoil is the only one not checked by an
independent calculation. An expansion is constructed
from the opposite limit than in [10]: whereas there the
expansion was around the zero-recoil limit, here we start
from the vanishing mc, as shown in Fig. 1. In addition, the
old expansion around the zero-recoil limit is repeated and
extended to higher orders. Our second goal is to clarify the
source of the disagreement between the three-point esti-
mate and the recent explicit calculations.
Figure 1 puts the present expansion in the context of the

possible kinematics of a heavy to light quark decay, Q !
qþ ðW� ! ‘�‘Þ. Along the diagonal, the mass of the
virtual W� is equal to the light-quark mass. The arrow
originating from the zero-recoil line corresponds to the
expansion done in [10] (and repeated in the present paper),

m / M

mW * / M

Zero Recoil

W *,mW *

q,m

Q,M

FIG. 1. The kinematic region where the decay Q ! qW� is
allowed. The solid arrows show known expansions while the
dashed arrow shows the expansion presented here. The decay
width is also known analytically along the whole zero recoil line.
The dotted line corresponds to the decay width Q ! q‘�‘. The
three circles along this line show known values coming from the
different expansions. In the case considered in this paper, M ¼
mb and m ¼ mc.
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while the dashed arrow coming from the zero mass point
corresponds to the expansion presented here for the first
time. Ultimately, these expansions should give a consistent
value for the decay width �ðb ! cW�Þ. It is related to the
differential semileptonic width,

d�ðb ! c‘�‘Þ
dq2

¼ GF

6�2
ffiffiffi
2

p
M2

W

q2�ðb ! cW�Þjm2ðW�Þ¼q2 ;

(1)

where q2 is the invariant mass squared of the leptons, and

Fermi constant is GF ¼
ffiffi
2

p
g2w

8M2
W

.

II. EXPANSION FROM ZERO MASS POINT

Using the intermediate-recoil relation mW� ¼ mc, we
here calculate the width as a series in � � mc

mb
� 1, and �s,

�ðb ! cW�Þ ¼ �0

�
X0 þ CF

�s

�
X1 þ CF

�
�s

�

�
2
X2

þOð�3
sÞ
�
; (2)

where

�0 ¼ g2wjVcbj2m3
b

64�m2ðW�Þ : (3)

The tree-level and first-order results X0;1 are known exactly

[13,14], and the present approach, described below, has
been tested with them up to Oð�10Þ,

X0 ¼ ð1� �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

q
; (4)

X1 ¼ 5

4
� �2

3
þ �2

�
�2

3
� 5

4
� 9 ln�

�
þ �4

�
9 ln�� 15

4

�

þ . . . : (5)

To evaluate the Oð�2
sÞ corrections, we considered the

imaginary parts of 39 three-loop self-energy diagrams with
massive propagators, such as in Fig. 2, and used the optical
theorem to calculate the decay width. To deal with the two
scales, mb and mc, we used the method of asymptotic
expansion [15,16]. As an example of how this asymptotic
expansion is done, consider the left hand diagram in Fig. 2.
We consider ‘‘regions’’ where each loop momentum is
either hard, �mb, or soft, �mc, and Taylor expand the
propagators so that in the end we only have to deal with
single scale diagrams as shown in Fig. 3. This method
produced as many as 11 regions for a single topology.
Expansions to the desired order Oð�10Þ required algorithm
[17] for the unfactorized three-loop regions, (e.g. Region 1
in Fig. 3).
The second-order results can be separated into a sum of

gauge invariant parts, each with a different color factor,

g

b

c

W *

FIG. 2. A sample of the diagrams needed for the intermediate-recoil expansion presented here.

FIG. 3. The asymptotic expansion of a two-scale diagram used to integrate the left-hand diagram in Fig. 2. The dashed, thin, and
thick lines correspond to massless, soft-scale massive, and hard-scale massive propagators, respectively.
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X2 ¼ TRðNLXL þ NSXS þ NHXHÞ þ CFXF þ CAXA:

(6)

In this expression, the Xi’s are the gauge invariant parts in
terms of �, NL is the number of quarks lighter than a
c-quark, NS and NH serve as markers to separate the
c-quark and b-quark loop contributions. CF ¼ 4

3 , CA ¼
3, and TR ¼ 1

2 , are the appropriate color factors in SUð3Þ.

The contributions from a top quark loop are not considered
here because they are suppressed by the ratio mb=mt and
are negligible. Terms up to Oð�10Þ have been calculated
completely analytically. Here we present the formulas for
terms up to �4 to save space, Eqs. (7)–(11), while the
numerical coefficients of all terms are given in Table I.

XH ¼ 12 991

1296
� �3

3
� 53�2

54
þ �2

�
89�2

54
� 137 567

6480
þ 13�3

3

�
þ �4

�
4�2

3
� 10 081 601

705 600
� 23

840
ln�

�
; (7)

XS ¼ �3 � 4

9
þ 23�2

108
� �

3�2

4
þ �2

�
4

9
þ 13

2
ln�� 3ln2�� �3 þ 157�2

108

�
� �3 25�

2

18

þ �4

�
1193

36
� 61

3
ln�þ 9ln2�� 16�2

3

�
; (8)

XL ¼ �3 � 4

9
þ 23�2

108
þ �2

�
13

2
ln�� 1

18
� 3ln2�� �3 � 77�2

108

�
þ �4

�
865

72
� 34

3
ln�þ 6ln2�

�
; (9)

XA ¼ 521

576
þ 9�3

16
þ 505�2

864
� 19�2

8
ln2þ 11�4

1440
� �2

�
1223

576
þ 185

8
ln�� 33

4
ln2�þ 107�3

16
þ 145�2

864
� 57�2

8
ln2

þ 161�4

720

�
þ �3 2�

2

3
þ �4

�
ln�

�
2027

48
� 23�2

8

�
� 13 391

288
� 33

2
ln2�� 403�3

64
þ 27�2

8
� 201�2

32
ln2� 31�4

720

�
;

(10)

XF ¼ 5� 53�3
8

� 119�2

48
þ 19�2

4
ln2� 11�4

720
þ �2

�
151�3
8

þ 743�2

48
þ ln�

�
�2 � 75

8

�
� 27

2
ln2�� 97

2
� 57�2

4
ln2

� 127�4

360

�
� �3 4�

2

3
þ �4

�
7145

288
þ ln�

�
25�2

12
� 329

24

�
þ 18ln2�þ 547�3

32
� 83�2

12
þ 201�2

16
ln2þ 19�4

72

�
:

(11)

For this expansion, we have used the MS definition of �s normalized at the pole mass mb.

TABLE I. Numerical coefficients of the expansion presented here to all orders calculated.

�0 �1 �2 �2 ln� �2ln2� �3 �4 �4 ln� �4ln2� �5 �6

XA �8:154 0 15.14 �23:12 8.25 6.580 �67:92 13.85 �16:5 77.64 �124:2
XF 3.575 0 �4:887 0.4946 �13:5 �13:16 88.74 6.853 18 �155:3 262.4

XL 2.859 0 �8:294 6.5 �3 0 12.01 �11:33 6 0 �12:45
XS 2.859 �7:402 13.59 6.5 �3 �13:71 �19:50 �20:33 9 30.98 �13:50
XH �0:06360 0 0.2460 0 0 0 �1:129 �0:02738 0 0 1.656

�6 ln� �6ln2� �7 �8 �8 ln� �8ln2� �9 �10 �10 ln� �10ln2�

XA �96:19 14.17 270.6 �666:7 �235:6 40.01 973.0 �2327:3 �705:7 48.98

XF 38.03 �66:89 �541:3 1127.6 �41:98 �245:5 �1945:9 3771.9 �516:1 �733:0
XL 19.30 �6 0 18.39 35.59 �18 0 80.68 101.0 �76
XS 15.77 �12 64.15 �33:67 44.76 8 0 �0:5973 151.8 34

XH �0:8866 0 0 1.984 �0:2800 0 0 4.494 0.5912 0
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III. EXPANSION FROM THE ZERO-RECOIL LINE

An alternative way to compute at the intermediate recoil
is to expand around the zero-recoil limit where mc ¼
mW� ¼ mb

2 . The decay width parametrization in Eqs. (1)

and (2), as well as the decomposition of the second-order
correction into color parts, Eq. (6), are still valid. For the
purpose of the expansion around the zero-recoil limit, it is
convenient to parameterize the dependence on the quark
variable in terms of a new variable, � ¼ 1� 4�2, and pull
out its square root, thus defining new functions �i,

Xið�Þ ¼
ffiffiffiffi
�

p
�ið�Þ; i ¼ 0; 1; 2; A; F; L; S;H:

The expansion around � ¼ 0 was first carried out in [10].
Our purpose in this section is to repeat that calculation,
extend it to higher powers in �, and make sure that the

results match the expansion around the zero-mass point,
� ¼ 0, presented in Sec. II. The one-loop correction in the
� expansion reads

�1 ¼ 27
8 ln2–3þ �ð258 ln2þ 1

2 ln�� 95
48Þ þ �2ð2815 ln2

þ 7
15 ln�� 13 483

7200 Þ þ �3ð4435 ln2þ 11
35 ln�� 143 263

117 600Þ:
In [10] the strong coupling constant was normalized at the
geometrical mean of the quark masses, �sð ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ, while

here we use �sðmbÞ, in order to be able to match with the
expansion around � ¼ 0. Also, in [10], the c-quark and
b-quark loop contributions were added together and de-
noted �H, while here we separate them. The b-quark loop
contribution is denoted by �H and the c-quark by �S. For
reference, the �S and �H terms are given in Eqs. (12) and
(13) up to order �2 [both normalized with �sðmbÞ],

�H ¼ 509

48
þ 999

32
R2 þ 87

16
ln2þ 337

64
ln22þ 75�2

128
þ �

�
7937

864
þ 1449

32
R2 þ 275

144
ln2þ 767

64
ln22þ 655�2

384

�

þ �2

�
610 309

51 840
þ 204 969

2560
R2 þ 59 519

17 280
ln2þ 973 327

46 080
ln22þ 317 957�2

92 160

�
; (12)

�S ¼ 361

96
� 621

256
R2 � 25

64
ln2� 531

512
ln22� 1445�2

3072
þ �

�
433�2

3072
� 757

864
� 207

256
R2 � 91

576
ln2� 1

3
ln2 ln�� 2579

1536
ln22

�

þ �2

�
287 639

414 720
� 3243

20 480
R2 þ 1 120 967

691 200
ln2� 85 913

73 728
ln22� 51 907�2

442 368
�

�
1

6
þ 14

45
ln2

�
ln�

�
; (13)

where R2 is obtained from [5] and has a numerical value of
R2 � �0:729 64.

While these changes were carried out, an error was
noticed in the charge renormalization used in [10]. In
that paper, �s was normalized at

ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
. The error con-

sisted in using five quark flavors to run �s down to that
scale, instead of excluding the b-quark in the range be-

tweenmb and
ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
. This error originates in [6]. We have

corrected for this in Eq. (12) and Table II.
To have proper matching between the expansion in [10]

and the expansion presented here, we also found that the
old expansion needed more terms than could be obtained
with the available computing resources in 1998. We have
updated the expansion to include analytical terms up to �8

TABLE II. Numerical coefficients to all orders calculated for the updated expansion from the zero-recoil limit. The values have been
calculated using �sðmbÞ.

�0 �1 �1 ln� �1ln2� �2 �2 ln� �2ln2� �3 �3 ln� �3ln2� �4 �4 ln� �4ln2�

�A �1:849 0.420 2.421 �0:458 �1:960 2.109 �0:428 �1:411 1.702 �0:288 �0:730 1.311 �0:218
�F 1.762 �0:854 �0:440 0 0.015 �0:140 0.167 0.208 �0:650 0.256 0.442 �0:642 0.270

�L 0.419 0.086 �0:982 0.167 0.576 �0:804 0.156 0.568 �0:712 0.105 0.257 �0:512 0.079

�S 0.118 0.189 �0:231 0 0.215 �0:382 0 0.323 �0:384 0 0.257 �0:348 0

�H �0:087 0.072 0 0 �0:045 0 0 �0:002 0 0 �5� 10�4 0 0

�5 �5 ln� �5ln2� �6 �6 ln� �6ln2� �7 �7 ln� �7ln2� �8 �8 ln� �8ln2�

�A �0:429 1.032 �0:176 �0:306 0.883 �0:147 �0:223 0.766 �0:127 �0:174 0.682 �0:111
�F 0.298 �0:670 0.264 0.189 �0:494 0.254 0.177 �0:493 0.242 0.122 �0:410 0.230

�L 0.159 �0:413 0.064 0.110 �0:349 0.054 0.081 �0:304 0.0462 0.063 �0:269 0.041

�S 0.191 �0:314 0 0.147 �0:285 0 0.117 �0:261 0 0.096 �0:241 0

�H �1� 10�4 0 0 �5� 10�5 0 0 �2� 10�5 0 0 �1� 10�5 0 0
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as compared to�4 previously. To carry out this calculation,
we used the same methods as the authors of [10]. Instead of
calculating the corrections using self-energy diagrams and
the optical theorem, we calculated each second-order de-
cay diagram separately. This required the calculation of 73
diagrams with zero, one or two loops and up to four-
particle phase space integrations, Fig. 4.

In this expansion, the loops have been integrated using
the same methods described earlier. This lead to the cal-
culation of 14 regions with only one having an eikonal
propagator [18]. The numerical coefficients of all terms
that have been calculated here are shown in Table II.

Figure 5 shows how the updated expansion differs from
the previous one and clearly displays the need for the
higher-order terms, at and below the physical value ��
0:3.

In an attempt to account for the higher-order terms, the
authors of [10] added a term to approximate the remainder
of the series equal to the product of highest order term and

�
2ð1��Þ . This also gave an estimate of the error in their

calculation. For a value of � ¼ 0:3 (� ¼ 0:64) they found,

ffiffiffiffi
�

p
�2 ¼ �4:72ð14Þ: (14)

With the extra terms we have calculated here and the
corrections to the charge renormalization, this changes to

ffiffiffiffi
�

p
�2 ¼ �4:45ð1Þ; (15)

where we have used the same method of estimating the
error. With an error of� 0:2%, we have sufficient accuracy
for computing the full decay width �ðb ! c‘�‘Þ in the
next section.
Comparing the two expansions, around � ¼ 0 and

around � ¼ 1
2 , as shown in Fig. 6, one can now see that

b c

g

g

W*

FIG. 4. A sample of the diagrams needed to calculate the
expansion presented in [10] and updated here.

FIG. 6. The matching between the different color contributions
and total X2 contribution. The thick line corresponds to the
expansions presented here and the thin line corresponds to the
updated expansion from the zero recoil line.

0.1 0.2 0.3 0.4 0.5

12

10

8

6

4

2

FIG. 5. Second-order corrections expanded from the zero re-
coil line. The dashed line shows the expansion up toOð�4Þwhile
the solid line shows the expansion up to Oð�8Þ. For the purpose
of comparing with [10], this plot is made assuming �sð ffiffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ

is used in the NLO correction.
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all of the different color contributions and thus the full �2
s

corrections agree very well.

IV. ESTIMATE OF THE FULL CORRECTION TO
THE SEMILEPTONIC DECAY RATE

A. Notation

So far in this paper we have been concerned with the
decay of a b-quark into a c-quark and a virtualW-boson, at
the intermediate recoil where the masses of c and W� are
equal. We now want to use the results we have obtained,
together with previously obtained values at zero- and
maximum-recoil to fit the corrections to the decay b !
c‘�‘. We follow the notation of [10],

d�ðb ! c‘�‘Þ
dq2

¼ G2
Fm

3
bjVcbj2

96�3

�
ABorn þ

�sð ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p Þ
�

CFA1

þ
�
�s

�

�
2
CFA2

�
;

ABorn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2 � q2Þ2 � 4�2q2

q

� ½ð1� �2Þ2 þ ð1þ �2Þq2 � 2q4�:

(16)

In addition, we define the corrections for the integrated
decay rate,

�ðb ! c‘�‘Þ ¼ G2
Fm

5
bjVcbj2

192�3
Fð�Þ

�
1þ �sð ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ
�

B1

þ
�
�s

�

�
2
B2

�
;

Fð�Þ � 1� 8�2 � 24�4 ln�þ 8�6 � �8:

(17)

As we have already mentioned in the Introduction, the
NNLO corrections A2 and B2 can be divided into the
BLM and the non-BLM parts,

A2 ¼ TRðNLAL þ NSAS þ NHAHÞ þ CFAF þ CAAA

� ABLM þ AnBLM;

ABLM � AL½TRðNL þ NSÞ � 11
4CA�;

(18)

and similarly for the integrated corrections B. All the
functions A in the Eq. (16) depend on two variables: the
quark-mass ratio � and the invariant mass of the leptons
ffiffiffiffiffi
q2

p
. The full dependence on these variables is not yet

known. The expansions such as described in this paper
and earlier studies determine A’s along the sides and the
bisector of the triangle shown in Fig. 1. Of particular
interest are their values along the vertical line correspond-
ing to the physical value of � ’ 0:3, describing the differ-
ential decay rate d�ðb ! c‘�‘Þ=dq2. Reference [10] used
the three known points along that line to fit a polynomial
and integrate Eq. (1) over q2, thus providing an estimate of
the second-order non-BLM corrections to the full semi-
leptonic decay width

BnBLM
fit ¼ 0:9ð3Þ: (19)

This numerical value is quoted from [11], where the author
fixed another mistake in [10], related to using the
maximum-recoil result. Recently, however, two calcula-
tions of the full decay width �ðb ! c‘�‘Þ [11,12] gave

BnBLM ¼ 1:73ð4Þ: (20)

This section is devoted to clarifying the discrepancy be-
tween these results.
For comparison purposes we use �sð ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ, Nf ¼ 4,

and � ¼ 0:3 as in [10], where Nf refers to the number of

light quarks used to calculate the BLM contributions. The
authors of [11,12] use a different set of parameters, to
which we will return in Sec. IVD.

B. Effect of corrected coupling constant normalization

A large part of the discrepancy between Eqs. (19) and
(20) is due to the incorrect charge renormalization, as
discussed in Sec. III. We have corrected this and recalcu-
lated the non-BLM contributions using the same fitting
method described in [10]. Analogously to Eq. (8) in [10],
we introduce a new function of the lepton invariant mass q2

at fixed quark-mass ratio � (we use � ¼ 0:3). It is denoted
�ðq2Þ and defined as

�ðq2Þ ¼ A2ðq2Þ � ABLM
2 ðq2Þ

ABornðq2Þ
; (21)

The three available values of �ðq2Þ at q2 ¼ 0, m2
c, and

q2max ¼ ðmb �mcÞ2 are
�ð0Þ ¼ 1:26; �ðm2

cÞ ¼ 1:27; �ðq2maxÞ ¼ 0:19:

(22)

These values have been obtained using results from
[6,9,10], with the b-quark charge renormalization terms
from [6,10] corrected. Fitting these values to a function
defined by

�ðq2Þ ¼ a1q
4 þ a2q

2 þ a3; (23)

we integrate over q2 to find a value for the non-BLM
corrections. The values quoted in Eq. (22) are normalized
to the Born rate, ABorn, so the integral needed is analogous
to Eq. (9) in [10],

BnBLM
fit ¼ CF

Rq2max

0 dq2ABornðq2Þ�ðq2Þ
Rq2max

0 dq2ABornðq2Þ
: (24)

This integration, with the input from Eq. (22), gives
BnBLM
fit ¼ 1:4ð2Þ. This agrees with Eq. (20) much better

than the value given in Eq. (19). The error is estimated
by performing the analogous fit of the BLM corrections
and comparing the result to the exact value [4].

C. Effect of extending the expansion to higher orders
in �

In Sec. IVB we have merely corrected the renormaliza-
tion in the old results. In addition, using the results of the
two expansions in the present paper, we can obtain a more
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accurate input along the intermediate recoil line. Instead of
the value 1.27 in Eq. (22), this gives �ðm2

cÞ ¼ 1:33. This is
related to the shift induced by the higher-order terms,
illustrated in Fig. 5. There we see that the full correction
is less negative than previously assumed, thus the differ-
ence with the BLM correction is more positive (larger).
Since the zero- and the intermediate-recoil points are close
to each other, even a small shift of the value at one of them
may be amplified in the integral of the fitted function.

After the integration in Eq. (24), this change leads to the
new value BnBLM

fit ¼ 1:5ð2Þ which now agrees with

Eq. (20). The error estimated by comparing with the
BLM case is about 12 per cent. By correcting the mistake
in renormalization and including more terms in the expan-
sion from zero recoil, we have brought the disagreement
from about a factor of 2 down to � 10 percent, within the
quoted error margins.

D. A better fitting method

Further improvement is possible using a better method
of fitting the polynomial. In Eq. (21), we normalized the
points to the tree-level result ABorn. We find that, if this
normalization is not done, i.e. instead we use

�ðq2Þ ¼ A2ðq2Þ � ABLM
2 ðq2Þ; (25)

the polynomial fit gives a much better estimate of the exact
result. With this adjustment of the fitting procedure, we end
up with a final non-BLM estimate of BnBLM

2 ¼ 1:76ð4Þ, a
significant improvement. Without knowing the shape of the
d�ðb ! c‘�‘Þ=dq2 curve, we cannot say whether this is a
numerical coincidence. We have also performed this fitting
for the Oð�sÞ corrections and BLM approximation. Both
estimates give results that are within � 3 per cent of the
exact known result and are more accurate than using an
analog of Eq. (21) for the fit.

In the more recent papers [11,12], the authors use a
different set of parameters for their calculations, namely
�sðmbÞ, Nf ¼ 3, and � ¼ 0:25. For easy comparison, we

have also calculated the non-BLM corrections with this set
of parameters. Using Eq. (25) for the fitting procedure and
the expansion about � ¼ 0 presented here, we find
BnBLM
fit ¼ 3:37ð15Þ, as compared with the result of

BnBLM ¼ 3:40ð7Þ from [11].

V. SUMMARY

To summarize: we have corrected an error in the strong
coupling constant normalization in the previous
intermediate-recoil expansion. We have extended that ex-
pansion to several higher orders in the parameter �, de-
scribing the difference between mc and mb=2. We have
confirmed the correctness of that expansion by construct-
ing a new one, also along the intermediate-recoil diagonal
but around its other end, corresponding to mc=mb ! 0.

This analysis allowed us to reevaluate the fit of the d�ðb !
c‘�‘Þ=dq2 curve based on the three kinematical points, and
remove the disagreement between the correction to the
total rate �ðb ! c‘�‘Þ obtained from such a fit, and that
obtained from the direct four-loop calculations [11,12].
With this result, the full massive calculation of the Oð�2

sÞ
corrections to the semileptonic b-quark decay rate is
confirmed.
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APPENDIX A: CONTRIBUTIONS FROM b ! c �ccW�

The expansions used to obtain the maximum recoil point
for our polynomial fit were calculated in [8,9]. The two
expansions agree very well except for the region withmc <
mb

3 . This discrepancy can be attributed to the omission of

the amplitude of b ! c �ccW� from the expansion in [8].
For completeness, we have calculated this contribution for
both maximum recoil and intermediate recoil, as this ex-
pansion was also not included in [10]. These expansions
are calculated as threshold expansions in terms of � given
by

mc ¼ mb

3ð4Þ ð1� �Þ; (A1)

where the 3(4) indicates the factor used when calculating
the maximum recoil, 3, or intermediate recoil, 4 expansion.
The methods used for both expansions are discussed in
[19]. This calculation relies on the ability to reduce the
four-particle phase space integrals needed, into a product
of two particle phase spaces.
For the maximum recoil case, the expansion has been

calculated up to �14, with the first four terms given here,

�ðb ! c �ccW�ÞmW�¼0 ¼ �0�
2
s

ffiffiffi
3

p
�6CFTR

5�

�
�
1þ 83

56
�þ 7

64
�2 þ 55

896
�3

þ 753

896
�4 þ . . .

�
: (A2)

For intermediate recoil, the expansion has been calculated

up to �9
ffiffiffiffi
�

p
,

�ðb ! c �ccW�ÞmW�¼mc
¼ 3�0�

2
s�

3
ffiffiffiffi
�

p
CFTR

140
ffiffiffi
2

p
�

�
�
1þ 535

108
�� 137 045

85 536
�2

þ 175 277 863

13 343 616
�3 þ . . .

�
: (A3)
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