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Four sets of data determining parameters of a0ð1450Þ and a0ð980Þ are reanalyzed. These are Crystal

Barrel data for �pp annihilation at rest to ��0�0 in (i) liquid hydrogen and (ii) gas, and to (iii) K0
L�

�K�

and (iv) !�þ���0 (mostly !��). Dispersive corrections due to opening of inelastic thresholds are

treated fully. This stabilizes parameters of a0ð1450Þ substantially. The mass of its peak is 1448�
13ðstatÞ � 25ðsystÞ MeV and its mean full width at half maximum is 192� 9� 9 MeV. The pole

position is M� i�=2 ¼ 1432� 13� 25� ið98� 5� 5Þ MeV. At the peak, ��, !� and a0ð980Þ�
decay intensities are in the ratios 1:9:2� 0:8� 1:3:3:1� 0:2� 0:9. There is no evidence for a separate a0
near 1300 MeV claimed by Obelix. Parameters of a0ð980Þ are updated to M ¼ 987:4� 1:0� 3:0 MeV,

g2ð��Þ ¼ 0:164� 0:007� 0:010 GeV2, g2ðKKÞ=g2ð��Þ ¼ 1:05� 0:07� 0:05. Its dominant second-

sheet pole in the KK channel is at ð989� 1� 5Þ � ið40� 2� 4Þ MeV. Finally, the nature of the

prominent JPC ¼ 0�þ ! !� signal in !�� data is also clarified.
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I. INTRODUCTION

The main objective of this work is to reexamine the
parameters of a0ð1450Þ. It appears in the summary table
of the Particle Data Group [1] although it has been ob-
served decisively in only one set of data, from Crystal
Barrel on �pp ! ��0�0 at rest [2–5]. There is further
evidence from other data of the same experiment. It has
been confirmed in the !� channel in !�þ���0 data at
rest [6]. Its KK decays are observed in ðK0

LK
�Þ�� data at

rest [7]. There is also evidence for it in �pp ! ð�0�0Þ�0 [8]
and �pp ! ð��þ����Þ�� [9] at rest.

Its branching ratio to !� in Ref. [6] is a factor �11
larger than to �� (and will be revised here slightly). The
fact that its branching ratio to �� is <10% explains why
a0ð1450Þ has been elusive in data for ��p ! ��n. An
important point is that the phase space for the !� channel
has a rapid s-dependence, so it is inappropriate to fit the
a0ð1450Þ with a Breit-Wigner amplitude of constant width,
as was done in the early work. Its line shape and the
relation between magnitude and phase are affected
strongly by dispersive effects, which are treated fully
here. Attention to this detail improves considerably the
stability of fitted parameters and makes the signal in both
�� and !� much clearer.

The a0ð980Þ is examined along the same lines. The
dispersive effect due to the opening of the KK channel
plays a critical role and again improves the quality of the fit
to ��0�0 data. Adler zeros are included into its �� and
�0� decay channels. For these reasons, its parameters
change significantly from earlier work.

The dispersive effects may be unfamiliar to experimen-
talists, though well known to theorists since the 1950’s.
Experimental analyses have conventionally been done with

a Breit-Wigner amplitude with denominator

DðsÞ ¼ M2 � s� i
X
j

g2j�jðsÞ: (1)

Here �jðsÞ is the phase space for each decay channel j as a
function of invariant mass squared s, possibly including a
form factor. The gj are coupling constants to each decay

amplitude. Let us write

DðsÞ ¼ M2 � s�X
j

�jðsÞ (2)

with Im�ðsÞ ¼ g2j�jðsÞ. Because scattering amplitudes are

analytic functions, any s-dependence of Im�ðsÞ neces-
sarily leads to a term in DðsÞ given by

Re�jðsÞ ¼ 1

�
P
Z 1

sðthrÞ
Imjðs0Þds0
s0 � s

: (3)

Here P denotes the principal value integral and sthr is the
value of s at threshold. This is known as a dispersive
contribution. It is equivalent to evaluating loop diagrams.
If �ðsÞ changes rapidly, as it does at the opening of a sharp
threshold, the dispersive term becomes dominant and af-
fects the parameters of the resonance strongly. Figure 1
below illustrates the result for a0ð980Þ. There is a promi-
nent cusp in Re�KKðsÞ, centered at the threshold. It plays a
major role in locking the resonance to this threshold [10].
One objective of the present work is to refine the parame-
ters of a0ð980Þ to include this effect.
Consider next a0ð1450Þ. The!� threshold is quite sharp

and has a large effect on the line shape near 1450 MeV.
There is a cusp at the !� threshold which also acts as an
attractor. This may be the reason that a0ð1450Þ is higher in
mass than f0ð1370Þ and K0ð1430Þ.
Section II reviews dispersive effects. In principle they

apply to all resonances. Fortunately, resonances with broad*david.bugg@stfc.ac.uk
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thresholds may be approximated by the pole term alone
and this will be demonstrated here for a2ð1320Þ. There may
be small residual effects far from resonance, but in practice
these effects are tolerable at present.

Section III discusses fits to ��0�0 and!�þ���0 data,
hence parameters of a0ð1450Þ. In the present work, the
widths of a0ð1450Þ to KK and �� are small, so there is no
longer significant overlap between these two resonances
and therefore little correlation between their parameters.
An incidental feature of the reanalysis of !�þ���0 data
is an improved understanding of the large JPC ¼ 0�þ !�
signal observed there.

Section IV gives results for a0ð980Þ and Sec. V discusses
KK coupling of a0ð1450Þ and parameters of a0ð980Þ. The
data on K0

LK
��� do not give an accurate determination of

their coupling to KK, but agree within sizable errors with
the better determination from ��0�0 data. Section VI
summarizes conclusions and makes some remarks on fur-
ther desirable work.

II. TECHNICALITIES OF THE DISPERSIVE
TERMS

As an introduction, let us consider a0ð980Þ ! KK. Mass
differences between KþK�, K0

LK
�, and K0 �K0 will be

ignored here because their separations are smaller than
mass resolution in data to be fitted. There is a further
reason. The VES group has very recently presented data
showing that the f1ð1285Þ decays to 3� [11]. This violates
isospin conservation and may well arise from mixing

between a0ð980Þ and f0ð980Þ due to mass differences in
the KK thresholds. Consideration of this problem requires
a combined analysis with data on f0ð980Þ. It is necessary to
take one step at a time and defer this for the present, though
one should bear in mind there may be some small effect on
parameters fitted to a0ð980Þ.
Ignoring mass differences, �KK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

K=s
q

, where

mK is the mean kaon mass, 495.663 MeV. As s ! 1, the
phase space factor ! 1. Without any form factor, the
dispersion integral of Eq. (3) diverges. Therefore a form
factor

FKK ¼ expð��k2Þ (4)

is used to multiply gKK. Here k is the momentum of each
kaon in the KK rest frame. This well-known form factor
assumes a Gaussian source with RMS radius R given by
� ¼ R2=6. It turns out that the same value of � succeeds in
fitting all resonances and avoids a multiplicity of parame-
ters. It optimizes at � ¼ ð2:0� 0:25Þ ðGeV=cÞ�2, corre-
sponding to R ¼ 0:68� 0:04 fm.
Library subroutines are available for evaluating the prin-

cipal value integral. Results are shown in Fig. 1 for the
product �0 ¼ �KKðsÞF2

KKðsÞ and for Re�ðsÞ. For display
purposes, the normalization is chosen so that �0 including
the form factor peaks at 1. There is a large cusp in the real
part, somewhat larger than the peak of �0. The dashed
curves show results with � ¼ 2:5ðGeV=cÞ�2. In the mass
range where the a0ð980Þ is strong, the sensitivity to � is
quite small; it comes into play only in the wings of the
resonance, where other resonances may mask its effects.
There are two practical points concerning Re�ðsÞ.

Although it is responsible for attracting a0ð980Þ to the
KK threshold, it is convenient to make a subtraction in
the Breit-Wigner denominator on resonance:

DðsÞ ¼ M2 � s�X
j

Re½�jðsÞ ��jðM2Þ� � ig2j�
0ðsÞ:

(5)

Second, it is convenient to evaluate the dispersion integral
as a 2-dimensional array against s and �. A simple sub-
routine interpolates in this table. When fitting data, one can
then optimize �, M2 and g2 with a standard optimization
program such as Minuit. The dispersive term is propor-
tional to g2. Just below the KK threshold, it varies as
g2KKð4m2

K � sÞ=s (see algebra in Ref. [10], Eq. 15). This
resembles the term (M2 � s) in DðsÞ. ConsequentlyM and
g2 become strongly correlated unless there are data deter-
mining g2 separately for every channel.
Because of the correlations, the convergence of the fit is

rather poorer than for a simple Breit-Wigner resonance of
constant width but still adequate. It is in fact better to let
the program optimize the parameters. The alternative, a
grid search over M and g2, is subject to the correlations
between them. Standard optimization programs work with
eigenvectors and circumvent the correlations.
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FIG. 1. KK phase space �0ðsÞ, normalized to 1 at its peak and
Re�ðsÞ (full curves). Dashed curves show results for � ¼
2:5 ðGeV=cÞ�2.
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A general point is that all resonances are subject to
opening thresholds, hence dispersive effects. However, it
fortunately turns out that for broad thresholds the net effect
of the dispersive terms becomes small within one full
width of the pole. The data can then be parametrized
directly in terms of the pole term / 1=ðs� spoleÞ. This
conclusion emerged from work on f0ð1370Þ concerning
�� and �� thresholds [12]. For broad thresholds, the
dispersive terms have significant effects only far from the
pole, and may not be trustworthy there because of uncer-
tainties in form factors. In the present work, thresholds for
a1ð1260Þ ! ð��ÞL¼1, a2ð1320Þ ! ð��ÞL¼2, ð��ÞL¼2 and
ðKKÞL¼2 have been treated fully using the dispersive term.
These thresholds open fairly gently because of the cen-
trifugal barriers for orbital angular momentum L in the
decays. The conclusion is the same as in [12]: the line
shapes of these resonances are affected rather little except
for their tails.

However, in fitting !�� data, the rather sharp !�
threshold does affect the fitted resonances quite strongly.
The cusp at the !� threshold is broadened by the line
shape of the �. This line shape may be included in the
evaluation of !� phase space, then the dispersive effect
can be evaluated from the phase space. Suppose as an
example a0ð1450Þ ! !�, followed by � ! ��. The 3-
body phase space for !� is given by the integral

�0
!�ðsÞ ¼

Z ð ffiffi
s

p �m!Þ2

4m2
�

ds1
�

4jkjjk1jffiffiffiffiffiffiffi
ss1

p jT�ðs1Þj2 expð�2�k2Þ;
(6)

where T is the Breit-Wigner amplitude for the �. Also s
refers to the a0ð1450Þ and k to the momentum of the! or �
in the a0 rest frame; s1 and k1 refer to the � and the
momenta of the pions in its rest frame. When there is
angular momentum in the decay to �!, a centrifugal
barrier needs to be included.

III. FITS TO �pp ! ��0�0 AND !�þ���0

The a0ð1450Þ was discovered in Crystal Barrel data for
�pp ! ��0�0 at rest [2–5]. It also appears in the !�
channel in !�� data at rest [6], and in the KK channel
in K0

LK
��� data at rest [7]. The latter will be discussed in

Sec. V, but it turns out that the systematic error in its
coupling to KK is rather large. Its KK coupling is consis-
tent with the SU(3) prediction, and will be fixed to that
value. The same applies to the �0� coupling. An analysis
of data on �pp ! �0�0�0 at rest gave results consistent
with this prediction [8]. The effects of both KK and �0�
channels on the line shape of a0ð1450Þ are similar to ��
and quite small.

A preliminary comment is required on the fit to data for
�pp ! !�þ���0, discussed in subsection III I. The ear-
lier publication did include dispersive effects. The fit to
these data changes rather little in the combined fit with

��0�0 data. The main improvement to parameters of
a0ð1450Þ comes from the ��0�0 data.
The decays of consequence for the line shape are ��,

!� and a0ð980Þ�. If !� is the only strong decay channel,
it restricts the maximum possible full width severely. This
is because the rapid increase in �!� with s inflates the

Breit-Wigner denominator and cuts off the upper side of
the resonance. The consequence in Ref. [6] was that the
optimum fitted full width was only 110 MeV.
This width is too small for good consistency with the

��0�0 data. Some other broad threshold is needed for an
acceptable fit. This is provided by the a0ð980Þ� decay.
Data for �pp ! ��þ������ at rest [9] were found to
contain some a0ð1450Þ signal in ��þ���þ, improving
log likelihood by 32 for 2 fitted parameters; this is statis-
tically >7 standard deviations. However, there was no
optimum when the mass and width of a0ð1450Þ were
scanned. The branching fraction for the �4� final state is
a factor 14 larger than for ���, with the result that the
allowed branching fraction of a0ð1450Þ ! a0ð980Þ� could
be as much as 4.3 times that of ��. It now turns out that
including the a0ð980Þ� threshold supplies the required
broad component in a0ð1450Þ decays and improves mark-
edly the fit reported here. The required branching ratio to
�4� is only slightly smaller than that fitted in Ref. [9], so it
appears to be a genuine signal.
Ideally the��þ���þ�� data should be included in the

present fits. Unfortunately those data have been lost, so this
is not possible without major work reprocessing them from
raw data. This is not worth the effort, since they did not
constrain the mass and width of a0ð1450Þ. All that matters
is the magnitude of the fitted signal and the upper limit on
the a0ð980Þ� branching fraction; these can be taken from
the earlier publication.

A. Features of the ��0�0 data

The Dalitz plots for data in liquid and gaseous hydrogen
are shown in binned form in Figs. 2 and 3. There are
�280 000 events in liquid hydrogen with experimental
background <1%. A minor detail is that any bins over-
lapping the edges of the Dalitz plots have been removed
from Figs. 2 and 3 and the fits. There are also some further
bins immediately adjoining edge bins and showing ques-
tionable behavior. This can arise if an event lies outside the
true Dalitz plot before the kinematic fit. That fit enforces
the constraints of energy-momentum conservation and the
masses of �0, �, and !. It pulls events inside the Dalitz
plot, but there is some tendency for them to congregate
towards the edges. These bins are easily identified and
removed because the fit is systematically lower than data.
A total of 18 out of 3582 bins are removed for this reason,
though effects on fitted parameters are tiny.
Statistics for ��� are so high (� 280 000 events) that it

was not possible to equal those statistics in the
Monte Carlo simulation. (Only a few percent of events
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survive the data selection). It is assumed that the accep-
tance is uniform, in accord with observations for present
data, �pp ! ���0 and 3�0. The final fit has a �2 of 2.9 per
bin. A similar value was obtained in fitting �pp ! 3�0 [12].
Examination of the present fit reveals no systematic devia-
tion across the Dalitz plot associated with fitted compo-
nents. There are possible slow variations with �2 up to 10
which could be associated with small systematic effects in
the slowly varying �� S-wave or alternatively could arise
from small variations in experimental acceptance. Any
departure from uniform acceptance over the width of

a0ð1450Þ has an effect much smaller than errors.
However, it has been necessary to scale statistical errors
to account for the mean �2 per bin.
Figures 2 and 3 resemble one another closely, showing

that the effects of P-state annihilation are small. Both sets
of data are fitted fully, and the final fit gives 7.4% P-state
contribution, in close agreement with an earlier determi-
nation [13]. This comes mostly from 3P1 and 3P2 !
a2ð1320Þ� and a2ð1700Þ�, and 3P1 ! �� and �f0ð980Þ.
The former plays an important role in fitting the angular
dependence of the prominent a2ð1320Þ bands. The effect of
the latter two components is visible along the f0ð980Þ
band, where interferences between f0ð980Þ and � affect
the apparent width of the f0ð980Þ in the data. Ultimately
P-state annihilation has little effect on fitted parameters of
either a0ð980Þ or a0ð1450Þ. P-state production of a0ð1450Þ
is inhibited by a centrifugal barrier and makes only a very
weak contribution (0.27%).
The two a2ð1320Þ bands interfere constructively at the

upper right-hand edge of the Dalitz plots. Interference
between the two a2’s builds a bridge between them along
this edge. The bands appear to be not quite vertical/hori-
zontal. In the analyses of the 1990’s, this deviation was
fitted by a broad �� P-wave resonance with ill-defined
mass and a large width of �600 MeV. Those parameters
are inconsistent with what is now known about the ��
P-wave. The current fits are made with the �1ð1400Þ
parameters fitted to Crystal Barrel data on �pn ! ���0�
[14]. In those data, there is a significant P-state contribu-
tion because the process 1P1 ! ��1ð1400Þ goes via the
S-wave. In present ��0�0 data, there is now a small
(0.9%) P-state contribution from �ð1400Þ and only 0.6%
in S-state annihilation.
Another distinctive feature of the Dalitz plots is a sharp

‘‘edge’’ in �� coinciding accurately with the KK thresh-
old. This is due to the the opening of the KK threshold for
a0ð980Þ. At this threshold, �KK changes from real to
imaginary as one crosses the threshold from above to
below. The amplitude for a0ð980Þ therefore turns in phase
by 90�. Consequently, interference with the �� S-wave
changes dramatically. The precise form of the ‘‘edge’’ is
therefore sensitive to the relative coupling of a0ð980Þ
between �� and KK.
Figure 4 shows mass projections for �0�0 and ��0 in

liquid hydrogen and the fit. Figure 4(b) is the easier to
understand. The first (left-hand) peak is a reflection of the
a2ð1320Þ at the left-hand side of the Dalitz plot. The sharp
rise to the second peak is caused by the ‘‘edge’’ due to
a0ð980Þ and its interferences with a2ð1320Þ. The third peak
is directly due to a2ð1320Þ. The sudden drop at high mass is
due to the a2ð980Þ ‘‘edge’’ crossing the right-hand side of
the Dalitz plot. The quality of the data (and fit) illustrate the
information available on a0ð980Þ and its coupling to KK.
Note that the a0ð1450Þ is not directly visible in Fig. 4(b).
In Fig. 4(a), there is one high point at s�� ¼ 0:44 GeV2.

It does not correlate with anything and appears to be a
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FIG. 3 (color online). The Dalitz plot for �pp ! ��0�0 at rest
in gaseous hydrogen.
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FIG. 2 (color online). The Dalitz plot for �pp ! ��0�0 at rest
in liquid hydrogen.
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statistical storm. The first peak to its right is again due to
a0ð980Þ and its interferences with a2ð1320Þ and the ��
S-wave. The second peak is a reflection of a2ð1320Þ on the
lower side of the Dalitz plot.

The cusp in a0ð980Þ at the KK threshold is sufficiently
narrow that it is necessary to fold in the mass resolution for
bins adjoining the KK threshold. The mass resolution is a
Gaussian with a� of 9.5 MeV. This number is derived from
data on �pp ! �0�0ð958Þ [15], where the fitted width of the
�0 is readily measured. The folding is done using Gaussian
12 point integration over the bins concerned.

B. The �� S-wave amplitude

This is the third major component in the ��0�0 data.
Since the earliest publications in the 1990’s, our knowl-
edge of the �� S-wave amplitude has improved greatly.
Today, the � pole is well known from (a) the BES2 data on
J=� ! !�þ��, where it produces a strong peak at
�500 MeV [16], (b) the calculations of Caprini,
Colangelo, and Leutwyler using the Roy equations to
constrain the s-dependence of the elastic amplitude [17].

The �� elastic scattering amplitude may be written in
the form

felðsÞ ¼ NðsÞ=DðsÞ; (7)

whereNðsÞ is real and must be equal to�ImDðsÞ below the
KK threshold. In a production reaction, DðsÞ must be the
same for the � pole as in elastic scattering (Watson’s
theorem [18]). However, NðsÞ is allowed to be quite differ-
ent between production and elastic scattering [19]. The
strong peak close to 500 MeV in BES data for J=� !
!�þ�� is fitted accurately taking NðsÞ to be constant.

There is then accurate agreement [20] between the pole
observed in these data and the elastic phase shifts predicted
by Caprini et al.
The recent fits to data on �pp ! 3�0 [12] require a 2-

component form for the S-wave production amplitude:

fprodn ¼ �1felðsÞ þ�2=DðsÞ; (8)

where �1;2 are complex coupling constants: i.e. a coherent

sum of the elastic amplitude and the pole term. This 2-
component prescription also fits the ��0�0 data, with
different � to those for �pp ! 3�0. This prescription will
play an essential role throughout the present work, includ-
ing the fit to data on �pp ! K0

LK
��� where both the � pole

and the elastic K� amplitude contribute. Similar variations
of the �� S-wave amplitude are well known in decays of
�0 to ��� and are discussed in detail by Simonov and
Veselov [21].
Two alternative prescriptions are available for the ��

S-wave, from Refs. [12,20]. The latter is fitted to data for
�pp ! 3�0, where the��mass range extends to 1.74 GeV.
For �pp ! ��0�0, the �� mass range stops at 1.329 GeV.
The 4� inelasticity is quite small up to this mass. The two
alternatives lead to only minor differences in the quality of
fit to �pp ! ��0�0. The first prescription is simpler and
faster and is used for final fits.
A question arises whether to assume the a0ð980Þ� chan-

nel is produced via the � pole or the elastic �� amplitude.
If the latter is used, a0ð980Þ� phase space rises too slowly
to have much effect over the mass range of a0ð1450Þ. Some
production of the �� S-wave via its pole term is needed
and is what is used here. It is also what was fitted to �4�
data. The mean mass of the � is then �470 MeV and the

FIG. 4 (color online). Mass projections for (a) �� and (b) �� for �pp ! ��0�0 at rest. Points with errors show the data; histograms
show the fit.
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full width is �500 MeV. The a0� phase space is then
substantial at 1450 MeV.

Figure 5(a) shows !� and a0ð980Þ� phase space. They
both peak in the mass range 1.65–2.0 GeV because of the
form factor. Figure 5(b) shows the subtracted form mðsÞ ¼
Re�ðsÞ � Re�ðM2Þ for a0ð1450Þ with the normalization
of final fits. To a first approximation, they are proportional
to the gradient of phase space. Their sum is roughly half the
magnitude of M2 � s, so their effects on the line shape of
the resonance are quite large.

C. Treatment of f0ð980Þ
A further element required to fit the ��0�0 data is from

f0ð980Þ. A full reanalysis of f0ð980Þ parameters including
the dispersive effect is a major undertaking requiring fits to
the many sets of data in which it is prominent. For present
data, the line shape of f0ð980Þ is not critical. Figure 6(b)
below will illustrate the blurring of the threshold cusp in
a0ð980Þ due to mass resolution. The blurring is even more
severe for f0ð980Þ, which has a full width at half-maximum
of only 34� 8 MeV [22], compared with the mass reso-
lution of �9:5 MeV. The mass resolution is folded with
the line shape of f0ð980Þ in the fit to data. The effect of the
threshold cusp is a marginal decrease in the width com-
pared with the BES parametrization. This small perturba-
tion has negligible effect on the parameters fitted to
a0ð980Þ and a0ð1450Þ, because information on these two
resonances comes from regions of the Dalitz plot having
only modest overlap with f0ð980Þ.

D. Fits to a0ð1450Þ
Fits have been made simultaneously to the four set of

data listed in the abstract. The precise formula fitted to
a0ð1450Þ needs discussion. A form factor is needed in
calculating dispersive terms, in order to make the disper-
sion integrals converge. However, as Fig. 5(a) shows, the
form factor plays a strong role only above 1650 MeV, well
above the a0ð1450Þ. The form factor is therefore an unnec-
essary elaboration over the mass range covered by
a0ð1450Þ. For simplicity, it is therefore dropped in the
amplitude fitted to data.
The a0ð1450Þ amplitude may be written

fð1450Þ ¼ 1

��
M2 � s�ð�ðsÞ��ðM2ÞÞ� i

X
j

g2j�jðsÞ
�
;

(9)

where the sum runs over ��, KK, �0�, !�, and a0ð980Þ�
channels. A slightly rearranged formula will be given later
in the light of observed results. Values of g2 for KK and
�0� at the peak (i.e. near the pole) will be fixed to SU(3)
predictions, which depend on the angle� ¼ 54:7� ��PS,
where �PS is the pseudoscalar mixing angle. Values of �
may be obtained from analysis of radiative decays of
vector (V) and pseudoscalar mesons (P) mesons.
Escribano and Nadal analyze all existing data and conclude
there is no significant evidence for a gluonic component in
� or �0 [23]. It seems prudent to use results without that
component. They then find � ¼ ð41:5� 1:2Þ�. Thomas
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FIG. 5. (a) Phase space for !� (full curve) and a0ð980Þ� (dashed curve); (b) contributions to Re�ðsÞ for a0ð1450Þ.
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does a similar analysis with an identical conclusion [24].
Data on J=� ! VP decays also give a less precise result:
� ¼ ð40:5� 2:4Þ� [25]. The weighted mean � ¼ ð41:3�
1:2Þ� will be used here. Then

g2�0�=g
2
�� ¼ tan2� ¼ 0:772� 0:068; (10)

g2KK=g
2
�� ¼ 1=ð2cos2�Þ ¼ 0:886� 0:034: (11)

E. Treatment of branching ratios

The relative value g2!�=g
2
�� is obtained from relative

branching fractions of a0ð1450Þ in ��� and !�� data.
However, there are two points which need to be taken into
account.

First, the observed branching fractions for each reso-
nance in �pp data must be obtained by folding the phase
space factors for each channel with the line shape of the
resonance, using integrals of the form

Ij ¼
Z dsg2j ðsÞ�jðsÞk0

jDðsÞj2 : (12)

The factor k0 is the momentum with which the resonance is
produced in �pp ! �þ a0ð1450Þ; it allows for the phase
space corresponding to the length of the a0ð1450Þ band as a
function of s on the Dalitz plot.

Second, there is an important point of principle concern-
ing how to account for interferences. Data are fitted in-
cluding all the interferences, not only between different
resonances but also including, for example, two a2ð1320Þ
appearing in ��0�0 data. The coupling constants � are
determined by the fit; but then, for use in Eq. (12), inten-
sities of individual components must be evaluated from
these � without the interferences. The two a2’s contribute
30.3% of ��0�0 data, but 5.8% of this arises from inter-
ference between the two bands.
There are even larger effects for a0ð1450Þ. In���, there

are constructive interferences between the two a0ð1450Þ.
Including interferences, they contribute 5.44% of the cross
section, but without interferences, this drops to A ¼
3:48%. In !�þ���0 data, there are three charge states
for a0 in the amplitude ðaþ0 �� � a00�

0 þ a�0 �
þÞ, where

signs arise from isospin Clebsch-Gordon coefficients.
There are therefore some destructive interferences. With
this interference included, the a0’s contribute 3.49% of
!�� data, but without them B ¼ 4:86%. The ratio B=A
determines 3g2!�I!�=g

2
��I��. For the a0ð980Þ, interference

effects are quite small, because the peak of the resonance is
narrow.
It is necessary to arrange, iteratively, that the fitted

branching ratio between �� and !� signals is consistent
with the fitted value of g2!�=g

2
��. Table I lists the percent-
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ages of the signals fitted to ��0�0 data including interfer-
ences. These do not add up to 100% because of
interferences.

F. Comments on the fit to a0ð1450Þ
The fit to a0ð1450Þ improves significantly compared

with work in the 1990’s where a Breit-Wigner resonance
of constant width was assumed. Parameters of a0ð980Þ and
a0ð1450Þ were correlated significantly in that early work,
because the large and constant width of a0ð1450Þ made it
overlap a0ð980Þ significantly. The mass of a0ð1450Þ could
move between 1450 and 1510 MeV as � was varied. Now
the width of a0ð1450Þ near 1 GeV is restricted to �� and
KK and the width to �� is only 19 MeV at a mass of
1 GeV. The result is that a0ð980Þ and a0ð1450Þ are now
almost uncorrelated. With the s-dependent forms used
here, the peak position is very stable in the range 1440–
1460 MeV, with an optimum at 1448 MeV.

Furthermore, the fitted a0ð1450Þ ! �� signal increases
from 3.0% to 5.4%. The data clearly prefer the s-dependent
form. The full width of a0ð1450Þ at half maximum
decreases substantially from the 265� 13 MeV quoted
by the Particle Data Group [1] to 192� 9ðstatÞ �
9ðsystÞ MeV. This is inevitable in view of the rapidly
increasing a0ð980Þ� and !� signals, which make the
Breit-Wigner denominator cut off the line shape at high
mass. The PDG value is subject to serious systematic error
from the assumption of constant width.

The a0ð1450Þ line shape for an isolated resonance, i.e.
without the factor k0 of Eq. (12), is shown by the full curve
of Fig. 6(a). What is plotted is j1=DðsÞj2, i.e. ignoring any
phase-space effects in the numerator of the amplitude. The
line shape observed in �pp data including the factor k0 is
shown by the dashed curve. A Breit-Wigner line shapewith
constant width is shown by the dotted curve, agreeing at
half-height with the full curve. The true line shape is
asymmetric because of the rising phase space for !� and
a0ð980Þ� and also because of the dispersive term �ðsÞ in
the Breit-Wigner denominator.

Figure 6(b) shows the line shape of a0ð980Þ without and
with the effect of mass resolution of the Crystal Barrel
detector. The a0ð980Þ is cut almost in half by the opening
of the KK threshold. At this threshold, the line shape drops

rapidly because of the KK width in the Breit-Wigner
denominator. Many theorists base calculations on the 50–
100 MeV width of the a0ð980Þ quoted by the PDG. This is
the full width at half-maximum. The values of g2�� and g2KK

are both �160 MeV, comparable with other resonances.
The Argand diagram for the coherent sum of a0ð1450Þ

and a0ð980Þ is shown in Fig. 7, excluding the effect of mass
resolution. The maximum amplitude for a0ð1450Þ is at
1448 MeV, where the phase of the �� amplitude is only
�50�. The phase goes through 90� only at 1536 MeV. This
is the mass M in the Breit-Wigner denominator. The full
curve of Fig. 8 shows the Argand diagram of a0ð1450Þ
drawn from 1=DðsÞ alone. It appears to lie on its side
because it is cut off at high mass by the rapid increase of
a0� and !� phase space. The value of M in the Breit-
Wigner denominator is a derived quantity, rather strongly
dependent on g2ð!�Þ and g2ða0ð980Þ�Þ and their form
factors. Accordingly, M has a factor 2 larger error than
the peak mass, which responds directly to the magnitude of
the �� amplitude.
An important check is whether a0ð1450Þ really requires

a resonant loop like that shown on Fig. 7. The first check is
to replace the resonant form with its absolute magnitude,
deleting its phase variation. As expected, �2 increases by
297.3 (after renormalizing to allow for the fact that �2 is
2.9 per data point); this is a 17 standard deviation effect.
A more delicate check is to break the mass range from

1315 to 1675 MeV into 30 MeV bins and optimize the
a0ð1450Þ signal in each bin. The result is compared with
the Argand diagram of a0ð1450Þ alone on Fig. 8. The

TABLE I. Intensities of signals fitted to �pp ! ��0�0 data.

signal Percentage

�� S-wave 9:4� 0:3
f0ð980Þ 11:7� 0:2
a0ð980Þ 12:8� 0:2
a0ð1450Þ 5:44� 0:25
a2ð1320Þ 30:3� 0:2
a2ð1700Þ 6:2� 0:2
�1ð1405Þ 0:6� 0:2
P-states 7:4� 0:5
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FIG. 7. Argand diagram for the coherent sum of a0ð980Þ and
a0ð1450Þ, excluding the effect of experimental mass resolution.
Masses are shown in GeV.
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individual bins follow the expected loop closely up to
1540 MeV; dotted lines show the movement of each bin
from the analytic formula. Up to this mass, there is large
interference between a2ð1320Þ and a0ð1450Þ, providing
strong constraints on its phase variation with mass.
Above this, three of the four remaining points show a rather
large scatter. Above 1560, the effect of a2ð1700Þ becomes
more important than that of a2ð1320Þ. Final fits use Crystal
Barrel parameters for a2ð1700Þ: M ¼ 1660 MeV, � ¼
280 MeV [26]. The main problem is that the corner of
the Dalitz plot above m�� ¼ 1560 MeV is a cramped area

in which to separate spin zero components from spin 2. The
a2ð1700Þ has significant contributions from all three initial
states 1S0,

3P1 and
3P2. These allow it to simulate a spin 0

contribution to some extent, despite the existence of the
data in gas which help determine P-state contributions.
The most likely explanation of the discrepancies above
1560 MeV is a poor separation between a2ð1700Þ and
a0ð1450Þ.
Finding the pole position of a0ð1450Þ requires parame-

trizations of a0� and �! phase space and the dispersive
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FIG. 8. The Argand loop of a0ð1450Þ (full curve) compared
with magnitude and phase for individual bins 30 MeV wide,
centered at 1.33 to 1.66 GeV. Dotted lines show how individual
bins move from the analytic formula.
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FIG. 9. Line shapes of a0ð1450Þ as it appears in decays to a0ð980Þ� and !�, all normalized to 1 at the peaks. Dashed curves include
the phase space for production in �pp annihilation; full curves are for an isolated resonance without the limitation of the production
process.
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term in the Breit-Wigner denominator. This has been done
with three alternative parametrizations for each of the three
terms. Formulas are chosen with good convergence prop-
erties for complex s, i.e. powers of s confined to the
denominators of the formulas. All combinations of the
formulas agree within �3 MeV for both real and imagi-
nary parts of the pole, showing that systematic errors for
the extrapolation are well under control. The pole position
is 1432� i98 MeV; the main systematic errors arise from
the mean mass and width of the peak.

Figure 9 shows as dashed curves the intensities of
a0ð1450Þ ! a0ð980Þ� and !� as they appear in produc-
tion from �pp. The a0ð980Þ� decay peaks at 1458 MeVand
the !� decay peaks at 1476 MeV. Curves are normalized
to 1 at their peaks. Full curves show the peaks for an
isolated resonance without the limitation of �pp phase
space for production. The a0ð980Þ� peak is then at
1467 MeV and the !� peak at 1485 MeV.

G. Fitted parameters

Table II collects results for a0ð1450Þ from the final fit.
At this point, it is necessary to present a more con-
venient formula for a0ð1450Þ than Eq. (9), and the rationale
behind it.

The basic points spring from the fact that there is a pole
at 1432� i98 MeV. If one knew in advance how parame-
ters vary between the pole and the physical region, it would
be best to write the formula directly in terms of the pole
and its residues, which express its coupling to every chan-
nel. That is not the case, so the closest approach is to write
the formula in terms of the nearby peak mass, mp ¼
1448 MeV and widths to each channel at this mass, to-

gether with their s-dependence:

fð1450Þ ¼ 1

��
M2 � s� i½�ðsÞ � �ðM2Þ�

� imp

X
j

�jðsÞ
�
; (13)

mp�jðsÞ ¼ g2j�jðsÞ: (14)

This form is close to that for a Breit-Wigner resonance of
constant width and is closely related to observed branching
ratios between channels.
The branching fractions for an isolated resonance are

given by integrals of the form

Z g2j�jðsÞds
jDðsÞj2 :

If �j, hence �jðsÞ, were to vary linearly with s, the variation
of branching fractions would cancel between upper and
lower halves of the peak. It turns out that this cancellation
works fairly well. This form of parametrization gives a
clear insight into the way the fit responds to each
parameter.
However, one important point emerges. The sum of the

widths at the peak comes to 345 MeV, considerably larger
than the observed full width of the peak, 192 MeV. The
reasons for this are straightforward. On the lower side of
the peak, �ða0ð980Þ�Þ and �ð!�Þ are small, and the am-
plitude falls rapidly because the remaining width to ��,
KK, and �0� is small. On the upper side of the peak,
�ða0ð980Þ�Þ and �ð!�Þ rapidly become large and domi-
nate the denominator, cutting off the line shape 1=jDðsÞj2

TABLE II. Results for a0ð1450Þ in units of MeV. The first errors are statistical and the second
systematic.

Peak mass 1448� 13� 25

M(Breit-Wigner) 1536� 20� 30
Mean mass 1424� 13� 25
Full width at half maximum 192� 9� 9
Pole position 1432� 13� 25� ið98� 5� 5Þ
�ð��Þ 23:7� 0:5� 2:0
�ðKKÞ (fixed from Eq. (11)) 17:7� 0:3� 2:0
�ð�0�Þ (fixed from Eq. (10)) 11:4� 0:2� 1:5
�ð!�Þ 219� 18� 24
�ða0ð980Þ�Þ 73� 5� 20
In �pp ! a0ð1450Þ�:
BRða0ð980Þ�Þ=BRð��Þ 2:3� 0:2� 0:6
BRð!�Þ=BRð��Þ 7:6� 0:6� 1:2
Branching fraction in ��0�0:

(a) with interferences ð5:44� 0:15� 0:88Þ%
(b) without ð3:48� 0:13� 0:58Þ%
Branching fraction in !�þ���þ��
(a) with interferences ð3:49� 0:14� 0:30Þ%
(b) without ð4:86� 0:19� 0:42Þ%
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quickly. The line shape of a0ð980Þ in Fig. 6(b) serves as a
second example. The upper part of the peak is attenuated
rapidly by �KKðsÞ. The lower part is not far from a Breit-
Wigner resonance of constant width.

The branching ratio �ða0ð980Þ�Þ=�ð��Þ is obtained
from the combined fit. It is consistent with the magnitude
of the a0ð1450Þ signal fitted to ��þ���þ�� data in
Ref. [9] and with the upper limit of 4.3 established there
for this ratio. The table uses branching ratios to !� from
the combined fit to !�þ���0 data, discussed in detail in
subsection III I. The table quotes in lines 12 and 13 the
ratio of branching fractions BRð!�Þ=BRð��Þ and
BRða0ð980Þ�Þ=BRð��Þ as they appear in �pp annihilation.
These values are better defined than those for an isolated
resonance because of uncertainty about its high mass tail,
see Fig. 9. Note that BRð!�Þ=BRð��Þ is 7.6 in Table II,
rather smaller than the ratio �ð!�Þ=�ð��Þ ¼ 9:2 at the
peak of a0ð1450Þ. This is because the !� signal in �pp !
a0ð1450Þ� is inhibited at high mass by the available phase
space, as illustrated in Fig. 9(b) by the dashed curve. For an
isolated resonance, the !� branching fraction is close to
9.2, but with an unknown error depending on form factors.

In Table II, the first errors are statistical and the second
systematic. Strong contributions to systematic errors arise
from uncertainties in branching fractions for �pp ! ��0�0

ð�5:0%) and !�þ���0 ð�7:9%Þ. However, the largest
error arises from the fact that interferences within one set
of data lead to a branching fraction / jPi�ifij2, rather
than

P
ij�ifij2. Here, the sum is over resonances, �i are

coupling constants and fi are amplitudes for each reso-
nance. The second of these quantities is derived from �
parameters fitted to the first, as explained above in
subsection III E.

There is a potentially large error from the interference
between the two components making up the �� S-wave:
the � pole term and the elastic component. Fortunately, the
��0�0 data determine both relative magnitudes and
phases of these two contributions quite well. However, it
is necessary to add a systematic error to cover the change to
the fit if a further term is added to the parametrization of
the �� S-wave. Here, it is chosen to be the elastic ampli-
tude multiplied by s. There is a further small contribution
to systematic errors from perturbations when small com-
ponents are dropped from the fits, e.g. the weak �1ð1400Þ
contributions in both 1S0 and

3P1 annihilation. Finally, in

view of the scatter of the last 4 points of Fig. 8 above
1540 MeV, a systematic error is included from changes in
the fit if a0ð1450Þ is fitted to ��0�0 data only up to
1540 MeV.

Table II includes systematic errors in fitting !�þ���0

data. The evaluation of systematic errors for these data
follows the same procedure as for ��0�0. The final sys-
tematic errors are added in quadrature. It is not correct to
add them linearly, as is sometimes done. The derivation of
the Gaussian error distribution depends on the convolution
of many box-shaped distributions.

H. A disagreement with Obelix

The Obelix group has published two claims to observe
an a0 decaying to �� in the mass range 1290–1313 MeV
[27,28]. Such a resonance should be very conspicuous in
Crystal Barrel data through distinctive interference with
a2ð1320Þ. The fits reported here have been repeated
(i) using an a0 in this mass range without a0ð1450Þ and
(ii) together with a0ð1450Þ. When a0ð1450Þ is removed
from the fit, �2 (scaled to allow for the mean �2 of 2.9
per bin) is worse by 528 for a reduction of six fitting
parameters. This is an 18 standard deviation signal. If its
mass and width are moved down to the mass range 1200–
1340 MeV with a width� 120 MeV, there is no optimum.
Instead the fit moves in a few iterations towards parameters
of a0ð1450Þ, whatever line shape is used for a0ð1450Þ. If an
extra a0 is added in the mass range 1280–1340 MeV, there
is only a small improvement in �2 and again no optimum
for parameters in the range claimed by Obelix. The narrow
width they claim �80 MeV is similar to that of a2ð1320Þ.
It appears likely that their signal was confused with P-state
annihilation to a2ð1320Þ. The P-state annihilation is pre-
cisely identified in present work from data in hydrogen gas.

I. The fit to !�þ���0 data

There are 35 280 reconstructed events for these data with
8.4% experimental background, arising in the selection of
the narrow !. The earlier analysis of these data is reported
in detail in Ref. [6]. Dispersive effects were included fully
and the new fit changes rather little. Table III lists the

TABLE III. Percentage contributions of each channel after the
background subtraction. Decays are to !� unless stated other-
wise. The final column shows changes in log likelihood when
each channel is removed from the fit and remaining contributions
are reoptimised.

Initial states Channel Intensity (%) �Ln L

1S0 a0ð1450Þ� 3.5 90

b1ð1235Þ�, b1 ! !� 13.2 361

�1ð1600Þ�, �1 ! ½b1��L¼0 6.6 71

a2ð1320Þ� 2.0 18

a2ð1660Þ� 2.4 36
3S1 All �0� 16.9 505

a1ð1260Þ� 0.8 48

a1ð1260Þ!, a1 ! �� 23.9 377

a1ð1640Þ� 5.1 271

a1ð1640Þ�, a1 ! b1� 1.7 45

�1ð1600Þ�, �1 ! ½b1��L¼0 2.5 50

!ð1420Þ�, !ð1420Þ ! !� 1.2 8

!ð1420Þ�, !ð1420Þ ! b1� 3.3 5

b1ð1235Þ�, b1 ! !� 1.6 57

�ð1450Þ�, � ! b1� 0.6 94
3P0 �0� 9.5 83
3P1,

3P2 a2ð1320Þ 2.5 38

a2ð1660Þ 5.7 45
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components in the fit and their significance levels, mea-
sured by changes in log likelihood when each component is
removed from the fit and all others are reoptimized. Values
of �2 are twice those for log likelihood for the large
statistics available here.

In the earlier work, there was a very marginal signal due
to a1ð1260Þ ! !�, which improved log likelihood by 24.
In the latest work, it improves log likelihood by only 6 and
is omitted from the fit. Likewise the earlier work included a
rather marginal signal for �ð1600Þ ! ðb1ð1235Þ�ÞL¼2.
This contribution is now small and is set to zero.

A further detail is that there are data for �pp !
!�0�0�0 [29]. The branching ratio for this channel is
very small. These data constrain the magnitudes of the
last four entries to Table III for 3S1. Their phases are fitted
freely. Two of them have only very small effects in the
present fit.

Let us review the essential points of the analysis. There
are three charge combinations of ��. As a result, individ-
ual resonances do not appear clearly in mass projections. It
is necessary to rely on the amplitude analysis to locate
magnitudes and phases from what it finds in 4-body phase
space. That may appear questionable, but in practice works
well. The fits to mass projections were shown in Fig. 2 of
the earlier paper. The tiny changes in the new fit are hardly
visible by eye and therefore the figures will not be repeated
here.

Second, angular distributions depend distinctively on
spins. Consider a0ð1450Þ as an example. The spin of the

! lies along the normal to its decay plane. The spin of the �
is given by the vector (k1 � k2), where k1;2 are momenta of

the pions from its decay. After Lorentz transformations to
the!� rest frame, the matrix element is given by the scalar
product of these two vectors. This is highly distinctive. An
elementary check on formulas is that all amplitudes are
orthogonal. One can test how well quantum numbers are
recognized by putting deliberate errors into formulas.
Generally the result is that the amplitudes drop to small
values.
A third point is that the program prints a matrix giving

intensities of all components together with real and imagi-
nary parts of all interferences. This identifies the important
interferences. It is then easy to test the reliability of these
interferences by plotting log likelihood against relative
phases.
The magnitude of the a0ð1450Þ signal has decreased

slightly from the earlier publication, but its significance
level has improved. In the earlier work, log likelihood
changed by 56 when a0ð1450Þ was omitted from the fit.
Now it changes by 90. It is produced from the 1S0 initial

state where it interferes with a large and well-identified
b1ð1235Þ� signal.
There is a large signal in 3S1 annihilation from JPC ¼

0�þ. It peaks at 1480 MeV, quite close to a0ð1450Þ. One
might worry that there will be cross talk with a0ð1450Þ,
despite the fact that the a0ð1450Þ is produced from the 1S0
initial state while 0�þ is produced from 3S1. There is no
such problem. The 0�þ component may be removed com-
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FIG. 10. (a) The Argand loop of a0ð1450Þ in!�� (full curve) compared with magnitude and phase for individual bins 60 MeV wide,
centered at 1.345 to 1.645 GeV. Dotted lines show how individual bins move from the analytic formula. (b) The ratio of the a0ð1450Þ
amplitude in bins 30 MeV wide to that of the overall fit.
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pletely from the fit without any significant effect on the
fitted a0ð1450Þ signal. In fact, the a0ð1450Þ is insensitive to
changes in all 3S1 and P-state amplitudes.

A similar comparison has been made in Fig. 10(a) to that
shown in Fig. 8. Real and imaginary parts of the
a0ð1450Þ ! !� signal are fitted freely in bins 60 MeV
wide from 1.345 to 1.645 GeV. In Fig. 10(a), the amplitude
is k0 ffiffiffiffiffiffiffiffiffi

�!�
p

=DðsÞ; i.e. it allows for the phase space of the!�

final state and the phase space in the production reaction
�pp ! a0ð1450Þ�, proportional to the momentum k0 of the
a0ð1450Þ in the �pp center of mass. There is no doubt that
the data conform with a resonant circle, though errors are
sizable. There appears to be some tendency for the data to
require a larger amplitude than the overall fit. An alter-
native test is made by fixing the phase of the amplitude to
that of the overall fit, but allowing the magnitude of the
fitted signal to fit freely in 30 MeV wide bins. Fixing the
phase stabilizes the fitted amplitude considerably. Results
are shown in Fig. 10(b). There is now a reduced tendency
for the fitted amplitude to be above the overall fit. The
mean discrepancy is ð13:7� 8:5Þ%. The systematic differ-
ence arises because the final fit is constrained to fit the line
width of the a0ð1450Þ. If the a0ð1450Þ ! !� signal is
increased, it makes the line width smaller; this was the
problem with the first publication, Ref. [6]. The final fit is a
compromise between fitting the line shape and the magni-
tude of the a0ð1450Þ ! !� signal.

In assessing the errors for �ð!�Þ=�ð��Þ in Table II, the
statistical error is taken from the 8.5% statistical error in

the discrepancy of Fig. 10(b). This is quite close to the
error derived from log likelihood in Table III. The system-
atic error is derived from changes in �ð!�Þ=�ð��Þ as the
mass and width of a0ð1450Þ are varied over the range of
systematic errors in Table II.
One new point does emerge from a better understanding

of dispersive effects. This concerns the large JP ¼ 0�þ
component. In the earlier work, attempts were made to fit it
with �ð1300Þ and a radial recurrence in the mass range
1600–1700MeV. However, the required signal for�ð1300Þ
was unreasonably large and would have required it to
decay dominantly to !�. Furthermore, the data still re-
quired a definite peak in the vicinity of 1500 MeV. A radial
recurrence so close to �ð1300Þ would be surprising.
The present work reveals a more sensible way of fitting

the 0� signal. The optimum fit is obtained with a broad
resonance at 1540 MeV with � ¼ 590 MeV, plus a radial
excitation of �ð1300Þ at 1732� 32 MeV with � ¼ 252�
30 MeV. The broad resonance is close to being a simple
cusp at the!� threshold. This solution is shown in Fig. 11.
Figure 11(a) shows as the full curve the intensity of the

fitted!� signal including!� phase space, for a resonance
‘‘in free space,’’ i.e. without the limitation imposed by
production in �pp ! !��. The phase space for �pp !
!�� including this limitation is shown by the dotted
curve. What is actually observed in !�þ���0 data is
then given by the product of the dotted curve and the full
curve. The chain curve shows the result of dividing the full
curve by !� phase space. This result shows the line shape
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FIG. 11. (a) The line shape of the JPC ¼ 0�þ signal as it would appear in!� without the limitation of production in �pp ! !�� but
(i) including !� phase space (full curve) and (ii) with this phase space factored out (chain curve). The dotted curve shows the phase
space for !� including the limitation due to production in �pp ! !��. (b) The Argand diagram; masses are shown in GeV. Units are
arbitrary for display purposes.
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arising from j�A=DAðsÞ þ�B=DBðsÞj2, where A and B
refer to the two components and � are coupling constants.
This is what one would see for an isolated resonance if
there were no phase space factor in the numerator. The
double peak near 1.45 GeV comes from the cuspþ
interference. The peak at high mass comes from the radial
recurrence at 1732 MeV.

Minor variants on this solution are possible because the
!� amplitude below 1450 MeV is small and poorly deter-
mined, particularly its phase. One should therefore not
place any reliance on the threshold behavior of the !�
amplitude below 1450 MeV. It is quite possible that the
double peak at 1430 and 1480 is an artefact. However,
there are two essential features which are unavoidable. The
first is a peak at �1550 MeV in !�. This arises from the
cusp at the !� threshold. The second well determined
feature is the phase advance >180� from 1510 to
1740 MeV. This arises largely from the radial recurrence
at 1732 MeV.

The present data are limited by the fact that production
of 0� from 3S1 is suppressed at the highest masses by the

L ¼ 1 centrifugal barrier for production. A quite signifi-
cant signal is however observed also in P-state production
with L ¼ 0. This signal gives a reasonable determination
of the mass and width of the upper resonance at 1732 MeV.

There is some chance that this radial excitation corre-
sponds to �ð1800Þ. However, using PDG parameters for
�ð1800Þ, the fit is 2.8 standard deviations worse than with a
free fit. The mass and width observed in the present fit
correspond closely to those observed by Amelin et al. in
��A ! !���0A� [30]. The ideogram shown by the PDG
for the mass of �ð1800Þ has a double-humped structure.

There is the possibility of a 0� hybrid in this mass range to
accompany the �1ð1600Þ. So there is room for a conven-
tional radial excitation around 1730 MeV and a hybrid at
higher mass. The �ð1800Þ has decay modes suggestive of a
hybrid. A fit using a mass and width from the higher lobe of
the PDG’s ideogram is worse than the free fit by 4.0
standard deviations. Further exploration of 0� signals is
needed in this mass range to resolve the current
uncertainties.
A final detail concerns a2ð1320Þ. Figure 12 illustrates

the small effect on a2ð1320Þ of the s-dependence of the
width and dispersive effects. The full s-dependence of
decays to ��, ��, KK and !� is included. The full curve
on Fig. 12(a) shows the fitted line shape and the dotted
curve the line shape of a Breit-Wigner amplitude of con-
stant width agreeing at half-height with the full curve.
There is little difference between them, showing that the
slow s-dependence of the dominant �� channel has little
effect. Figure 12(b) shows that the Argand diagram follows
a circle closely.

IV. RESULTS FOR a0ð980Þ
In the 1994 work [3], the a0ð980Þwas fitted with a Flatté

formula with M ¼ 999� 5 MeV, g2ð��Þ ¼ 221�
20 MeV, and g2ðKKÞ=g2ð��Þ ¼ 1:16� 0:18. The �0�
channel was not included. These parameters now change
beyond their errors because (a) the large dispersive cusp at
the KK threshold is included, (b) Adler zeros are included
in both�� and�0� channels. These are at s ¼ sA ¼ m2

� �
0:5m2

� ¼ 0:2905 GeV2 for the �� channel and at s ¼
sA0 ¼ m2

�0 � 0:5m2
� ¼ 0:9078 GeV2 for the �0� channel.

Note that the latter is quite close to the resonance mass.

0

0.5

1

1.2 1.4

 mass (GeV)

In
te

n
si

ty

0

2

4

6

-3.5 0 3.5

 Re f

Im
 f

FIG. 12. (a) The line shape of a2ð1320Þ: full curve including s-dependence of the width and dispersive effects in full, the dotted curve
showing a Breit-Wigner amplitude of constant width. (b) The Argand diagram.
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The formulas used for coupling to �� and �0� are

g2��ðsÞ ¼ g2��ð4m2
KÞ

s� sA
4m2

K � sA
expð�2�k2�Þ; (15)

g2�0�ðsÞ ¼ g2�0�ðm�0 þm�Þ2 s� sA0

ðm�0 þm�Þ2 � sA0

	 expð�2�k2�0 Þ; (16)

where k�0 is the momentum in the �0� rest frame. The

value of g2�0� is normalized at the �0� threshold.

Below the thresholds for these processes, the Flatté
formula has the subthreshold analytic continuation

g2�0���0� ! ig2�0�2jk2�0 j=s: (17)

However, g2�0� becomes real again for a mass<0:83 GeV,

due to the opening of the u-channel. It makes little sense to
allow for this without including the dynamics of the
u-channel process. Therefore g2�0� is set to zero below s ¼
sA0 . The effect of the �0 channel on �2 of the fit is quite
small, except above the �0� threshold. Its coupling con-
stant is fixed to that of the �� channel by Eq. (10). Note
that the assumption is made in Eq. (16) that the form factor
does not affect the ratio g2�0�=g

2
�� between these two

thresholds. Because of the small effect of the �0� channel
on present fits, this assumption has little effect on �2.
However, it could matter if and when data become avail-
able directly on the �0� channel. A detail is that the
opening of the �0� channel is visible on the Argand
diagram of Fig. 7, just below 1.1 GeV.

For the KK channel, the Adler zero is far away at s ¼
0:5m2

K and experience with the � amplitude is that the
factor ðs� sAÞ=ð4m2

K � sÞ needs to be multiplied by an
exponential form factor expð��sÞ, which prevents the
amplitude rising indefinitely with s. Below the KK thresh-
old, the KK channel has only an indirect effect on data in
the �� channel. Tests have been made with a variety of
form factors. Within errors, the best fit is obtained with
g2KK ¼ constant below the KK threshold and this simple
prescription has been adopted. Above the KK threshold,
the factor due to the Adler zero is dropped and the form
factor expð�2k2KKÞ is used, with kKK the momentum in the
KK channel in GeV/c.

A. Fits to ��0�0 data

The dispersive cusp locks the massM of the amplitude at
or just below the KK threshold and provides considerable
stability. Values of g2�� and the ratio rKK ¼ g2KK=g

2
�� are

only slightly correlated in fitting ��� data; there is a weak
tendency (5%) for them to go up and down together. The
data give well-defined values for parameters of a0ð980Þ:
M ¼ 0:9874� 0:0010ðstatÞ � 0:0030ðsystÞ GeV; (18)

g2�� ¼ 0:164� 0:007� 0:010 GeV2; (19)

rKK ¼ g2KK

g2��
¼ 1:05� 0:07� 0:05: (20)

These values have changed from earlier publications be-
cause of the inclusion of the cusp in Re�ðsÞ. The ‘‘edge’’
observed in the ��� data due to a0ð980Þ provides a good
determination of the coupling to KK. In this respect,
Crystal Barrel data have an advantage over Kloe data (to
be discussed further below). The Kloe data however pro-
vide an excellent view of the a0ð980Þ line shape below the
KK threshold. A simple program evaluating the formulae
for a0ð980Þ and the cusp in Re�ðsÞ is available from the
author.
The systematic error on the mass M arises from uncer-

tainty in the mass calibration of the Crystal Barrel detector.
Systematic errors for g2�� and rKK arise as described above

for the entire fit to ��0�0 data. The fitted mass of a0ð980Þ
is close to the lowest KK threshold, just as the mass of
Xð3872Þ is close to the threshold of the lowest charge
combination in �DD�.
An important detail is that the a0ð980Þ could be pro-

duced either by its pole term or via the elastic �� ampli-
tude. Both have been tried, and the fit strongly prefers
production via the elastic scattering amplitude, i.e. with
the Adler zero in the numerator of the production
amplitude.

V. DATA FOR �pp ! K0
LK

���

The Dalitz plot for these data in liquid hydrogen is
shown in Fig. 13. There are prominent vertical and hori-
zontal bands due to K�ð890Þ. A detail is that it is necessary
to fine-tune the masses and widths of the separate charge
states for K�ð890Þ. There are also diagonal bands due to
a2ð1320Þ and a0ð980Þ. The a0ð1450Þ lies in the lower left
corner of the plot, near the crossing K�ð890Þ bands. As for
�pp ! ��0�0, it is necessary to remove some edge bins.
There is also a background from �pp ! �þ���0 de-
scribed in the Crystal Barrel publication. It peaks in edge
bins close to the left-hand corner of the Dalitz plot. It is
necessary to remove 21 bins, leaving 741.
One would hope to determine the ratio g2KK=g

2
�� for

a0ð980Þ from relative contributions in ��� and K �K�
data. Unfortunately, when one tries to do this, a serious
difficulty appears. It arises from the question of how to
parametrize the K� S-wave amplitude in the K �K� data.
This leads to uncertainties in interferences between theK�
S-wave and diagonal bands due to a2ð1320Þ, a0ð980Þ, and
a0ð1450Þ. Uncertainties in these interferences then lead to
uncertainties in the magnitudes of the a2 and a0 signals. To
grasp these points, it is necessary to review current under-
standing of the K� S-wave, which has advanced a long
way since the earlier analysis of the Crystal Barrel data [7].
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In that early analysis, it was assumed that the K�
S-wave amplitude in production data is identical to that
in K� elastic scattering. Experience with �� data now
makes that appear unlikely [19]. The Crystal Barrel paper
gives an explicit parametrization for the K� S-wave.
Figure 14 shows its phase as a function of mass, compared
to LASS data [31]. In those days, the LASS data were fitted
with an effective range expression. Since then, it has been
recognized that Chiral Symmetry breaking produces an
Adler zero in theK� S-wave below threshold at s ¼ m2

K �
0:5m2

�. The dashed curve shows the amplitude fitted to the
LASS data including this Adler zero [32]. The � pole
observed in BES2 [33] and E791 [34] data was fitted
simultaneously and is therefore well constrained. There is

a discrepancy for K� masses near 1400 MeV. It is now
known that this discrepancy can be removed by a full
treatment of the cusp at the K�0 threshold. For present
purposes it is irrelevant since KK� phase space ends at
1381 MeV.
The discrepancy near the K� threshold between the

dashed and full curves on Fig. 14 indicates a contribution
in Crystal Barrel data from the � pole, which peaks near
threshold with a half-width of �350 MeV. This is con-
firmed by a fit to the Crystal Barrel data using a 2-
component fit to the K� S-wave, as in Eq. (8). It contains
one component from K� elastic scattering and a second
from the � pole. Uncertainties are compounded by the fact
that there are contributions from �� for both I ¼ 1 and
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I ¼ 0 initial states, making four K� S-wave amplitudes in
all. These two isospins have opposite relative signs for
coupling to K� and are responsible for the difference in
K� distributions between Figs. 13(a) and 13(b).

There is in addition the possibility of a third component
due to a K0ð1430Þ amplitude different in magnitude and
phase in production data and LASS data. That is the case
for the E791 data. However, it turns out that adding this
freedom only improves �2 by a small amount, �20 and
leads to a very ill-defined fit. This extra possible freedom is
ignored here.

The earlier Crystal Barrel analysis recognized the need
for a low mass K� enhancement and parametrized it in an
ad hoc way which is not consistent with chiral symmetry
breaking and the Adler zero. In order to get an acceptable
fit, contributions were introduced from �ð1450Þ and/or
�ð1700Þ, which can appear in the left-hand corner of the
Dalitz plot, in the same mass range as the � pole and
a0ð1450Þ. It is now necessary to try to disentangle the
complications of this corner of the Dalitz plot.
Unfortunately, these complications lead to substantial er-
rors in branching ratios.

Results will be presented first without any contribution
from �ð1450Þ and �ð1700Þ; then their possible contribu-
tions will be discussed. Either way, there is a large inter-
ference between the � pole and the K� elastic amplitude.
With this freedom, there is great flexibility in what can be
fitted to the K� S-wave. A free fit to a0ð980Þ and a2ð1320Þ
magnitudes gives �2 ¼ 637:3 for 720 degrees of freedom.
If the � pole is omitted, �2 ! 1230; this is clearly unac-

ceptable. The free fit gives a ratio of intensities
a0ð980Þ=a2ð1320Þ ¼ 0:0637 compared with a prediction
from fits to ��� data, Eqs. (18)–(20), giving a ratio
0:0369� 0:0068. This might appear to be a large discrep-
ancy. However, if the fit is constrained to agree with the
latter prediction, �2 increases by only 2.01 to 639.31, for 2
parameters determining the complex coupling constant �
of a0ð980Þ. There is clearly no disagreement with the
prediction; there is just a large flexibility in the amplitudes.
The same picture emerges for the ratio of intensities for

a0ð1450Þ=a2ð1320Þ. A free fit to a0ð1450Þ gives a ratio of
intensities a0ð980Þ=a2ð1320Þ ¼ 0:535 compared with its
predicted value 0.311. However, again the ratio can be
fixed to the prediction with a �2 increase of only 2.01 for
2 less parameters for �1450.
With the introduction of extra contributions from

�ð1450Þ and/or �ð1700Þ the situation is similar. If both
are introduced, the solution becomes very unstable with
excessively large contributions from both resonances and
destructive interference between them. This destructive
interference is a familiar symptom of overfitting the data,
so it is necessary to use only one of them. That procedure
was adopted in the earlier Crystal Barrel analysis. There
are recent data from BABAR [35] on eþe� ! 	KþK��0

using initial state radiation. They observe the same insta-
bility between �ð1450Þ and �ð1700Þ contributions, but a
dominant �ð1450Þ amplitude. Following this lead, the
present data are fitted including only �ð1450Þ. The story
which then emerges runs close to that described above. For
a fit where a0ð1450Þ and a0ð980Þ are constrained to pre-
dictions from Eqs. (18)–(20), �2 drops from 639.31 to
616.50 with the addition of a0ð1450Þ. If a0ð980Þ is set
free, �2 improves by 3.09 to 613.41. This cannot be re-
garded as a significant improvement. If a0ð1450Þ is set free,
the improvement is only 1.74, again insignificant.
So the conclusion is that data on �pp ! K0

LK
��� are

consistent within errors with (i) the parameters of a0ð980Þ
deduced from ��� data, (ii) the SU(3) prediction for
g2KK=g

2
�� of a0ð1450Þ. However, they do not constrain

those parameters well. A close inspection of the KK
mass projection on Fig. 13(d) shows that data favor a
slightly narrower a0ð980Þ than is fitted. This could arise
from either stronger coupling of a0ð980Þ toKK or a steeper
form factor, i.e. a larger � parameter and larger radius of
interaction.
A final question is whether there is any significant

a0ð1450Þ ! KK signal at all. This may be tested against
the fit where a0ð1450Þ and a0ð980Þ are constrained to their
predicted values. To err on the pessimistic side, this test is
made including �ð1450Þ ! KK. Omitting a0ð1450Þ from
the fit, �2 gets worse by 36.8 with 2 less parameters. This is
a change of 5.5 standard deviations, so there does appear to
be a signal due to a0ð1450Þ ! KK. The situation is simply
that its magnitude cannot be determined with any precision
from these data.

0

50

100

150

0.75 1 1.25 1.5

MKπ(GeV)

 p
h

as
e 

(d
eg

)

FIG. 14. LASS data for K� elastic scattering, compared with
(i) the Crystal Barrel fit (full curve), (ii) a parametrization
including the Adler zero in K� (dashed curve).
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A. Comparison with Kloe data on � ! �ð��Þ
There are important data from Kloe on this process

giving direct and precise information on the line shape of
a0ð980Þ. The present status is that data have been published
from the first phase of this experiment, with� decaying via
both 		 and �þ���0 [36]. Preliminary results for pa-
rameters of a0ð980Þ have also been presented from the
second stage of this work [37]. A comparison will be
made with these preliminary results.

The Kloe data define accurately the a0ð980Þ line shape
below the KK threshold. In the process � ! 	a0ð980Þ,
there is a dependence of the cross-section on k3	, where k	
is the photon momentum. This factor is the usual k3 factor
for an E1 transition. It inflates the lower side of the a0ð980Þ
strongly, improving the precision with which it can be
measured. However, one must beware that the line shape
may be affected by form factors.

The Kloe group have fitted their data in two ways. The
first assumes the KK-loop model of Achasov and
Ivanchenko [38]. In this model, � decays to 	ðKKÞ, then
theKK pair rescatter via a final state interaction to a0ð980Þ,
which decays to ��. With this model, the preliminary
parameters for a0ð980Þ are

M ¼ 983� 1 MeV (21)

g2�� ¼ 0:156� 0:011 GeV2 (22)

rKK ¼ g2KK

g2��
¼ 1:19� 0:05: (23)

These values are quite close to those emerging from
Crystal Barrel ��� data, Eqs. (18)–(20).

The alternative fit made by Kloe ignores the constraint
of the KK loop model and arrives at a value of g2��
seriously different: g2�� ¼ 0:096� 0:009 GeV2. The

agreement between the first set of results and Crystal
Barrel data clearly favors the KK-loop model. The dis-
agreement of the second set illustrates the sensitivity to the
precise equations used to fit Kloe data.

The published Kloe data were fitted in earlier work using
the KK loop model [39]. That fit has now been repeated
using the parameters for a0ð980Þ reported here. There is a
significant contribution to the data (up to 18%) from � !
��, � ! 	�. From present publications, it is not clear how
much of this contribution is eliminated by experimental
cuts. Excellent fits can be obtained with both the Kloe
parameters of Eqs. (21)–(23) and with parameters fitting
Crystal Barrel data, Eqs. (18)–(20) by varying the magni-
tude and phase of the �� combination. The magnitude of
the fitted a0ð980Þ signal is proportional to g2��g

2
KK and is

constrained to reproduce the latest branching ratios re-
ported in [37]. The fit is almost indistinguishable from
that shown in Fig. 3 of [39]. When information from the

full Dalitz plot becomes available, the �� amplitude can
be determined accurately in both magnitude and phase.

B. Pole parameters of a0ð980Þ
In order to find the pole position of a0ð980Þ it is neces-

sary to parametrize the cusp at the KK threshold in the real
part of the amplitude. At the cusp, there is a discontinuity
in slope, due to the opening of the KK channel. If there is
no form factor in the KK channel, this cusp can be calcu-
lated algebraically with two subtractions at the KK thresh-
old. It is given in Ref. [10], Eqs. (8) and (9):

Re�ðsÞ
g2KK

¼ jKK ¼ �KK

�
ln
1� �KK

1þ �KK

; s 
 4m2
KK

(24)

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

KK � s

s

s
� 2v

�
tan�1v; s < 4m2

KK; (25)

where �KK ¼ 2kKK=
ffiffiffi
s

p
above the KK threshold and v is

the modulus of this quantity below threshold; kKK is the
momentum in the KK rest frame, and is complex below
threshold.
With the form factor present, an empirical parametriza-

tion is needed, based on Eqs. (24) and (25). An excellent fit
may be obtained to�ðsÞ from the �� threshold to 1.6 GeV
replacing these equations by

Re�ðsÞ ¼ fðsÞjKK þ F2 þ F3sþ F8s
2
p (26)

fðsÞ ¼ F1

1þ F4sr þ F5s
2
r þ F7s

3
r

(27)

sr ¼ s� 4m2
KK (28)

sp ¼ s� F6: (29)

Here fðsÞ modulates j with a convergent power series
about the KK threshold. [A similar expression is used for
a0ð1450Þ]. The terms F2 þ F3s allow for the double sub-
traction at the KK threshold. The term F8s

2
p is mostly

concerned with fitting Re�ðsÞ above s ¼ 1:5 GeV2.
Parameters are tabulated in Table IV.

TABLE IV. Parameters (in units of GeV) fitted to Eqs. (26)–
(29).

F1 0.722 107

F2 0.052 635

F3 �0:230 099
F4 �0:638 335
F5 1.804 376

F6 2.165 924

F7 1.402 098

F8 0.172 984
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The physical region lies at sþ i
 for all channels, in the
limit 
 ! 0. The ��, KK and �0� cuts may be labeled by
the signs multiplying i for each channel. The pole closest to
the physical region has signs þ�þ and lies at M�
i�=2 ¼ 989:1� i40:1 MeV. It is reached from the physi-
cal region by going around the end of the KK cut and is
usually called the second-sheet pole. Tests show that this
pole moves little with the KK form factor. The strong
coupling to KK locks the resonance to the KK threshold
and the full width � ¼ 80:2 MeV is determined by the
fitted value of g2��. If the sign of i for the �0� channel is

reversed, the pole moves to 997:4� i46:3 MeV. The
change due to the �0� channel is small because the thresh-
old opens at 1093 MeVand its coupling is weaker than for
KK and ��. However, its effect is not negligible.

In Table V, statistical errors are assigned from corre-
sponding errors for fitted values of M and g2. Systematic
errors arise from (i) neglect of mass differences between
the three KK charge combinations, (ii) uncertainty about
form factors, (iii) isospin mixing with f0ð980Þ. The first of
these is estimated from half the spread of KK mass differ-
ences. The second is estimated from errors in the exponent
of the form factor for the KK channel: � ¼ 2:0�
0:5 GeV�2. This estimate is obtained from experience in
fitting many sets of Crystal Barrel data for wider reso-
nances, where the form factor has a stronger effect. The
third error due to isospin violation is unknown at present.
However, one expects isospin mixing to produce effects
small compared with width differences of f0ð980Þ and
a0ð980Þ; the second-sheet pole for f0ð980Þ has �=2 ¼
17� 4 MeV from current BES II data [16]. Systematic
effects of the �0� channel are hard to estimate without data
for that channel. They have been estimated as half the
difference between the first and second entries of Table V.

The position of the pole with þþþ signs is further
from the physical region than the second-sheet pole. It has
changed greatly from earlier fits using Breit-Wigner am-
plitudes without form factors or Adler zeros. In that earlier
work, this pole, commonly called the third-sheet pole, lay
close to 1040� i83 MeV. The large change in its mass
arises from sensitivity to form factors. In this respect,
Crystal Barrel data fitted here, although they determine
M and g2 with modest errors, do not give accurate infor-
mation on the precise line shape in ��. This is because of
uncertainties in interferences with the �� S-wave and
open questions about exactly how to parametrize it.

Forthcoming Kloe data should improve this situation sub-
stantially. The line shape in those data measures directly
the form factor for coupling of �� to the resonance. The
systematic error assigned in Table V assumes the form
factor has exponent � ¼ 2:0� 0:5 GeV�2, corresponding
to a Gaussian source with a root mean square radius 0:68�
0:08 fm.
Positions of the poles in the sheets þþ� and þ��

corresponding to the�0� channel will not be given because
of the absence of data for that channel.

VI. CONCLUSIONS

Experimental conclusions are straightforward. Firstly,
dispersive corrections and the s-dependence of amplitudes
play a major role for both a0ð1450Þ and a0ð980Þ. The fit to
�pp ! ��0�0 is decisive in settling parameters of
a0ð1450Þ. Without these data, the width fitted to
!�þ���0 data alone is unreasonably small �110 MeV.
With the inclusion of decays of a0ð1450Þ ! a0ð980Þ�,
there is an excellent fit to both sets of data, giving the fitted
parameters of Table II. The �2 of both fits improve with the
inclusion of the s-dependence of the a0ð1450Þ amplitude.
More importantly, the fit stabilizes in a narrow range of
parameters and the fitted a0ð1450Þ signal in ��0�0 in-
creases by a factor 1.8; this is a clear indication of a better
fit to the line shape. The overall conclusion is that a0ð1450Þ
decays weakly to ��, KK, and �0� and dominantly to !�
and a0ð980Þ�. It is unfortunate that data on �pp !
K0

LK
��� do not constrain the ratios g2KK=g

2
�� for either

a0ð1450Þ or a0ð980Þ tightly. The data are consistent with
the SU(3) predictions.
For a0ð980Þ, there is quite good agreement between

Crystal Barrel ��0�0 data and Kloe data. Each have their
merits. A limitation of present data is the mass resolution
of Crystal Barrel near the KK threshold, �9:5 MeV. If
progress is to be made on isospin mixing between a0ð980Þ
and f0ð980Þ, a mass resolution better than 0.5 MeV seems
desirable, i.e. 10% of the spread of KK masses.
An incidental result is a better understanding of the

dominant JPC ¼ 0�þ signal in �pp ! ð!�Þ�. A plausible
interpretation of the data is presented in terms of a cusp at
the !� threshold and a radial recurrence of �ð1300Þ close
to 1730 MeV. However, more precise data are needed to
clarify this result in !�, �� and ½���L¼1 channels. The
Compass experiment could be a good source of such data.
Obviously a search for the missing a0’s expected at higher
mass is sorely needed.
As regards the interpretation of a0ð1430Þ, it seems likely

to be dominantly an n �n state. Black, Fariborz, and
Schechter have pointed out that a0ð980Þ may have a radial
excitation in the general mass range of a0ð1430Þ [40]. Such
a radial excitation would almost inevitably mix with the
expected n �n state. The radial excitation would respond to
long range meson-meson interactions, and therefore to the
a0ð980Þ� and !� thresholds. These are likely to be re-

TABLE V. Pole positions on sheets labeled by signs of i in
channels ��, KK, and �0�. The first errors are statistical and the
second systematic.

Sheet Pole M� i�=2 (MeV)

þ�þ ð989:1� 1:0� 3:0Þ � ið40:1� 1:9� 2:7Þ
þ �� ð997:4� 1:0� 5:0Þ � ið46:3� 1:9� 4:2Þ
þ þþ ð920� 3� 20Þ � ið93� 5� 20Þ
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sponsible for pushing the mass of a0ð1450Þ up to that of
K0ð1430Þ.

One of the essential ingredients in fitting all the data is
the �� S-wave (and K�). Empirically it is necessary to
parametrize it with the 2-component form of Eq. (8). This

gives considerable flexibility to the numerator NðsÞ of the
amplitude, even though the denominatorDðsÞ is accurately
known. Guidance from theory on the way the � and �
couple in production reactions would be very helpful to
experimentalists.
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