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We calculate the next-to-leading order fully unintegrated hard scattering coefficient for unpolarized

gluon-induced deep inelastic scattering using the logical framework of parton correlation functions

developed in previous work. In our approach, exact four-momentum conservation is maintained through-

out the calculation. Hence, all nonperturbative functions, like parton distribution functions, depend on all

components of parton four-momentum. In contrast to the usual collinear factorization approach where the

hard scattering coefficient involves generalized functions (such as Dirac � functions), the fully unin-

tegrated hard scattering coefficient is an ordinary function. Gluon-induced deep inelastic scattering

provides a simple illustration of the application of the fully unintegrated factorization formalism with

a nontrivial hard scattering coefficient, applied to a phenomenologically interesting case. Furthermore, the

gluon-induced process allows for a parametrization of the fully unintegrated gluon distribution function.

DOI: 10.1103/PhysRevD.78.074018 PACS numbers: 13.60.Hb, 13.85.Hd

I. INTRODUCTION

The standard factorization theorems of perturbative
QCD (pQCD) are the main ingredients in many phenome-
nological calculations of high energy processes (for a
review of the usual approach to collinear factorization,
see [1]). They are especially important in Monte Carlo
event generator (MCEG) calculations (see, e.g., [2]) and,
more generally, in many of the calculations relevant to
upcoming experiments such as those taking place at the
Large Hadron Collider. The standard derivations, however,
rely on a number of approximations that alter final state
momentum such that overall four-momentum conservation
is violated. Hence, there is a potential for large errors when
the standard factorization theorems are extended to more
general situations than what have been considered in the
past, particularly when the details of final states are of
interest.

To understand the origin of these issues, it is helpful to
begin by briefly reviewing the basic structure of the more
standard approaches to factorization. To start off, we recall
that a basic component of the standard collinear factoriza-
tion theorems is the concept of a universal parton distribu-
tion function (PDF) which describes the likelihood of
finding a parton in the proton with a particular plus com-
ponent of momentum. The partons are treated as having
zero transverse and minus components of momentum in
the hard scattering calculation. In the standard collinear
factorization theorems, the PDFs have precise definitions
as expectation values of appropriate combinations of field
operators [3,4]. In these definitions, there is an integration
over the small transverse and minus components of parton
momentum because they are neglected in the hard scatter-
ing calculation. Thus, the standard PDF may be referred to

as the ‘‘integrated’’ PDF. Standard collinear factorization
relies directly on the approximations that allow the small
components of four-momentum to be integrated over in the
definition of the PDF (for a specific illustration, see the
introductory sections of Ref. [5]). In spite of this, the
standard treatment is usually sufficient if one is concerned
only with inclusive quantities. It is especially important
that a well-defined operator definition exists for the PDF,
since the universality of this PDF is part of what gives
pQCD calculations their predictive power.
It is now well known that, in some situations, the trans-

verse momentum of the struck parton becomes important.
Examples include the treatment of the transverse momen-
tum distribution in the Drell-Yan process [6] and treat-
ments of scattering at very high energies (small Bjorken
x) where there is no transverse momentum ordering of
emitted gluons [7]. This has led to the use of transverse
momentum-dependent (TMD) PDFs which have explicit
dependence on transverse parton momentum. These are
also called ‘‘unintegrated PDFs’’ (UPDFs) because the
integration over transverse components of momentum is
left undone inside the definition of the PDF. There is still an
integration over the minus component of momentum, so
the factorization formula still involves approximations that
violate overall four-momentum conservation. However,
this is not a serious problem for many applications.
An important observation is that generalizing factoriza-

tion to include TMD PDFs is not a simple matter of leaving
the integrals over transverse momentum undone in the
standard definition of the PDF. Indeed, providing consis-
tent operator definitions for the UPDFs involves a number
of complications. One problem is that the most obvious
candidate definitions suffer from divergences that arise
from gluons with infinite rapidity in the outgoing lightlike
direction. These ‘‘light-cone’’ divergences remain even
after an infrared cutoff is included (see [8] for a review
of this and related issues). A consistent definition, there-
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fore, requires an explicit rapidity cutoff in the definition of
the UPDF [9,10]. Furthermore, it has been shown that
factorization with TMD PDFs is violated for some pro-
cesses [11,12]. For an up-to-date review of the different
types of PDFs, see Refs. [8,13]. See also Refs. [14–19] for
recent work related to defining the TMD PDF.

The standard collinear factorization formalism and for-
malisms that use TMD PDFs accurately describe a wide
range of phenomena. However, some studies [20–23] have
illustrated that, at least for calculations which require de-
tailed knowledge of final states, an exact treatment of
overall kinematics is needed. In such an approach, the
PDF should carry information about all components of
parton momentum, including both the transverse and mi-
nus components. The definition of the PDF in this formal-
ism should not involve an integral over any component of
momentum. A PDF that depends on all components of
parton four-momentum is therefore called ‘‘fully uninte-
grated’’ (or ‘‘doubly unintegrated’’). In this fully uninte-
grated treatment, the kinematics of initial and final states
are kept exact throughout the calculation. However, as
discussed above, the standard kinematic approximations
are needed in the derivation of the usual collinear factori-
zation formalism. Hence, as with a treatment of TMD
PDFs, the fully unintegrated treatment requires a new
approach to factorization. Among other issues, a precise
definition for the fully unintegrated PDF is needed.

A formal derivation of a fully unintegrated approach to
factorization was initiated in Refs. [5,24]. In [24], a com-
plete, fully unintegrated treatment of factorization was
given in the context of an MCEG. To avoid complications
with gauge invariance, the authors restricted consideration
to a scalar-�3 theory in six space-time dimensions. There,
the derivation of factorization utilized a nested subtraction
scheme in which double-counting subtractions were re-
quired to obtain the correct hard scattering coefficient at
each order of perturbation theory. This is a generalization
of the approach to factorization discussed in [25] and is
reminiscent of the Bogoliubov approach to renormaliza-
tion. Performing the subtractions consistently required the
introduction in [24] of a well-defined mapping from exact
to approximate parton momentum. The derivation in [24]
was for arbitrarily many jets in the final state. Though the
proof was for a scalar theory only, the procedure for map-
ping exact to approximate parton momentum is likely to
extend to the gauge theory case.

In [5], a complete fully unintegrated derivation of facto-
rization for a gauge theory was given for the case of a
single outgoing jet. The focus in Ref. [5] was on the
leading order (LO) contribution to the hard scattering
coefficient (though the single gluon vertex correction was
also calculated). Since the relevant Ward identities do not
yet have explicit enough proofs for the non-Abelian case,
the derivation in [5] only applies rigorously to an Abelian
gauge theory. The resulting structure is, however, highly

suggestive of a similar factorization formula for the non-
Abelian case (QCD).
An important difference between the standard collinear

formalism and the fully unintegrated formalism is the
number of nonperturbative functions that appear in a given
factorization formula. In inclusive DIS (deep inelastic
scattering), for example, a total cross section calculation
that uses the standard collinear factorization approach only
involves a single hard scattering coefficient and a single
PDF. Schematically, the structure of the standard collinear
factorization formula is

��X
j

C � fi=p: (1)

Here, C is a hard scattering coefficient and fi=p is the usual

integrated PDF for scattering from a parton of type i inside
the proton. The symbol � denotes the usual convolution
integral.
By contrast, the fully unintegrated approach requires not

only a fully unintegrated PDF in the initial state but also
fully unintegrated jet factors and soft factors to describe
final state parton four-momentum. Thus, the fully uninte-
grated factorization formula found in Ref. [5] for scattering
from a target quark in the proton includes not one but three
nonperturbative factors: a fully unintegrated quark PDF, a
fully unintegrated jet factor, and a soft factor. The integrals
that would normally allow the final state nonperturbative
factors to be simplified are left undone in the fully unin-
tegrated treatment. The structure of the factorization for-
mula in Ref. [5] for DIS is written schematically:

�� C � Fq=p � J � S; (2)

where F, J, and S represent, respectively, the fully unin-
tegrated quark PDF, the fully unintegrated jet factor, and
the fully unintegrated soft factor. Collectively, we refer to
the fully unintegrated nonperturbative objects that appear
in the fully unintegrated treatment as ‘‘parton correlation
functions’’ (PCFs). In Ref. [5] the PCFs in Eq. (2) are given
precise definitions as expectation values of field operators.
Clearly, the proliferation of nonperturbative factors makes
the fully unintegrated approach much more complicated
than the usual formalism. The advantage, however, is that it
provides a much more complete description of the distri-
bution of final states.
Much of the work done so far with PCFs and the fully

unintegrated approach to factorization has been rather
formal, with very limited phenomenological applications.
Therefore, the aim of this paper is to initiate a closer
connection to phenomenology by directly applying the
methods of Ref. [5,24] to a calculation of the hard scatter-
ing coefficient for deep inelastic wide-angle jet pair pro-
duction from a target gluon inside a proton. The partonic
subprocess is then ��g ! q �q (see Fig. 1). This is the
simplest possible calculation of a nontrivial next-to-
leading order (NLO) hard scattering process in the fully
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unintegrated approach to factorization. Since gluon-
mediated processes dominate at small values of Bjorken
x, the resulting hard scattering coefficient can be used to
parametrize the PCFs. Conversely, with a particular model
(or parametrization) of the nonperturbative factors, the
fully unintegrated hard scattering coefficient calculated in
this paper can be used to make direct predictions that are
consistent with factorization. Since the hard scattering
coefficient is to be determined, as in [24], from a sequence
of double-counting subtractions, the calculation relies di-
rectly on the results of [5,24]. The result of this paper,
therefore, is a prescription that allows for a simple and
direct implementation of the fully unintegrated approach in
calculations of gluon-mediated DIS.

Although the work of Refs. [5,24] is sufficient to provide
the steps for calculating the order-g2s hard scattering coef-
ficient, it is worth emphasizing that a complete derivation
of factorization for the production of two jets requires a
systematic consideration of arbitrarily many collinear and
soft gluons. Additionally, the Ward identity arguments in
Ref. [5] need to be extended to the non-Abelian case. Since
the purpose of this paper is to begin to apply the results of
Refs. [5,24] to phenomenology, we leave these important
but more formal issues to future work. Additionally, we set
aside for now the issue of the evolution of the PCFs, initial/
final state showering, or the relationship to other integrated
or unintegrated gluon distribution functions.

The paper is structured as follows: In Sec. II, we estab-
lish conventions and set up notation. In Sec. III, we outline

the basic steps in the calculation of a fully unintegrated
hard scattering coefficient. In Sec. IV, we go through the
steps for low-angle scattering and write down the LO
factorization formula. In Sec. V, we discuss scattering
with large transverse momentum. In Sec. VI, we go
through the steps for obtaining the subtraction terms that
allow for a correct evaluation of the wide-angle (high
transverse momentum) hard scattering coefficient. In
Sec. VII, we write down the NLO factorization formula.
In Sec. VIII, we summarize the results and make conclud-
ing remarks.

II. SETUP AND NOTATION

The process under consideration is described by the
Feynman diagrams shown in Fig. 1. The bubbles represent
target and final state subgraphs. All calculations are done
in the Feynman gauge. In a more precise treatment, we
would also need to include a final state soft factor, but this
will not be critical at the order of perturbation theory that
we consider here. (If we continue to higher orders, a soft
factor needs to be included, as in Ref. [5].) We will usually
express four-vectors in terms of light-cone variables. If
V ¼ ðVþ; V�;VtÞ is a four-vector, then we use the con-
vention that

Vþ ¼ V0 þ V3ffiffiffi
2

p ; (3)

FIG. 1. Graphs contributing to gluon-induced production of two jets at order g2s .
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V� ¼ V0 � V3ffiffiffi
2

p ; (4)

V t ¼ ðV1; V2Þ: (5)

Then,

V2 ¼ 2VþV� � V2
t : (6)

Following standard conventions, we work in a frame
where the total transverse momentum of the photon-proton
collision is zero and express the incoming proton and
virtual photon as

P ¼
�
Pþ;

M2
p

2Pþ ; 0t

�
; q ¼

�
�xPþ;

Q2

2xPþ ; 0t

�
: (7)

Since we insist on using exact kinematics throughout, x is
not the usual Bjorken-x variable but rather

x ¼ 2xBj

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

M2
p

Q2 x
2
Bj

r ; (8)

with xBj being the usual Bjorken-x variable:

xBj ¼ Q2

2P � q : (9)

Additionally, it will be convenient to work in the Breit

frame where xPþ ¼ Q=
ffiffiffi
2

p
. The momenta of the final state

jets are l1 and l2, and their masses are M2
1 and M2

2, respec-
tively. The target gluon is labeled by k. Momentum labels
are shown in Fig. 1.

The contribution to the hadronic structure tensor from
the graphs in Fig. 1 is given by the expression

W
��
g ðP; qÞ ¼ e2j

4�

Z d4l2
ð2�Þ4

Z d4l1
ð2�Þ4

Z d4k

ð2�Þ4
� ðjMðl1; l2; kÞj2Þ��

� ð2�Þ4�ð4Þðkþ q� l1 � l2Þ: (10)

We use the letter M to denote amplitudes for the full
process: ��p ! 2 jetsþ X, in contrast to A which will
be reserved to denote amplitudes for partonic subpro-
cesses. The subscript g on the hadronic tensor symbolizes
that, in the present treatment, we only consider graphs with
a gluon in the target. In our analysis, it will be convenient
to treat the final state jet momenta as independent.
Therefore, we leave the integral over the momentum-
conserving � function in Eq. (10) undone until the very
end. Throughout all calculations in this paper we use the
convention that a factor of e2j=4� is pulled out front as in

Eq. (10). The subscript j labels quark flavors, and any sum
over flavors is assumed to be implicit. A structure function
is obtained from Eq. (10) by making appropriate projec-
tions onto the electromagnetic vertices. For example, for
the F1 structure function we have

F1ðP; qÞ ¼ P��W
��ðP; qÞ; (11)

where

P�� ¼ 1

2

�
�g�� þ

Q2P�P�

ðP � qÞ2 þM2
pQ

2

�
: (12)

III. STRATEGY

To calculate the hard scattering coefficients in Fig. 1 in a
way that is consistent with the methods of [5,24] we take
the following steps:
1. For each graph, categorize the leading regions of

momentum space.
The leading regions in momentum space for a given

Feynman graph can be categorized according to the
pinch-singularity surfaces (PSSs) of the Libby and
Sterman analysis [26]. The two leading regions contribut-
ing in Fig. 1 are the target-collinear region R1, where the
struck quark [k1 ¼ k� l2 in Fig. 1(a)] is collinear to the
target proton, and the hard (wide-angle) region R2, where
the outgoing final state jets are at wide angles relative to
each other with large transverse momenta. There is also a
leading region �R1, where the target-collinear parton is a
struck antiquark with momentum k01 ¼ l1 � k [see Fig. 1
(d)]. We will always assume that the gluon momentum k is
collinear to the target proton:

k�
�
Q;

�2

Q
;�

�
: (13)

Corrections for gluon momenta away from Eq. (13) are to
be dealt with in higher order calculations. (For an elemen-
tary discussion of categorizing leading regions in terms of
PSSs see, e.g., Ref. [27].)
2. For each leading region, apply approximations on

lines entering the hard scattering subgraph, appropriate
to that particular leading region.
In the scalar theory this only involves replacing exact

kinematic variables by approximate ones inside the hard
scattering subgraph. Here it is important to note that initial
and final state momenta are not altered at all in the
approximation.
Awell-defined mapping from exact to approximate var-

iables is required to ensure consistency with factorization.
Such a mapping for arbitrarily many outgoing jets was
given in Ref. [24] for a scalar theory. In a gauge theory,
one also needs to project appropriate external parton polar-
izations, as is done for the external quarks in Ref. [5]. In
this paper, we will need analogous projections to extract
appropriate gluon polarizations. Using the notation of [5],
the complete set of replacements in the hard scattering
subgraph, including polarization projections, will be sym-
bolized by the action of an ‘‘approximator’’ on the unap-
proximated expression [Eq. (10)]. Since a different set of
approximations is appropriate for each region, then each
region is associated with its own approximator. For ex-
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ample, T1 symbolizes the approximator appropriate to
region R1, and T1W

��ðP; qÞ is a good approximation to
Eq. (10) in region R1. So, T1W

��ðP; qÞ is to be read as an
instruction to replace the exact momenta in the integrand of
Eq. (10) with approximate momenta appropriate for region
R1 and to make appropriate projections on parton polar-
izations. Analogous approximators �T1 and T2 are associ-
ated with regions �R1 and R2. (Each of these
approximations/approximators will be defined explicitly
in later sections.) In each case, the approximator makes
substitutions that are good approximations in the corre-
sponding leading region. This notation will make the logic
of the subtractions straightforward. It is important for this
logic that, although each approximation is only good in a
certain region of momentum space, each is well-defined for
all momenta.

3. In each leading region, use Ward identities to disen-
tangle soft and collinear gluons into factors that are iden-
tifiable as contributions to PCFs.

In the calculation of this paper, aWard identity argument
will allow the gluon to be disentangled from the outgoing
quark when the struck quark or antiquark is collinear to the
target proton (regions R1 and �R1). In the resulting factor-
ized structure, one of the factors will be identified as the
zeroth order contribution to the fully unintegrated hard
scattering coefficient. The other factor will be identified
as an order-g2s contribution to a perturbative expansion of
the fully unintegrated quark or antiquark PDF. The factor
corresponding to a contribution to the fully unintegrated
PDF can then be seen to be consistent with the operator
definition for the fully unintegrated quark PDF given in
Ref. [5].

For a detailed discussion of the PCFs and their defini-
tions, see Sec. Vof Ref. [5]. Here we very briefly review the
definition given there for the fully unintegrated quark PDF.

In Ref. [5], the fully unintegrated quark PDFwas defined
in coordinate space to be

~Fðw;yp;ys;�Þ¼ hPj �c ðwÞVy
wðnsÞIns;w;0

�þ

2
V0ðnsÞc ð0ÞjPiR:

(14)

The momentum space distribution is then found by Fourier
transforming. Let us briefly describe each of the elements
of Eq. (14): c is the quark field operator, and jPi is the
target proton state. Wilson line operators V, Vy, and I are
needed in Eq. (14) to ensure exact gauge invariance.
Hence, we define VwðnsÞ as the path-ordered exponential
of gauge fields from coordinate w to 1:

VwðnÞ ¼ P exp

�
�igs

Z 1

0
d�n � Aðwþ �nÞ

�
; (15)

where A is the gauge field and P is a path-ordering opera-
tor. The Wilson line direction is nearly at rest in the center
of mass system

ns ¼ ð�eys ; e�ys ; 0tÞ ys � 0: (16)

This direction is chosen to give the most universal deriva-
tion of factorization [28]. Furthermore, the fact that the
Wilson line direction is nonlightlike ensures that light-cone
divergences associated with gluons moving with infinite
negative rapidity are regulated [9,10]. In an extension to
the non-Abelian gauge theory, the exponent in Eq. (15) will
also need to include the generator for the gauge group in
the fundamental representation.
For exact gauge invariance, Eq. (14) also needs a Wilson

line segment Ins;w;0 at light-cone infinity to connect the

other two lines [29]. The definition of this gauge link at
infinity is

In;w;0 ¼ P exp

�
�igs

Z
C
dz�A�ðzÞ

�
; (17)

where C is a contour that connects the points at infinity.
This operator yields a factor of unity for our calculations
since we work in Feynman gauge. The combination of
Wilson line operators in Eq. (14) forms a continuous
Wilson line that connects point 0 to point w.
In Eq. (14), � is the renormalization scale associated

with the usual ultraviolet divergences. The subscript R on
the right side of Eq. (14) signifies that renormalized op-
erators are used. Thus, the fully unintegrated quark PDF
depends on the quark momentum k, the proton rapidity yp,

the rapidity parameter ys used to parametrize the Wilson
line direction, and the renormalization scale �. For a de-
tailed discussion of these issues and the motivation for
Eq. (14) as the definition of the fully unintegrated quark
PDF, see Sec. VC of Ref. [5].
4. Perform all necessary double-counting subtractions.
The complete factorized expression for Eq. (10) is ob-

tained via subtractions as in [24,25]. We briefly summarize
the steps here.
In a first approximation, contributions from high trans-

verse momentum jets can be neglected because they are
suppressed by powers of g2s relative to the LO contribution,
while for low transverse momenta we cannot rely on
asymptotic freedom. If this level of accuracy were suffi-
cient, then we would only need to analyze regions R1 and
�R1, which were already considered in detail in [5]. That is,
we could use the approximator notation from step 2 to
write

W��
g ðP; qÞ ¼ T1W

��
g ðP; qÞ þ �T1W

��
g ðP; qÞ

þO
��
�

Q

�
ajW��

g ðP; qÞj
�
þOðg2sÞ; (18)

where a > 0 and � is a typical hadronic mass scale. We
symbolize the contributions from regions R1 and �R1 by

W
��
��q!qðP; qÞ ¼ T1W

��
g ðP; qÞ; (19)

�W
��
�� �q! �qðP; qÞ ¼ �T1W

��
g ðP; qÞ: (20)
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We know from step 3 above that these contributions to the
hadronic tensor will ultimately be expressed in terms of
order-g2s contributions to the fully unintegrated quark (an-
tiquark) PDFs.

To include the contribution from large transverse mo-
mentum scattering, we first recognize that the remainder
terms in Eq. (18) are given exactly by the subtracted
expression

remainder ¼ ð1� T1 � �T1ÞW��
g ðP; qÞ: (21)

Up to order-g4s corrections, this remainder term is domi-
nated by wide-angle jets originating from the produced

quark and antiquark, i.e., from the large transverse mo-
mentum region R2 in the graphs of Fig. 1. In approximator
notation, T2 implements approximations that are good in
this region. Thus, we apply T2 to Eq. (21) to get a good
approximation to the contribution from region R2:

W
��
��g!q �qðP; qÞ ¼ T2ð1� T1 � �T1ÞW��

g ðP; qÞ: (22)

The subscript ��g ! q �q indicates the relevant hard par-
tonic subprocess for region R2. Instead of Eq. (18) we then
have

W��
g ðP; qÞ ¼ ðT1 þ �T1ÞW��

g ðP; qÞ þ ð1� T1 � �T1ÞW��
g ðP; qÞ

¼ ðT1 þ �T1ÞW��
g ðP; qÞ þ T2ð1� T1 � �T1ÞW��

g ðP; qÞ þO
��

�

Q

�
ajW��

g ðP; qÞj
�
þOðg4sÞ

¼ W��
��q!qðP; qÞ þ �W��

�� �q! �qðP; qÞ þW��
��g!q �qðP; qÞ þO

��
�

Q

�
ajW��

g ðP; qÞj
�
þOðg4sÞ: (23)

A demonstration that the errors in Eq. (23) are actually
�=Q-suppressed appears in Ref. [24] (for scalar field
theory). The first term in the last line of Eq. (23) is the
contribution to the structure tensor from the reaction
��p ! Jq þ X, i.e., the production of a single jet due to
the hadronization of a single knocked-out quark. The
second term is the analogous contribution for the case
where the jet originates from a knocked-out antiquark.
Both of these terms are examples of the zeroth order
contributions to DIS that were already treated in Ref. [5].

The third term in Eq. (23) is the contribution to the
hadronic structure tensor from the reaction ��p ! Jq þ
J �q þ X, i.e., from the production of two wide-angle jets

that result from the hadronization of a knocked-out quark
and antiquark. The corresponding hard scattering coeffi-
cient will be of order g2s . The last two terms represent the
suppressed remainder terms.

The first three terms in the last line of Eq. (23) give the
contribution from the graphs in Fig. 1 to gluon-induced
DIS, up to order-g4s and power-suppressed corrections. The
first two terms will factorize into a zeroth order hard
scattering coefficient, a fully unintegrated quark PDF,
and a fully unintegrated jet factor, just as in Ref. [5]. The
subtractions in Eq. (22) will then allow the third term to be
written in an analogous factorized form. The aim of this
paper is to find explicit expressions for each of the first
three terms in Eq. (23) in terms of fully unintegrated PDFs
and fully unintegrated jet factors.

In the rest of this paper, we will go through the details
of the steps enumerated above, ultimately arriving at an
explicit expression for the factorization formula in
Eq. (23).

IV. REGION R1: TARGET-COLLINEAR REGION

A. Figure 1(a)

We begin by considering the target-collinear region R1,
starting with Fig. 1(a). The steps followed in this section
are essentially the same as those described in Ref. [5], but
illustrated in detail for the specific case of the graphs
shown in Fig. 1. Since the quark is target-collinear, we
will apply approximations that allow the unapproximated
graphs to be factored into a zeroth order hard scattering
coefficient and a factor identifiable as an order-g2s contri-
bution to an expansion of the fully unintegrated quark PDF.
We restrict the detailed discussion here to the case of a
struck quark because the treatment of the antiquark case
follows analogous steps.
The components of the struck quark momentum in

region R1 are of order

k1 �
�
Q;

�2

Q
;�

�
: (24)

Recall that

k1 ¼ k� l2: (25)

We define approximate momentum variables appropriate
for R1 with a ‘‘hat,’’

k̂ 1 ¼ ð�qþ; 0; 0tÞ; l̂1 ¼ ð0; q�; 0tÞ: (26)

These are exactly the values of the parton momentum
obtained in the parton model. Now we set up a systematic
symbolic/diagrammatic notation to describe the approxi-
mator T1. For region R1 we should treat the electromag-
netic vertex as the basic partonic interaction—it should be
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regarded as a separate unit which (after approximation) can
be analyzed independently of the rest of the graph.
Therefore, we graphically denote the target-collinear ap-
proximation by inserting a solid red circle around the
electromagnetic vertex as shown in Fig. 2. The circle
should be read as an instruction to replace momenta pass-
ing inside it by approximate variables appropriate for R1.
Additionally, at each intersection of a propagator line with
the circle, there is a projection matrix needed to project out
the relevant Dirac components for unpolarized scattering.
We call the lowest order hard scattering subgraphs on the

left and right sides of Fig. 1(a) H L;R
LO;aðl1; k1Þ. (They are

rather trivial at this order since they only involve the
electromagnetic vertex factor ��.) The appropriate
target-collinear approximation (as determined in [5]) is to
make the replacement

H L
LO;aðl1; k1Þ ! P TH L

LO;aðl̂1; k̂1ÞP T; (27)

H R
LO;aðl1; k1Þ ! P JH R

LO;aðl̂1; k̂1ÞP J: (28)

The placement of the projection operators P T and P J is
represented in Fig. 1(a) by the points where the parton lines
intersect the red circles. The projection operators are the
same as in [5] and can be conveniently expressed in terms

of the approximate parton momenta:

P T ¼ 1

Q2
^6k1^6 l1; P J ¼ 1

Q2
^6 l1 ^6k1: (29)

Explicitly, the unapproximated squared amplitude aver-
aged over color for Fig. 1(a) is

ðjMaðl1; l2; kÞj2Þ�� ¼ g2sTR Tr

�
��J ðl1Þ��

�
1

k6 1 �m

�

� �	J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ;

(30)

where the color factor is TR ¼ 1=2 for an SUð3Þ gauge
theory and m is the quark mass. The factors �	
ðk; PÞ and
J ðl1Þ and J ðl2Þ represent, respectively, the incoming tar-
get subgraph and the final state jet subgraphs. These are
represented by the bubbles in Fig. 2. The red circles in
Fig. 2 are to be read as an instruction to make the replace-
ments

�� ! P J�
�P J; �� ! P T�

�P T; (31)

after which the amplitude becomes

T1ðjMaðl1; l2; kÞj2Þ�� ¼ g2sTR

ð2Q2Þ2 Tr½��^6 l1�� ^6k1�Tr½^6k1J ðl1Þ�Tr
�
^6 l1
�

1

k6 1 �m

�
�	J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ

¼ 1

Q2

�
jA��q!qðl̂1; k̂1Þj2

�
��fTr½��J ðl1Þ�g

�
g2sTR Tr

�
�þ

4

�
1

k6 1 �m

�
�	J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ

�
;

(32)

where

is just the ��q ! q amplitude squared and averaged over spin. [Recall that in our convention a factor of e2j has already been
factored out front in Eq. (10).] In Eq. (32) we have used the approximator notation discussed in Sec. III; T1 acts on the

(a) (b)

FIG. 2 (color online). Figure 1(a) with the application of the target-collinear approximation for region R1. The graph on the right-
hand side of the arrow shows the separation into the factors of Eq. (32).
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amplitude in Fig. 1(a) by replacing it with the approximate
expression on the right side, appropriate for region R1.

The trace in the second factor in Eq. (32) comes from
expanding J in a basis of the Dirac algebra

J ðlÞ ¼ J S þ ��J � þ ���J �� þ �5J 5 þ ���5J �5

(34)

and recognizing that the dominant term in unpolarized
scattering is J�ðl1Þ�þ. This is the term projected out by
P T and P J in Eqs. (31). The minus component of J ðl1Þ is
determined from the trace

J �ðl1Þ ¼ 1
4 Tr½��J ðl1Þ�: (35)

In the second line of Eq. (32), we have used braces to help
distinguish the basic elements of the factorized expression.
Once the integral over l2 is included, the last factor in
braces is identifiable as an order-g2s contribution to the
fully unintegrated quark PDF, Eq. (14). The simple par-
tonic vertex Eq. (33) has been pulled out in front. We have
extracted an overall factor of 1=Q2 to give the conventional
normalization of the ��q ! q amplitude. The factorized
form in Eq. (32) resulting from the action of T1 on Eq. (10)
is illustrated by the graph on the right side of the arrow in
Fig. 2. To simplify notation, the factored bubbles in Fig. 2
implicitly include the traces in Eq. (32). Hence, to simplify
later expressions we define

B. Figure 1(b)

For gauge theories, the situation is more complicated
than, for example, the six-dimensional scalar-�3 theory
used in Ref. [24] because, in addition to graphs like Fig. 1

(a), we can also have leading contributions from graphs
like Fig. 1(b) where there is both a target-collinear quark
and a target-collinear gluon attaching to the hard part (see
the left side of the arrow in Fig. 3). The extra collinear
gluon can be disentangled with the help of a Ward identity
argument as we now illustrate explicitly. The unapproxi-
mated expression is

ðjMbðl1; l2; kÞj2Þ�� ¼ g2sTR Tr

�
��J ðl1Þ�	

�
1

l6 1 � k6 �m

�

� ��J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ:

(38)

Following step 2 of Sec. III, we draw solid red circles
around the hard parts as shown in Fig. 3. On the right
side of the cut, we make the same approximation as in

Fig. 1(a). However, on the left side, we must first dot k̂ into
the hard bubble and multiply by n	s =ðns � k� i�Þ, as dic-
tated by the prescription in Sec. XB of Ref. [5]. Inside the
hard circles, the prescription of Ref. [5] is to replace
momentum variables by

l̂ 1 ¼ ð0; q�; 0tÞ; k̂ ¼
��qþkþ

kþ � lþ2
; 0; 0t

�
;

� l̂2 ¼
�

qþlþ2
kþ � lþ2

; 0; 0t

�
:

(39)

Note that k̂1 ¼ k̂� l̂2, which is consistent with the require-
ment that approximate momentum is conserved. The solid
red circles therefore tell us to make the replacements

�	

�
1

l6 1 � k6 �m

�
�� ! n	s

ns � k� i�
P J

^6k
�

1

^6 l1 � ^6k
�
��P J;

�� ! P T�
�P T: (40)

Note that it is necessary to use the precise definition of the
replacements in Eqs. (39) and (40) to remain consistent
with the factorization formalism of Ref. [5]. The contribu-
tion from Fig. 1(b) to the complete amplitude thus becomes

FIG. 3 (color online). Figure 1(b) with the red circles showing the application of the target-collinear approximation. The graph on the
right-hand side of the arrow shows the separation into the factors of Eq. (42). The gluon is shown attaching to an eikonal line
represented by double lines.
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ðjMbj2Þ�� ! g2sTR

ð2Q2Þ2 Tr

�
��^6 l1 ^6k

�
1

^6 l1 � ^6k
�
�� ^6k1

�
Tr½^6k1J ðl1Þ� n	s

ns � k� i�
Tr

�
^6 l1J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ: (41)

A Ward identity argument now allows the collinear gluon to be factored away from the hard part; substituting ^6k ¼
�ð^6 l1 � ^6kÞ þ ^6 l1 into Eq. (41) leads to

T1ðjMbj2Þ�� ¼ � g2sTR

ð2Q2Þ2 Tr½��^6 l1�� ^6k1�Tr½^6k1J ðl1Þ� n	s
ns � k� i�

Tr

�
^6 l1J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ

¼ 1

Q2
ðjA��q!qðl̂1; k̂1Þj2Þ��fTr½��J ðl1Þ�g

�
�g2sTR

n	s
ns � k� i�

Tr

�
�þ

4
J ðl2Þ�


�
1

k6 1 �m

��
�	
ðk; PÞ

�
: (42)

C. Figures 1(c) and 1(d)

The remaining graphs in Fig. 3 follow exactly similar steps as Figs. 1(a) and 1(b). For Fig. 1(c) we have

T1ðjMcj2Þ�� ¼ 1

Q2
ðjA��q!qðl̂1; k̂1Þj2Þ��fTr½��J ðl1Þ�g

�
�g2sTR

n


s

ns � kþ i�
Tr

�
�þ

4

�
1

k6 1 �m

�
�	J ðl2Þ

�
�	
ðk; PÞ

�
(43)

and for Fig. 1(d)

T1ðjMdj2Þ�� ¼ 1

Q2
ðjA��q!qðl̂1; k̂1Þj2Þ��fTr½��J ðl1Þ�g

�
g2sTR

n	s
ns � k� i�

n


s

ns � kþ i�
Tr

�
�þ

4
J ðl2Þ

�
�	
ðk; PÞ

�
: (44)

D. The sum of Figs. 1(a)–1(d)

Adding Figs. 1(a)–1(d) results in a factorized structure which we can express in terms of diagrams as

The graphs in the first two factors in Eq. (45) are the same as in Eqs. (33) and (35). They do not depend on l2. Hence, we can
push the l2 integral in Eq. (10) through to integrate over the last factor in parentheses and obtain the single real antiquark
contribution to the fully unintegrated quark PDF

Fð1 �qÞ
q=pðk1; PÞ ¼

Z d4l2
ð2�Þ4 g

2
sTR

�
Tr

�
�þ

4

�
1

k6 1 �m

�
�	J ðl2Þ�


�
1

k6 1 �m

��
� n	s

ns � k Tr

�
�þ

4
J ðl2Þ�


�
1

k6 1 �m

��

� n


s

ns � k Tr

�
�þ

4

�
1

k6 1 �m

�
�	J ðl2Þ

�
þ n	s

ns � k
n


s

ns � k Tr

�
�þ

4
J ðl2Þ

��
�	
ðk; PÞ: (46)

The superscript (1 �q) symbolizes that these diagrams rep-
resent the contribution to the fully unintegrated quark PDF
due to the hadronization of a single real antiquark in the
final state. Note the double lines in the last factor of

Eq. (45) denoting the eikonal propagators of Eq. (46).
Equation (46) is precisely what arises from an expansion
of the operator definition in Eq. (14) for the fully uninte-
grated quark PDF. (See Refs. [1,5] for more details on
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writing down Feynman rules for the quark PDF.) In
Eq. (46) and from here on out, we drop the explicit i�
terms in the eikonal propagators to simplify the expres-
sions. Given models (or fits to data) for J and �, we can
explicitly calculate the contribution from Fig. 1 to the fully
unintegrated quark PDF in perturbation theory using
Eq. (46). Of course, perturbative methods are only valid
for a large enough k21. Near the core of region R1 (k1 with
almost exactly vanishing minus and transverse compo-
nents), the fully unintegrated quark PDF should be mod-
eled or fit to data. Additionally, there is freedom in how one
chooses the precise value of ys so long as ys � 0.

E. Region �R1: Target antiquark

If we consider the case that the target-collinear parton is
an antiquark, then instead of Eq. (24) we use kinematic
approximations appropriate to region �R1:

k01 � ðQ;�2=Q;�Þ; (47)

where [see Fig. 1(d)] recall that

k01 ¼ l1 � k: (48)

We define the approximate variables analogously to
Eq. (26) for the target quark case. This time it is the
antiquark which gains a large minus component after being
struck by the virtual photon. So, using an inverted ‘‘hat’’ to
symbolize approximate variables for region �R1, we have

�k 0
1 ¼ ð�qþ; 0; 0tÞ; �l2 ¼ ð0; q�; 0tÞ: (49)

The remaining steps are exactly analogous to those of the
treatment of the quark target in the previous subsection.

F. Summary: Factorization formula for
��p ! 1 jetþ X scattering

We can summarize the results of this section by writing
the explicit factorization formula for the contribution to the
hadronic structure tensor from ��p ! Jqð �qÞ þ X scatter-

ing. [The subscript q ( �q) on J indicates that the jet arises
from a knocked-out quark (antiquark).] Using Eq. (45)
inside Eq. (10) and using the l1 integral to evaluate the �
function, we have

W
��
��p!JqþXðP; qÞ ¼

e2j
4�

Z d4k1
ð2�Þ4

1

Q2
ðjA��q!qðl̂1; k̂1Þj2Þ��

� Jðl1ÞFq=pðk1; PÞ: (50)

We have changed variables so that the integration in
Eq. (50) is over the struck quark momentum k1.
Furthermore, we have dropped the (1 �q) subscript on the
fully unintegrated PDF in Eq. (50) because, in general, we
need to include all graphs that contribute to the quark PDF
in addition to those shown in Eq. (46). Note that the non-
perturbative functions Jðl1Þ and Fq=pðk1; PÞ are evaluated

using exact momentum. The procedure for evaluating
Eq. (50) can be summarized as follows:
(i) Obtain parametrizations of Jðl1Þ and Fq=pðk1; PÞ

from models or fits.

(ii) Evaluate the LO hard scattering coefficient A��q!q

using Eqs. (26) to obtain l̂1 and k̂1.
The analogous expression for �R1 is

�W��
��p!J �qþXðP; qÞ ¼

e2j
4�

Z d4k01
ð2�Þ4

1

Q2
ðjA�� �q! �qð�l2; �k01Þj2Þ��

� Jðl2Þ �F �q=pðk01; PÞ: (51)

Given a particular model or parametrization of the fully
unintegrated jet factor and the fully unintegrated quark
PDF, Eqs. (50) and (51) allow a direct calculation of the
first two terms in Eq. (23). Together, they give the complete
contribution from the graphs in Fig. 1 to LO hard scatter-
ing. Away from the core of regions R1, one can also
estimate Fq=p by directly calculating Eq. (46), given

knowledge of �ðk; PÞ. For low-angle scattering we should
also include the order-g2s virtual correction to the hard
vertex. This was already worked out in Ref. [5] so we do
not repeat the steps here.

V. REGION R2: LARGE TRANSVERSE
MOMENTUM

The next step is to consider region R2, where the vir-
tuality of k1 is large and Eq. (26) is a poor approximation.
However, k still has nearly target-collinear momentum
given by Eq. (13), and l1 and l2 are highly boosted relative
to one another. Therefore, we should regard the ��g ! q �q
subgraph as the basic partonic subprocess; after making
approximations appropriate for R2, it should be possible to
factor the elementary on-shell amplitude for ��g ! q �q
scattering. Therefore, the approximated graph in region
R2 will be symbolized diagrammatically by a dashed
blue rectangular box enclosing the ��g ! q �q subgraph
as shown in Fig. 4. The box should be read as an instruction
to replace all momenta inside it by the appropriate approxi-
mated momenta for R2 (to be discussed below).
Furthermore, at each intersection of a parton line with
the dashed blue box, there needs to be an appropriate
projection onto Lorentz/Dirac components. The purpose
of this section is to establish exactly what these approx-
imations must be such that the resulting expression is
consistent with the factorization formalism that was set
up in Refs. [5,24].
Returning now to Eq. (10), we decompose the square

modulus of the amplitude into the contraction of subgraphs

ðjMðl1; l2; kÞj2Þ�� ¼ Tr½J ðl1ÞH �;	
L ðl1; l2; kÞJ ðl2Þ

�H �;	0
R ðl1; l2; kÞ��	;	0 ðk; PÞ: (52)

The H L=R are now the hard subgraphs for region R2, i.e.,
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the subgraphs enclosed by dashed blue boxes of Fig. 4. To
simplify notation, Dirac indices will be left implicit.

A. Approximations on kinematic variables

Inside the dashed blue boxes, we replace the exact
parton momentum variables with approximate momentum
variables appropriate for the production of two wide-angle
jets with large transverse momentum. We use the approxi-
mation scheme proposed in [24] applied here to the special
case of two outgoing jets. The choice of a good approxi-
mation scheme is probably not unique, though once one is
chosen it should be maintained throughout the rest of the
calculation. The approximate momentum variables for
region R2 will be denoted by a tilde placed over the
corresponding unapproximated variable.

Enforcing partonic values for the approximate momenta
amounts to requiring

~k ¼ ð~kþ; 0; 0tÞ; ~l21 ¼ 0; ~l22 ¼ 0: (53)

The true values of kt, k
�, l21 ¼ M2

1 and l22 ¼ M2
2 therefore

parametrize the deviation of the approximate kinematics
from exact kinematics. In addition, we require that both the
exact and approximate momenta obey total four-
momentum conservation:

~kþ q ¼ ~l1 þ ~l2; (54)

kþ q ¼ l1 þ l2: (55)

A choice of a mapping between exact and approximate
momenta that satisfies these constraints is [24]

k ¼
�
�qþ þ

~l21;t

2~l�1
þ

~l22;t

2~l�2
; 0; 0t

�
; (56)

~l 1 ¼
� ~l2t;1
2~l�1

; ~l�1 ; ~l1;t
�
; (57)

~l 2 ¼
� ~l2t;2
2~l�2

; ~l�2 ; ~l2;t
�
; (58)

where

~l 1;t ¼ l1;t � kt=2; ~l2;t ¼ l2;t � kt=2; (59)

~l�1 ¼ l�1 � k�=2; ~l�2 ¼ l�2 � k�=2: (60)

In the limit of small kt and small k�, we have ~lj;t � lj;t and
~l�j � l�j . Again, the choice of approximation scheme in

Eqs. (56)–(60) is not uniquely determined from Eqs. (53)–
(55). Other equally good approximation schemes may have
advantages, but the one used here and in Ref. [24] is
sufficient for our purposes. With the constraints of

Eqs. (54) and (55) we also have ~l1;t ¼ �~l2;t. Given the

exact values of initial and final state momentum, we can
write the inverse transformations

lj;t ¼ ~lj;t þ kt
2
; l�j ¼ ~l�j þ k�

2
;

lþj ¼ l2j;t þM2
j

2l�j
; kþ ¼ X

j

lþj � qþ:

Here j ¼ 1; 2 label the outgoing quark and antiquark jets.
We therefore have a one-to-one mapping between exact
and approximate momentum variables for regionR2. It will
also be useful to define approximate versions of the par-
tonic Mandelstam variables:

~s ¼ ðqþ ~kÞ2; ~t ¼ ð~l2 � ~kÞ2; ~u ¼ ð~l1 � ~kÞ2:
(61)

Our main goal is to apply a sequence of approximations
that allow the unpolarized, on-shell square modulus of the
partonic amplitude to be factored out of the complete sum
of graphs in Fig. 1. Part of the approximation is, of course,

to replace l1, l2, and k by their approximate values ~l1, ~l2,

and ~k, respectively, defined above. That is, we will ulti-
mately need to make the replacement

FIG. 4 (color online). Dashed blue boxes symbolizing the application of the approximation appropriate for region R2 to Figs. 1(a)
and 1(b). Analogous graphs are needed for Figs. 1(c) and 1(d), though we do not show them here explicitly.
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H �;	
L;Rðl1; l2; kÞ ! H �;	

L;Rð~l1; ~l2; ~kÞ: (62)

However, in a gauge theory we also need to project out the
relevant Lorentz/Dirac components of the external lines, in
a way that is appropriate for unpolarized scattering with
massless on-shell partons. The steps for these projections
will be discussed in the next few subsections.

B. Target gluon polarization

To factorize the fully unintegrated gluon PDF, we will
first need to project out the relevant polarizations of the
target gluon. It will be convenient to work at the level of the
amplitude, decomposed into upper and lower blocks as
shown in Fig. 5. The sum of graphs contributing above
the dotted line will be called U, and the sum of graphs
below the dotted line will be called L. The steps for
projecting gluon polarizations will follow closely those
in Ref. [30] for the standard integrated PDF.
Decomposing the amplitude in this way, we have

M�ðl1; l2; kÞ ¼ U�
	 ðl1; l2; kÞg		0

L	0 ðk; PÞ: (63)

Here we have explicitly extracted the numerator g�� of the
gluon propagator. We will neglect the electromagnetic
indices and the momentum arguments in this expression
when convenient.

The projections on target gluon polarizations should
allow the lower part of the graph to be separated into a
factor that is consistent with a definition for the fully
unintegrated gluon PDF. To this end, we note that, in the
center of mass frame, the target bubble is highly boosted in
the plus direction so the components of the lower bubble
have relative sizes given by

Lt

Lþ ¼ O
�
�

Q

�
;

L�

Lt

¼ O
�
�

Q

�
: (64)

Since none of the lines in the upper part of the graph are
collinear, all of the components of U are comparable:

U� �Uþ �Ut: (65)

Given Eqs. (64) and (65) it is tempting to keep only the

term U�Lþ in (63). On a graph-by-graph basis, however,
this leads to the appearance of superleading contributions
(i.e., contributions to structure functions that vary as Q2—
see, e.g., Ref. [31]). These superleading contributions cor-
respond to scalar and longitudinal polarizations whose
total contribution cancels exactly in the sum over all
graphs, at least for the case of a single target gluon.
Therefore, they should be systematically removed graph
by graph. We do this, following the Grammer and Yennie
treatment in QED [32], by first writing the gluon propa-
gator as a sum of two terms which we call ‘‘K terms’’ and
‘‘G terms’’

g�� ¼ K�� þG��; (66)

where

K�� ¼ k�n�s
k � ns ; (67)

G�� ¼ g�� � k�n�s
k � ns : (68)

We use ns in these definitions because this suggests a fully
unintegrated gluon PDF density that is closely analogous to
the quark density defined in Ref. [5]. The K term in
Eq. (66) vanishes exactly in the sum over all contributions
to the upper bubble in Eq. (63), so we drop it in our
calculations. Therefore, we replace Eq. (63) with

Mðl1; l2; kÞ ¼ U	ðl1; l2; kÞG		0
L	0 ðk; PÞ

¼ U	ðl1; l2; kÞ ~L	ðk; PÞ: (69)

In the last equality, we define ~L as a shorthand for the
contraction of L	0 with a G term. Only the transverse
components are unsuppressed in Eq. (69). Recalling
Eqs. (13) and (64) we can verify this directly by checking
the relative sizes of each combination of indices:

Uþ ~L� �O
�
�

Q

�
g�þ � k�nþs

kþn�s þ k�nþs

�
UtLt

�

�O
�
�

Q
UtLt

�
; (70)

U� ~Lþ �O
�
Q

�

�
gþ� � kþn�s

kþn�s þ k�nþs

�
UtLt

�

�O
�
�

Q
eysUtLt

�
: (71)

Thus, after the replacement in Eq. (69), the plus and minus
components for a given graph are suppressed relative to the
transverse components. (Recall that ys � 0.) Note that it is
important that the contribution from the K term vanishes
exactly in the sum over all graphs in order to avoid uncon-

trolled errors, so we must use k rather than ~k in Eqs. (67)
and (68).

FIG. 5. Basic amplitude separated into an upper part U and a
lower part L; see Eq. (63).
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As part of the wide-angle approximation, we drop the
power-suppressed terms in Eqs. (70) and (71) and make the
replacement

Mðl1; l2; kÞ !
X
j

Ujðl1; l2; kÞ ~Ljðk; PÞ

¼ X
i;j

X
s

Ujðl1; l2; kÞð�t;jÞsð�t;iÞs ~Liðk; PÞ:

(72)

The sums over i and j are only over transverse momentum
components. In Eq. (72) we have introduced the transverse
polarization vectors

ð�t;jÞ1 ¼ ð0; 1; 0; 0Þ; ð�t;jÞ2 ¼ ð0; 0; 1; 0Þ: (73)

Using Eq. (72) in the squared amplitude, summed over

final states, we have

jMðl1; l2; kÞj2 !
X

i;j;i0;j0

X
s;s0

�X
XJ

Ujðl1; l2; kÞUj0yðl1; l2; kÞ
�

� ð�t;jÞsð�t;iÞsð�t;j0 Þs0 ð�t;i0 Þs0

�
�X
XT

~Liðk; PÞ ~Ly
i0 ðk; PÞ

�
: (74)

Here
P

XJ
and

P
XT

are sums over the final states for the jets

and the target, respectively. We can use the fact that, in an
unpolarized cross section or structure function,

Ujðl1; l2; kÞUj0yðl1; l2; kÞ is diagonal in j and j0 to rewrite
Eq. (74) as

ðjMðl1; l2; kÞj2Þ�� !
�
1

2

X
XJ

X
j

Ujð~l1; ~l2; ~kÞUjyð~l1; ~l2; ~kÞ
�
��
�X
XT

X
j0
Gj0	Gj0	0

L	ðk; PÞLy
	0 ðk; PÞ

�

¼ 1

2

X
s

X
i;i0

Tr½J ðl1ÞH �;i
L ðl1; l2; kÞJ ðl2ÞH �;i0

R ðl1; l2; kÞ�ð�t;iÞsð�t;i0 ÞsFð0Þ
g=pðk; PÞ: (75)

To symbolize the gluon projections described above, we
use a projection matrix P g

jj0 , defined to implement the
replacement in Eq. (72). That is, the replacement in
Eq. (72) is expressed as

Mðl1; l2; kÞ ! Ujðl1; l2; kÞP g
jj0L

j0 ðk; PÞ: (76)

C. The fully unintegrated gluon PDF

The square modulus of the amplitude in Fig. 5 is fac-
tored into two parts in Eq. (75). The first factor is simply
the on-shell squared matrix element for scattering off a
transversely polarized gluon, averaged over transverse po-
larizations. The second factor

Fð0Þ
g=pðk; PÞ ¼

X
XT

X
j0
Gj0	Gj0	0

L	ðk; PÞLy
	0 ðk; PÞ

¼ X
j0
Gj0	Gj0	0

�		0 ðk; PÞ (77)

is what we identify with the lowest order correction to the
unpolarized fully unintegrated gluon PDF. This suggests
the following operator definition for the fully unintegrated
gluon PDF:

Fg=pðk; PÞ ¼
X2
j

Z dwþdw�d2wt

ð2�Þ4 e�ik�whPj½ns;�G�jðwÞ�

� ½ns;�G�jð0Þ�jPi: (78)

The sum over indices j involves only the transverse com-
ponents.G is the gauge field strength tensor. The factorized
structure of Eq. (75) is shown graphically in Fig. 6 where

the graph beneath the horizontal dotted line now corre-
sponds to Eq. (78) and the part above the dotted line
corresponds to the first factor in parentheses in Eq. (75).
The cross drawn at the end of the target gluon is meant to
symbolize that it is only the G term that is retained in the
target gluon propagator in Eq. (77). In a non-Abelian gauge
theory, Eq. (78) will need to be modified by the insertion of
a Wilson line operator, similar to the definition in Ref. [4],

FIG. 6. The square modulus of the amplitude after keeping G
terms and projecting transverse components of the gluon propa-
gator. The disconnected upper and lower parts represent the
factors in Eq. (75). The cross on the gluon in the lower bubble
represents the contraction of the G term with the lower bubble in
Eq. (69).
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but these modifications will not effect the LO structure in
Fig. 6.

D. Final state jets

Next we make projections onto relevant Dirac compo-
nents for the outgoing jet lines, appropriate for region R2.
The final state jet bubbles can be expanded, as in Eq. (34),
in a basis of the Dirac algebra. The dominant components
in these expansions are most easily found by working in
coordinates where theþz axis lies along the direction of l2.

Then ~l2 has a large plus component and ~l1 has a large minus
component. The dominant contributions for each jet bubble
are then

��J �ðl1Þ � 1

ð2~sÞ2
~6 l1~6 l2J �ðl1Þ~6 l2~6 l1; (79)

��J �ðl2Þ � 1

ð2~sÞ2
~6 l2~6 l1J �ðl2Þ~6 l1~6 l2: (80)

Since we restrict to unpolarized scattering, we have
dropped polarization-dependent terms. In Eqs. (79) and

(80) we have used the approximate momenta to write the
substitution in a frame-independent way. Now it is clear
what the Dirac projection operators are for region R2:

P ~l1
¼ 1

2~s
~6 l1~6 l2; P ~l2

¼ 1

2~s
~6 l2~6 l1: (81)

Part of the approximation for R2 is then to make the
substitutions

J ðl1Þ ! P ~l1
J ðl1ÞP ~l2

; J ðl2Þ ! P ~l2
J ðl2ÞP ~l1

: (82)

Equivalently, we may write

��J �ðl1Þ �
~6 l1
2~s

Tr½~6 l2J ðl1Þ�; (83)

��J �ðl2Þ �
~6 l2
2~s

Tr½~6 l1J ðl2Þ�: (84)

Making these substitutions in the squared amplitude, we
have

ðjMðl1; l2; kÞj2Þ�� ! Tr½P ~l1
J ðl1ÞP ~l2

H �;	
L ðl1; l2; kÞP ~l2

J ðl2ÞP ~l1
H �;	0

R ðl1; l2; kÞ��	;	0 ðk; PÞ

¼ Tr½~6 l1H �;	
L ðl1; l2; kÞ~6 l2H �;	0

R ðl1; l2; kÞ�
�
1

2~s
Tr½~6 l2J ðl1Þ�

��
1

2~s
Tr½~6 l1J ðl2Þ�

�
�	;	0 ðk; PÞ: (85)

Finally, for convenience we define the following notation:

The subscript on J indicates which vector is used for
projecting Dirac indices. Note the difference in normaliza-
tion from Eqs. (36) and (37).

E. Factorized expression for wide-angle
��p ! 2 jetsþ X scattering

We now have all of the steps needed to factor the on-
shell ��g ! q �q matrix element from the rest of the graphs
in Fig. 1. Combining all of the approximations discussed in
this section, appropriate for region R2, amounts to replac-
ing the hard scattering subgraphs by

H �;	
R ðl1; l2; kÞ ! P ~l2

H �;j
R ð~l1; ~l2; ~kÞP ~l2

P g
jj0 ; (88)

H �;	
L ðl1; l2; kÞ ! P g

ii0P ~l1
H �;i

L ð~l1; ~l2; ~kÞP ~l1
: (89)

The approximator T2 appropriate for region R2 acts on the
squared amplitude by making the complete set of replace-
ments from this section in the graphs of Fig. 1 and Eq. (52):

T2ðjMðl1; l2; kÞj2Þ�� ¼ Tr½P ~l1
J ðl1ÞP ~l2

H �;j
L ð~l1; ~l2; ~kÞP ~l2

J ðl2ÞP ~l1
H �;i

R ð~l1; ~l2; ~kÞ�P g
jj0P

g
ii0�

j0i0 ðk; PÞ

¼ 1

2

X
s

X
jj0
ð�t;jÞsð�t;j0 Þs Tr½~6 l1H �;j

L ð~l1; ~l2; ~kÞ~6 l2H �;j0
R ð~l1; ~l2; ~kÞ�J~l2ðl1ÞJ~l1ðl2ÞFg=pðk; PÞ

¼ ðjA��g!q �qð~l1; ~l2; ~kÞj2Þ��J~l2ðl1ÞJ~l1ðl2ÞFg=pðk; PÞ: (90)

In the second line we have repeated the steps that give Eqs. (75) and (85), and we have dropped the small components in
Eqs. (70) and (71). The ordinary unpolarized on-shell matrix element has been factored out of Eq. (90).

To summarize, Eq. (90) is the factorized expression for the graphs in Fig. 1 that is a good approximation in the region
of momentum space corresponding to two high transverse momentum jets. The matrix element for massless on-shell
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��g ! q �q scattering with transversely polarized gluons has been factored out of the rest of the graph. The last line in
Eq. (90) can be interpreted diagrammatically as

To obtain the complete NLO result, we need to avoid
double counting by subtracting from Eq. (90) the LO result
of Sec. IV. This is the topic of the next section.

VI. DOUBLE-COUNTING SUBTRACTIONS

Recalling Eq. (23), the NLO contribution to the hadronic
tensor is

W
��
��p!q �qðP; qÞ ¼ T2W

��
g ðP; qÞ � T2T1W

��
g ðP; qÞ

� T2
�T1W

��
g ðP; qÞ: (92)

The first term in Eq. (92) is found by using the amplitude,
Eq. (90), in Eq. (10) for the structure tensor. The second
term is the subtraction term corresponding to region R1 and
is found by directly evaluating

T2T1ðjMðl1; l2; kÞj2Þ��: (93)

Similarly, the subtraction term for region �R1 (target-
collinear antiquark) is found by evaluating

T2
�T1ðjMðl1; l2; kÞj2Þ��: (94)

With the careful formulation given so far of the approx-
imations for each region, it is now straightforward to obtain
the correct subtraction term by directly applying the ap-
proximators, T1, �T1, and T2, in Eqs. (93) and (94). In this
section we go through the steps of applying these approx-
imations, and we derive explicit expressions for the sub-

traction terms. Returning again to Fig. 1, we consider each
graph separately.

A. Subtraction term for region R1

1. Figure 1(a)

We start by calculating Eq. (93), beginning with the box
diagram [Fig. 1(a)] and the corresponding amplitude
Eq. (30). We first apply the approximator T1 as it is defined
in Sec. IV and then the approximator T2 as it is defined
Sec. V. As in Sec. IV, the application of the first approx-
imator is represented by solid red circles. The application
of the T2 approximator is represented by a dashed blue box
enclosing the entire ��g ! q �q block including the solid
red circles (see Fig. 7). Inside the dashed blue box, parton
momenta are replaced by the approximate values in
Eqs. (56)–(58) (each denoted by a tilde). Additionally,
there is a projection at the intersection of each parton
line with the dashed box. Inside the solid red circle, parton
momenta are replaced by the approximate values in
Eq. (26) (each denoted by a hat). Again, there are projec-
tions at each intersection of a parton line with the solid red
circle.
The parton lines on either side of the electromagnetic

vertices intersect the solid red circle so we make the
replacements

�� ! P J�
�P J; �� ! P T�

�P T; (95)

FIG. 7 (color online). The sequence of approximations needed to obtain the subtraction terms corresponding to Figs. 1(a) and 1(b).
Analogous approximations are also need for Figs. 1(c) and 1(d), though we do not show them here.
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as prescribed by T1. Next, the external legs of the ��g !
q �q subgraph pass through the dashed blue lines, so we
make the further replacements prescribed by T2:

P J�
�P J

�
1

k6 1 �m

�
�	 ! P g

jj0P ~l2
P J�

�P J

�
1
~6k1

�
�jP ~l2

;

(96)

�


�
1

k6 1 �m

�
P T�

�P T ! P ~l1
�i

�
1
~6k1

�
P T�

�P TP ~l1
P g

ii0 :

(97)

There is a projection for each intersection of a parton line
with the dashed blue boxes. Additionally, the momentum

k1 has been replaced by ~k1 [Eq. (56)] inside the boxes, and
the masses of the internal partons are set to zero. Making
these substitutions in the square modulus of the amplitude
leads to

T2T1ðjMaðl1; l2; kÞj2Þ�� ¼ g2sTR Tr

�
��P TP ~l1

J ðl1ÞP ~l2
P J�

�P J

�
1
~6k1

�
�jP ~l2

J ðl2ÞP ~l1
�i

�
1
~6k1

�
P T

�
P g

jj0P
g
ii0�

j0i0 ðk; PÞ: (98)

Repeating the steps of the last two sections allows Eq. (98) to be written in a more compact form with clearly recognizable
factors:

T2T1ðjMaðl1; l2; kÞj2Þ�� ¼ g2sTR

2ð2~sÞ2
X
s

X
i;j

ð�t;jÞsð�t;iÞs Tr
�
��P T

~6 l1P J�
�P J

�
1
~6k1

�
�j~6 l2�i

�
1
~6k1

�
P T

�
fTr½~6 l2J ðl1Þ�g

� fTr½~6 l1J ðl2Þ�gFg=pðk; PÞ

¼ 1

2
Tr½��^6 l1�� ^6k1��aðl1; l2; kÞ

�
1

2~s
Tr½~6 l2J ðl1Þ�

��
1

2~s
Tr½~6 l1J ðl2Þ�

�
Fg=pðk; PÞ; (99)

where in the third line we define the factor

�aðl1; l2; kÞ ¼ g2sTR

ð2Q2Þ2
X
s

X
i;j

ð�t;jÞsð�t;iÞs Tr½^6k1^6 l1�Tr
�
^6 l1
�
1
~6k1

�
�j~6 l2�i

�
1
~6k1

��
: (100)

Evaluating the contribution from Fig. 4(a) to Eq. (90) and then subtracting Eq. (99) yields the contribution from Fig. 1(a) to
the first two terms in Eq. (92):

T2ðjMaðl1; l2; kÞj2Þ�� � T2T1ðjMaðl1; l2; kÞj2Þ�� ¼ fðjA��g!q �q
a ð~l1; ~l2; ~kÞj

2Þ�� ��aðl1; l2; kÞðjA��q!qðl̂1; k̂1Þj2Þ��g
� J~l2ðl1ÞJ~l1ðl2ÞFg=pðk; PÞ: (101)

One can verify, by repeating the steps above for �T1, that Fig. 1(a) does not contribute to the third term in Eq. (92). Thus, the
factor in braces in Eq. (101) is precisely the contribution to the NLO fully unintegrated hard scattering coefficient arising
from the application of the approximations and subtractions to Fig. 1(a). Apart from �aðl1; l2; kÞ [defined in Eq. (100)]
Eq. (101) only involves ordinary on-shell squared amplitudes for parton scattering. Graphically, the contribution to the
hard scattering coefficient [in braces in Eq. (101)] is

The second factor here is the subtraction term. The approximations that lead to Eq. (101) allow the hard vertex to be
factored out of the rest of the subtraction term. Thus, we may write the graphical representation of the subtraction term in
the simplified form:

TED C. ROGERS PHYSICAL REVIEW D 78, 074018 (2008)

074018-16



In the subtraction term, after the vertex factor is extracted
as in Eq. (103), the singular behavior at ~k1 ! k̂1 is con-
tained in the factor �aðl1; l2; kÞ which can be calculated
directly by first writing it as

�aðl1; l2; kÞ ¼ g2sTR

ð2Q2Þ2 g
t
	
 Tr½^6k1^6 l1�Tr

�
^6 l1
�
1
~6k1

�
�	^6 l2�


�
1
~6k1

��
;

(104)

where we define the transverse tensor

gt	
 ¼ �g	
 þ
~k	nJ;
 þ nJ;	~k


~k � nJ
; nJ ¼ ð0; 1; 0tÞ:

(105)

Evaluating Eq. (104) yields

�aðl1; l2; kÞ ¼ �g2sTR

Q4~t
ð2k̂1 � ~l1Þ

�
�
4l̂1 � ~k� ð2l̂1 � ~k1Þð2~l2 � nJÞ

~k � nJ
� ð2l̂1 � ~l2Þð2~k1 � nJÞ

~k � nJ
�
: (106)

Note that�a depends on the exact momenta l1,l2, and k via
the dependence of the approximate momentum variables
on exact momenta as defined in Eqs. (26) and (56)–(58).

2. Figures 1(b)–1(d)

Wemay also go through the steps for Fig. 1(b). The solid
red circles and dashed blue boxes denoting the sequence of
approximations are shown in Fig. 7(b). Starting again with
Eq. (38), we first apply the approximator for region R1. The
red circles tell us to make the replacements

�	

�
1

l6 1 � k6 �m

�
�� ! P J�

	

�
1

^6 l1 � ^6k
�
��P J;

�� ! P T�
�P T: (107)

Additionally, in accordance with our prescription for re-

gion R1, we dot
^6k into the left-hand circle and multiply by

n	s =ðns � kÞ. So we make the further substitution

P J�
	

�
1

^6 l1 � ^6k
�
��P J ! n	s

ns � kP J
^6k
�

1

^6 l1 � ^6k
�
��P J:

(108)

The outer rectangle tells us to apply the approximations for
region R2 to everything inside it. Therefore, on the left-
hand side we make the substitutions

n	s
ns � kP J

^6k
�

1

^6 l1 � ^6k
�
��P J ! P g

jj0P l2

njs

ns � ~k
P J

^6k
�

1

^6 l1 � ^6k
�

� ��P JP l2 ¼ 0: (109)

The left-hand hard subgraph in Fig. 1(b) exactly vanishes
because P g

jj0 involves only transverse components [see

Eq. (72)] whereas ns has no transverse components. A
similar result holds for Figs. 1(c) and 1(d). Thus, only
Eq. (101) contributes to the region R1 subtraction term.

B. Subtraction term for region �R1

The steps for calculating the antiquark subtraction term,
Eq. (94), follow exactly analogous steps to what was al-
ready done in the previous subsection for region R1, so we
do not repeat the details. Instead of Fig. 1(a), it is Fig. 1(d)
that gives the only nonvanishing subtraction term in region
�R1. The analogue of Eq. (101) is

T2ðjMdðl1; l2; kÞj2Þ�� � T2
�T1ðjMdðl1; l2; kÞj2Þ��

¼ fðjA��g!q �q
d ð~l1; ~l2; ~kÞj2Þ�� ��dðl1; l2; kÞ

� ðjA�� �q! �qð�l2; �k01Þj2Þ��gJ~l2ðl1ÞJ~l1ðl2ÞFg=pðk; PÞ:
(110)

The factor in the subtraction term analogous to Eq. (106) is

��dðl1; l2; kÞ ¼ �g2sTR

Q4~u
ð2 �k01 � ~l2Þ

�
�
4�l2 � ~k� ð2�l2 � ~k01Þð2~l1 � nJÞ

~k � nJ
� ð2�l2 � ~l1Þð2~k01 � nJÞ

~k � nJ
�
: (111)
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VII. COMPLETE NLO CONTRIBUTION

Gathering the results of the previous section together, we
may write down the order-g2s contribution to Eq. (10):

W��
��g!q �qðP; qÞ ¼

e2j
4�

Z d4l2
ð2�Þ4

Z d4l1
ð2�Þ4

Z d4k

ð2�Þ4
� ~W��

��g!q �qðl1; l2; kÞJ~l2ðl1ÞJ~l1ðl2Þ
� Fg=pðk; PÞð2�Þ4�ð4Þðkþ q� l1 � l2Þ:

(112)

This is the desired factorized form for the third term in the

last line of Eq. (23). The fully unintegrated hard scattering
coefficient is, from Eqs. (101) and (110),

~W ��
��g!q �qðl1; l2; kÞ ¼ ðjA��g!q �qð~l1; ~l2; ~kÞj2Þ��

��aðl1; l2; kÞðjA��q!qðl̂1; k̂1Þj2Þ��

� ��dðl1; l2; kÞðjA�� �q! �qð�l2; �k01Þj2Þ��:

(113)

In terms of diagrams, the hard scattering coefficient is

The steps for evaluating the integral in Eq. (112) are as
follows:

(i) Obtain values of l1, l2 and k directly from parame-
trizations or models of J~l2ðl1Þ, J~l1ðl2Þ, and Fg=pðk; PÞ.

(ii) Determine the correct approximate values of parton

momentum ðl̂1; k̂1; �l2; �k01; ~l1; ~l2; ~kÞ using Eqs. (26),
(49), and (56)–(58).

(iii) Evaluate Eq. (113) using these approximate mo-

menta. The factors�aðl1; l2; kÞ and ��dðl1; l2; kÞ are
to be directly evaluated using Eqs. (106) and (111).
The squared amplitudes in Eq. (114) are just the
usual ones obtained using Feynman graphs but
evaluated with the appropriate approximate parton
momentum. Calculating these amplitudes requires
that we make a projection on electromagnetic in-
dices to obtain a particular structure function. For
completeness, we give explicit expressions for the
squared partonic amplitudes, with projections on
electromagnetic indices, in the appendix.

The first term in Eq. (113) contains singularities at ~k1 !
k̂1 and ~k01 ! �k01 which are exactly canceled by the sub-
traction terms where the singularities are contained in the

factors�aðl1; l2; kÞ and ��dðl1; l2; kÞ. This is similar to what
occurs in the usual subtraction approach to factorization.
However, in the standard integrated approach to factoriza-
tion, the subtractions involve generalized functions (e.g., �
functions and ‘‘þ’’ distributions), so that the cancellation
only makes sense after an integration over final states. By

contrast, the fully unintegrated hard scattering coefficient
Eq. (113) is just an ordinary function that can be evaluated
for any final state momentum. The subtractions of
Refs. [5,24] that ensure consistent factorization occur point
by point in momentum space. Using Eqs. (A1)–(A6) in the
appendix, we have verified numerically that the cancella-
tion of singularities takes place.

VIII. SUMMARYAND CONCLUSION

With the results of this paper we are able to directly
calculate the gluon-induced contribution to the unpolarized
structure functions to order g2s in a fully unintegrated
approach. The key results are the LO contributions
Eqs. (50) and (51) and the NLO contribution Eq. (112) to
the hadronic structure tensor Eq. (10). The LO and NLO
results should be summed to accurately describe the over-
lap of the different regions of momentum space. Since we
have used the subtraction methods of Refs. [24,25], we can
be confident that corrections are �=Q-suppressed point by
point in momentum space.
Evaluating Eqs. (10), (50), and (51) only requires the

expressions for the matrix elements obtained from ordinary
Feynman graph methods [see Eqs. (A1)–(A6)] and the
explicit expressions given for the factors �aðl1; l2; kÞ and
��dðl1; l2; kÞ in Eqs. (106) and (111). Finally, the approxi-
mate variables used to evaluate the different factors (106),
(111), and (A1)–(A6) are given by the mappings in
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Eqs. (26), (39), and (56)–(61) which relate exact to ap-
proximate momentum variables.

Since there is a large overlap of regions R1 and �R1 with
R2, the subtraction terms need to be dealt with very care-
fully. As an example of how things could go wrong, we

could imagine that we approximate k̂ in the numerator of

the subtraction factors [Eqs. (106) and (111)] by k̂ from
Eq. (39). This could simplify the expressions, and, naively,
it might seem to make sense given that the purpose of the
subtraction terms is to remove double counting from R1

and �R1 where k̂ is a good approximation to k. However, the
subtraction terms are used in regions of momentum space
that are far from the core of the R1 and �R1 regions. Thus,

replacing ~k by k̂ in Eqs. (106) and (111) yields large
modifications to Eq. (114) in certain regions of phase
space. Alternatively, one could imagine trying to change

the definition of k̂ in Eq. (39). However, the definition of k̂
that we have used is rigidly fixed by the requirements of the
factorization formula in Ref. [5], with a well-defined fully
unintegrated quark PDF. We can thus see how the lowest
order factorization formula and the corresponding defini-
tions for the fully unintegrated PDFs place important re-
strictions on the higher order calculations.

We have so far considered only the ��g ! q �q partonic
subprocess. To complete the NLO treatment requires that
we include the somewhat more complicated ��q ! gq
partonic subprocess, so the result of this paper is not quite
a complete NLO treatment. However, this paper provides a
concrete illustration of the techniques developed in
Refs. [5,24] applied to order-g2s scattering and provides a
starting point for considering more complicated diagrams.
Furthermore, the graphs in Fig. 1 dominate processes at
low x and are the only graphs included in some MCEGs.
Thus, the results presented here are already of phenome-
nological interest. The treatment in this paper can be
implemented directly in Monte Carlo calculations similar
to what was done in Refs. [23,33] where it was shown that
fully unintegrated PDFs are needed to obtain an accurate
description of the distribution in final states. Using the
results of this paper, one has direct access to the fully
unintegrated gluon PDF. Furthermore, the techniques de-
scribed here are likely to be compatible with existing
methods [20–22,34–37] in the description of initial and
final states; a description of the nonperturbative bubbles�
and J can likely be obtained by utilizing these other
approaches.

In the large-x limit, the standard kinematic approxima-
tions of collinear factorization can affect even totally in-
clusive quantities, and a fully unintegrated formalism may
be needed. The setup in this paper naturally takes large-x
kinematic effects into account. An alternative, simpler
approach was developed in Ref. [38] where cross sections
where written in terms of the usual integrated PDFs of the
standard collinear factorization theorems, but such that
large-x effects from initial and final state masses were

taken into account. It is possible that this approach can
be extended to the order-g2s jet production calculation
presented in this paper in the large-x limit, thus simplifying
the evaluation of Eq. (112). (In the large-x limit, however,
it is not sufficient to keep only the diagrams of Fig. 1, and
quark-induced processes also need to be included.)
The natural next step is to extend the calculation illus-

trated in this paper to the case of single gluon emission.
That is, for the partonic subprocess, we also need to con-
sider diagrams for ��q ! gq scattering. The calculation
will follow steps very similar to those presented here.
However, it will be somewhat complicated by the need to
take into account subtractions that correspond to contribu-
tions to the soft factor and the jet factor. Therefore, the soft
factor will need to be explicitly included everywhere.
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APPENDIX: PARTONIC AMPLITUDES

Structure functions like Eq. (11) are calculated by mak-
ing projections on electromagnetic indices using suitable
combinations of g�� and P�P�. Here we write down the
explicit expressions obtained by projecting with g�� and
P�P� on the partonic squared amplitudes in Eq. (113). For
the LO partonic amplitude the result is

g��ðjA��q!qðl̂1; k̂1Þj2Þ�� ¼ �2Q2; (A1)

P�P�ðjA��q!qðl̂1; k̂1Þj2Þ�� ¼ 0; (A2)

g��ðjA��q!qð�l2; �k01Þj2Þ�� ¼ �2Q2; (A3)

P�P�ðjA��q!qð�l2; �k01Þj2Þ�� ¼ 0: (A4)

For the NLO partonic amplitude the result is

g��ðjA��g!q �qð~l1; ~l2; ~kÞj2Þ�� ¼ �4g2sTR

�~t
~u
þ ~u

~t
� 2~sQ2

~t ~u

�
;

(A5)
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and

P�P�ðjA��g!q �qð~l1; ~l2; ~kÞj2Þ�� ¼ �2g2sTR

�
ð2~k � PÞ

�
2~l1 � P

~t
þ 2~l2 � P

~u

�
þM2

p

�
~u

~t
þ ~t

~u

��

þ 2g2sTR

~t ~u
ð2~sQ2M2

p � ð2P � ~l1Þðð2P � ~k1Þð2~k01 � ~l2Þ þ ~tð2P � ~k01ÞÞ
� ð2P � ~l2Þðð2P � ~k01Þð2~k1 � ~l1Þ � ~uð2P � ~k1ÞÞÞ: (A6)

We have verified numerically that Eq. (A6) is nonsingular at the core of regions R1 and �R1. The desired unpolarized
structure functions are obtained by taking appropriate combinations of g�� and P�P� as in Eq. (11).
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