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Transverse-momentum distributions in a diquark spectator model
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All the leading-twist parton distribution functions are calculated in a spectator model of the nucleon,
using scalar and axial-vector diquarks. Single gluon rescattering is used to generate 7T-odd distribution
functions. Different choices for the diquark polarization states are considered, as well as a few options for
the form factor at the nucleon-quark-diquark vertex. The results are listed in analytic form and interpreted
in terms of light-cone wave functions. The model parameters are fixed by reproducing the phenomeno-
logical parametrization of unpolarized and helicity parton distributions at the lowest available scale.
Predictions for the other parton densities are given and, whenever possible, compared with available

phenomenological parametrizations.
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I. INTRODUCTION

Partonic transverse-momentum distributions (TMDs)—
also called unintegrated parton distribution functions
(PDFs)—describe the probability to find in a hadron a
parton with longitudinal momentum fraction x and
transverse-momentum p; with respect to the direction of
the parent hadron momentum [1]. They give a three-
dimensional view of the parton distribution in momentum
space, complementary to what can be obtained through
generalized parton distributions [2-6].

In the last years a lot of theoretical and experimental
activity related to TMDs has taken place. Crucial steps
were made in the understanding of factorization theorems
involving TMDs (ky factorization) [7,8]. Some of the
properties of TMDs have been investigated from the theo-
retical standpoint. For instance, positivity bounds were
presented in Ref. [9]. Relations among these functions in
the large-N,. limit of QCD were put forward in Ref. [10].
Their behavior at large x was studied in Ref. [11], and at
high transverse momentum in Ref. [12]. Last but not least,
it was also demonstrated [13] that TMDs that are odd under
naive time-reversal transformations (for brevity, T odd)
can be nonzero and must be included in the complete list
of leading-twist TMDs (see, e.g., Refs. [14,15]). Their
universality properties are different from the standard
PDFs [16].

In the meanwhile, several azimuthal asymmetries were
measured in semi-inclusive deep inelastic scattering
(SIDIS) and elsewhere (see Ref. [17], and references
therein), and more experimental measurements are
planned. However, not much phenomenological informa-
tion concerning TMDs is available as yet (see, e.g.,
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Ref. [18], and references therein). The analysis of azimu-
thal spin asymmetries both in hadron-hadron collisions and
in SIDIS led to the extraction of the Sivers function [19],
denoted as fi;, a T-odd TMD that describes how the parton
distribution is distorted by the transverse polarization of
the parent hadron (see Ref. [20] for a comparison of
various parametrizations). A recent attempt to extract the
T-odd Boer-Mulders function, hll [21], a T-odd TMD
describing the distribution of transversely polarized par-
tons in an unpolarized hadron, was presented in Ref. [22].
All of the above studies assume a flavor-independent
Gaussian distribution of the transverse momentum, al-
though there is no compelling reason for this choice.

In this context, building a relatively simple model to
compute TMDs and to allow for numerical estimates is of
great importance. From the theoretical side, this can help in
understanding some of the essential features of TMDs, for
instance their relation to the orbital angular momentum of
partons (see, e.g., Refs. [13,23-29]). From the experimen-
tal side, a model could be useful to estimate the size of
observables in different processes and kinematical regimes
[30-36] and to set up Monte Carlo simulations [37—41].

Although many model calculations of integrated PDFs
are available, there are not so many for TMDs. In Ref. [42]
all the leading-twist T-even functions were calculated in a
spectator model with scalar and axial-vector diquarks.
Recently, an analogous calculation has been performed
in a light-cone quark model [43]. T-odd functions were
calculated in the spectator model with scalar diquarks
[13,30,44,45], with scalar and vector diquarks [36,46], in
the MIT bag model [47,48], in a constituent quark model
[49], and in the spectator model for the pion [50]. A
complete calculation of all the leading-twist TMDs in a
spectator model with scalar diquarks was presented in
Ref. [27].

In this work, we choose a more phenomenological ap-
proach. We consider also axial-vector diquarks (in the
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following often called simply vector diquarks), necessary
for a realistic flavor analysis, and we further distinguish
between isoscalar (ud-like) and isovector (uu-like) specta-
tors. We generate the relative phase necessary to produce
T-odd structures by approximating the gauge link operator
with a one gluon-exchange interaction. We consider sev-
eral choices of form factors at the nucleon-quark-diquark
vertex and several choices for the polarization states of the
diquark. All results are presented in analytic form and
interpreted also in terms of overlaps of light-cone wave
functions, leading to a detailed analysis of the quantum
numbers of the quark-diquark system. The free parameters
of the model are fixed by reproducing the phenomenologi-
cal parametrization of unpolarized and longitudinally po-
larized parton distributions at the lowest available scale.
The paper is organized as follows. In Sec. II, the analytic
form for all the leading-twist TMDs is discussed for the
dipolar nucleon-diquark-quark form factor and for the
light-cone choice of the diquark propagator, postponing
the results for the other explored combinations to the
Appendixes A (T-even TMDs) and B (T-odd TMDs). In
Sec. III, numerical results are shown and compared with
phenomenological parametrizations, whenever available in
the literature. In Sec. IV, some conclusions are drawn.

II. ANALYTICAL RESULTS FOR
TRANSVERSE-MOMENTUM-DEPENDENT
PARTON DENSITIES

In this section we present the fundamentals of the model
and we give in analytical form the results for the light-cone
wave functions (LCWFs) and the TMDs obtained in the
model.

A. General framework

In the following we will make use of light-cone co-
ordinates. We introduce the lightlike vectors n. satisfy-
ing n2 =0, n,-n_ =1, and we describe a generic
4-vector a as

a=1[a",a", ar], (D

where a® = a - nz. We will make use of the transverse
tensor €} = €*"/n_,n_,, whose only nonzero compo-
nents are €}’ = —e3' = 1. We choose a frame where the
hadron momentum P has no transverse components, i.e.,

MZ
pP= ,PT,0| 2
|:2PJr ] @
The quark momentum can be written as
2 2
_[p trr
p= [W,XP+,PT]- 3)

In a hadronic state |P, S) with momentum P and spin S,
the density of quarks can be defined starting from the
quark-quark correlator (see, e.g., Ref. [15])
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O(x, pr; S)
_ dé_ﬁew-f@, S (0) U, ()P, )l ¢+ o,
4)
where
U= Pe” Sy ©)

is the so-called gauge link operator, or Wilson line, con-
necting the two different space-time points 0, £, by all
possible ordered paths followed by the gluon field A, which
couples to the quark field ¢ through the coupling g. The
gauge link ensures that the matrix element of Eq. (4) is
color gauge invariant and arises from the interaction of the
outgoing quark field with the spectators inside the hadron.
The leading contributions of the path [0, £] in space-time
are selected by the hard process in which the parton dis-
tributions appear, thus breaking standard universality of the
parton densities. For instance, in SIDIS the gauge link path
in light-cone coordinates runs along

[O’ é‘:] = (0’ 0’ OT) - (Or 0o, OT) - (0’ 0, OOT)
- (01 0, gT) - (O, 571 §T)’ (6)

while in the Drell-Yan case it runs in the opposite direction
through —oo. This fact leads to a sign difference in 7-odd
parton densities, as mentioned for the first time in
Ref. [16].

Similar to Ref. [42], we evaluate the correlator of Eq. (4)
in the spectator approximation, i.e., we insert a complete-
ness relation and at tree level we truncate the sum over final
states to a single on-shell spectator state with mass My,
thus getting the analytic form

1

d(x, pr, S) ~ W

1

M ©) ©) )
X 21— 0P+ MO ()M (S)lp =7(x,pr)’ (7

where p is the momentum of the active quark, m its mass,
and the on-shell condition (P — p)?> = M5 for the specta-
tor implies for the quark the off-shell condition

_pptLxm?)

p* =1(x, pr) = — :
L3 (m?) = xM% + (1 — x)m? — x(1 — x)M?,

with M the hadron mass.

We assume the spectator to be pointlike, with the quan-
tum numbers of a diquark. Hence, the proton can couple to
a quark and to a spectator diquark with spin 0 (scalar X =
s) or spin 1 (axial-vector X = a), as well as with isospin 0
(isoscalar ud-like system) or isospin 1 (isovector uu-like
system). Therefore, the tree-level ‘“scattering amplitude”
MO is given by (see Fig. 1)
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= (P — ply(0)|P,S)

PHYSICAL REVIEW D 78, 074010 (2008)

and is actually a Dirac spinor because of the understood
spinorial indices of the quark field ¢. The £ ,(P — p, A,) is
the 4-vector polarization of the spin-1 vector diquark with

ﬁys U(P,S) scalar diquark, momentum P — p and helicity states A,. When summing
= & (P = p, A)YEU(P,S) ol tor di K over all polarizations states, several choices have been used
1‘ —&), p,A)YE ,S) axial-vector diquark, ', T, 8?}7)8;})& :
©) S
|

e 1’)'&’,' ;)(i, p)'n” [(Pflf)%mP n#n” (see Ref. [51]),
4 (P — p) = —ghtv + w (see Ref. [36]), (10)

—ghtv + PZII; (see Ref. [42)),

—ghv (see Ref. [46]).

The different forms for the diquark propagator correspond
to different physical theories and lead to different results
for the parton distribution functions. We have analyzed all
of them except for the third one, which was extensively
studied already in Ref. [42]. However, in the following we
shall consider only the first one, because it has not been yet
analyzed in detail and it gives the simplest formulas and
the most easily interpretable results. In the next section,
we will make a few comments with respect to the other
choices, and leave the complete list of results in the
Appendixes. Here, we just remark that the last choice of
Eq. (10) for the polarization sum introduces unphysical
polarization states of the vector diquark.'

Equation (9) can be further elaborated by choosing the
nucleon-quark-diquark vertex Y. We choose the scalar and
vector vertices to be

;8P )yﬂy
V2 v

where gy(p?) is a suitable form factor. Other choices are
possible (see, e.g., Refs. [36,42]), but we limit ourselves to
these, which are the simplest. For the form factor, we
explored three possible choices:

Y, =ig,(pH1, Vi = (an

gy pointlike,
dip p— .

gx(p?) = gxlp|p X;P dipolar, (12)
g3PeP’=m)/A%  exponential,

Incidentally, we observe that the diquark model systemati-
cally violates the Callan-Gross relation in DIS with any of the
choices in Eq. (10), because diquarks would contribute to the
structure functions Fr and F as charged bosonic partons. How-
ever, when only light-cone transverse polarization states of the
vector diquark are propagated, as in the first choice of Eq. (10),
no extra contribution to F7 arises from the diquarks and the
(leading-order) interpretation of F as the charge-weighted sum
of quark distribution functions is left unchanged, as happens also
with scalar diquarks. These considerations might not be very
relevant if the diquark model is used only to calculate the TMDs
and not the full structure functions.

|

where gy and Ay are appropriate coupling constants and
cutoffs, respectively, to be considered as free parameters of
the model together with the mass of the diquark My. All
these parameters can in principle be different for each type
of diquark. Only the pointlike coupling can be derived
from a specific Lagrangian with protons, quarks, and di-
quarks as fundamental degrees of freedom, and meant to
effectively describe QCD in the nonperturbative regime.
Since our interest here is mainly phenomenological, we
prefer to introduce form factors. They smoothly suppress
the influence of high pr—where our theory cannot be
trusted—and eliminate the logarithmic divergences arising
after pr integration when using a pointlike coupling. For
later use, we note that the dipolar form factor can be
usefully rewritten, using Eq. (8), as

_ ap(pP—m)(1 —x)?
8 T(pr LA
(13)

__ dip p
ex(P?) = &x' o
X X | 2 A§(|2

In summary, we have analyzed in total nine combina-
tions of nucleon-quark-diquark form factors and forms for
the diquark propagator. As mentioned above, we will dis-
cuss analytical and numerical results involving the dipolar
form factor and the first choice of Eq. (10) (transverse
diquark polarizations only), listing the formulas for the
other cases in Appendixes A and B. To keep the notation

I P
P p— P

FIG. 1. Tree-level cut diagram for the calculation of T-even
leading-twist parton densities. The dashed line indicates both
scalar and axial-vector diquarks.
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lighter, we will denote the coupling g‘;(ip simply as gy from
now on.

B. Light-cone wave functions

A convenient way to compute parton distribution func-
tions is by making use of LCWFs, as done, for instance, in
Ref. [51]. For the scalar diquark, LCWFs can be defined as

+

i(p, A
e p)+Z§p_ SYUP Ay, (14)

where the indices Ay and A, refer to the helicity of the
nucleon and of the quark, respectively, and are constrained
by angular momentum conservation to the “‘spin sum rule”
Ay = A, + L, where L, is the projection of the relative
orbital angular momentum between the quark and the
diquark. We use the conventions of Ref. [52] (see also
Ref. [27]). In standard representation, the spinors can be
written as

Y\ (%, pr) =

(e
u(p,+)=# \gxtipy ,
AN
_px+ipy
u<p—>=¥(ﬁp+.+m\
P i

and similarly for the nucleon spinors (changing p, m, to P,
M, respectively). We obtain

Yi(x pr) =(m+xM)p/x (L, =0), (16)

I pr) = —(pc +ip)e/x  (L,=+1D), (17

Yiopr) =[Pk pr)l”  (Lo=-1), (18)

Y= pr) = y¢ilxpr) (L =0) 19)

8s x(l _x)
VT =x p7 + Li(m?)’

which correspond to Egs. (44) and (46) of Ref. [51].
For the vector diquark, LCWFs can be defined as

b(x, p7) = — (20)

+

P
(P—p)*

VA
ng ) &4 (P— p, A)YEUP, Ay), (21)

W, (o pr) =

where the index A, refers to the helicity of the vector
diquark and is constrained by Ay = A, + A, + L_. The
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light-cone transverse polarization vectors are given by [51]

e(P—p, +)
Be-p V2
[ pxtipy L
_[ﬁ(l—x)P+’0’ V2 \/5]’ 22
_ | _ Px — p* 1 1
wropor [ 5] @

They satisfy the usual properties® &(*) - g*(*+) = —
e(x)-&"(¥) = 0,and (P — p) - e(x) = 0. They are con-
sistent with the polarization sum being expressed by the
first option in Eq. (10). The LCWFs become

Pilp) =g (Lo=-D, 4

L (e

I (v pr) =(m+xM)p/x  (L;=0), (26)
¢i—(x’ pT) =0 (LZ = +2)’ (27)
Yy upr)=0  (L.=-2) (28)

l,[/l,(x, pT) = _lwllir+(x’ pT) (Lz = 0): (29)

lr//:+('x’ pT) = [ﬂbi—(x’ PT)]* (Lz = _1)’ (30)

l//:—(x’ pT) = [d’i-%—(x’ pT)]* (L = +1)) (31)

8a X(l - X)
VT =x p} + Li(m?)’

and are analogous to Egs. (21) and (24) in Ref. [51], the
differences being due to the fact that here the diquark is
an axial-vector particle rather than a vector one. Note
that in our model we can only have wave functions with
at most one unit of orbital angular momentum (p wave).
The LCWFs with two units of orbital angular momentum
(d wave), T _ and ¢, vanish.

If we add to (P — p, =) also the third longitudinal
polarization vector

1 [ pr—M;

e(P —p,0) = [2(1 9P

¢(x, pp) = — (32)

(1 — )P, —p,, —py],
(33)

*Note that (P — p) - (=) # 0, since &(*) do not describe
transverse polarization with respect to the diquark momentum.
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satisfying® £(0) - £*(0) = —1, £(0) - &*(*) = 0, and (P —
p) - €(0) = 0, the corresponding additional LCWFs are

; _ 7 — xM; — mM(1 — x)?
U ol pr) Ao

(L, =0),

(m + M)(p, + ip,

)
oM, b/x

yrox pr) = (L, = +1),

(35

Yol pr) =[x pI"¢/x (L= —1), (36)

‘»[/:o(x: PT) = - ‘r//io(x: PT)Q”/X (Lz = 0). (37)

From the above combinations we deduce, for example,
that the proton with positive helicity + % can be in a state
with probability density proportional to |*|?, where the
quark has opposite helicity and L, = +1 orbital angular
momentum with respect to a scalar diquark. This configu-
ration is relativistically enhanced with respect to |41 |?
with L, = 0, where proton and quark helicities are aligned;
thus, it suggests a possible explanation of the proton “‘spin
puzzle” in terms of the relativistic aspects of the motion of
quarks inside hadrons [51].

For the purpose of this work, it is also important to note
that a nonvanishing relative orbital angular momentum
between the quark and the diquark implies that the partons
do not necessarily occupy the lowest-energy available
orbital (with quantum numbers J* = % and L, = 0).
Hence, in this version of the spectator diquark model the
nucleon wave function does not show a SU(4) = SU(2) ®
SU(2) spin-isospin symmetry, contrary to what is usually
assumed [42].

Finally, we mention that the completeness relation for
the last choice of the polarization sum in Eq. (10) should
be written

S (P = p A (P = p.A,)
Ae=2%,0
— & (P —p,1)e"(P—p,1)=—gt", (38)
where the unphysical timelike polarization state

e*(P— p,t) = (P — p)*/M, appears. The associated
LCWFs read

2 2 2
p7 + xM; — mM(1 — x)
L ¢/x

Vil pr) = V2(1 + 0)M, (39)

(L. =0),

*Note that £(0) is not parallel to (P — p) because it describes
longitudinal polarization states in the light cone.
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(m + M)(p, + ipy)

M, ¢/x

lzbtl(x’ pT) =

(L, =+1),
(40)

(L,=—1), 41

Z

;blt(x, pr) = [lﬂtz(?@ pT)]*d’/x

(L. =0). (42

wit(x’ PT) = _l//it(x: pT)d)/x z
C. T-even functions

The simplest example of T-even parton density is the
unpolarized quark distribution f(x, py), defined as

f1(6 pr) = T pr, $) + B(x pr, ~$)y*]+ He
1 1 1

4 2m)? 2(1 — )P
+ MO(=$YyMO(-S5))y*] + H.c. (43)

— TI[((MO(S) MO (5)

By inserting in MO of Eq. (9) the rules (11) for the
nucleon-quark-diquark vertex, the dipolar form factor of
Eq. (13), and the first choice in Eq. (10) for the sum of the
polarization states of the diquark (transverse polarizations
only), we get

g2 [(m+xM)* + p3](1 — x)?

q(s) _ s
A TR (1 v

fi](a)(x’ pT)
g2 [P+ )+ (m+ xM)P(1 — x)2](1 = x)
- Qw)p? 2[p3 + LA(AD)T ‘

(45)

The same result can be recovered through the alternative
definition

s 11 .,
@) =ge55 2 X 1P

Ay==* A==

1
= (Wil +1uiP), @)
(a) — 1 1 Ay
TRCYUEE-=ED NP ND W 7
N=Z q:i o=x

1
= @(l'ﬁiﬁ—lz + |lﬁi_|2 + |‘//t+|2
+lgr ), 47)

and replacing the results for the LCWFs using Eqgs. (20)
and (32) for the scalar and vector diquark, respectively.

If we use, instead, the second option of Eq. (10) for the
sum over polarizations of the vector diquark (transverse
and longitudinal polarizations), we obtain
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1
F99(x, pr) + @(IMOP gt 48)

The complete expression is given in Eq. (A22) and corre-
sponds to Eq. (10) of Ref. [36] with R, = 0.

Finally, the results with the last choice of Eq. (10)
(transverse, longitudinal, and timelike polarizations) can
be written as

10 pr) + o ol 1)

— 1677-3 (gt +1gsP. @9

Note that the contribution of the diquark timelike polar-
ization states enters with an overall negative sign. The
complete expression is given in Eq. (A26) and corresponds
to Eq. (8) of Ref. [46].

Turning back to our preferred choice, i.e., the first op-
tion of Eq. (10) (light-cone transverse polarizations only),
we now compute all other 7-even, leading-twist TMDs.
Their definition in terms of traces of the quark-quark
correlator can be derived from, e.g., Egs. (3.19) and ff. in
Ref. [15]. To write them in terms of LCWFs, we need to
introduce the polarization state in a generic direction S T =
(cosdy, singy) in the transverse plane

UP.TD) = - (UP, +) + ebsU(P, ), (50)

V2

1 ‘
—(U(P, +) + Ys*DU(P, —)). 51)
ﬁ( (P, +) ) (
For ¢pg = 0, 7/2, we recover the (positive) polarizations
along the x and j axis, respectively [53]. For the quark, we
will use similar decompositions and use the notation S,
and ¢, ie.,

up,l) =

G(p1) = = (a(p, +) + e P5(p, =), (52)

NGl

i(p. ) = = (a(p, +) + e a(p, ). (53)

V2

With these conventions and keeping in mind that Ay is
absent for the scalar diquark and Ay = = for the vector
diquark, we can write the TMDs in the following way:

1
giL(x pr) = WAZX(M“P — gz, 1P, (54

Pr i ng(x pPr) = 167 32("/’+,\X |¢’T—,\X|2):

(55)

%hL (x, pr) = 167 %Z(l‘pmxlz |¢1,\ 1), (56)
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-8 S
Pr T Pr° th_J_ (X PT)

Sr- SthlT(xy pr) +

M M
= (g 2= 19, ). (57)
1677.3)\2)( TAx 1Ax
The above results automatically fulfill positivity
bounds [9].

The explicit expressions are

g2 [(m+xM)? — p3](1 — x)?
Q2m)? 2[p7 + L3 (AD] '

g/ (x, p2) = (58)

gl (x, p})
ga [p3(1+x) — (m +xM)*(1 — x)*](1 — x)

~ 2y 20p} + LZ(AZ)F ’
(59)

P nh = ey
) = xﬁ;’éiﬁ&i{‘)z, (61)
i pp) = - (2§>3 M([Z%fo%)(%]f L)
i ) = <2g§>3 ME:%ZXZ)((A;]; SC
B9 (x, p2) = (2g§)3 [p7 +2 [(pn; : xLI\;();]?()I]“— x)"‘y 64)
i) =~ s gy ©
) -~ ey
hiA @ (x, p2) = 0. (67)
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From the last two formulas we deduce also the expressions
for the transversity distribution:

WO, ) = 9 ) + B0 G, )

B g2 (m+ xM)*(1 —x)3
~@m? 2ApE+ LXADF

(68)

@i oy _ _ 8  px(1—x)
) S oy e @
Note that the functions gy and h,LL arise from the inter-
ference of LCWFs with |L.| = 1 and L, = 0. The function
hi; requires the interference of two LCWFs that differ by
two units of L,. This condition is necessary but not suffi-
cient to have hi; # 0. In fact, the vector-diquark spectator
gives hi; = 0 even if LCWFs with L, = *1 are present.

Some interesting relations can be evinced from the
above expressions. For example, the transversity with sca-
lar diquark saturates the Soffer bound, while for axial-
vector diquarks the relation is more involved:

WO p3) = 31V p3) + g1V ), (70)
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When restricting to the results with scalar diquark, the g
distribution is connected to two other partners by the
relations

gl (x, ) = —hi"(x, p}),
s M (72)
gl (x, p3) = ?thm(x Py,
while for axial-vector diquarks we have
817" (x p}) = 2 (v, ph). (73)

This relation is however different when considering spec-
tator diquarks with more degrees of freedom (see Ap-
pendix A). Our results seem to indicate that no general
relation exists between g;r and hlLL, contrary to what is
proposed in Ref. [43]. The reason is connected to the
difference between LCWFs with L, =1 and L, = —1,
as in Egs. (24) and (25). We also observe that in the
vector-diquark case g,; — h; and hlLT are not simply re-
lated through the relation suggested in Ref. [54]. We are
led to conclude that such a relation is not general.
The pr-integrated results are

[2(m + xM)? + L2(AH)](1 — x)*

o R P R L N L oo LAY I
(71)|

PR MRS RS SHIEET 5

() = (;ﬁ)z [2(m + xMZ;g(L.A%g%)](l - 76

g = - B B M P00 =) )

g2 (m+xM)>*(1 —x)}

hQ(S) — ,
i) Qm?  12L5(A2)

(78)

2
1 _
hq(a)(x) _ 8a x( x)

QP 1205(A2)° 79

D. T-odd functions

The two leading-twist T-odd structures are the Sivers
and Boer-Mulders distributions. They are defined as

1
Mf 7(x, p7) = — 5 Tl(®, pr. S)
M

— ®(x, pr, —S))y*] + He,
(80)

STAZT] hi(x, p2) =~ Tr[(CD(x, pr.S)

+ ®(x, pr, —9S))iotys] + H.c.
(81)

At tree level, these expressions vanish because there is no
residual interaction between the active quark and the spec-
tators; equivalently, there is no interference between two
competing channels producing the complex amplitude
whose imaginary part gives the 7-odd contribution. We
can generate such structures by considering the interfer-
ence between the tree-level scattering amplitude and the
single-gluon-exchange scattering amplitude in the eikonal
approximation, as shown in Fig. 2 (the Hermitian conju-
gate partner must also be considered). This corresponds
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just to the leading-twist one-gluon-exchange approxima-
tion of the gauge link operator of Eq. (5) [55].

For the moment, we use Abelian gluons. The QCD color
structure will be recovered at the end. The Feynman rules
to be used for the eikonal vertex and propagator are [1,56]

] )

% = —ie.n’ S = ‘ (82)
e —It +ie’

p

where e, is the color charge of the quark and the sign of ie

for the eikonal line corresponds to the gauge link of SIDIS.
J

ie.I,n” (p—1+m)Y,U(P,S)
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In cut diagrams one must take the complex conjugate of
these expressions for vertices and propagators on the right
of the final-state cut.

The explicit form of the contribution ®) to the corre-
lation function corresponding to Fig. 2 is

1 1

(277_)3 TS (j\/l(o)(s)m(l)(s)

q)(l)(x’ PT’ S) -~

+ MYS)MOS)] 2= (83)
where 7(x, pr) is defined in Eq. (8) and
scalar diquark, 84)

_ IL‘I
1 _ 2m)?* (D, +ie)(D,—ig)(D3+ie)(Dy+ie)
MO(S) = {_ o ieos’ (P p AL (f—TEm)d,, (p—1—P)YEU(P.S)
=z D, +ie)(D,—7)(Ds  i6)(D; 7o)

where for convenience we have introduced the notation

Dy =I> — m, D, =1, Dy =(p—1D*—m?

D,=(P—p+1?— M. (85)

In order to explicitly calculate MO we need to model
the gluon vertex with the scalar (I'y) and axial vector (I',)
diquark in Fig. 2:

I =ie 2P —2p + 1)*,
Fzg = —ie 2P —2p + l)pg"”
—(P-p+0+k))g,
—(P—p—x,0)"g7], (86)

where e, is the diquark color charge, which is the same for
scalar and vector ones and identical to that of the quark; «,,
is the diquark anomalous chromomagnetic moment. The
structure of the vector diquark-gluon vertex resembles the
one for the coupling between the photon and a spin-1
particle (see, e.g., Ref. [57]); for k, = 1 the standard
pointlike photon-W coupling is recovered (see, e.g.,
Ref. [58]).

The Sivers and Boer-Mulders functions can then be
computed as

FIG. 2. Interference between the one-gluon exchange diagram
in eikonal approximation and the tree-level diagram in the spec-
tator model. The Hermitian conjugate diagram is not shown.

axial-vector diquark,

f
ij
e7P1iST;
SEPI v, )
I 1 1

I MO
4 m) 2(1 — x)P* Tr[(j\/l(l)(s)mo (s)

- MO(=YMO(=8)y* ]+ He,  (87)

ij
ErPTj
Tjh%()@ P%)

11 1
4 2m)3 2(1 —x)
+ MO(=MO(—8))ioi*ys]+ He.  (88)

o7 T{(MD(S)MO(S)

Again, results have been produced for the three different
choices of both Eq. (12) for the form factors at the nucleon-
quark-diquark vertex, as well as of the axial-vector diquark
propagator on each side of the diquark-gluon vertex in
Fig. 2. Consistently with the case of T-even parton den-
sities, here we show the results for the dipolar form factor
of Eq. (13) and for the light-cone transverse polarizations
of the vector diquark, i.e., the first choice in Eq. (10), the
other combinations being listed in Appendix B. Combining
the rules (11) with the (86) ones, we can rewrite Egs. (87)
and (88) as

Lay . oy _ _ 8 | Me;
f1T (X, PT) 4 (277_)3 2(1 — X)P+
(1—x)?
= omJs, 89
o+ 2aops e 8

g |1 Me;
4 w3 401 — x)P*
(1—-x)?
[p} + L2(ADF

Lg(a
fqu( )()C, p%") =

2ImJe,  (90)

hE19(x, p2) = A9, pd), 1)
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a 1 a
hia@)(x, p2) = — ;f# '(x, p2). (92)

Note that for scalar diquarks the spectator model gives the
same result for the Sivers and the Boer-Mulders functions,
independent of the choice of the nucleon-quark-diquark
form factor (see Appendix B).

In Egs. (89) and ff., the expressions J; contain the in-
tegral over the loop momentum, the denominators D ;34
defined in Eq. (85), and the evaluation of the trace of the
projected amplitude. For instance (see Appendix B 1),

Js = d*l gs((p - 1)2)
! (2m)* (D, + ie)(D, — ie)(D5 + ie)(D, + ig)

XMO*+%1—ﬂPﬂﬂﬂl—Pﬂm+xM)

lT'PT)

X
Py

(93)

To calculate its imaginary part, it is sufficient to make the
replacements

— —27i8(D,),
D, — is Dy + ic mi5(Dy)

(94)

which corresponds to applying the Cutkosky rules [59],
cutting the diquark propagator (D,) and the eikonalized
quark one (D,). We then get

d'l g((p =17

2ImJ; =
T ) @ DD,

41 +2(1 — x)PT)

X (ﬁM — Pt (m + xM) Ir 'ZI’T)(zm)(S(Dz)
Pr

= —4P*(m + xM)(1 — x)g, I ,. (95)
The calculation of J; depends on the form factor used.

Their calculation can be found in Appendix C. For the case
of the dipolar form factor we obtain

di
—4P*(m + xM)(1 — x)g,I7"

_ Pr(m+xM)(1 - x)?
~ S TLAADpE + LA(AD)]

(96)

If the T-odd structures were deduced from the Drell-Yan
amplitude, the MV of Eq. (84) would involve a (I™ + ig)
propagator, leading to the opposite sign in the cutting rule
for D,. In the spectator model, this is the origin of the
predicted sign change for f 1lT and hll when extracting them
in Drell-Yan spin asymmetries rather than in SIDIS ones
[16]. Analogously to Eq. (95), we obtain

PHYSICAL REVIEW D 78, 074010 (2008)

2ImJ¢ = —8P* x(m + xM)g, I}®

~2P*x(1 — x)(m + xM) 97
Ry 2T v

By inserting these results in the model expressions of
Egs. (89)—(92), we come to the final form of the Sivers
and Boer-Mulders functions with scalar and axial-vector
diquarks:

g Mez (1 —x)(m+xM)
4 2m)* Ly(ADIp7 + LI(ADT
(98)

1
i ph) = -

2 2 2
Lo, oy _ 8a Mel (1 —x)*x(m + xM)
TP = Gyt g + a2

1 p3) = £V p3), (100)

1
O pp) = = fif ). oD
To connect the “Abelian” version of the gluon interac-
tion to the QCD color interaction we shall apply the
replacement [13]

(102)

e2 — 4rCra;.

The Sivers and Boer-Mulders functions obtained in our
model behave as 1/p$ at high p?, similar to the f, in
Eq. (44). As observed also in Ref. [60], this leads to a
breaking of the positivity bounds [9] for sufficiently high
values of p%. This problem is due to the fact that the T-odd
functions have been calculated at order aé, while the
T-even functions at order . At high pZ, QCD radiative
corrections generate a 1/p? tail for f; and a 1/p% tail for
fiz [12]. Our model is supposed to be valid for p% ~ M?>
and for reasonable choices of the parameters no problems
with positivity occur in this region.

Often the following transverse-momentum moments of
the Sivers and Boer-Mulders functions are used:

2
p
14000 = [ dpr BL piyx ),

2
|2M | (103)
p
P00 = [ dpe P ph e ph).
In our model, they turn out to be
2 2 3
Las)y, & e: (m+xM)(1 —x)
=& . (104
f W= e 2anp Y
2 2 2
Lo@(), \ _ 8a €& x(m + xM)(1 — x) 105
N =3 G 2o 1Y
h]J-‘I(S)(l)(x) — f]J—;I(Y)(l)(x)’ (106)
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pLa@0) () = _1 L@y (107)

fif " = - 28;'36 (z(ﬁ)2 " [+L;C?/4\)2()1]5/_2 x)3, (1%
Fla@0/2)() — 2526 (;%)2 X(m[zzjzfg))(]ls /Z x)z, (109)
hf_q(s)(l/Z)(x) _ ff.Tq(s)(l/Z)(x)’ (110)
hqu(a)m/Z)(x) - _ %flqu(“)(]/z)(x). (111)

E. T-odd functions: Overlap representation

As already mentioned above, T-odd leading-twist parton
distributions arise from the interference of two channels
leading to the same final state; for the case considered here
(and depicted in Fig. 2), the two channels are given by the
tree-level and the single-gluon-exchange scattering am-
plitudes, respectively. In Ref. [61], it was suggested that
T-odd parton densities can also be represented by overlaps
of LCWFs, as for their T-even partners, provided that a
suitable operator is included to describe the final-state
interactions (FSI) produced by the gluon rescattering. So
far, this representation was fully developed in a spectator
model only for the Sivers function with scalar diquarks
[24,26]. Here, we generalize it to the case of axial-vector
diquarks, as well as to the Boer-Mulders function. In this
way, all leading-twist (T-even and T-odd) parton densities
can be given by overlaps of LCWFs consistently within the
model, contrary to the statement of Ref. [27].

Following Ref. [26], for a nucleon transverse polari-
zation state described by Eqs. (50) and (51) along a ge-
neric direction ST (cosgyg, singy), and for an analogous
quark state described by Egs. (52) and (53) along SqT
(cos¢ 5, Sing sq), we can rewrite the Sivers (80) and
Boer-Mulders (81) functions according to the Trento
Conventions [62] (keeping in mind that Ay is absent for
the scalar diquark and Ay = = for the vector diquark) as

287 X pr) - P
Afllr(x, p7)

pr) Z [lﬁ/\ )LX( :pT)‘pT)\q,\X(xr pr)

A Ay

16

- u/ii,AX(x, PP, (o Pl + He, (112)
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(qu X pr)- P
M

=[16 3G( PT’pT) Z [lﬂ?)flx( pT)‘pT (x, p7)

hi(x, p3)

— YN )Y (v pi)] + Hee. (113)

The above equations should be considered as assump-
tions, since it is not known a priori if the FSI operator
G(x, pr, p’) can be isolated and is the same for all func-
tions and all types of diquarks. In our model, it turns out
to be actually the same in all cases. In order to determine
it, we must insert here the expressions for the LCWFs
of Sec. II B and compare the results with the ones from
Eqgs. (89)—(92), after replacing ImJy, ImJ¢ with Egs. (95)—
(97), respectively, while keeping the definition of J (111p (see
Appendix C). For the scalar diquark case, for example,
we get

g2 M(1 — x)*(m + xM)
87 [p} + LXADF
[d P ImG(x, pr, p7)
[p? + L2(ADP
(pr pr) Pr.
PT

The above expression is identical to Eq. (89), after insert-
ing Eq. (96) and the definition (C3) of I‘lhp (with the
harmless substitution 1. < —1/.), provided that

i ph) =

X (114)

&2 1
Im G(x, py, p}) = — =
PP 0w (o ph)
CFCYS 1
= - , (115)
27 (pr — P/T)2

in agreement with the expression of Ref. [26]. Follow-
ing similar steps, we recover the same result (115) also
for the Sivers function with axial-vector diquarks, and
for the Boer-Mulders function as well. The FSI operator
G(x, pr, p¥) is indeed universal and describes a rescatter-
ing via one gluon exchange, which corresponds to the ex-
pansion at first order of the gauge link operator of Eq. (5).
Note that in other versions of the model (see Appendix B)
the FSI cannot be as simple as Eq. (115), since we observe
also a dependence on the vector-diquark anomalous chro-
momagnetic moment «,, which is absent in the above
equation. This does not imply that the FSI operator is not
universal, but simply that it could have additional parts that
are not interacting with scalar diquarks and transversely
polarized vector diquarks.

We close this section by observing that in our model we
can generalize the relation between the first p; moment of
the Sivers function and the nucleon anomalous magnetic
moment k, suggested in Ref. [26] in the simple scalar
diquark picture. In fact, we define « in terms of the Dirac
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form factor using the overlap representation for the nu-
cleon matrix element of the spin-flip electromagnetic cur-
rent operator [51]:

e
K= ﬁFz(O)

D e,

‘1x 19y o,
dedx
1673

\I}]j*(-x: p/T) )ln)\I}]:(-xr pr; A}'L)l (116)

pr=prr’

1673 c
1 dprdx
gla) — _ T
“ g — iqy [ 1673 Z [¢

1
= / dx k) (x).
0

1 dprdx N _
i) = = [P S T pp (5 )
X y g

Bz comparlson with the first p; moment of fl"() nd

"(“ in Egs. (98) and (99), respectively,

fH9 ) = f dprfif¥(x, p3)

g2 MCra,1—x)3(m+ xM)

2 2AVT3 )
(2m) [2L:(AD)] (118)
796 = [dprf i pi)
g MCrax(l — x)*(m + xM)
- (n)? [2L2(A2)F ’
we deduce the relation
fiax) = —EMCFa fq(x))c (119)

valid for both types of diquarks, from which we have

f dx(1 —x)f I(x) = —§MCFa K4 (120)

that generalize the findings of Refs. [24,26].

III. NUMERICAL RESULTS AND COMPARISON
WITH VARIOUS PARAMETRIZATIONS

In this section, after fixing the parameters of the model
by fitting some known distribution functions, we show the
numerical results of our model for a few selected TMDs.

A. Choice of model parameters

In order to fix the parameters of the model, we try to
reproduce the parametrizations of parton distribution func-
tions extracted from experimental data. When doing this,
however, we have to face the problem of choosing a scale

2
85 1
= d
' =pr (277)2[0 12

Pr

( PT)l;b)‘,\( PT)]
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where the sum runs upon the number of Fock states k, the
number of constituents 7 in each state k, and their helicities
A,.. Since in the diquark model of the nucleon initially at
rest (Py = 0) there is only one Fock state with two con-
stituents, and the kinematics of the diquark is constrained
to the one of the valence quark, the wave functions W
reduce to the usual LCWF [26]. The momentum conser-
vation for the struck quark reads p} = py + (1 — x)qr.
Distinguishing between x?*) and k@ for scalar and axial-
vector diquarks, respectively, Eq. (116) becomes

1 —x (1 —=x)>3(m+xM)
[L3(ADT

f dxk9)(x),

g ', x (1—x)(m+xM)
R0 Pf 12 [LIADT

—PT

(117)

|

Q? at which our model can be compared to the parametri-
zation. In principle, this scale should be considered as a
further parameter of the model. However, we checked that
the lowest possible value of Q7 is always preferred by the
fit. This is not surprising, since probably the model is
applicable to a very low scale, beyond the limit of ap-
plicability of the perturbative QCD evolution equations.
Therefore, we have decided to compare it to a parametri-
zation at the lowest possible value of Q2.

For the unpolarized distribution functions £ and f¢, we
have chosen the parametrization of the ZEUS Collabo-
ration [63] (ZEUS2002) at Q3 = 0.3 GeV2. This set of
PDFs gives also an estimate of the errors, which is impor-
tant to perform a y? fit. Other parametrizations either do
not reach such low Q2 or provide no error estimate.

For the helicity distributions g% and g¢, we chose the
leading-order (LO) version from Ref. [64] (GRSV2000) at
Q% = 0.26 GeV?. Since this parametrization comes with
no error estimate, we assigned a fixed relative error of 10%
and 25% to the up and down quark distributions, respec-
tively, which is reasonably similar to the error estimates of
other parametrizations at higher Q? (see, e.g., Ref. [65]).

Finally, in order to perform the fit we arbitrarily chose to
select from each parametrization 25 equally spaced points
in the range x = 0.1 to 0.7.

The free parameters of the model include the quark mass
m, the nucleon-quark-diquark coupling gy, the diquark
mass My, and the cutoff Ay in the nucleon-quark-diquark
form factor, for X = s, a scalar and axial-vector diquarks.
It turns out that in order to achieve a good fit we need also
to make a distinction between the two isospin states of the
vector diquark. Hence, we will use g, M, and A, for the
coupling, mass, and cutoff of the vector isoscalar diquark
with I; = 0 (corresponding to the ud system), and g/,, M’
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and A/, for the normalization, mass, and cutoff of the
vector-isovector diquark with I3 = 1 (corresponding to
the uu system).

In order to reduce the number of free parameters, we
decided to fix the value of the constituent quark mass to
m = 0.3 GeV. We checked that the results are not very
sensitive to the value of this parameter.

To perform the fit, we need to discuss the relation
between the functions fil(s), ff(”) , and ff(“/), computed in
the model, and the functions f% and f¢ of the global fits.
For ease of interpretation, it is better to use norm(al)ized

q(X

versions of the f;](X). Therefore, we write fi. . =

(N2/g%) 1%, where Ny are normalization constants de-
termined by imposing

1 ()
T fo dx ﬁ] dp2 1% (x, p2) = 1.

Quite generally, the relation between quark flavors and
diquark types can be written as

(121)

fi=cafi + (122)
fl= 2. (123)

We will refer to the coefficients cy as “couplings,” al-
though they differ from the original couplings gy by the
normalization constants Ny. They are free parameters of
the model.

In past versions of the spectator diquark model [42], the
quarks were assumed to occupy the lowest-energy avail-
able orbital with positive parity (J© = %Jr); in this case, the
proton wave function assumes an SU(4) = SU(2) ® SU(2)
spin-isospin symmetry, leading to probabilistic weights
3:1:2 among the scalar isoscalar (quark u with diquark
s), vector isoscalar (quark u# with diquark a), and vector
isovector (quark d with diquark a’) configurations. More-
over, the overall size of the couplings was adjusted to give
a total number of three quarks. These choices led to the
relations [42]

fe=3f e (124)
fi= e (125)

There are two reasons to criticize this choice. First of all, in
the present work the quark-diquark system can have a
nonvanishing relative orbital angular momentum, as shown
in the previous section. Thus, the proton wave function
no longer displays an SU(4) symmetry. Secondly, strictly
speaking the SU(4) decomposition gives coefficients that
are 3 times smaller then the ones in the above relation. This
is because the total number of quarks ““seen’ in the spec-
tator model is only one, since the other two are always
hidden inside the diquark. This is actually a fundamental
limitation of the spectator model, it is independent of the
SU(4) choice, and in our opinion it has not been suffi-
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1
1
Py Y

FIG. 3. Tree-level cut diagram for the calculation of T-even
leading-twist parton densities for an active scalar or vector
diquark (dashed lines), with a spectator quark (solid lines).

ciently stressed in the literature. The only possible way out
is to consider the diquark not as an elementary particle, but
as formed by two quarks that can be also probed by the
photon (see, e.g., Ref. [66]).

A different way to see this problem is by considering
the (longitudinal) momentum sum rule. Since also the
diquarks can carry momentum, they should be included
in the corresponding sum rule.* Using the handbag dia-
gram of Fig. 3, we calculated the corresponding diquark
distribution function ff(‘” for the active diquark in the state
X and the spectator quark with flavor ¢, again using the first
choice in Eq. (10) (independent of the choice of the form
factor). We found the remarkable property

AY@ = A0 - 0.

By splitting the total proton momentum sum rule into the
contributions of quarks, P, and of diquarks, Py, using the
symmetry property (126) we get

(126)

1
Pyt Px= [ e i, )+ (o)
1 pd(a) ! 2 ps(u)
+ Ca flnorm(x)] + 0 dxx[CSf]norm(x)

"(d
+e2f1 () + 2fED (x)]

aJ Inorm
1
d !
= [ e () + i) + Bl 0]

=c2+c2+ 2 (127)
It is therefore impossible in our spectator model to fulfill at
the same time the momentum sum rule and the quark
number sum rule.

Although from the fundamental point of view it is more
important to satisfy the momentum sum rule, from the
phenomenological point of view it is impossible to repro-
duce the parametrizations in a satisfactory way. We de-
cided therefore to avoid imposing the momentum sum rule
and let the fit choose the values of the parameters cy.

*A similar approach has been used in Ref. [25] to verify in the
spectator model the validity of the so-called Burkardt sum rule
[67], which is related to transverse-momentum conservation.
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In summary, we have nine free parameters for the model.
We fix them by fitting at the same time f¥, f¢ at Q* =
0.3 GeV? from Ref. [63], and g%, g{ at 0> = 0.26 GeV?
from Ref. [64] at LO. The fit was performed using the
MINUIT program. A y?/d.o.f. = 3.88 was reached. The
results are shown in Fig. 4. In spite of the very high x?,
the agreement is acceptable, except perhaps for the down
quark helicity distribution. The error band is deduced from
the covariance matrix given by MINUIT and represents the
standard 1-o statistical uncertainty (A y> = 1). The corre-
sponding values for the various model parameters are listed
in Table L.

B. Unpolarized parton densities

With the above model parameters, the proton momen-
tum fraction P, carried by valence quarks, is

1 /
Py = [ o) + A0+ B ()]

= [l dxx[f4(x) + fd(x)] = 0.584 = 0.010, (128)
0

which is consistent with the ZEUS result of 0.55 [63].
While for f‘f only the vector-isovector diquark plays a
role, for f{ it turns out that the contributions from the
scalar and vector diquark have about the same size. The
vector diquark is always dominant at high x. However,

PHYSICAL REVIEW D 78, 074010 (2008)

we know that the model is not reliable in the limit x — 1.
In fact, the behavior at high x does not follow the predic-
tions of Ref. [68], since our model does not correctly take
into account the dominant dynamics in that region.

We consider now the p? dependence of the unpolarized
distribution function obtained in our model. In Fig. 5 we
show the behavior of the up and down components as
functions of p# for a few values of the variable x.

First of all, we observe that f% displays a nonmono-
tonic behavior at x = 0.02. This is due to the contribution
from LCWFs with nonzero orbital angular momentum.
Although the details of where and how this feature occurs
is model dependent, it is generally true that the contribu-
tion of LCWFs with one unit of orbital angular momentum
falls linearly with p% for p% — 0. This behavior is sharply
different from the contribution of LCWFs with no orbital
angular momentum. This simple example shows how the
study of the p? dependence of unpolarized TMDs can
therefore already expose some effects due to orbital angu-
lar momentum.

Finally, we observe that in our model the average quark
transverse momentum decreases as x increases, and that
down quarks on average carry less transverse momentum
than up quarks. Although this is just a model result, a gen-
eral message can be derived: the widely used assumption of
a flavor-independent quark transverse-momentum distribu-
tion is already falsified in a relatively simple model (see
also Ref. [69]).

(%)

2 x)
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08| 04|
06 [ 03|
i
04| 02|
02| 01}
0.0 + + + . . n n 0.0 n s
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0.0 -0.20
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FIG. 4 (color online).

01 02 03 04 05 06 07 038
x

The distribution functions f;(x) (above) and g,(x) (below) for the up quark (left panels) and the down quark

(right panels). Data are a selection of 25 equidistant points in 0.1 = x = 0.7 from the parametrizations of Ref. [63] (ZEUS2002) and
Ref. [64] (GRSV2000) at LO, respectively (we assigned a constant relative error of 10% to g% and 25% to g¢ based on comparisons
with similar fits [65]). The curves represent the best fit (y*/d.o.f. = 3.88) obtained with our spectator model. The statistical

uncertainty bands correspond to A y? = 1.
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TABLE I. Results for the model parameters with dipolar nucleon-quark-diquark form factor
and light-cone transverse polarizations of the vector diquark: the diquark masses My, the cut-
offs Ay in the form factors, and the cy couplings for X = s, a, a’ scalar isoscalar, vector iso-
scalar, and vector-isovector diquarks. The fit was performed using the MINUIT program on the
parametrization of f(x) from Ref. [63] (ZEUS2002), and of g;(x) from Ref. [64] (GRSV2000)

PHYSICAL REVIEW D 78, 074010 (2008)

at LO, reaching a y?/d.o.f. = 3.88.

Diquark My (GeV) Ay (GeV) cx

Scalar s(ud) 0.822 + 0.053 0.609 =+ 0.038 0.847 * 0.111
Axial vector a(ud) 1.492 * 0.173 0.716 =+ 0.074 1.061 * 0.085
Axial vector a'(uu) 0.890 =+ 0.008 0.376 =+ 0.005 0.880 =+ 0.008

C. Longitudinally polarized parton densities

The model parameters of Table I produce the axial
charge

1
gu = f dx[g"(x) — g¢(x)] = 0.966 * 0.038, (129)
0

in excellent agreement with the value 0.969 = 0.096 de-
duced from the GRSV parametrization [64].

It is, however, evident from Fig. 4 that our description of
the down quark helicity distribution is in bad disagreement
with the GRSV parametrization at large x. Nevertheless,
we point out that there is a qualitative agreement with the
parametrization of the so-called BBS model of Ref. [70]
and the analogous parametrization of Ref. [68]. In par-
ticular, our model shows the same feature highlighted in
this latter reference, namely, that the contribution of the
LCWFs with nonvanishing orbital angular momentum is
dominant at high x. This is true in all distribution functions,
but becomes particularly evident for the down helicity
distribution, since the contribution from the LCWFs 1,
and T _ (carrying nonzero orbital angular momentum)
are positive and make the distribution positive at x > 0.5.

The effect of orbital angular momentum becomes even
more evident when considering the p? behavior of the
helicity distribution function. As an illustration, we show
in Fig. 6 the behavior of the combinations f(x, p3) —
gi(x, p2) and f(x, p3) + g:(x, p3). In the case of the
scalar diquark, LCWFs with one unit of orbital angular

£ x, p})

momentum are filtered by the first combination. In the
case of the vector diquark, the situation is opposite. The
down quark distribution is entirely given by the vector
diquark, therefore the f;(x, p%) + g,(x, p%) sum clearly
turns down to zero for p? — 0. For the up quark, the
situation is less clear due to the simultaneous presence of
scalar and vector-diquark contributions. However, at x =
0.02 the vector diquark is responsible for the nontrivial
shape of f1(x, p7) + g1(x, p7).

It is interesting also to investigate the p% behavior of g¥
alone, shown in Fig. 7. There is a dramatic change of
behavior for different values of x, due to the difference
between the scalar and vector-diquark components of the
function. If the spectator is a scalar diquark, for p;y = 0,
where the LCWFs with orbital angular momentum vanish,
the spin of the up quark has to be parallel to that of the
proton, thus g ©)(y, 0) = 0. At high transverse momentum,
where LCWFs with L, = 1 dominate, the spin of the up
quark has to be antiparallel to that of the proton, thus
g‘l‘(s)(x, 00) = 0. The situation is exactly reversed in the
case of the vector diquark. As is already visible in
Egs. (58) and (59), at high transverse momentum the vector
diquark always dominates and gives a positive result. At
low transverse momentum, the relative size of the func-
tions L%(A%) in the denominator determines which con-
tribution is dominant. At higher x the scalar diquark
dominates and gives a positive g/ (x, 0), while at lower x
the vector diquark dominates and gives a negative g/ (x, 0).

£ x, p2)

p} (GeV?)

p} (GeV?)

FIG. 5. The p? dependence of the unpolarized distribution f|(x, p%) for up (left panel) and down quarks (right panel). Different lines
correspond to different values of x. The downturn of the function f{ at relatively small x is due to wave functions with nonzero orbital

angular momentum.
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up, x=0.02
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down, x=0.02

0.1 0.2 0.3 04 0.5 0.6
p} (GeV?)

p} (GeV?)

FIG. 6. The p2 dependence of the distributions f,(x, p7) — g;(x, p}) (solid lines) and f,(x, p%) + g,(x, p?) (dashed lines) for up
(left panel) and down quarks (right panel), at x = 0.02. The difference in their behavior is due to the different role played in the two
combinations by wave functions with nonzero orbital angular momentum.

Once again, apart from the details specific to our model,
these examples show that the exploration of the p? depen-
dence of the unpolarized and helicity distribution functions
can expose very interesting features of the inner structure
of the nucleon, related, in particular, to orbital angular
momentum.

D. Transversity

In Fig. 8, the predictions of the spectator diquark model
for the transversity distribution are compared with the only
available parametrization of Ref. [71]. In the left panel,
xh'(x) is shown, whereas xh¢(x) is shown in the right
panel. All the model results at the assumed original scale
Q3 = 0.3 GeV? are represented by the dashed lines. The
solid lines indicate the results after applying the DGLAP
evolution at LO up to the scale Q> = 2.5 GeV? using
the code from Ref. [72]. The latter scale pertains to the
parametrization of Ref. [71], whose errors in the fit pa-
rameters produce the uncertainty band represented by the
shaded areas. The model is in reasonable agreement with
the parametrization, with the maxima in the correct posi-
tion and a somewhat too small result for the up quark at
small x. It should also be kept in mind that the present data
reach at most x = 0.4 [73,74] and, moreover, the ansatz of
Ref. [71] does not allow for a sign change.’

Interestingly, for the up quark the model predicts a
change of sign at x ~ 0.5. To our knowledge, no other
model of transversity displays this feature (see Ref. [76]
and references therein; see also recent calculations in
Refs. [66,77,78]). The reason for this sign change is that
the contribution of the vector diquark is negative, as evi-
dent from Eq. (79). In our model, at moderate x the scalar
diquark contribution is dominant, whereas at sufficiently
high x the contribution of the vector diquark becomes in
absolute size bigger, thus leading to the sign change. Other
versions of the diquark model, even with vector diquarks,

SWe point out that new fits of the transversity distribution
functions have been presented at some conferences [75] but not
published yet.

may not show this property. This is already evident from
inspecting the results (listed in the Appendixes) for differ-
ent choices of the diquark polarization sum. We do not
think that our model calculation should be trusted more
than others. Nevertheless, it might be interesting to con-
template the possibility of a sign change when choosing a
form for the parametrization of the transversity function in
“global fits.”

In Fig. 9, the same comparison is performed as in the
previous figure, but for the p; dependence of the trans-
versity at x = 0.1, as deduced from Egs. (68) and (69).
Again, there is a reasonable agreement between model
predictions and parametrizations but for the trend of the
result for the up quark at |pr| > 0.3 GeV/c. However, we
stress that the comparison may be affected by the differ-
ent scale of the model results (Q? = 0.3 GeV?) and the
one at which the parametrizations are extracted (Q> =
2.5 GeV?). The proper evolution of the TMDs has not
been considered yet. It is interesting to point out that in
our model /Y% (x, p7) changes sign at p; ~ 0.5 GeV. This is
due to the fact that the vector-diquark contribution is al-
ways negative and dominant at high p;. For the down
quark, we note that h‘li(x, 0) = 0, because the vector-

g (x, p?)
2.0 T : .

T T

15\ )

1.0

\ x=0.02
0.5 |

0.0

-0.5 1

-1.0 : : : : :
01 02 03 04 05 06

FIG. 7. The p? dependence of the helicity distribution
g4(x, p%). Different lines correspond to different values of x.
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X h:’ (X)
0.05 T T

0.00

-0.05

7 )
-~ Q°=0.3GeV
-~

-0.10

-0.1 * *
0.4 0.6

0.2

1.0
X

-0.15 . . . .
0.2 0.4 0.6 0.8 1.0
X

FIG. 8. The transversity distribution x/,(x) for up (left panel) and down quarks (right panel). Dashed (solid) lines for the model
result before (after) the evolution at LO using the code of Ref. [72] up to the scale of the parametrization from Ref. [71], whose
uncertainty bands due to errors in the fit parameter are represented by the shaded areas.

diquark contribution to /; is entirely given by LCWFs with
nonvanishing orbital angular momentum.

E. Sivers function

In Fig. 10, the xf ;" (x) moment of the Sivers function,
predicted using Eqgs. (104) and (105), is given by the solid
line and it is compared with two different parametrizations
of the same observable. The darker shaded area represents
the uncertainty due to the statistical errors in the parame-
trization of Ref. [79], while the lighter shaded area corre-
sponds to the same for Ref. [80]. The left panel refers to the
up quark, and the right panel to the down quark. First of all,
we observe the agreement between the signs of the various
flavor components, which also agree with the findings from
calculations on the lattice [81]. Also the maxima are
reached at approximately the same x ~ 0.3 as the parame-
trizations. Instead, the “‘strength” of the asymmetry (re-
lated to the modulus of each moment) is much too weak for
the down quark, while it seems reasonable for the up one.
Again, it must be stressed that no evolution was applied in
the displayed model results.

According to the Trento conventions [62], we define the
spin density of unpolarized quarks with flavor ¢ in trans-
versely polarized protons as

(P X pr)-S

Fapptts pr) = f100 P3) = fi (0 pP) =

(130)

x h{ x,p?)lk-0.1

In a SIDIS experiment, typically P is antialigned to the 2
axis that points in the direction of the momentum transfer
q. Hence, if the proton polarization is chosen along the x
axis, the spin density (130) shows an asymmetry in mo-
mentum space along the p, direction, whose size is driven
by the Sivers function. In Fig. 11, we show f,,1(0.1, pr)
for ¢ = u (left panel) and ¢ = d (right panel). Since the
Sivers function for the up (down) quark is negative (posi-
tive), the density is deformed towards positive (negative)
values of p,. This feature is in agreement with the lattice
results of Ref. [81] and with the signs of the anomalous
magnetic moments «7 [61].

F. Boer-Mulders function

In Fig. 12, the th‘(l)(x) and th‘(lm(x) moments of the
Boer-Mulders function, as deduced from Egs. (106), (107),
(110), and (111), are displayed in the left and right panels,
respectively. The solid lines correspond to the results for
the up quark and the dashed lines for the down quark. For
the Boer-Mulders function, the only available parametri-
zation appeared recently in [22], but the overall normal-
ization depends on a parameter  that cannot be fixed with
available experimental information. Our result agrees in
sign and shape with that extraction. The absolute values of
our functions correspond to w = 0.3. We remark that there
is full agreement between the sign of the # and d compo-
nents and the aforementioned lattice calculations [81], as

x h{ (x,p3)lx=01

0.4 0.6 0.8

IpTl (GeV)

0.2

0.05
0.00
-0.05
-0.10
-0.15 : : : :
0.2 0.4 0.6 0.8 1.0
IpT| (GeV)

FIG. 9. Same as in the previous figure, but for the py dependence of transversity at x = 0.1.
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FIG. 10. The first p; moment xf llT(l)(x) of the Sivers function, left (right) panel for up (down) quark. The solid line represents the
results of the spectator diquark model. The darker shaded areas are for the uncertainty bands due to the statistical error of the quark

parametrizations from Ref. [79], and lighter ones from Ref. [80].
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FIG. 11 (color online).
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The model result for the spin density of unpolarized quarks in transversely polarized protons (see text for the

precise definition) in py space at x = (0.1. The left panel is for up quark, right panel for down quark. The circles with the arrows

indicate the direction of the proton polarization.
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FIG. 12. The xhll(l)(x) (left panel) and xhll(l/ 2 (x) (right panel) moments of the Boer-Mulders function. Solid and dashed lines arefor

up and down quarks, respectively.

observed also in a different version of the spectator model
[36] and in the bag model [47]. This agreement seems to be
a general feature, as argued in Ref. [29].°

In Fig. 13, we show, again at x = 0.1, the spin density of
transversely polarized quarks with flavor ¢ in unpolarized
protons, related to the Boer-Mulders effect by [62]

A different result for the sign of the down quark Boer-
Mulders function was obtained in Ref. [46], probably due to a
mistake in that calculation (see Appendix B 4).

(IA) X pT) : Sq]
M s
(131)

Fyp ) = 5[ #1009 = G )

where now the quark polarization S, points along X. Since
the Boer-Mulders function is negative for both flavors (see
Fig. 12), the related spin density is always deformed to-
wards positive p,, again in agreement with the lattice
results [81].
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FIG. 13 (color online).
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: 0
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The model result for the spin density of transversely polarized quarks in unpolarized protons (see text for the

precise definition) in p; space at x = 0.1. The left panel is for up quark, right panel for down quark. The arrows inside the circles

indicate the direction of the quark polarization.

IV. CONCLUSIONS

We have presented a systematic calculation of all
leading-twist parton distributions in the nucleon in a di-
quark spectator model. We have generated the relative
phase necessary to produce 7-odd structures by approxi-
mating the gauge link operator with a one gluon-exchange
interaction. All results have been presented in analytic
form and interpreted in terms of overlaps of light-cone
wave functions.

We tried to extend and improve the spectator model
calculations presented in Refs. [36,42,46] by considering
several choices of the axial-vector diquark polarization
states and of the nucleon-quark-diquark form factor. We
listed the analytic expressions for all possible choices in
the appendixes. We critically reconsidered some of the
limits of the model and the choice of model parameters
used in the past literature. In particular, we showed that the
spectator diquark model is not able to reproduce both the
quark number and momentum sum rule at the same time,
because the diquark is considered as a charged parton,
hence active in the sum rules. We argued that the proton
wave function does not show the usual SU(4) = SU(2) ®
SU(2) symmetry [42], since the quark-diquark system in its
ground state can have a nonvanishing relative orbital an-
gular momentum.

For numerical studies, we chose the version of the model
that in our opinion is more sensible and practical, i.e., the
one where only light-cone transverse polarizations of the
diquark are present and a dipolar form factor is used. We
identified nine free parameters of the model and we fixed
them by reproducing the phenomenological parametriza-
tion of unpolarized [63] and longitudinally polarized [64]
parton distributions at the lowest available scale, i.e., 0? =
0.3 and 0.26 GeV?, respectively.

Whenever possible, results have been compared with
available parametrizations. For the chiral-odd transversity
distribution, there is only one available from Ref. [71],
which was deduced from data on single-spin asymmetries
at Q> = 2.5 GeV?. The p-integrated model result, once

evolved to this scale using the code from Ref. [72] at LO,
displays a satisfactory overall agreement. The f IJ'T(I)(x)
moment of the chiral-even T-odd Sivers function fi; was
compared with the parametrizations of Refs. [79,80].
There is agreement between the signs of the various flavor
components and between the positions of the maxima in x,
but the absolute value of the function is somewhat too
small for the down quark. The comparison is affected by
the difference of the scales, since evolution equations for
the Sivers function have not been used. We also plotted the
hf(l)(x) and hll(l/ 2)(x) moments of the chiral-odd T-odd
Boer-Mulders function hi-. We have also shown the quark
spin densities defined in the Trento conventions [62], as
produced in turn by the Sivers or the Boer-Mulders effects.
For unpolarized quarks in transversely polarized protons,
the spin density f,,, is linked to f f-T, while for trans-
versely polarized quarks in unpolarized protons the f i/,
is linked to hli. For transverse polarizations along the ¥
axis, the contour plot in the quark momentum space of such
densities at x = 0.1 displays a distortion in the p, di-
rection, whose sign is consistent with the lattice findings
for the corresponding spin densities in impact parameter
space [81].

Using the model parton densities discussed above, vari-
ous spin, beam, and azimuthal asymmetries in semi-
inclusive hadronic reactions can be predicted, which are
of interest for several experimental collaborations. Model
calculations can be useful to interpret experimental mea-
surements, helping us to explore spin-orbit parton correla-
tions inside hadrons and shed light on the well-known
puzzle of the proton spin sum rule.
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APPENDIX A: T-EVEN FUNCTIONS IN
DIFFERENT VARIATIONS OF THE MODEL

In this Appendix we list the leading-twist T-even parton
densities obtained in the context of our spectator diquark
model, for all the choices of axial-vector diquark polariza-
tion sum and nucleon-quark-diquark vertex. To avoid over-
loading the notation, we will use the same ones for the
parameters involved (gy, My, Ax). However, it must be
kept in mind that the numerical value of these parameters
can be different in the various versions of the model.

1. Scalar diquark

The results for the scalar diquark are

g2 [(m+xM)?+ p3](1 — x)

q(s) 2y —
f] (xy pT) (277_)3 2[[’% n L%(le)]2 s (Al)
q(s) 2\ g% [(l’l’l + XM)2 - P%](l - x)
R T () S
q(s) 2\ — g? M(m + xM)(1 — x)
ng (.X, pT) (277_)3 [p% + Lg(mz)]z » (A3)
Y, p3) = —gly (x, p3), (A4)
i (x, p3) = £ (x, p3), (AS)
2 2 _
J_q(s)(x pT) _ 85 M (1 X) (A6)

@m)* [p7 + Li(m*) P’

%) (m + xM)?A2 — L2(m*)A2 + L2(m*)[A? + L2(m?)] log<$’iz) + 1)
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where we recall that M is the nucleon mass and m is
the mass of the parton. From the latter two densities, we
construct the contribution of the scalar diquark to the
transversity:

O, 3) = W) + L e )

g2 (m+xM)*(1—x)
~@m)? 2Aph + LAm)P

= %(fi’(“‘)(x, 3 + g1V p)).

(AT)

The above results are valid for a pointlike nucleon-
quark-diquark coupling. For the other form factors it is
sufficient to apply the replacements
[p7 + Li(m*)P
[} + LA(AD)F

dipolar form factor,

— 92(1 — x)?
g1 —x) (AS)

g2 — g2e P Ly m)/I1=0A%]  exponential form factor.

(A9)

The integrated results are obviously different for the
three form-factor choices. In all cases the transversity
function saturates the Soffer bound, i.e.,
= AV + gf V(0.

R (x) (A10)

(i) Pointlike coupling (to avoid divergences we as-
sume that the p? integration is extended up to a
finite cutoff A2)

q(s) _ gs(l
S0 == oy A2 AT + )] | (A1)
242 20 2VA2 — T2(12\[ A2 20,2
0 — 830~ (m + xM)?A2 + L2(m?) A2 — L2(m)[A2 + L2(m?)] 1og(Lz(mz) + 1) .
é (2m)? AL (m)[AT + L2(m?)]
[
(ii) Dipolar form factor [same as Eqgs. (74) and (76)] (iii) Exponential form factor
@, & [20m+xM)? + LAAD](1 — )} a6 () = 85 L[ —ar2emyma-naz 1~
flll (x) - (277_)2 24L?(A%) ’ f ( ) (2 ) 4{ L? ( )[(m
(A13) 2 ragiaN 2L2(m?)
T xM)? - L2(m?)] r( o )A2>
1) = g [20m + xM)* — LF(AD]1 — x)? o Alm +xM)? — Lim?)] — (1 = 0) AT
Q2m)? 24L8(A3) A2 }
(A14) (A15)
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49) () = g2 1 {e_2 L) [(-0az] LT X where I is the incomplete I" function, defined as
m)?*4 L2(m?)
X [(m + xM)? + L2(m?)]
B F( LZ(mZ) ) F(a, Z) = /; t”_le_’dt. (A17)
(1 —x)A?
2[(m + xM)> + L2(m*)] + A%2(1 — x)
X A2 } 2. Axial-vector diquark with light-cone

(A16) transverse polarization only

| The unintegrated parton densities are

2 pr(1+x%) + (m+ xM)*(1 — x)? g2 pr(l+x*) — (m+ xM)*(1 — x)?

@), 2y 8a g _

S P = G A+ e~ L Py 3] e
2

a 8a Mx(m + XM) 1g(a a

g9 (x, p2) = o e A9, p3) = g1 (x, p})/x, (A18)
T a
2 2

a 8a xXp L a a a

W) = s e M @ e =0 h{ ) = b )
T a

The above results are valid for a pointlike nucleon-quark-diquark coupling. For the other form factors it is sufficient to
apply the replacements in Eqgs. (A8) and (A9).

The integrated results are

(i) Pointlike coupling (to avoid divergences we assume that the p? integration is extended up to a finite cutoff A2)

g2 1

A0 = G AR T T =) [xA;%[(MZ = m)(1 = x2) + 2mM(1 = x)* = MA(1 + x2)]
+L2m)[AZ + L2+ 1) log(%iz) T 1)]
e ga 1 A7
) = G TEEGATAT T T = AL + L0+ ) tog(pits+ 1) AI9
— A2[(1 — x)mM[x(1 — x)(2M — m) + 2m] + x(1 — x)M3(x — 2x> — 1) + x(1 + xz)MM,%]}, (A19)
» 2 xl:Aﬁ[(l — x)(xM? — m?) — xM2] + L2(m*)[A2 + L2(m?)] log(Lz( 5 1)]
M = " Gy 22N + LT = ) |
(i1) Dipolar form factor [same as Egs. (75), (77), and (79)]
fq(a)(x) _ g2 [2(m + xM)*(1 — x)* + (1 + x*)L2(A2)](1 — x)
! (2m)? 24L8(A2) (A20)
1) () = — &2 [20m + xM)2(1 — x)2 — (1 + ) LA(A2)](1 — x) HI ) = g x(1-x)
! (277)? 24L5(A2) ! (27)2 12L4(A2)’

(iii)) Exponential form factor
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A0 = s s (A3 = 00+ (0.2 ) o+ 51— = L300
X (1 + xz)][(l — 2)AZe 2L IU-IAZ] 2L3,(m2)r(0, 2%)]}
g7 (x) = 5 gz) T (ml) T {Ang(mz)u — (1 + x2)r<o, 2%) + [(m + xM)*(1 — x)? + L2(m?)
X (1 +x2)] X [2L3(m2)r(o, 2%) —(- x)Age*ZLﬂmz)/[“*W]]},

(A21)

3. Axial-vector diquark including also longitudinal polarization

The unintegrated parton densities are

g2

1
(2 )3 4[p7 + Li(m*) PMZ(1 — x)
+ 6xmMM?2 + 2x*M*M?2 + m>M?*(1 — x)*]],

A9, p2) = [p% + xM2(2p% + xM?) + (1 — )2 [p2(M? + m? + 2M?2) + 2m>M>

sz 1

a

2m)* 4[p7 + La(m*) PME(1 = x)
—2m*M?2 — 2xmMM?2 — 2x*M*M? + m*M>*(1 — x)*]],

g2M (m + M)p3 — mM(m + M)(1 — x)*> + xM2[M(2x — 1) + m]

[ph + xM2(2p% + xM2) + (1 — x)*[p2(2M?% — m?> — M? — 4mM)

g1L)(x PT) = (

g% (x, p2) =

Qm)? 2[p7 + La(m*)PM;
J_q(a)( ) = M (m + M)p3 — mM(m + M)(1 — x)> + xMM?% — mM?(x — 2)
PP @my 2pt + La(m*) P M;
B (, p2) = gh pr +[2xMZ + (m? + MP)(1 — x)*1p7 + [xM} + mM(1 — x)*T
T ey Alp7 + Li(m*) M1 — ) ’

J_q(a) g121 Mz(m + M)2(1 - .X)
0 PD = (o o3 + L2 P2
g pr + [2xM2 = 2mM(1 — x)*]p3 + [xM? + mM(1 — x)*P
2m7)3 AM2(1 = x)[p7 + xM2 + (1 — x)(m* — xM?)]?

H{x, p}) = (A22)

The above results are valid for a pointlike nucleon-quark-diquark coupling. For the other form factors it is sufficient to
apply the replacements in Eqgs. (A8) and (A9).

The integrated results are

(i) Pointlike coupling (to avoid divergences we assume that the p? integration is extended up to a finite cutoff A2)

2 1
(277')2 8L2(m*)[A2 + L2(m*)IM2(1 —

F19 () = )[Az[L;*(mZ) T A2L2(m)] + (1 — xP2M2Lm? — L2(m?)]

2
+ x[(m? — M?)? — M2(m?> — 6mM + M?)] + x22M*M2] + L2(m?)[A2 + L2(m*)](1 — x) log<7L2/(xa ) + 1)
Z2(m

X [(1 + x)(m? — M?) — 2M2(1 — x)]],
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fq(a)( ) - (2 )2 8L2(m2)[A2 T le(mz)]Mz(l )I:A%z[Li(mz) + Ang(mz)] + (1 - x)z[ZMg[mz - L%(mz)]
+x[(m? — M2 — M2(m® — 6mM + M?)] + 222M2M2] + L2(m)[A2 + L2(m?)](1 — ) 1og(L2/(\i2) + 1)
X [(1 + x)(m? — M?) — 2M2(1 — x)]],
a 2 1
60 = s S T T = FME RN + L3024 AR 2L )
X [mM?(2x — 1) + m®>M(x — 2) — m> + xM(M? — 2M2)] + m>(1 — x) — m*M(x — 2) + m*M>2x
+ m3M*(1 — x2) + m*MPx(x* — 2x — 1) + mM*M2x + mM*x(2x*> — x — 1) + X*M3(M? — 2M2)]
+ (1= OL2m)[A2 + L2(m?)] log( o 22) + 1)[L2(m Yom + M) — (1 — x) + m*M(> — 2x — 1)
—xemBMA(1 — x) + M2) + xM(M2(1 — 2x) + 2xM2)]},
2
h?(a)(x) =~ (28;)2 8L2(m?)[A2 + le(mz)]Mz(l —x) I:Lg(mz)Ai(Lg(mz) + A2) + (1 — x)?AZ[(m + M)*L3(m?)

T x(m — M2(m + M) — M2)] — 2L2(m2)(L2(m?) + A2)(m + M)(m — xM)(1 — x) 1og(L2/(\j’12) + 1)]

(A23)

(i) Dipolar form factor

= x [2L4(A2) + 2xM2(L2(A2) + xM2) + (1 — x)’[(2M2 + m?> + M?)L2(A2) + 4m>M?
(2 )2 48L8(A2)M2

+ x12mMM? + xX*4M*M? + 2m*M>*(1 — x)*]],

A0 =

2
(a) _ 8a l—x
T90%) = @) A8LS(ADM [2L3(A2) + 2xMZ(L3(AZ) + xM3) + (1 — x)’[2M7 — m* — M? — 4mM)L3(A3)

— 4m>M? — xAmMM? — xX24M>M? + 2m*M?(1 — x)*]],

4(a) [ 1-
h a — a
10 =Ty 24L6(A2)M

[LA(A2) + [xM2 — mM(1 — x)*]L2(A2) + [xM2 + mM(1 — x)*]*]. (A24)
2

(iii) Exponential form factor

@ (x) = S ! — x)e-2PHHLAI0-9AT) 2L5(m?)
£ (x) ) 16L2 D AL =) {2[/\3(1 X)e AP +L 1 2L§(m2)F( 1= )A2>]
X [(1 = x)?[m>(2M? + M*(1 — x)*) — L2(m?)(2M2 + m?* + M?) + 2xMM?2(xM + 3m)]
2L2(m?)
T (1= 0xM2(M? — m2) + LEm?)(L2(m?) — xM2)] + A2L2(m2)(1 — x)[(l - x)22r< )

(1 —x)A2
2 —2[p2+L2(m2)]/[(1—x) A2 2L5(m) 2 202
X (m? + M? +2M2) + (1 — x) A2~ App+Lam))/[1=0AL] 4 4F< 0 )A2)[ xM2 — Li(m )]]},
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21 (x) = 8a ! {[A2(1 e AP -0A) 2L2(m2)1“< 2L5(m?) )]
(2m)? 16L2(m*)A2M2(1 — x)* L “ ‘ (1 —x)A2

X [(1 = x)*2m?*M? — (1 — x)’[2mM[xM? — L2(m?)] — L2(m?)(m + M)*] + (1 — x)[A2L2(m?)
+ 2M2(m%(x — 2) + (2x — Dx*M?)] + 2L2(m*)[L2(m?) — xM2 — 2M2(1 — x)?]] — 2L2(m?)A2(1 — x)

% [*( 2L5(m%) )[Lg(mz) —2xM?% + (1 — x)’[(m + M)> + 2mM — 2M§]]},

(1 - xA2
(@ ga 1 NP7+ LE(mM)Y pr + Li(m?)
h‘l (x) = O T6L2 () AV = )2 {I:AZ(I )c)|:51nh<27(1 A ) COSh(27(1 A2 )]
+ ng(mz)r( (sz( ; A)z)][(l — P2 M? + (1 — xP4mMxM? + L2(m2)] + (1 — )[A2L2(m?)
+2M2GM? — m?)] + 2L2(m2) (L2 (m?) — xM2)] + 2L2(m2)A2(1 — x)F( (TLZ(”)’Z)Z)[L% 2)
— M2 + (1 — x)22mM]}. (A25)

4. Axial-vector diquark including also timelike polarization
The unintegrated parton densities are

FIO (3 p2) = ga [p7 + (m+ xM)* + 2mMx](1 — x) 19 (x, p2) = — ga [—p7 +m* +X°M*](1 — x)
SNy 0 2[p7 + Li(m*)P ’ ! 2m)? 2Ap; + L2mHF
2 2 2
q(a) 2y 8a M7x(1 — x) J_q(a) _ & mM(1 — x)
§ir (P = G R T T )P & PY) = G o2+ L2
1 pp) = —xhif G pp). b pp) =00 A p3) = K (s pY) (A26)

The above results are valid for a pointlike nucleon-quark-diquark coupling. For the other form factors it is sufficient to
apply the replacements in Eqs. (A8) and (A9). The result for f with dipolar form factor corresponds to that obtained in
Ref. [46].

The integrated results are

(i) Pointlike coupling (to avoid divergences we assume that the p? integration is extended up to a finite cutoff A2)

21 — x [(m + M)*> + 2mM — M2]xAZ + L2(m?)[A2 + L2(m?)]log #jﬂ) +1
fq(a)(x) _ 8 ( )
1

(2m)? 4LZ(m*)[AZ + Li(m?)] '
“ 2(1 - ) A2(L2(m2) + m? + >M?) — L2(m?)[A2 + L2(m?)] 1og(L2( 5+ 1) (A27)
qla _ _ %a
&0 = = oy AL2DAL + L)) ’
h?(a)(x) _ _ g%,(l - )C)Atzl xmM

@m?  2LEm*)[AZ + Li(m?)]

(i1) Dipolar form factor

fil(a)(x) _ g% [Lzzz(Ag) + 2[(m + xM)* + 2xmM]](1 — x)?

Q) 24L5(A2) ’
2 2 2 2 2402 3 2 3 (A28)
(a)( ) 8a [La(Aa) - 2(m +x*M )](1 - )C)' hq(a)(x) _ 8a me(l - )C)
Qm)? 24L5(A2) ’ ! (2m)?  6LS(A2)

(iii)) Exponential form factor
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Cl(u)( ) = l{ —202(m?)/[(1-x)A2] [(m + XM)2 + 2mxM — LQ(mZ)](l — X) F(O ) L%(mz) )
(2 )2 4 L (m?) (1= 0)AZ
2[(m + xM)? + 2mxM — L2(m?)] — (1 — x)A2
w t
2 23,2 24 22 21,2 2
(a) g I{F(O ) L2(m?) )2[m + x*M? + Li:(m*)] + (1 — x)A2 A29
Wm0 a2 Az .
_ e-2my-oan (L= X)m? + 20 + Li(’”z)]}
Li(m?) ’
1@ () = 8 mxM { 2 1“(0 2L () ) ey a-ony L }
: Qa2 (A2 \"(1—x)A2 L%(m?)
[
APPENDIX B: 7-ODD FUNCTIONS IN DIFFERENT 1. Scalar diquark
VARIATIONS OF THE MODEL For scalar diquarks, we have
As a continuation of Appendix A, here we list the g P 1 Me? 2 ImJe

Sivers and Boer-Mulders functions, namely, the leading-
twist 7-odd parton densities obtained in the context of
our spectator diquark model, again for all the combina-
tions of diquark propagators and nucleon-quark-diquark

vertices. |

d*l g((p = 1?)

fi t](S)(x pT) _

4  (2m)3 200 —x)P* p> —m*’

ij S ._]S B
(sTpTl Tj) 1 (277')4 (Dl + is)(DZ -

X (2P —=2p+1),n2y"]

ie)(D; + ig)(Dy + ig)

8s ((P - 1)2)

_/@mﬂm+mw2
- P"(m + xM)sTlTiSTj),

with Dy, D,, D3, and D,, defined in Eq. (85). The imagi-
nary part of J{ can be extracted by using the Cutkosky
cutting rules on the loop diagram of Fig. 2, which in the
present case amount to put on shell the eikonalized virtual
quark propagator D, and the virtual scalar diquark propa-
gator D,. The resulting 6 functions (see below) reduce the
integral in Eq. (B2) to a bidimensional integral in d?l;. In
general, for a n-dimensional integral f aril,f(l p) the
term [, can be replaced by the expression p,(I - p)/ P
For the present case n = 2 and with the identification /,,

lri» Pp = Pri> We finally can write

ie)(D; + ig)(Dy + ig)

O p3) = [ ), (B1)
where the J{ integral is defined as
T (p =7+ m)(P + M)ys$(p + m)
4-l(l+ + 2(1 - x)P+)(l+M8TthSTj
| 4 2
2ImJ§ = (2dw§4 gs((Dpl—) ) )4(l+ +2(1 — x)P%)
(ﬁM P m + xv) TP T)(zm)a(p2)
p7
X (—=2mi)6(Dy)
= —4P"(m + xM)(1 — x)g,I,. (B2)

The explicit expression of I, clearly depends on the choice
of the nucleon-quark-scalar diquark vertex form factor.
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The Boer-Mulders calculation gives exactly the same
results as the Sivers one, in the scalar diquark framework,
since the relevant trace over Dirac-Lorentz structures is
now given by

PHYSICAL REVIEW D 78, 074010 (2008)
TS — T+ m)(P + MY+ m)P —2p + Dy i ]
= —4i(I* +2(1 — )P (I* M&lpy,
—Pt(m+ xM)sTlTj). (B3)

(i) Pointlike coupling

TPT

T

)(277'1)5(D2)( 277)5(Dy)

. ‘i1
2imi; = g, [ 5 5540+ 20 - x)P+)<z+M — P*(m + xM)
= —4P (m + xM)(1 — x)gsﬁl"l' = —g,
where J 11"1' is calculated in Appendix C.

Using Eq. (8), the final result is then

2 2

Lg@y. 2y _ 8 Mez (m+xM)(1 — x)

it " P1) = = ot 2 + pD]
2 2 + 2

L3(m?)
"0 ph) = i (P, (BS)

d*l elp=02=m*l/A
(2m)*  DyDs

2ImJ} = g

Pt(m + xM)(1 — x) | (L%(m2) + p%)

7P} L3(m?) B9

A0+ +2(1 — x)P+)(z+

(i) Dipolar form factor. The final results, already given
in Egs. (98) and (100), are
2 2
Lg(s) _ & Me;
( pT) 4 (277_)4
(1 —x)3(m + xM)
LY (ADp7 + LYADT

h 9%, p2) = fi79(x, p2). (B6)

X

(iii)) Exponential form factor

Pt (m 4+ xM) T pT)(eri)B(Dz)(—Zm)b‘(D4)
T
Pt (m + xM)(1 — x) Li(m?) \ LX(m?) + p2
8 p— [0 x)Az) (o7 A2 )}

= —4P*(m + xM)(1 — x)g, I{" = —
and I7* is calculated in Appendix C.
The final results are then

) g2 Me2 (m+ xM)(1 — x)
1 PP = = G ) + 2]

Lg(s Lg(s
h; at )(x’ P%“) = qu( )(x, P%)

-3+ L) w)M][r(o’

(B7)

2. Axial-vector diquark with light-cone
transverse polarization only

‘We have
Py 1 Me? 2ImJ§
4 Q2u) 41 —x)P" p* —m*

1 8
FH9(x, p2) =22

where now the J{ and J}* integrals are defined as

d*l g.((p — 1)?)

2 1 M 2
hf_q(a)(x’ p%) _ ga(P ) €c

2ImJ| @
4 Qm? 40 —x)P* pr—m?

(B8)

o g \Ji =
(e7 priStj)] Qm)* (D + ie)(D, —

ie)(Ds + ig)(Dy + ig)
— 1= P)dyo(P—p2P —2p+1),8"" —(P—p+ (1 +k,))7g}

T (f — 1+ m)y*ys(P + M)ysgy*ys(p + m)d,,(p

K, gon? y*]
(B9)

-(P—-p-—
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and

ij d*l g.((p — %)
(—efpr)Ji =

PHYSICAL REVIEW D 78, 074010 (2008)

Qm)* (D, + ie)(D, — ie)(D5 + ie)(Dy +

o) Ti(p — 1+ m)yFys(P + M)y*ys(p + m)d,,,(p — 1

— P)dyo(P = p[2P = 2p + 1),8"" = (P = p+ (1 + k)D7g) — (P — p = K ))"'g7 InLic" " ys],

and the explicit expressions of the d,,,(p —1— P) and
d,.(P — p) structures are those expressed in the first line
in Eq. (10).

(i) Pointlike coupling (to avoid divergences we assume
that the p? integration is extended up to a finite
cutoff A2)

2ImJ¢ = —8P* x(m + xM)g, I
_ 2P x(m+ xM) ) (Lg(mz) + p%)
a 2 2 2 ’
7TpT La(m )
2ImJ'* = 8P*(m + xM)g, I""
_ 2P (m + xM) | (Lﬁ(mz) + p%)
a 2 2(1,2 ’
7TPT La(m )

where T ‘1"1' is the same integral as in Eq. (B4) but
with the substitution L (m?) < L,(m?). Using again
|

2ImJ¢ = =8P x(m + xM)g, I7" = —g,

(B10)
Eq. (8), the final result is
2 2
(@) 5\ 8a Me; x(m + xM)
£, pj) =22
= r 4 (2m)* pi[Li(m?) + p3]
12(m2) + p2
X 1o ( a(n;) > pT))
L (m?)
a 1 a
B ) = = fif ). (B12)

(i1) Dipolar form factor. The final results, already given
in Egs. (99) and (101), are
Lg(a) 2 g% Me% (1 B )C)Z)C(m + XM)
i e =7 T T2AD 2 + T2(ADD’
4 (277) La(Aa)[pT + La(Aa)]

(m + 2(m2) + p2
2Imsje = 8P*(m + xM)g ¥ = g, 20" MW@uamﬂﬁ@ﬁﬂLﬁﬂ
—x)A2

The final result is, then,

2 2
L g5 Me x(m + xM)
f]]"q(a)(x’ pZT) =22 -

4 m)* pFLi(m?) + p7]

a 1 a
(B11) B ph) = = i ph). (B13)
(iii)) Exponential form factor

+ + 2 2 2 2 + 2

2P" x(m - xM) [1_,(0, (lLa(m)/)\2> B F(O, Lgl(m ) )AIZ)T)]’
T - X —x)A;
Pr “ (B14)
L2(m2)
w3 (1 —x)A2
e—[p%+L3<m2)]/[<1wMJ[r(o, L) 2) - 1“(0, La(m) + pi %) ]

1 11
B ph) = = —fi @ ph).

3. Axial-vector diquark including also
longitudinal polarization

We have
2 2 a
Lo, 2y _ 8(P7) 1 Me2  2ImJS
flT (x; pT) 4 (277_)3 4(1 — X)P+ p2 — mz’
O p2) = 8.p?) 1 Me2  2ImJy
1 » PT

4 Q2m) 401 —x)P" p*—m?’
(B16)

|
where the J{ and J|* integrals are defined as in Eqs. (B9)
and (B10), respectively, but now the second line in Eq. (10)
is employed for the d,,(p —1—P) and d,,(P — p)
Lorentz structures.

(i) Pointlike coupling (to avoid divergences we assume
that the p? integration is extended up to a finite
cutoff A2)
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4 2
2ImJ¢ = g, (2d l)4 DD Qi) 8(Dy)(— 2771)6(D4){X(x pT)(l + 2;/12)” ( _ % ,T) (ITP Tpr)[yl(x p?)
+ Ya(x, p3)(I7 - pr) + Y3(x, Pr)lz] + Wix, PT)( d ST>ST [lr — 2PT]},
&l 2 1 !
2t =g, [ D3 L misDy)(~ 2771)5(1)4){ X(x pT)<1 t o )lT ( - 5IT) + ( Tp TPT)[Yl(x )

= Yo(x, pp)I7 - pr) — Ya(x, pPIG + 2M2[(m + xM)(1 — x) — xm] + M2[m(k, — 1) — M(1 + k,)x]l} ]}
(B17)

where the integrals X, W, Y;, i = 1-3 are listed in Appendix C. Unfortunately, most of the above combinations are
divergent under the dl; integration. This is a typical pathology when choosing the pointlike form factor for the
nucleon-quark-diquark vertex, without any ad hoc cutoff.

(i) Dipolar form factor

d*l 1
(277)4 DI(D3)2

. _ 1 Ir- 2 I
(2771)6(D2)(—2m)5(D4){X(x, p%)(l — —l% + Tp%p r 2&2 — 4;14) + W(x, p3)

2ImJ§ = g,

I;-S
X( A 5 T>ST Iy —2pr] + ( L pT)I:Y1(X py) + Ya(x, p3) Ir pT + Y5(x, pPI3 ]}
St PT I’T

A
(2m)* Dy(D5)

2 It = g, emio02minsDo Xt (1 + 5 (pr = 12) + (L)t )

T
— Y, (x, p2l; - pr — Y3(x, pR)I2 + 2M2[(m + xM)(1 — x) — mx] + M3[m(k, — 1) — M(1 + k,)x]I3 ]}
(B18)

where the integrals X, W, Y;, i = 1-3, are listed in Appendix C. Unfortunately, most of the above combinations are
divergent under the dl; integration, unless a dipolar form factor is considered with a higher degree, for example,
proportional to [p% + L2(A2)]73 in Eq. (13). This would introduce a 1/(D3)? term inside Eq. (B18), instead of
1/(D5)?, and grant the convergence of the various integrals. With this very choice, we obtain

(1—-x)? di )2 1\ i d di di
2 ImJs = guT{X( pT)[ 2 e 4 (211;2 - E)J; i 4M2 T ‘P] + (6 p2) T + ¥, (x, p2) TP

+ Y3(x, p2) IS + W(x, p2)(IS™® = 2py - S7TEP),

2 ImJe = (1 - X)2 X 2 zlldip 1 _ pT Ildlp ]Idlp I/dlp Y 2 I/dip (B19)
mJi = 84 pt (X, pT) pPri + E 2M2 4M2 + Yl(x pT) 2(x’ pT) 3
— Y5(x, p2) IS + 2M2[(m + xM)(1 — x) — mx] '™ + M2[m(x, — 1) — M(1 + Ku)x]l/zdip},
where the integrals J ;dip, i = 1-7, are listed in Appendix C. The final result is, then,
2 2 4 2
Lg@,. on__  8a Meg (1—-x) { 5 [ 5 7idip ( DT 1) dip /dlp] 2y pidip

, =—— X(x, I7°P + ——\)I —I + Y, (x, I

S P = 75 G prpizan) + 37 U PP g T 2) R e pod

+ Y,(x, pP ISP + Ya(x, pP) ISP + W, pp) (I3 = 2py - S7 T 'éﬁp)},

2 Me> 1 —x)* 1 ;
hllq(a)(x’ P%-) _ _&a e; ( x) {X(x, p%)l: Ildlp + ( _ pT )Ilzdlp 4 4M2 Ildlp] + Yl(x pT)I/dlp

32 @)} (P LA(A2) + p2P 2 2M;
— Yo(x, p2) I — Y3(x, p2) IS + 2M2[(m + xM)(1 — x) — mx] T\ + M2[m(x, — 1)

- M(1 + Ka)x].llzdip}. (B20)
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(iii)) Exponential form factor

d*l ellp=07—m*l/AZ
2m)* D\D;

+ W(x, PT)( d ST)ST I — 2PT] + (lTp pT)[Yl(x p3) + 1 prYs(x, p3) + 13Ys5(x, P%)]}
T

2
€X p 1 €X] €X| €X| €X|
{X(x, p%)[pl;fl Py <2MT2 - 5)12 p_ 4M2 I P] Y06 P I 4 Yy(x, p2) I

2ImJ¢ = g,

Qi) 8(Dy)(— 2771)8(D4)><{X(x pT)(1+25W 2)1, ( —%z,)

1
2P+

s DI WG P 201 8,250

. A4l elp=0=—m*l/AG 5 5 I 1
a — ; — i + -
2mif = g, [ s S @m0 -2mia0of ¥ s 1+ 5 )i (o - 517)
lT pT _ N 7 2 _
+ p [Y,(x, p3) — I - prYs(x, p3) — I2Y5(x, p2) + 2M2[(m + xM)(1 — x) — mx]
T

M2k, — 1) — M1 + x,)x)2 ]}

1 €X| 1 2 €X]
=F{X(X’p%)[ pi1s p+< )I P+

2 M2 ] + Y p) 1T = Yo, pp) 15

4M?

— Yy, p2) ISP + 2M2[(m + xM)(1 — %) — mx 1T + M2[m(x, — 1) — M(1 + Ka)x]IZXp}, (B21)

where the integrals X, W, Y;, i = 1-3, and I;*?, i = 1-7, are listed in Appendix C.
The final result is, then,

1
FLiD (g p2y = —

g_g Meé? o~ [P +LAm)]/[(1-0)A2)] {X(x p2)|:p2 Jrn ( p: B l)_fexp 1 I‘”‘p]
32 @) (PT)’[L%(m?) + p3] ki R oMZ: 2)7r AM?

+ Y, (x, pHITT + Yo(x, pH) ISP + Ys(x, p2) I3 + W(x, p2)(I5° — 2pr - STIEXP)},
2 Me2 o L2/ -2A] 1P
hfq(a)(x’ py) = -£ ecx : +12 22 2 {X(x, p%)[ prIi" + ( a 2)]e><p 2

32 2m)® (PT)[L2(m?) + p}] 2 2M 4M2
+ Yi(x, p2) ITP = Yy(x, p2) ISP — Ys(x, p2) ISP + 2M2[(m + xM)(1 — x) — mx]IP

Im](&b

M2k, — 1) — M(1 + Ka)x]fgxp}.

4. Axial-vector diquark including also where the J¢ and J|* integrals are defined as in Eqgs. (B9)
timelike polarization and (B10), respectively, but now the last line in Eq. (10) is
We have employed for the d,,(p — I — P) and d;,(P — p) Lorentz
structures.
f q(a)(x p ) _ ga(p ) 1 Me% 21[1’1]?

17 T 4 Q2u) 41 —x)P" p* —m* (i) Pointlike cg)upling (to avoid divergences we assume
hiq(“)(x ) = g.(p?) 1 Me2 2 ImJe g;;:g ftfhz 21)JT integration is extended up to a finite

! BT 4 Q2u)} 4(1 —x)PT p* —m?*’ a

(B23)
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Prx[mQ2k, + 1) + M2k, x + 1)] | (Lﬁ(mz) + p%)

2ImJ¢ = —4P x[mQ2k, + 1) + M2k, x + 1)]g, I?" = —
mJj x[m(2xk, ) (2K,x Nga I 8a ) L2(m?)

2ImJ" = 4P*[m[(2k, — 1)x + 2] + xM[(k, — 1)2x + 3]]g, I°"

_ PT[m[(2k, — Dx + 2] + xM[(x, — 1)2x + 3]] L2(m?) + p>

where J If‘]' is the same integral as in Eq. (B4) but with the substitution L (m?) < L,(m?). Using again Eq. (8), the final
result is

FLa@ o p2) zgg, Me?2 x[mQ2k, + 1) + MQ2k,x + 1)] o (Lﬁ(mz) + p%)

Qm)* pHLI(m?) + p7] Li(m?) B25)
hlq(“)(x ) = — g_ﬁ Me? m[(2k, — 1)x + 2] + xM[(k, — 1)2x + 3] | (L%(mZ) + p%)
! AT 8 (2m)* piLi(m?) + p3] L2(m?)
(ii) Dipolar form factor
. i P*x(1 = x)[mQ2k, + 1) + M2k, x + 1)]
2ImJ§ = 4P x(1 — x)[mQ2k, + 1) + M(2k,x + l)]gaf?p =g, a ;ij?AZl;[Lﬁ(AZ) n p%; a ,
2ImJ" = —4P*(1 — x)[m[(2x, — )x + 2] + xM[(k, — 1)2x + 3]]g, I}® (B26)
_ Pt — x)[m[(2k, — D)x + 2] + xM[(x, — 1)2x + 3]]
“ wL2(A2)[L2(A2) + p2]
The final result is
q(a)(x o) — ga Me? x(1 — x)’ [mQ2k, + 1) + MQ2k,x + 1)]
78 emt LIZ(ADILL(AD) + p3) B27)
hlq(a)( 2) — g% Me? (1 — x)*[m[(2k, — Dx + 2] + xM[(k, — 1)2x + 3]]
v PP TR Gy L2(AD[LA(A2) + p3 T

We find a discrepancy between these results and those of Egs. (18) and (24) in Ref. [46], probably due to errors in that
calculation.
(iii)) Exponential form factor

2ImJ§ = —4P x[m(2k, + 1) + MQ2k,x + 1)]g, I7F

_ P'xmQk, + 1) + MQ2k,x + 1)] Li(m?) \ L2(m?) + p3
- oa mp3 I:F<O’ 1- x)A%) F<O’ (1 —x)A2Z T>]’

2ImJ® = 4P*[m[(2x, — 1)x + 2] + xM[(x, — 1)2x + 3]1g, I{*

_ P [m[(2k, — 1)x + 2] + xM[(k, — 1)2x + 3]] L2(m?) Li(m?) + p?
2 o Mo m) 100

(B28)

The final result is, then,
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o, ) — 85 Me? (2, +

1) + M2k ,x + 1)]

pr) = 8 (2m)* pT[L2(m2) + p2]

1 8a
B pp) = =

2 Me2 m[(2k, — x + 2] + xM[(x, —

PHYSICAL REVIEW D 78, 074010 (2008)

L3 (m?) )

[} +Lz<m2>]/[<1—x>A§][r(o _Lalm?)
T =N

(B29)

1)2x + 3] . L2(m?)

8 (2m) P2 + pl]
_of Li(m?) + pF
F("’ (1—DA2 )]

APPENDIX C: USEFUL INTEGRALS

In this Appendix, we calculate the relevant integrals that
repeatedly show up in the expressions of T-odd parton
densities for all choices of nucleon-quark-diquark form
factors, when vector-diquark propagators are represented

in the first and last forms of Eq. (10).
|

LAY -A] r(o T
[ (1 —x)A2

f
We will systematically use the substitutions 1. = I —

pr and y =17 + L3(m?), or y = I} + L%(A%) for the
dipolar form factor, where Ly is defined in Eq. (8) for X =
s, a scalar and axial-vector diquarks, respectively. We will
also encounter the following angular integrals, where 6 is
defined as the angle between I/- and p7, and ¢, ¢y, are the
azimuthal angles of pr and Sy with respect to the scatter-
ing plane:

f% 1\ pr|cosé + p?
12 + p2 + 2|1}||py| cosé

f” (125 ||PT| cosf + p7J*
12 + p2 + 2|1}||py| cosé

/ Il ISl cos[6 + (¢ — ¢s)] + |prllSy|cos(d — ds) _
0 17 + p% + 2|, prl coso

=a(l —

sgn(|l7] = |pzD)),

w
=5 (=17 + 3p7 + 117 = pil),

H cos( — s)(sen(lpyl — 41) + 1),

f (|l [1S7lcos[8 + (¢ — ds)] + |prllSy|cos(dp — Cbs))z
0

12 + p% + 2|ty || pyl coso

(i) Pointlike coupling

i[(zﬁr —IF + |p7 — IF]) cos2(¢ — ¢5) + 2p7]
T

(CDH

- diy (I +pr) - pr 1
! (277)2 p7 (Ir + PT)Z[I’2 + L%(mz)]
277' 0+ 1 |prl 1
e f L e f Alillprleosd Xpp L gy L
(2 ) 17+ Lx( ) 12 + p2 + 2|l’T||pT|cost9 2mp7 1% + L3 (m?)
Ly (m)+p7 d 1 Li(m?) +
[ rrdy ( X(’Z ) i ”T). (C2)
47TPT Bwy Yy 4mpi Ly(m?)
(i) Dipolar form factor
Jio_ [l @t pr)-pr (1-x) (=) [ dy
(2m)? pr (U7 + pr)’lI7 + L3 (AP arpt Juoy P
1 —
_ (L~ (C3)

ArL3(AILR(AD) + p3]

(iii)) Exponential form factor
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TP dty, (I + py)-pr e WrHm)/I1-0A] _ 1 lprl Al E —L7+ L3 m®)/[(1=0)AZ]
: (2m)? p7 I + pp) 17 + L3(m»)]  2m)p; Jo 17 + L3 (m?)
_ 1 fLZ(m )+ p2 dy Cl—0A2] — 1 [F(O L3(m?) ) B F(O L3(m?) + p%)]‘ )
@mpr Jizee) Y 4 p7 (1 —x)A% (1 - x)A%

Next, we list the coefficients and calculate the relevant integrals that are needed to construct 7-odd parton densities for
all choices of nucleon-quark-diquark form factors, when vector diquarks are represented in the second form in Eq. (10).

16(m + M)(P")*k, _8(m + M)(PT)(k, — 1)(1 — x)
X=- M2 » W= M2
8 P+ 2
Y= — (M2) [k,2m® = 3xm® + Mx*m? + 2Mm? — 3Mxm?* — M?xm + 2M2xm + M3x*> — M3x — [p% + L2(m?)]
X (M + m)) + (1 + k )M2x[M(1 + x) + m] + [p7 + L2(m?)Im(k, — 1)(x — 1) + m(x, — Dx* (M2 + m?)
+m32x — 1)+ M?>m(1 — 2x + (1 + «,)x?)],
8m(P*)*(k, — (1 — x)
Y2 = - 2 bl
M;
A(PY?
Y, = (M4) [k, (—m® + xm® — Mx*m? — 2Mm? + 3Mxm?> — M*m — 2M*x*>m + 3M?*xm — 2M2xm — M>x>
+ [p2 + L2(m?)](m + M) + M3x) + M2m(k, — 1) = MM2(1 + k,)x], (C5)
J- diy Iy +pr) - pr 1
(2m)? pr (I + prPlI7 + LE(ADT

j d|ly ||t 1 /277 17%|| pr] cosé + p3 /Iprl d|ly ||t 1
o Qm)?p2 (17 + L2(A2)P Jo 12 + p + 2|t} || prl coso o  Qmp3 [17 + L2(A2)P
1 /Lz(Azm:; dy 1 [ 1 1 ] B 2L2(A2) + p2

Cdmpr Jan ¥ 8apilLA(AY)  [LI(A2) + pEP) 8wLA(A2)[LE(A2) + p2¥’

g _ 4l (y + pr)? _ f°° dll7 17| 1 f”dgzi foo dy 1
? Qm)> Iy + prlllF + Li(ADP  Jo @m)* [IF + LI(ADT Jo 4w Jizan yt 8TLY(AZ)
(C6)
Jdip &y (7 + pr) - prT 1
2m)? pr (17 + pr)lIF + LIAADTP

(e dllr||ly | 1 2m (11717l cos® + p7]?
- 2 2 2(A\T3 dg 2 2
o Qm)?p2 (17 + L2(A2)F 12 + p7 + 2| prl| coso

L[ fler dllp|IE] o iyt
_ 2p2 — I2) + 2[ }
sl oar P s

1 L2(A)+p:  2p2 + L2(A2) — o d
_ 5 [ T dy pT a?’( a) y + p%_ / .;)}
8mpr LJ12(a2) y L2(A2)+p2 Y

1 2p5 + 3L2(A2)ph . 1

~ 87p} <2L§(A§)[L§(A§) + p%]z) P T<2[L3(A§) + p%P)}
_ L2(A2) +2p2

16mLA(A[LA(AZ) + p3]’

074010-31



BACCHETTA, CONTI, AND RADICI PHYSICAL REVIEW D 78, 074010 (2008)
b _ diy Iy +pr)-pr (5 + pr)’
! (2m)? pr (I + prl’lIF + LE(ADT

dlt NNy 1 d|l |y 1 1 [ dy
= do(|t, 0 + - ay
fo Qm)?p2 [17 + LA2(A2)] [ (Frllprlcosd + p7) = ./0 Qm) 7+ LIADP 47 fLﬁ(Aﬁ) y

1

BLY(AZ)
: d, () + pp)? o d|I |1} 1 2
J e — r r 2T :/ j do(I? + p3 + 2|l 0
@l @+ pp2 + ZADT  Jo @mr v 207 Jo 400 pi + 2i7llprl cost)
szﬂlml (I7 + pp) Z_wa gy T La(AD) + p7 _ LAAD) + p7
o Cm FrnMDT Am ey Y S7LIAL)
I/dip:[ dly (3 + pr)-Sr 1
2m)? S% (17 + pr)?l17 + LE(ADT
[wdll 77| 1 dell |1S7]cos[0 + (¢ — p5)] + IprllSrlcos(d — ¢s)
o Qm)?pi [17 + L2(A2)P 12 + p% + 2|ty || pyl coso
I T Y B L%(Ai)ﬂfzrdy_ 1 ISTI[ I 1 ] B
w57 o T o VT s LD T A3 1 3P T

B 2L3(A7) + pF
g2 PT T TAADL2(AZ) + poP

7/dip dly (7 + pr) - ScF 1
(2m)? S7 (7 + pr)* U7 + LEZADP
_ fw dl| 115 1 de[ll [1S7] cos[6 + (¢ — ps)] + |prllS7|cos(dp — )
o (2m)2S% [17 + L2(A2)P 17 + p% + 2|, prl coso

_ L[ [raater dy S% 2 20A2) _ dy

@n7S: { [L a2 T[pT + (p3 + LE(A2) — y)cos2(p — ps)] + 787 [L g 207 }
_ 1 STp7 2 2(A2
= e L i o (€020 — bs) + D} + (co0s2(& — ) + DLEHA)

T T

i [”4[L3<A§>% T p%JZ]}

1

= 167TL2(A2)[L(21(A3) n p%] [L%(A%) + P:‘}(l + cos2(¢p — ¢y))]

— ! [L2(A2) 1 plpr So° ST)Z] (C7)
16mLA(ADIL2(AZ) + gl et sz
- dl, e [FHLAm))(1-0AL] 5 d\l||1| e W+ Latm)]/I1=0A7]
= + —1
> = amr @ v ooz 2oy Y [ 2+ L20)]

1 [ y/(1=x)A7] 1 L2(m?
=_[ dye_z_r(o,a(img),
v, d L%(m?) y 4qr (1 - X)Aa
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dll, e WL VIO=0A (1L + pr)- pr P
Q@m)? (17 + pr)’[1F + Li(m?)] p7

_ [edllgllEy] e T EeOVIAONT or [ prlcosd + piT?
_/o Q@mPp;  [F+Li(m?)] ﬁ) 17 + pt + 2117 prlcosd

exXp __
I5P =

_ 1 { f il _dlUE] o 2 gyt sizoe o -0 4 p2 f‘” % —[t$+L3<m2>]/[<1—x)A%,]}
ampils 07+ L) [T+ L2

AZ
_ { f Lt 2R LA Y gy g [ Y ”]}
8mpy L L2 y LE(m2)+p2 y

Li(m? L2(m?) + p2
[tz + 2523 (0. 2 ) 20+ i (0,24 2

(1 — x)A2 (e~ LM+ -0A2] — e—Li(mZ)/[a—x)A?,])},

8mpt

dll, e U +LamIA-9A] (1) + py)- pr P
Qm)* (U + pr)?[1F + L5 (m?)] Py

oo d|1L|[11.] e U7 +Lam)]/(1-2)A7] || |1 | e 77 +Lam)/I(1=0AL]
=[ | lel 7~2|€ T/z 212 d0(|l’T||pT|cose+p2T)=f Itz e 21 72(,2

o (2m) P [lT +La(m )] 0 0 2m [lT +La(m )]

1 [ —y/I0-0A1 L2(m2
=_/ dyei=_r<o, 11(7’”)2) = o,
491 L2(m?) y dar (1 - )C)Aa

dll. o ULV -0A3] o | |11 | ¢~ T17+LEV1-0Az]
]eS:xp _ T € -7 (I/T i ) [ I “ . | - ——
(2m) (17 + Lz(m?)]

exp _
I,7=

(I + pr)?

d0 l’2+ + 2|1/ (7
(277.)2 (l’ +PT) [l’2+L2( 2)] ( PT | ||PT|COS )

.7 2 A2 _ 2
_ ]w FIATAP [2+L2(m»)]/[(1-x) ](lT 4 )= 1 / dyy Lﬁ(mz)—i-pTe_y/[(l_x)Ag]
o 2w [12 + L2(m?)] 41 J 12 (m) y?

1 3 L2(m?)
= g {lpd — L in (0

) +(1-x) AgefLﬁ(mzv[(l—x)Az]},

dll, e U +Li)VIO=0AL) (11 + poy- §;
Q)2 (U + pr)* 17 + La(m?)] S
_ [°° |l ||1] e+ Latn )L —0AL] f dall [1S7lcos(8 + ¢ — ) + | prllSrlcos(d — )
o 2m)?2S:  [I?+ Li(m?)] 0 12 + p2 +2|l; || prlcoso

=|PT||ST|COS(¢—¢5) Lg(mz)ﬂ,;dye—y/[(l—x)jv] Pr- ST{ (0 L2(m?) )_ (0 Lg(m2)+l7%)}
4787 p7 L2(m?) y 47S%p3 "(1-x)A2 T (1=x)AZ )

exp _
I.,"=

dll, e UFLaeVI0=9A] (1L + p.)- S,
Q2m)> (I + pr)l*lIF + La(m?)] S7

_fwdll’rlll’rle[”Tz“i('"z”/[“’W][ ™ 1prlIS7lcos(0 + ¢ — bs) + IprlISrlcos(¢ — &)
o 2m)?S2  [I7+Li(m*)] 0 12+ p3+2|l} || prlcoso

exp __
I7F =

1 Limd)+py e Y/I1-0A] g2 e~ Y/I1-0)A]
- TdyS 2T p2 + (p2 + L2(m?) — y)cos2 + 783 di}
(2W)2S%{[L§<m2> [pT (pr + Lalm?) =3)cos2( = é)] + om R T S
2 (192
S {(1_ D)A2 (e~ PRI -0AT] o= L3m)/10-9A)) cos2( b — d>s)+T( Li(m )2)
8mwp? “(1—x)AZ
L2(m?) + p3
X (L7 + L3 Jeos2( — )+ pi) = 10,5 =SB+ L) eos2( — ). ©8)
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