
QCD corrections to polarization of J=c and � at Fermilab Tevatron and CERN LHC

Bin Gong and Jian-Xiong Wang

Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918(4), Beijing, 100049, China
and Theoretical Physics Center for Science Facilities, Beijing, 100049, China

(Received 19 May 2008; revised manuscript received 5 August 2008; published 10 October 2008)

In this work, we present more details of the calculation on the next-to-leading-order (NLO) QCD

corrections to polarization of direct J=c production via color singlet at the Tevatron and LHC, together

with the results for � for the first time. Our results show that the J=c polarization status drastically

changes from transverse polarization dominant at leading order into longitudinal polarization dominant in

the whole range of the transverse momentum pt of J=c when the NLO corrections are counted. For �

production, the pt distribution of the polarization status behaves almost the same as that for J=c except

that the NLO result is transverse polarization at small pt range. Although the theoretical evaluation

predicts a larger longitudinal polarization than the measured value at the Tevatron, it may provide a

solution towards the previous large discrepancy for J=c and� polarization between theoretical prediction

and experimental measurement, and suggests that the next important step is to calculate the NLO

corrections to hadronproduction of color-octet state J=c ð8Þ and �ð8Þ. Our calculations are performed in

two ways: namely, we do and do not analytically sum over the polarizations, and then check them with

each other.
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I. INTRODUCTION

The study of J=c production in various experiments is a
very interesting topic since its discovery in 1974. It is a
good place to probe both perturbative and nonperturbative
aspects of QCD dynamics. To describe the huge discrep-
ancy of the high-pt J=c production between the theoreti-
cal calculation based on the color-singlet mechanism [1]
and the experimental measurement by the CDF
Collaboration at the Tevatron [2], the color-octet mecha-
nism [3] was proposed based on the nonrelativistic QCD
(NRQCD) [4]. The factorization formalism of NRQCD
provides a theoretical framework to the treatment of
heavy-quarkonium production. It allows consistent theo-
retical prediction to be made and to be improved system-
atically in the QCD coupling constant �s and the heavy-
quark relative velocity v. The color-singlet mechanism is
straightforward from the perturbative QCD, but the color-
octet mechanism depends on nonperturbative universal
NRQCD matrix elements. So various efforts have been
made to confirm this mechanism, or to fix the magnitudes
of the universal NRQCD matrix elements. Although it
seems to show qualitative agreements with experimental
data, there are certain difficulties in the quantitative esti-
mate in NRQCD for J=c photoproduction at the DESYep
collider HERA [5–10], J=c ðc 0Þ and � polarization of
hadronproduction at the Fermilab Tevatron, and J=c pro-
duction at B-factories. A review of the situation can be
found in Ref. [11].

Without next-to-leading-order (NLO) corrections, it is
difficult to obtain agreement between the experimental
results and leading-order theoretical predictions for J=c
production. There are a few examples that NLO correc-
tions are quite large. It was found that the current experi-

mental results on inelastic J=c photoproduction [12,13]
are adequately described by the color-singlet channel alone
once higher-order QCD corrections are included [7,8],
although Ref. [14] found that the DELPHI [15] data evi-
dently favor the NRQCD formalism for J=c production,
�þ � ! J=c þ X, rather than the color-singlet model.
And it was also found in Ref. [16] that the QCD higher-
order process �þ � ! J=c þ cþ �c gives the same order
and even larger contribution at high pt than the leading-
order color-singlet processes. In Ref. [17], the NLO pro-
cess cþ g ! J=c þ c, where the initial c quark is the
intrinsic c quark from the proton at the Tevatron, gives
larger contribution at high pt than the leading-order color-
singlet processes. The large discrepancies found in the
single and double charmonium production in eþe� anni-
hilation at B-factories between LO theoretical predictions
[18–20] and experimental results [21,22] were studied in
many works. It seems that they may be resolved by includ-
ing higher-order correction: NLO QCD and relativistic
corrections [18,23–28].
Based on NRQCD, the LO calculation predicts a sizable

transverse polarization for J=c production at high pt at the
Tevatron [29–31] while the measurement at the Fermilab
Tevatron [32] gives a slight longitudinal polarized result. In
a recent paper [33], the measurement on polarization of �
production at the Tevatron is presented and the NRQCD
prediction [34] does not coincide with it. Beyond the
NRQCD framework, there is an attempt by using s-channel
treatment to J=c hadronproduction in the work of
Ref. [35], which gives longitudinal polarization. Within
the NRQCD framework, to calculate higher-order correc-
tions is an important step towards the solution of such
puzzles. Recently, NLO QCD corrections to J=c hadron-
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production have been calculated in Ref. [36]. The results
show that the total cross section is boosted by a factor of
about 2 and the J=c transverse momentum pt distribution
is enhanced more and more as pt becomes larger. A real
correction process gþ g ! J=c þ cþ �c at NLO, which
is not included in Ref. [36], was calculated in [16,37]. It
gives sizable contribution to pt distribution of J=c at the
high pt region, and it alone gives an almost unpolarized
result. Therefore it is very interesting to know the result of
J=c polarization when NLO QCD corrections are in-
cluded. In a recent paper [38], we presented a calculation
on the NLO QCD corrections to the J=c polarization in
hadronproduction at the Tevatron and LHC. In this paper,
we give more details of the calculation, and the results for
� polarization for the first time. The results show that the
polarizations of J=c and � are drastically changed from
more transverse polarization at LO into more longitudinal
polarization at NLO. Meanwhile, our results for total cross
section and transverse momentum distribution are consis-
tent with Ref. [36]. In this calculation, we use our Feynman
Diagram Calculation package (FDC) [39] with a newly
added part of a complete set of methods to calculate tensor
and scalar integrals in dimensional regularization, which
was used in our previous work [24,25].

This paper is organized as follows. In Sec. II, we give the
LO cross section for the process. The calculation of NLO
QCD corrections is described in Sec. III. In Sec. IV, we
present the formula in final integration to obtain the trans-
verse momentum distribution of J=c production.
Section V is devoted to the description about the calcula-
tion of J=c polarization. The color factor treatment for all
the calculated processes are given in Sec. VI. In Sec. VII,
treatment of � is given. The numerical results are pre-
sented in Sec. VIII. Finally, the conclusion and discussion
are given in Sec. IX.

II. THE LO CROSS SECTION OF J=c
HADRONPRODUCTION

The related Feynman diagrams which contribute to the
LO amplitude of the partonic process gðp1Þ þ gðp2Þ !

J=c ðp3Þ þ gðp4Þ are shown in Fig. 1, while the others
can be obtained by permuting the places of gluons.
In the nonrelativistic limit, we can use the NRQCD

factorization formalism to obtain the partonic differential
cross section in n ¼ 4� 2� dimensions as

d�̂B

dt̂
¼5��3

s jRsð0Þj2½ŝ2ðŝ�1Þ2þ t̂2ðt̂�1Þ2þ û2ðû�1Þ2�
144m5

cŝ
2ðŝ�1Þ2ðt̂�1Þ2ðû�1Þ2

þOð�Þ; (1)

by introducing three dimensionless kinematic variables:

ŝ¼ðp1þp2Þ2
4m2

c

; t̂¼ðp1�p3Þ2
4m2

c

; û¼ðp1�p4Þ2
4m2

c

; (2)

whereRsð0Þ is the radial wave function at the origin of J=c
and the reasonable approximation MJ=c ¼ 2mc is taken.

The LO total cross section is obtained by convoluting the
partonic cross section with the parton distribution function
(PDF) Ggðx;�fÞ in the proton:

�B ¼
Z

dx1dx2Ggðx1; �fÞGgðx2; �fÞ�̂B; (3)

where �f is the factorization scale. In the following �̂

represents the corresponding partonic cross section.

III. THE NLO CROSS SECTION OF J=c
HADRONPRODUCTION

The NLO contributions to the process can be written as a
sum of two parts: one is the virtual correction which arises
from loop diagrams, the other is the real correction caused
by radiation of a real gluon, or a gluon splitting into a light
quark-antiquark pair, or a light (anti)quark splitting into a
light (anti)quark and a gluon.

A. Virtual corrections

There are UV, IR, and Coulomb singularities in the
calculation of the virtual corrections. UV-divergences ex-
isting in the self-energy and triangle diagrams are removed
by the renormalization of the QCD gauge coupling con-
stant, the charm quark mass, charm quark field, and gluon
field. Here we adopt the renormalization scheme used in
Ref. [40]. For the charm quark mass, charm quark field,
and gluon field, the renormalization constant Zm, Z2, and
Z3 are determined in the on-mass-shell (OS) scheme while
for the QCD gauge coupling constant, Zg is fixed in the

modified-minimal-subtraction(MS) scheme:

p3
p1

p2 p4

FIG. 1. Leading-order Feynman diagrams for gþ g ! J=c þ
g. The other five diagrams can be obtained by permutation of the
places of gluons.
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�ZOS
m ¼ �3CF

�s

4�

�
1

�UV
� �E þ ln

4��2
r

m2
c

þ 4

3

�
;

�ZOS
2 ¼ �CF

�s

4�

�
1

�UV
þ 2

�IR
� 3�E þ 3 ln

4��2
r

m2
c

þ 4

�
;

�ZOS
3 ¼ �s

4�

�
ð�0 � 2CAÞ

�
1

�UV
� 1

�IR

��
;

�ZMS
g ¼ ��0

2

�s

4�

�
1

�UV
� �E þ lnð4�Þ

�
; (4)

where �E is Euler’s constant, �0 ¼ 11
3 CA � 4

3TFnf is the

one-loop coefficient of the QCD beta function, and nf is

the number of active quark flavors. There are three mass-
less light quarks u, d, s, so nf ¼ 3. In SUð3Þc, color factors
are given by TF ¼ 1

2 , CF ¼ 4
3 , CA ¼ 3. And �r is the

renormalization scale.
After having fixed the renormalization scheme, there are

129 NLO diagrams in total, including counter-term dia-
grams. They are shown in Fig. 2, and divided into eight
groups. Diagrams of Fig. 2(e) that has a virtual gluon line
connected with the quark pair lead to Coulomb singularity,
which can be isolated by introducing a small relative
velocity v ¼ j ~pc � ~p �cj. The corresponding contribution
is also of Oð�sÞ and can be mapped into the c �c wave
function.

� ¼ jRsð0Þj2�̂ð0Þ
�
1þ �s

�
CF

�2

v
þ �s

�
CþOð�2

sÞ
�

) jRren
s ð0Þj2�̂ð0Þ

�
1þ �s

�
CþOð�2

sÞ
�
: (5)

The Passarino-Veltman reduction [41] is adopted in the
tensor decomposition when its Gram determinant is non-
zero. Otherwise, we do the integration directly with
Feynman parametrization for the two-point tensor case;
and for other cases, we write the Lorentz structure with
independent external momentums and apply the Passarino-
Veltman reduction again. In the calculation of the scalar
integral, we first try to decompose the scalar integral into
several lower-point ones when its Gram determinant is
zero; if it fails, then we do the integration directly with
the Feynman parametrization just like the treatment to the
scalar integral with nonzero Gram determinants. The above
procedure, including both reduction and integration, is
done by FDC automatically.
In our calculation, there is a total of 86 scalar integrals:
(i) Sixty-five of the total 86 integrals, can be found in

Ref. [7] after including the permutation of ŝ, t̂, and û.
But the explicit results for the three Coulomb singu-
lar five-point scalar integrals is not available in
Ref. [7].

(ii) The remaining 21 integrals are not listed in Ref. [7].
Twelve of them can be reduced to a combination of
some lower-point scalar integrals and needn’t be
integrated directly.

(iii) Another six of them can be expressed by the follow-
ing two integrals, Cðp1; p3; mc; mc;mcÞ and
Dðp1; p4; p3 þ p4; 0; mc; mc;mcÞ, through permuta-
tion of ŝ, t̂, and û, where A, B, C, D, E are defined
exactly the same as in Ref. [7]. They can be written
into a linear combination of another two scalar in-

p3
p1

p2 p4
(b)

p3
p1

p2 p4

(c)

p3
p1

p2 p4

(a)

p3
p1

p2 p4

(d)

p3
p1

p2 p4

(e)

p1

p2

p3

p4
(f)

p1

p2

p3p4

(h)
p4

p3

p1

p2 (g)

FIG. 2. One-loop diagrams for gg ! J=cg. Group (a) and (b) are counter-term diagrams of the quark-gluon vertex and
corresponding loop diagrams; Group (c) are the quark self-energy diagrams and corresponding counter-term ones. More diagrams
can be obtained by permutation of external gluons.
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tegrals as

Cðp1; p3; mc; mc;mcÞ ¼ 1

2
Cð�p3=2;�p3=2þ p1; 0; mc; mcÞ þ 1

2
Cðp3=2;�p3=2þ p1; 0; mc; mcÞ;

Dðp1; p4; p3 þ p4; 0; mc; mc;mcÞ ¼ 1

2
Dðp3=2; p3=2� p2;�p3=2� p4; mc; mc;mc;mcÞ

þ 1

2
Dð�p3=2; p3=2� p2;�p3=2� p4; mc; mc;mc;mcÞ: (6)

But in our calculation, they are calculated indepen-
dently, and the above relationship can be used to
check all three scalar integrals.

(iv) The remaining three scalar integrals can be ex-
pressed by Bðp1; mc; mcÞ through the permutation
of ŝ, t̂, and û.

More details about these 86 scalar integrals can be found at
the FDC homepage [42].

By adding all the diagrams together, the virtual correc-
tions to the differential cross section can be expressed as

d�̂V

dt
/ 2ReðMBMV�Þ; (7)

where MB is the amplitude at LO, and MV is the renor-
malized amplitude at NLO. MV is UVand Coulomb finite,
but it still contains the IR divergences:

MVjIR ¼
�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
��

AV
2

�2
þ AV

1

�

�
MB; (8)

with

AV
2 ¼ � 9

2
;

AV
1 ¼ � 3

2

�
ln

�
ŝ

�t̂

�
þ ln

�
ŝ

�û

��
þ 1

2
nf � 33

4
:

(9)

And the total cross section of virtual contribution could be
written as

�V ¼
Z

dx1dx2Ggðx1; �fÞGgðx2; �fÞ�̂V: (10)

B. Real corrections

The real corrections arise from four parton level sub-
processes:

gðp1Þ þ gðp2Þ ! J=c ðp3Þ þ gðp4Þ þ gðp5Þ; (11)

gðp1Þ þ gðp2Þ ! J=c ðp3Þ þ qðp4Þ þ �qðp5Þ; (12)

gðp1Þ þ qð �qÞðp2Þ ! J=c ðp3Þ þ gðp4Þ þ qð �qÞðp5Þ; (13)

gðp1Þ þ gðp2Þ ! J=c ðp3Þ þ cðp4Þ þ �cðp5Þ: (14)

We have neglected the contribution from a real correc-
tion subprocess q �q ! J=c gg, which is IR finite and tiny
(it only contributes about 0.002% at pt ¼ 3 GeV and

0.05% at pt ¼ 50 GeV to the differential cross section).
And Feynman diagrams for the above processes are shown
in Figs. 3 and 4. The phase space integration of the above
processes (except gg ! J=c þ c �c) generates IR singular-
ities, which are either soft or collinear and can be conven-
iently isolated by slicing the phase space into different
regions. We use the two-cutoff phase space slicing method
[43] to decompose the phase space into three parts by
introducing two small cutoffs.
Real gluon emission brings soft singularities. A small

soft cutoff �s is used to divide the phase space into two
regions according to whether the emitted gluon is soft or
hard. Then another small cutoff �c is used to decompose
the hard region into collinear and noncollinear regions.
Then the cross section of real correction processes can be
written as

�R ¼ �S þ �HC þ �H �C: (15)

The hard noncollinear part �H �C is IR finite and can be
numerically computed using standard Monte Carlo inte-
gration techniques. The subprocess gg ! J=c þ c �c con-
sists of only a hard noncollinear part.

p1 p3

p2

p5

p4

p3

p1

p2 p4

p3

p5

(a)

p1

p4

p5

p2

p3

(b)

p2
p5

p1 p3

p4

(c)

FIG. 3. Feynman diagrams for the first three real correction
processes. (a) is for gg ! J=c þ gg and (b) is for gg ! J=c þ
q �q while (c) is for gqð �qÞ ! J=c þ gqð �qÞ. More diagrams can
be obtained by all possible permutations of gluons.
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1. Soft

It is easy to find that soft singularities caused by emitting
soft gluons from the charm quark-antiquark pair in the S-
wave color-singlet J=c are canceled by each other.
Therefore only the real gluon emission subprocess in
Eq. (11), where there could be a soft gluon emitted from
the external gluons, contains soft singularities. Suppose p5

is the momentum of the emitted gluon. If we define the
Mandelstam invariants as sij ¼ ðpi þ pjÞ2 and tij ¼ ðpi �
pjÞ2, the soft region is defined in terms of the energy of p5

in the p1 þ p2 rest frame by 0 � E5 � �s
ffiffiffiffiffiffi
s12

p
=2. In this

region, soft approximation can be made and the matrix
element squared can be factorized as

jMRj2jsoft ’ �4��s�
2�
r

X
i;j¼1;2;4

�pi � pj

ðpi � p5Þðpj � p5ÞM
0
ij;

(16)

with

M0
ij ¼ ½TaðiÞMB

b1���bi0 ���b4�y½TaðjÞMB
b1���bj0 ���b4� (17)

and

T aðjÞ ¼ ifabjbj0 ; (18)

whereMB
b1���b4 is the color connected Born matrix element.

Meanwhile, if we parametrize the emitted gluon’s
n-dimension momentum in the p1 þ p2 rest frame as

p5 ¼ E5ð1; . . . ; sin	1 cos	2; cos	1Þ; (19)

the three-body phase space in the soft limit can also be
factorized as

d�3jsoft ¼ d�2

��
4�

s12

�
� �ð1� �Þ
�ð1� 2�Þ

1

2ð2�Þ2
�
dS; (20)

with

d S ¼ 1

�

�
4

s12

���

�
Z �s

ffiffiffiffiffi
s12

p
=2

0
dE5E

1�2�
5 sin1�2�	1d	1sin

�2�	2d	2;

(21)

as given in Ref. [43]. After analytical integration over the
soft gluon phase space, the parton level cross section in the
soft region can be expressed as

FIG. 4. Feynman diagrams for real correction process gg ! J=c þ c �c. More diagrams can be obtained by reversing the arrow of the
charm quark line and/or exchanging the places of gluons.
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�̂ S ¼ �̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
��

AS
2

�2
þ AS

1

�
þ AS

0

�

(22)

with

AS
2 ¼ 9; AS

1 ¼ 3

�
ln

�
ŝ� 1

�t̂

�
þ ln

�
ŝ� 1

�û

��
� 18 ln�s;

(23)

and

AS
0 ¼ 18ln2�s � 6 ln�s

�
ln

�
ŝ� 1

�t̂

�
þ ln

�
ŝ� 1

�û

��

þ 3

2

�
ln2

�
ŝ� 1

�t̂

�
þ ln2

�
ŝ� 1

�û

��

þ 3

�
Li2

� �t̂

ŝ� 1

�
þ Li2

� �û

ŝ� 1

��
: (24)

2. Hard collinear

The hard collinear regions of the phase space are those
where any invariant (sij or tij) becomes smaller in magni-

tude than �cs12. It is treated according to whether the
singularities are from initial or final state emitting or split-
ting in the origin. The subprocess in Eq. (12) contains final
state collinear singularities, and the subprocess in Eq. (13)
contains initial state collinear singularities while the sub-
process in Eq. (11) contains both.

a. final state collinear. For subprocesses in Eqs. (11) and
(12), the final state collinear region is defined by 0 � s45 �
�cs12. As a consequence of the factorization derivation
[44,45], the squared matrix element factorizes into the
product of a splitting kernel and the LO squared matrix
element as

jMRj2jcoll ’ 4��s�
2�
r

2

s45
P440 ðz; �ÞjMBj2; (25)

where 40 denotes the parton which splits into parton 4 and 5
collinear pair and Pijðz; �Þ are the unregulated (z < 1)

splitting functions in n ¼ 4� 2� dimensions related to
the usual Altarelli-Parisi splitting kernels [46] with z de-
noting the fraction of the momentum of parton 40 carried by
parton 4. For z < 1 the n-dimensional unregulated splitting
functions are written as Pijðz; �Þ ¼ PijðzÞ þ �P0

ijðzÞ with

PqqðzÞ ¼ CF

1þ z2

1� z
; P0

qqðzÞ ¼ �CFð1� zÞ;

PggðzÞ ¼ 6

�
z

1� z
þ 1� z

z
þ zð1� zÞ

�
; P0

ggðzÞ ¼ 0;

PqgðzÞ ¼ 1

2
½z2 þ ð1� zÞ2�; P0

qgðzÞ ¼ �zð1� zÞ:
(26)

Meanwhile, the three-body phase space in the collinear
limit can also be factorized as [43]

d�3jcoll ¼ d�2

ð4�Þ�
16�2�ð1� �Þ dzds45½s45zð1� zÞ���:

(27)

Hence after integrations of z and s45, the parton level cross
section in the hard final state collinear region can be ex-
pressed as

�̂HC
f ¼ �̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
�

�
�
Ag!gg
1 þ Ag!q �q

1

�
þ Ag!gg

0 þ Ag!q �q
0

�
; (28)

where A1 and A0 are

Ag!gg
1 ¼ 3ð11=6þ 2 ln�0

sÞ;
Ag!gg
0 ¼ 3½67=18��2=3� ln2�0

s � ln�cð11=6þ 2 ln�0
sÞ�;

Ag!q �q
1 ¼�nf=3;

Ag!q �q
0 ¼ nf=3ðln�c � 5=3Þ; (29)

for subprocesses in Eqs. (11) and (12), and

�0
s ¼ s12

s12 þ s45 �M2
J=c

’ ŝ

ŝ� 1
�s: (30)

Thus the total cross section for real correction processes in
the hard final state collinear region can be written as

�HC
f ¼

Z
dx1dx2Ggðx1; �fÞGgðx2; �fÞ�̂HC

f : (31)

b. initial state collinear. For the subprocess in Eq. (13),
the hard initial state collinear region is defined by 0 �
�t25 � �cs12. However for the subprocess in Eq. (11), the
hard initial state collinear region is defined if any of the
following conditions are satisfied 0 � �tij � �cs12, with

i ¼ 1, 2 and j ¼ 4, 5. For convenience, suppose that 2 and
5 are the partons involved in the splitting 2 ! 20 þ 5 while
20 denotes an internal gluon. As in the final state collinear
case, the squared matrix element can be written as

jMRj2jcoll ’ 4��s�
2�
r

2

�zt25
P202ðz; �ÞjMBj2; (32)

where z denotes the fraction of parton 2’s momentum
carried by parton 20 with parton 5 taking a fraction (1�
z). And the three-body phase space in the collinear limit
can also be factorized as:

d�3jcoll ¼ d�2

ð4�Þ�
16�2�ð1� �Þ dzdt25½�ð1� zÞt25���:

(33)

The t25 integration yields

Z �cs12

0
�dt25ð�t25Þ�1�� ¼ � 1

�
ð�cs12Þ��: (34)

If we write the total cross section of LO as
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d�B ¼ dx1dx2Ggðx1ÞGgðx2Þd�̂B; (35)

where GgðxiÞ is the bare PDF, and using the above results,

the three-body cross section in the hard initial state col-
linear region can be written as [43]

d�HC
i ¼ Ggðx1ÞG2ðyÞdyd�̂Bðzs12; t13; t14Þ

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
�
4��2

r

s12

�
�
��

� 1

�

�
���
c P202ðz; �Þdzð1� zÞ��

� �ðyz� x2Þdx1dx2: (36)

Notice that a factor of 1=z has been absorbed into the flux
factor for the two-body subprocess, and the delta function
used here ensures that the fraction of the hadron’s momen-
tum carried by 20 is x2. It is worth stressing that s12 here is
related to the square of the overall hadronic center-of-mass
energy S as s12 ¼ x1yS, while in the LO process it is s12 ¼
x1x2S. From now on, we take the latter definition, so that
the replacement s12 ! ys12=x2 should be made. After the y
integration we have

d�HC
i ¼ Ggðx1ÞG2ðx2=zÞd�̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
�

�
�
� 1

�

�
���
c P202ðz; �Þdzz

�ð1� zÞ
z

���
dx1dx2:

(37)

When all possible two-to-three subprocesses are consid-
ered, there will be several contributions, corresponding to a
sum over all possible parton 2s. It can be 2 ¼ g followed
by g ! gg or 2 ¼ qð �qÞ followed by qð �qÞ ! qð �qÞg. The
collinear singularity must be factorized and absorbed into
the redefinition of the PDF, which is in general called mass
factorization [47]. Here we adopt a scale dependent PDF

using the MS convention given by [43]:

Gbðx;�fÞ ¼ GbðxÞ þ
�
� 1

�

��
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

�2
f

�
�
�

�
Z 1

x

dz

z
Pbb0 ðzÞGb0 ðx=zÞ: (38)

Use this definition to replace Ggðx2Þ in the LO expression

(35) and combine the result with the hard initial collinear
contribution (37), then the resulting Oð�sÞ expression for
the hard initial collinear contribution is [43]

d�HC
i ¼ d�̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
�

�
�
Ggðx1; �fÞ ~Ggðx2; �fÞ

þ
�
Asc
1 ðg ! ggÞ

�

þ Asc
0 ðg ! ggÞ

�
Ggðx1; �fÞGgðx2; �fÞ

�
dx1dx2;

(39)

with

~G cðx;�fÞ ¼
X
c0

Z 1��s�cc0

x

dy

y
Gc0 ðx=y;�fÞ ~Pcc0 ðyÞ; (40)

and

~P ijðyÞ ¼ PijðyÞ ln
�
�c

1� y

y

s12
�2

f

�
� P0

ijðyÞ: (41)

The soft collinear factors Asc
i result from the mismatch in

the z integrations. They are given by Asc
0 ¼ Asc

1 lnðs12=�2
fÞ

and Asc
1 ðg ! ggÞ ¼ 6 ln�s þ ð33� 2nfÞ=6. For the sub-

process in Eq. (13), the light quark (antiquark) can come
from either initial hadron, while for the subprocess in
Eq. (11), the initial collinear may happen to either of the
initial gluons, thus the cross section of hard initial collinear
regions can be written as

�HC
i ¼ �HC

add þ
Z

�̂HC
i Ggðx1; �fÞGgðx2; �fÞdx1dx2;

(42)

with

�HC
add �

Z
�̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
�

� ½Ggðx1; �fÞ ~Ggðx2; �fÞ
þ ðx1 $ x2Þ�dx1dx2; (43)

and

�̂HC
i ¼ 2�̂B

�
�s

2�

�ð1� �Þ
�ð1� 2�Þ

�
4��2

r

s12

�
�
�

�
�
Asc
1 ðg ! ggÞ

�
þ Asc

0 ðg ! ggÞ
�
: (44)

C. Cross section of all NLO contributions

The cross section of real correction processes in hard
noncollinear regions could be written as
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�H �C ¼
Z �

�̂H �Cðgg! J=c þggÞ

þ X
q¼u;d;s;c

�̂H �Cðgg! J=c þq �qÞ
�
dx1dx2Ggðx1;�fÞ

�Ggðx2;�fÞþ
Z X

�¼u;d;s; �u; �d; �s

�̂H �Cðg�! J=c þg�Þ

�½Ggðx1;�fÞG�ðx2;�fÞþðx1 $ x2Þ�dx1dx2: (45)

Thus the cross section of all real corrections becomes

�R ¼ �HC
add þ �H �C þ

Z
ð�̂S þ �̂HC

f þ �̂HC
i Þ

�Ggðx1; �fÞGgðx2; �fÞdx1dx2: (46)

And the total cross section at NLO is

�NLO ¼ �HC
add þ �H �C þ �Vþ

; (47)

with

�Vþ �
Z
ð�̂B þ �̂V þ �̂S þ �̂HC

f þ �̂HC
i Þ

�Ggðx1; �fÞGgðx2; �fÞdx1dx2: (48)

It is easy to find that there are no IR singularities in the

above expression, for 2AV
2 þ AS

2 ¼ 0 and 2AV
1 þ AS

1 þ
Ag!gg
1 þ Ag!q �q

1 þ 2Asc
1 ðg ! ggÞ ¼ 0. The apparent loga-

rithmic �s and �c dependent terms also cancel after nu-
merical integration over the phase space.

IV. TRANSVERSE MOMENTUM DISTRIBUTION

To obtain the transverse momentum distribution of J=c ,
a transformation for integration variable (dx2dt ! dptdy)
is introduced. Thus we have

� ¼
Z

dx1dx2dtGgðx1; �fÞGgðx2; �fÞ d�̂dt
¼

Z
Jdx1dptdyGgðx1; �fÞGgðx2; �fÞ d�̂dt ; (49)

and

d�

dpt

¼
Z

Jdx1dyGgðx1; �fÞGgðx2; �fÞ d�̂dt ; (50)

with

p1 ¼ x1

ffiffiffi
S

p
2

ð1; 0; 0; 1Þ; p2 ¼ x2

ffiffiffi
S

p
2

ð1; 0; 0;�1Þ;

mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

J=c þ p2
t

q
; p3 ¼ ðmt coshy; pt; 0; mt sinhyÞ;

xt ¼ 2mtffiffiffi
S

p ; 
 ¼ m2
4 �M2

J=cffiffiffi
S

p ; J ¼ 4x1x2pt

2x1 � xte
y ;

x2 ¼ 2
þ x1xte
�y

2x1 � xte
y ; x1jmin ¼ 2
þ xte

y

2� xte
�y ; (51)

where
ffiffiffi
S

p
is the center-of-mass energy of p �pðpÞ at the

Tevatron or LHC, m4 is the invariant mass of all the final
state particles except J=c , and y and pt are the rapidity and
transverse momentum of J=c in the laboratory frame,
respectively.

V. POLARIZATION

The polarization factor � is defined as

�ðptÞ ¼ d�T=dpt � 2d�L=dpt

d�T=dpt þ 2d�L=dpt

: (52)

It represents the measurement of J=c polarization as
function of J=c transverse momentum pt when calculated
at each point in pt distribution. To calculate �ðptÞ, the
polarization of J=c must be explicitly retained in the
calculation. The partonic differential cross section for a
polarized J=c could be expressed as

d�̂�

dt
¼ a�ð�Þ � ��ð�Þ þ X

i;j¼1;2

aijpi � �ð�Þpj � ��ð�Þ;

(53)

where � ¼ T1, T2, L. �ðT1Þ, �ðT2Þ, �ðLÞ are the two trans-
verse polarization vectors and the longitudinal polarization
one of J=c , and the polarizations of all the other particles
are summed over in n dimensions. It causes a more difficult
tensor reduction path than that with all the polarizations
being summed over in the calculation of virtual correc-
tions. It is found that a and aij are finite when the virtual

corrections and real corrections are summed up. Therefore
there is no difference in the differential cross section
d�̂�=dt whether the polarization of J=c is summed over
in 4 or n dimensions. Thus we can just treat the polariza-
tion vectors of J=c in 4 dimensions, and also the spin
average factor goes back to 4 dimensions.
To make a cross check, we carry out another calculation.

Namely, we calculate the differential cross section �HC
add

and �Vþ
with the polarizations of all particles being

summed up analytically. The results are numerically com-
pared with those obtained without summing up the polar-
ization of J=c . Moreover, to check gauge invariance, in
the expression we explicitly keep the gluon polarization
vector and then replace it by its 4-momentum in the final
numerical calculation. Definitely the result must be zero,

and our results confirm it. To calculate �H �C, only numeri-
cal computation is carried out, and we only sum over the
physical polarizations of the gluons to avoid involving
diagrams which contain external ghost lines.

VI. COLOR FACTOR

There is just one color factor dc1c2c4 for the LO process

in the amplitude level with c1, c2, and c4 being the color
indices of the three gluons in the process. And it is the same
for the virtual correction process that only one color factor
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dc1c2c4 appears in the amplitude level. For other processes,

color factors are orthogonalized and normalized. There are
three color factors in the amplitude level for real correction
process gþ g ! J=c þ gþ g:

1ffiffiffi
5

p Tr½Tc4Tc1Tc5Tc2 � Tc4Tc2Tc5Tc1�;
1ffiffiffi
5

p Tr½Tc4Tc5Tc1Tc2 � Tc4Tc2Tc1Tc5�;
1ffiffiffi
5

p Tr½Tc4Tc1Tc2Tc5 � Tc4Tc5Tc2Tc1�;

(54)

where ci are the color indices of the external gluons. For
gþ g ! J=c þ qþ �q, there is one color factorffiffiffi

3
p

6
ffiffiffi
5

p ½3ðTc1Tc2 þ Tc2Tc1Þc4c5 � �c4c5�c1c2�; (55)

where c1, c2 and c4, c5 are the color indices of the external
gluons and quark pair, respectively. And gþ q ! J=c þ
gþ q has almost the same color factor as above. For gþ
g ! J=c þ cþ �c, there are three color factors,

1

2
ffiffiffiffiffiffi
66

p ½6ðTc2Tc1Þc4c5 þ �c4c5�c1c2�;
1

2
ffiffiffiffiffiffiffiffi
858

p ½4ðTc2Tc1Þc4c5 � 22ðTc1Tc2Þc4c5 � 3�c4c5�c1c2�;

3
ffiffiffiffiffiffi
26

p

52
ffiffiffiffiffiffi
15

p ½4ðTc2Tc1Þc4c5 þ 4ðTc1Tc2Þc4c5 � 3�c4c5�c1c2�;
(56)

where c1, c2 and c4, c5 are the color indices of the external
gluons and c quark pair, respectively.

VII. TREATMENT OF �

The production mechanism of � at the Tevatron and
LHC is very similar to that of J=c except that color-octet
states contribute much less in � production according to
the experimental data and LO theoretical predictions. We
can apply the results of the above calculation to the case of
� by doing the substitutions:

mc $ mb MJ=c $ M�

Rsð0ÞJ=c $ Rsð0Þ� nf ¼ 3 $ nf ¼ 4:
(57)

Note that the charm quark is treated as a light quark as an
approximation. It does not coincide with the definition of
CTEQ6M PDFs used in the calculation. The mass of heavy
quark is not zero in the definition of CTEQ6M PDFs. This
approximation can cause a small uncertainty.

VIII. NUMERICAL RESULT

In our numerical calculations, the CTEQ6L1 and
CTEQ6M PDFs [48], and the corresponding fitted value
for �sðMZÞ ¼ 0:130 and �sðMZÞ ¼ 0:118, are used for LO

and NLO predictions, respectively. At NLO, we use �s in
the two-loop formula as

�sð�Þ
4�

¼ 1

�0 lnð�2=�2
QCDÞ

� �1 ln lnð�2=�2
QCDÞ

�3
0ln

2ð�2=�2
QCDÞ

; (58)

where �1 ¼ 34C2
A=3� 4ðCF þ 5CA=3ÞTFnf is the two-

loop coefficient of the QCD beta function. For the heavy-
quark mass and the wave function at the origin, mc ¼
1:5 GeV and jRsð0Þj2 ¼ 0:810 GeV3 are used for J=c ,
and mb ¼ 4:75 GeV and jRsð0Þj2 ¼ 0:479 GeV3 are used
for �. To choose the renormalization scale �r and the
factorization scale �f in the calculations is an important

issue, and it causes the uncertainties for the calculation. We

choose � ¼ �r ¼ �f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mQÞ2 þ p2

t

q
as the default

choice in the calculation with mQ being mc and mb for

J=c and �, respectively. The center-of-mass energies are
chosen as 1.96 TeVat the Tevatron and 14 TeVat the LHC.
The two phase space cutoffs �s and �c are chosen as �s ¼
10�3 and �c ¼ �s=50 as a default choice. To check the
independence of the final results on the two cutoffs, differ-
ent values of �s and �c are used, where �s can be as small
as �s ¼ 10�5. And the invariance is observed within the
error tolerance of less than 1%.
It is known that the perturbative expansion cannot be

applicable to the regions with small transverse momentum
and large rapidity of J=c or�. Therefore, Pt > 3 GeV are
used for all the calculations. For the rapidity cut at the
Tevatron, we choose the same cut condition as the experi-
ments at the Tevatron [32,33]: jyj< 0:6 for J=c and jyj<
1:8 for �. To follow the same cut condition used in
Ref. [36], we choose jyj< 3 for all calculations at the
LHC, and another calculation of J=c production at the
Tevatron. All the cut conditions are explicitly expressed for
each result.
The dependences of the total cross section at the renor-

malization scale �r and factorization scale �f are pre-

sented in Fig. 5. Since the contribution from the subprocess
gg ! J=c c �c is less than 10% of the total result at NLO in
the whole region of �, it gives almost the same plot as
Fig. 3 in Ref. [36], which does not include the contribution.
The results show that the NLO QCD corrections boost the
total cross section by a factor of about 2 at the default

choice of the scales � ¼ �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mcÞ2 þ p2

t

p
. One can

find that the scale dependence at NLO is not improved for
J=c .
In Figs. 6–8, the pt distribution of J=c and � is shown.

It is easy to see that the contribution of NLO correction
becomes larger as pt increases, and in the high pt region,
the NLO prediction is 2–3 orders of magnitude larger than
the LO one. As already known, the contribution from
subprocesses gg ! J=c c �c or gg ! �b �b, which is also
of Oð�sÞ, is large at high pt region. In order to compare
with the results in Ref. [36] and also to see how large the
contribution is, the result excluding this contribution is

QCD CORRECTIONS TO POLARIZATION OF J=c . . . PHYSICAL REVIEW D 78, 074011 (2008)

074011-9



shown in the figures as NLO�. And we could see from the
figures that the contribution from gg ! �b �b in � produc-
tion is less than that from gg ! J=c c �c in the J=c case.

The pt distribution of J=c and� polarization factor� is
presented in Figs. 9 and 10. We can see in the figures that �

is always positive and becomes closer to 1 as pt increases
at LO, and this figure means that the transverse polariza-
tion is more than the longitudinal one and even becomes
dominant in the high pt region. But there is a dramatic
change when the NLO QCD corrections are taken into

FIG. 6. Transverse momentum distribution of J=c production
at the LHC (upper curves) and Tevatron (lower curves). NLO�
denotes the result excluding contribution from subprocess gg !
J=c c �c.

FIG. 7. Transverse momentum distribution of J=c production
at the Tevatron. NLO� denotes the result excluding contribution
from subprocess gg ! J=c c �c.

FIG. 8. Transverse momentum distribution of � production at
the LHC (upper curves) and Tevatron (lower curves). jy�j< 1:8
and jy�j< 3 are taken for the Tevatron and LHC, respectively.
NLO� denotes the result excluding contribution from subprocess
gg ! �b �b.

FIG. 5. Total cross section of J=c production at the Tevatron
and LHC, as function of the renormalization and factorization

scale with �r ¼ �f ¼ � and �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mcÞ2 þ p2

t

p
.
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account. For J=c , when excluding the contribution from
J=c cc, � is always negative and becomes closer to �0:9
as pt increases; this new figure indicates that the longitu-
dinal polarization is always more than the transverse one
and even becomes dominant in the high pt region.
Meanwhile the J=c polarization in subprocess gg !

J=c c �c is near zero. By including the contribution of this
subprocess, the total result shown in the left diagram of
Fig. 9 is closer to the experimental result. For �, � varies
from positive to negative and becomes closer to�0:6 as pt

increases. The � polarization of subprocess gg ! �b �b is
also near zero. But from Fig. 10 we can see that this

FIG. 10. Transverse momentum distribution of � polarization at the Tevatron and LHC. NLO� denotes the result excluding
contribution from subprocess gg ! �b �b, and the process itself is represented by the unlabeled dotted line.

FIG. 9. Transverse momentum distribution of J=c polarization at the Tevatron and LHC. NLO� denotes the result excluding
contribution from subprocess gg ! J=c c �c, and the process itself is represented by the unlabeled dotted line.
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subprocess contributes less than the corresponding one in
the case of J=c . Also, we find that the contribution from
light quarks affects the pt distribution of polarization less
than 10%. When we compare the figures for J=c with
those for �, we can see that they are very similar to each
other except that � is higher and even becomes positive in
the lower pt region for �. It could be understood by
extending the curves for J=c to lower pt, because for a
certain pt value in � production, it corresponds to a lower
pt in J=c production by just considering the energy scale.

By comparing the experimental measurements for J=c
[32,49] and for � [33,50] at the Tevatron with the above
results, we could see that, although NLO corrections can
boost the transverse momentum distribution of J=c and �
considerably, it is still an order of magnitude smaller than
the experimental data. The color-octet channels are still
needed to explain the pt distribution. Thus the NLO pre-
diction for the polarization of direct J=c and � via the
color-singlet channel could not be used to compare with
experimental data.

We can write the contribution of each channel as

�i ¼ C�

�
Ci
2

1

�2
þ Ci

1

1

�
þ Ci

0

�
(59)

where the overall � dependent factor

C� ¼ 1

ð1� �Þ2
�
4��2

r

ð2mcÞ2
�
�
e���E ; (60)

and the term 1=ð1� �Þ2 is from the gluon spin average
factor 1=ðn� 2Þ. When all the contributions are summed
up, we have

P
Ci
2 ¼ 0 and

P
Ci
1 ¼ 0. Thus C� comes back

to 1 and we have our result as
P

Ci
0. In Table. I,C

i
0 is given.

Care should be given that the Asc
0 ðg ! ggÞ term has been

put into the gg ! J=c þ gg channel even if it contains a
term proportional to the number of active flavors nf.

IX. CONCLUSION AND DISCUSSION

We have calculated the NLO QCD corrections to the
J=c and � hadronproduction at the Tevatron and LHC.

Dimensional regularization is applied to deal with the UV
and IR singularities in the calculation, and the Coulomb
singularity is isolated by a small relative velocity v be-
tween the quark pair in the meson and absorbed into the
bound state wave function. To deal with the soft and col-
linear singularities in the real corrections, the two-cutoff
phase space slicing method is used. By summing over all
the contributions, a result which is UV, IR, and Coulomb
finite is obtained.
Numerically, we obtain a K factor of total cross section

(ratio of NLO to LO) of about 2 for J=c . The transverse
momentum distributions of J=c and � are presented and
they show that the NLO corrections increase the differen-
tial cross sections more as pt becomes larger and eventu-
ally can enhance it by 2 or 3 orders in magnitude at
pt ¼ 50 GeV. This confirms the calculation by
Campbell, Maltoni and Tramontano [36]. The real correc-
tion subprocesses gg ! J=c c �c and gg ! �b �b are also
calculated and the results are in agreement with those of
Refs. [16,37].
The NLO contributions to J=c polarization are studied,

and our results indicate that the J=c polarization is dra-
matically changed from more transverse polarization at
LO into more longitudinal polarization at NLO. All
the results can be directly applied to c 0 production by

multiplying a factor hOc 0
n i=hOc

n i. The NLO contributions
to � polarization are also studied and presented for the
first time. Our results indicate that at NLO, the polarization
of � decreases gradually from near 0.2 to �0:6 as
pt increases from 3 GeV to 50 GeV. Namely, the pt

distribution of the polarization status behaves almost
the same as that for J=c except that the NLO result is
also transverse polarization at small pt range. Since
the fact that contribution via color-octet states is much
less in � production than that in the J=c case, our
new result for � polarization plays an important role
in understanding the experimental data. And even though
our calculation results in a more longitudinal polarization
state than the recent experimental result for J=c [32] and
� [33] at the Tevatron, it raises a hope to solve the large
discrepancy between LO theoretical prediction and experi-
mental measurement on J=c and � polarization, and
suggests that the next important step is to calculate the
NLO corrections to hadronproduction of the color-octet

state J=c ð8Þ and �ð8Þ. By refixing the color-octet matrix
elements, we will see what an involvement of the NLO
QCD corrections can induce for the polarization of J=c
and �.
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TABLE I. Lists of contributions from each channel to the NLO
total cross section of J=c hadronproduction at the Tevatron in
the region pt > 3 GeV and jyJ=c j< 3. We have set �r ¼ �f ¼
�0. The corresponding result for �B is 1:8682� 102 nb.

i Process Ci
0ð102 nbÞ Ci

0=�
B Fraction

1 gg ! J=c g 0:4061� 0:0006 0.2174 0.1056

2 gg ! J=c gg 2:47� 0:04 1.32 0.64

3 gg ! J=c q �q 0:133� 0:001 0.071 0.035

4 gq ! J=c gq 0:582� 0:001 0.312 0.152

5 gg ! J=c c �c 0:2583� 0:0003 0.1382 0.0672P
p �p ! J=c þ X 3:84� 0:04 2.06 1.00
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