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The rate of the semileptonic decay b ! c‘� is calculated withOð�2
sÞ accuracy, as an expansion around

the limit of equal masses of the b and c quarks. Recent results obtained around the limit of the c-quark

much lighter than b are confirmed. Details of the new expansion method are described.
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I. INTRODUCTION

Very recently, next-to-next-to-leading order (NNLO)
QCD corrections to the semileptonic b ! c decay were
calculated with full account of the charm quark mass [1,2]
(see also Ref. [3]). The former paper employed a numerical
method while in the latter the decay rate was expanded in
the ratio of quark masses, � ¼ mc=mb. These two ap-
proaches are complementary, with the numerical one hav-
ing better accuracy for the larger daughter quark mass and
the analytical expansion being obviously better for a ligh-
ter one. The physically most interesting is the region of the
actual quark mass ratio, �� 0:25::0:3. Both methods are
applicable in this domain and agree very well with each
other. The resulting prediction for the b-quark decay rate
will improve the accuracy of the quark mixing parameter
Vcb.

In the present paper we provide an additional check of
that QCD correction. We construct an analytical expansion
like in [2], but around the opposite limit: instead of starting
with � ¼ 0 (massless charm) we expand around � ¼ 1
(equally heavy b and c quarks). We find that this leads to
a faster convergent series whose sum smoothly matches
that found in [2]. As a result we now have a set of analytical
expressions valid in the whole range of possible quark
masses. In addition, the method of asymptotic expansions
is applied to a new kinematic configuration.

II. CALCULATIONAL METHOD FOR THE DECAY
RATE

Using the optical theorem, we calculate the decay width
from the imaginary parts of b-quark self-energy diagrams
up to four loops, such as shown in Fig. 1. These diagrams
contain two masses,mb andmc, and it is not known how to
compute them analytically. We thus treat the mass differ-
ence mb �mc ¼ mbð1� �Þ as a small quantity and con-
struct an expansion around the limit of equal masses. The
expansion parameter is � � 1� �.

This expansion is peculiar in the sense that the decay is
not possible at the limiting point, � ¼ 0. This leads to a
strong suppression of our result as � tends to one and, as

will be seen below, ensures good convergence of the ex-
pansion. Furthermore, there are no contributions from the
region where all loop momenta are of order mb. This
makes the calculation significantly simpler than the com-
plementary expansion around � ¼ 0 [2].
A somewhat similar configuration was considered in [4],

where the decay b ! u‘� was evaluated near the limit of
the maximum invariant mass of the leptons. The difference
in the present case is that it is the daughter quark that is
massive and almost saturates the phase space. Since that
massive quark radiates, the calculation is more involved.
We explain it in some detail below.
In the first step we integrate over the loop momentum in

the massless neutrino-charged lepton loop, replacing it
with a fractional power of the momentum flowing through
it, 1=k2� whereD ¼ 4� 2� is the number of dimensions in
dimensional regularization. For example, Fig. 2(a) shows
the lowest-order diagram; the lepton-loop momentum is l.
The remaining loop momenta can have one of two

characteristic scales, hard mb or soft mb �mc ¼ � �mb.
Depending on their configuration, the propagators can be
expanded in some small parameter, leading to a factorized
product of one or more single one-scale integrals [5–7].
This procedure is illustrated in Fig. 3 with the lowest-order
example without gluons.
In this example, Region 1 contributes only to the real

part, hence it need not be considered in this calculation of
the decay rate. More generally, the hard regions (when all
momenta are hard,�mb) will not contribute even at higher
orders in �s. This removes what would otherwise be the
most difficult part of the calculation. In the present expan-
sion around � ¼ 0 there are fewer regions that need to be
considered than in the expansion around � ¼ 0. At most
four regions contribute to a given diagram, compared to 11
in the complementary expansion of Refs. [2,3]. All other
regions are either purely real or scaleless and give no
contribution.
The second region, thus, contains full information about

the tree-level result. Here we treat a generalization of the
resulting integral since it will be needed in the higher order
corrections. We have [8]
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Ið�1; �2; �3Þ ¼
Z dDk

ð2�ÞD
1

ðk2Þ�1ð2p0 � kÞ�2ð2p0 � kþ �Þ�3
(1)

¼ ð�p2
0Þ�1�D=2�D�2�1��2��3

�ðD� 2�1 � �2Þ�ð2�1 þ �2 þ �3 �DÞ�ðD=2� �1Þ
ð4�ÞD=2�ð�1Þ�ð�3Þ�ðD� 2�1Þ

; (2)

where � ¼ 2�p2
0 � i0, p2

0 ¼ �m2
b, and �1, �2, and �3 are arbitrary complex numbers. In general, there would also be

scalar products in the numerator, but it is well known how to deal with these [9] and bring the integral into the form of
Eq. (1). This integral is one of only five general integrals needed in NLO and NNLO calculations. The other ones are on-
shell propagators up to two loops and one-loop massless propagators, all of which are well known [10].

For every topology, the most complicated integrals were encountered in the regions where all loop momenta are soft.
Fortunately, these three-loop integrals could easily be written as a combination of nested integrals of the form Ið�1; �2; �3Þ.
To illustrate this, let us consider the general two-loop integral, corresponding to Fig. 2(b) after integration of the lepton
loop. If both loop momenta are soft, the integral is given by

Z dDk1
ð2�ÞD

dDk2
ð2�ÞD

ðk1 � k2Þa6
ðk21Þ�þa1ð2p0 � k1 þ�Þa2ðk22Þa3ð2p0 � k2Þa4½2p0 � ðk1 þ k2Þ þ��a5 ; (3)

where the ai are integer numbers and a6 is always positive.
The k2 integral can be carried out using Eq. (1) with �
replaced by 2p0 � k1 þ�, performing tensor reduction in
the process. The resulting k1 integral is again of the type of
Eq. (1).

For the NNLO calculation, it turned out to be useful to
apply partial fraction decomposition in some cases. For
example, in Eq. (3) we could also use the identity

1

ð2p0 � k2Þ½2p0 � ðk1 þ k2Þ þ ��
¼ 1

ð2p0 � k1 þ �Þ
�

1

2p0 � k2 �
1

2p0 � ðk1 þ k2Þ þ�

�

(4)

to reduce the number of terms in the denominator. Note

that the k2 integral becomes scaleless for a5 � 0. While it
is obviously not necessary to apply Eq. (4) in the case of
the integral in Eq. (3), it was necessary to apply analogous
identities in order to write some of the NNLO integrals as
nested integrals of the type of Eq. (1).

FIG. 3. The asymptotic expansion of the diagram in Fig. 2(a).
The dotted double line corresponds to the epsilon propagator and
the double solid line corresponds to the eikonal propagator 2p0 �
kþ 2�p2

0.

(a) (b)

FIG. 2. In (a) the tree-level diagram for the decay b ! c‘� is
depicted, while (b) shows the general topology of the first order
correction. Thin and thick lines indicate c and b quarks, respec-
tively. Dashed lines denote leptons and curly lines denote gluons.

(a) (c) (d)(b)

FIG. 1. Sample diagrams contributing to the decay width. Thick and thin lines denote b and c quarks, respectively. Curly lines denote
gluons and dashed lines denote leptons. All quark flavors have to be considered in the closed loop.

MATTHEW DOWLING, JAN H. PICLUM, AND ANDRZEJ CZARNECKI PHYSICAL REVIEW D 78, 074024 (2008)

074024-2



New types of integrals appear only in the diagrams with
three-gluon interactions [cf. Figure 1(c)], due to the third
gluon propagator. However, in these cases it was possible
to apply the so-called Laporta algorithm [11,12] to dispose
of one of the three gluon propagators. The remaining
integrals were again a nested set of I-type integrals. For
this reduction we used the Cþþ program ROWS [13] and
the MATHEMATICA package FIRE [14].

Our calculation was performed with two independent
setups. One approach is based on the code developed for
the calculation of Ref. [2]. The other uses QGRAF [15] to
generate the diagrams and q2e and exp [16,17] to process
them further (no expansion is done in this step). The final
calculations are in both cases done with custom code
written in FORM [18].

III. RESULTS

The result for the total width can be cast into the form

� ¼ G2
FjVcbj2m5

b

192�3

�
X0 þ �sðmbÞ

�
CFX1

þ
�
�s

�

�
2
CFX2 þ . . .

�
; (5)

X2 ¼ CFXF þ CAXA þ TFðnlXl þ Xc þ XbÞ; (6)

where GF is the Fermi constant and the ellipsis denotes
higher order contributions. �s is defined with five active
flavors. In QCD we have CF ¼ 4=3, CA ¼ 3, and TF ¼
1=2. nl ¼ 3 denotes the number of light quark flavors,
which are taken to be massless in our calculation. Xc and
Xb denote the contribution from self-energy diagrams with
closed c- and b-quark loops, respectively, [cf. Figure 1(a)].
Thus, Xc also contains contributions from real c-quark
pairs. The quark masses are renormalized in the on-shell
scheme.

The tree level and one-loop contributions can be inferred
from the closed-form result of Ref. [19]. Expanded in �
they read

X0 ¼ 64
5�

5 � 96
5�

6 þ 288
35�

7 þ . . . ; (7)

X1 ¼ �48
5�

5 þ 72
5�

6 þ ð�158 152
11 025 þ 512

105 ln2�Þ�7 þ . . . ; (8)

where the ellipses denote higher order terms. Note that the
expansion starts at the fifth power of �. Thus, the total
width tends to zero very fast as � (�) tends to zero (one).
Logarithms of � always appear as ln2�, since they stem
solely from � in the integral of Eq. (1).

The first three terms in the expansion of the individual
two-loop contributions read

XF ¼ ½�46
5 þ 32

5�
2ð1� ln2Þ þ 48

5 �3��5

þ ½695 � 48
5�

2ð1� ln2Þ � 72
5 �3��6

þ ð39 3293675 þ 3044
945�

2 � 496
105�

2 ln2þ 248
35 �3 � 352

105 ln2�Þ�7

þ . . . ; (9)

XA ¼ ½�286
15 � 8

5�
2ð1� 2 ln2Þ � 24

5 �3��5

þ ½995 þ 12
5�

2ð1� 2 ln2Þ þ 36
5 �3��6

þ ð�99 547 507
1 157 625 þ 62 206

33 075�
2 þ 248

105�
2 ln2þ 132

35 �3

þ 1 333 376
33 075 ln2�� 256

315�
2 ln2�� 1408

315 ln
22�Þ�7 þ . . . ;

(10)

Xl ¼ 56
15�

5 � 12
5�

6 þ ½25 577 5481 157 625 � 417 664
33 075 ln2�

þ 512
315ðln22�� �2

3 Þ��7 þ . . . ; (11)

Xc ¼ ð1843 � 32
5�

2Þ�5 þ ð�828
5 þ 88

5�
2Þ�6

þ ð108 580567 � 18 968
945 �2Þ�7 þ . . . ; (12)

Xb ¼ ð1843 � 32
5�

2Þ�5 þ ð�12þ 8
5�

2Þ�6

þ ð107 4442835 � 3848
945�

2Þ�7 þ . . . : (13)

We have calculated the fermionic contributions Xl, Xc, and
Xb through terms of order �15, while we computed terms of
order �12 and �11 for the Abelian and non-Abelian con-
tributions. Higher order terms are not shown for brevity,
but are available among the source files of this paper in
[20].
To illustrate the convergence behavior of our result,

Fig. 4 shows the full NNLO contribution, X2, as a function
of �. It shows the expansion truncated at different orders in
� compared to the result of Ref. [2]. The latter is only given
up to � ¼ 0:255, which is were the results are closest. The
convergence behavior of the expansion around � ¼ 0 was
studied in Ref. [3]. Because of the suppression of our
expansion at small values of �, the different curves are
indistinguishable for � > 0:4. However, the convergence
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FIG. 4. X2 as a function of �. The solid line denotes the result
of Ref. [2]. The dashed lines denote our expansion through order
�8, �9, �10, and �11. The latter two are almost indistinguishable.
(On the vertical axis, zero does not coincide with the upper edge
of the plot.)
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behavior is very good even close to � ¼ 0. This is in
contrast to the expansion of Ref. [2], which tends to �1
as � tends to one.

Figure 5 compares the different color structures with the
expansion of Refs. [2,3]. As the transition point between

the two results, we chose the point were they are closest.
The two expansions match very well for � between 0.2 and
0.4. Thus, a combination of the two results enables us to
describe the decay over the whole range of kinematically
allowed values of the daughter quark mass. It was noted in

FIG. 5. NNLO contributions of the different color structures of the total width as functions of �. Thick and thin lines denote the
results of Eqs. (9)–(13) and Ref. [2], respectively. Note that our expansion tends to zero very fast as � tends to one. (On the vertical
axis, zero does not coincide with the edge of the plot.)
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Ref. [3] that the contribution from closed b-quark loops
shows an extremum around � ¼ 0:2 (cf. the last panel in
Fig. 5). Using our expansion through �15, we were able to
verify this behavior.

IV. CONNECTION WITH THE ZERO-RECOIL
FORM FACTOR

In this section, we provide an independent derivation of
the first two terms in the � expansion of the b ! c decay
width. They are independent of the real gluon radiation.
The real radiation is suppressed by the square of the
velocity of the daughter quark and influences only the third
order terms, of relativeOð�2Þ. The first two terms,Oð�0;1Þ,
are determined by the form factors 	A;V describing the

W-boson coupling to quarks. Those form factors arise
from virtual corrections and replace 1� 
5 in that cou-
pling by 	V � 	A
5. The decay rate expanded in � is, in
the lowest two orders, fully described by these form fac-
tors,

� ¼ G2
FjVcbj2m5

bð	2
V þ 3	2

AÞ
60�3

�5

�
1� 3

2
�þOð�2Þ

�
:

(14)

Without strong interactions, 	V ¼ 	A ¼ 1 and we repro-
duce the first two terms of Eq. (7).

Both form factors are functions of q2, where q is the
four-momentum released in the decay. Thus, to be precise,
we should have used certain average values in Eq. (14).
However, when the quark masses are close to each other,
the variation of q2 is of the second order in � and can be
neglected in our approximation.

Even at a fixed q2, the form factors depend on the
difference of the quark masses. However, in our approxi-
mation it is sufficient to know them in the limit of equal
quark masses: because of the symmetry mb $ mc, the
linear term in � vanishes, and the dependence on the quark
mass difference starts only with the quadratic term. In this
limit 	V equals one to all orders, while 	A is modified by
the strong interactions at Oð�sÞ and higher orders. Those
corrections were calculated in Ref. [21] with two-loop
accuracy, and in Ref. [22] at three loops. (Full q2 depen-
dence at two loops can be found in Refs. [23–26].)

In order to compare our results with those of Ref. [21],
we have to change the renormalization scale of �s. While
we used �sðmbÞ in Eq. (5), Ref. [21] uses �sð ffiffiffiffiffiffiffiffiffiffiffiffi

mcmb
p Þ.

Note that a mistake in the running of �s in Ref. [21] was
pointed out in Ref. [27]. In the running frommb to

ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p
,

five instead of four active flavors were used. To correct for
this mistake, we run �s in the result of Ref. [21] fromffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p
to mb, using five flavors. At the scale mb, we

decouple the b quark and run back to
ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p
, using now

four active flavors. Thus, the correct result is obtained by
adding

fA;Vð�Þ ¼ 1
3 lnð1� �Þ	ð1Þ

A;V (15)

to 	H
A;V in Ref. [21]. In our comparison the correction term

contributes to the term of relative order Oð�Þ.
For completeness we provide all terms of Ref. [21]

which are needed for the comparison with our result. The
QCD corrections to the axial form factor are defined as

	A ¼ 1þ �sð ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p Þ
�

CF	
ð1Þ
A þ

�
�s

�

�
2
CF	

ð2Þ
A þOð�3

sÞ;
(16)

	ð2Þ
A ¼ CF	

F
A þ ðCA � 2CFÞ	AF

A þ TFðnl	L
A þ 	H

A Þ;
(17)

where �s is defined with four active flavors. 	H
A combines

the contributions from diagrams with closed c- and
b-quark loops. The individual color structures in the limit
� ! 0 are given by

	ð1Þ
A ¼ �1

2 þOð�2Þ; (18)

	F
A ¼ �373

144 þ 1
6�

2 þOð�2Þ; (19)

	AF
A ¼ �143

144 � 1
12�

2 þ 1
6�

2 ln2� 1
4�ð3Þ þOð�2Þ; (20)

	L
A ¼ 7

36 þOð�2Þ; (21)

	H
A ¼ 115

18
� 2

3
�2 þ �

6
þOð�2Þ: (22)

The term of order � in 	H
A is due to the correction term in

Eq. (15). This linear term arises because the mb $ mc

symmetry is broken by the charge renormalization, since
the b-quark does not contribute to the running between mb

and
ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p
.

To compare the two results, we decouple the b quark in
our result and run �s from mb to

ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p
with four active

flavors. This changes X2 by

�X2 ¼ 48
5 ½1112CA � 1

3TFðnl þ 1Þ��6 þOð�7Þ: (23)

We find perfect agreement for the first two terms of our
expansion. Comparing the widths calculated with Eqs. (5)
and (14), we expect and indeed confirm that

	2
A

20

�
�5 � 3

2
�6

�
¼ 1

192

�
3

4
X0 þ

�sð ffiffiffiffiffiffiffiffiffiffiffiffi
mcmb

p Þ
�

CFX1

þ
�
�s

�

�
2
CFðX2 þ �X2Þ

����������5;6
: (24)

In the tree-level term X0, the factor 3=4 eliminates the
contribution of the vector coupling.
Individual parts in Eqs. (9)–(13) are also reproduced;	A

H

combines effects of both heavy quarks and corresponds to
the sum of Xc and Xb.
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V. SUMMARY

To summarize, we have calculated the semileptonic b !
c decay as an expansion around the limit of equal quark
masses. Our result is a fast convergent series, which
smoothly matches the expansion in the opposite limit.
Our result confirms the calculations of Refs. [1,2].
Together with the result of Ref. [2], we now have analytical
results valid over the whole range of kinematically allowed
daughter quark masses. An additional check of a part of our
result is afforded by comparing with the result of Ref. [21].

Furthermore, we have explained the application of the
method of asymptotic expansion to a new kinematic limit.
This limit leads to significant calculational simplifications
and results in a fast convergent series, which is applicable

over most of the allowed region of the daughter quark
mass. Even in the massless limit the error is only about
2.5% for the total width, as demonstrated in Fig. 4. Thus,
this new expansion provides a convenient tool for future
studies of various aspects of decays not only of quarks, but
also leptons such as the muon.
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