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1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Peoples’ Republic of China
2Physics Department, Shandong University, Jinan 250100, Peoples’ Republic of China

3Theoretical Physics Center for Science Facilities, CAS, Beijing 100049, Peoples’ Republic of China
(Received 16 July 2008; published 7 October 2008)

We investigate the B ! a1ð1260Þðb1ð1235ÞÞ�ðKÞ decays under the factorization scheme and find many

discrepancies between theoretical predictions and the experimental data. In the tree-dominated processes,

large contributions from color-suppressed tree diagrams are required in order to accommodate the large

decay rates of B� ! a01�
� and B� ! a�1 �

0. For �B0 ! ðaþ1 ; bþ1 ÞK� decays which are induced by b ! s

transition, theoretical predictions on their decay rates are larger than the data by a factor of 2.8 and 5.5,

respectively. Large electroweak penguins or some new mechanism are expected to explain the branching

ratios of B� ! b01K
� and B� ! a�1 �K0. The soft-collinear effective theory has the potential to explain

large decay rates of B� ! a01�
� and B� ! a�1 �0 via a large hard-scattering form factor �B!a1

J . We will

also show that, with proper charming penguins, predictions on the branching ratios of �B0 ! ðaþ1 ; bþ1 ÞK�

can also be consistent with the data.
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I. INTRODUCTION

Since the first measurement on B0= �B0 ! a�1 ð1260Þ��
decays reported by the BABAR and Belle collaborations
[1–3], many charmless B decays into a pseudoscalar and an
axial-vector meson have been observed. Among the 18
B ! a1ð1260Þðb1ð1235Þ�ðKÞ1 decay channels, 10 of
them have been measured with large branching ratios.
Besides decay rates, direct CP asymmetries in some B !
ða1; b1ÞK channels and time-dependent CP asymmetries in
B0= �B0 ! a�1 �� and B0= �B0 ! b�1 �� were also studied in

the two B factories [4–9]. Without any doubt, these results
are helpful to investigate production mechanisms of axial-
vectors in B decays, extract hadronic parameters such as
strong phases in B ! AP decays, and probe the structures
of axial-vectors.

Charmless two-body B ! AP decays have received
considerable theoretical efforts [10–14]. Among these pre-
dictions, many of them are not consistent with each other:
most predictions by Calderon, Munoz, and Vera [12] are
larger than predictions given by Laporta, Nardulli, and
Pham [11] and the QCD factorization (QCDF) approach.
Predictions on B ! a1� by Laporta, Nardulli, and Pham
(using the second sets of form factors) are very close to
results in the QCDF approach. However there are large
discrepancies in other predictions (see Ref. [14] for a de-
tailed comparison between these theoretical predictions).
Many results of the QCDF approach agree with the experi-
mental data, but there still exist some deviations.

In the present paper, we intend to analyze the 18 B !
AP decays with the help of experimental data. We try to
check whether these problems can be removed in the

perturbative QCD (PQCD) approach and the soft-collinear
effective theory (SCET). Another objective is to extract the
B ! A form factors through �B0 ! aþ1 �� and �B0 ! b�1 ��
decays.

II. NAIVE FACTORIZATION APPROACH

The effective Hamiltonian describing b ! DðD ¼ d; sÞ
transitions are given by [15]:

H eff ¼ GFffiffiffi
2

p
� X
q¼u;c

VqbV
�
qD

�
C1O

q
1 þ C2O

q
2 þ

X10
i¼3

CiOi

��

þ H:c:; (1)

where VqbðDÞ are the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. Functions Oi are the local four-quark
operators, while functions Ci are the corresponding
Wilson coefficients. It is convenient to define combinations
ai of the Wilson coefficients:

a1 ¼ C2 þ C1=3; a2 ¼ C1 þ C2=3;

ai ¼ Ci þ Ciþ1=Ncði ¼ 3; 5; 7; 9Þ;
ai ¼ Ci þ Ci�1=Ncði ¼ 4; 6; 8; 10Þ:

(2)

There exists a hierarchy for the Wilson coefficients:

a1 � max½a2; a3�10�: (3)

For tree-dominated processes B0= �B0 ! a�1 ��, the fac-
torization formulas can be written as

Að �B0 ! aþ1 ��Þ ¼GFffiffiffi
2

p m2
Bf�V

B!a1
0 fVubV

�
ud½a1 þ a4 þ a10

þ r�ða6 þ a8Þ� þVcbV
�
cd½a4 þ a10

þ r�ða6 þ a8Þ�g; (4)
1In the following, we will use a1ðb1Þ to denote the a1ð1260Þ�ðb1ð1235ÞÞ meson for simplicity.
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Að �B0 !�þa�1 Þ ¼
GFffiffiffi
2

p m2
Bfa1f

B!�þ fVubV
�
ud½a1þa4þa10�

þVcbV
�
cd½a4þa10�g; (5)

where r� ¼ 2m�
0 =mB with m�

0 the chiral scale parameter

for the pion. The CKM matrix elements for tree operators
jVubV

�
udj � 4� 10�3 have the same order magnitude with

those for penguin operators jVcbV
�
cdj � 8� 10�3. Because

of the hierarchy in the Wilson coefficients, penguin con-
tributions from the operators O3–10 are small compared
with those from tree operators. Thus penguin contributions
can be neglected in the study of branching ratios (but
crucial to CP asymmetries). Combined with the �B0 !
�þ�� data [16]

BRð �B0 ! �þ��Þ ¼ ð5:16� 0:22Þ � 10�6; (6)

we arrive at the a1 meson decay constant and B ! a1 form
factor:

fa1 ¼
�
2:02� 0:26� 0:04þO

�
a3�10

a1

��
f�;

VB!a1
0 ¼

�
1:55� 0:28� 0:03þO

�
a3�10

a1

��
fB!�þ ;

(7)

where the uncertainties are from the experimental results
for branching ratios. As a rough estimation, we take f� ¼
131 MeV and fB!�þ ¼ 0:25 which corresponds to fa1 ¼
ð265� 34� 6Þ MeV and VB!a1

0 ¼ 0:39� 0:07� 0:01.
These results are well consistent with predictions based
on the PQCD approaches [17] and light-cone sum rules
[18,19].
Now we come to the two channels B� ! a01�

� and

B� ! a�1 �
0 whose factorization formulas are given by

ffiffiffi
2

p
AðB� ! ��a01Þ ¼

GFffiffiffi
2

p m2
Bf�V

B!a1
0 fVubV

�
ud½a1 þ a4

þ a10 þ r�ða6 þ a8Þ�
þVcbV

�
cd½a4 þ a10 þ r�ða6 þ a8Þ�g

þGFffiffiffi
2

p m2
Bfa1f

B!�þ
�
VubV

�
ud

�
a2 � a4

þ 1

2
a10

�
þVcbV

�
cd

�
�a4 þ 1

2
a10

��
;

(8)

ffiffiffi
2

p
AðB� ! �0a�1 Þ ¼

GFffiffiffi
2

p m2
Bf�V

B!a1
0

�
VubV

�
ud

�
a2 � a4 þ 1

2
a10 þ r�

�
�a6 þ 1

2
a8

��

þ VcbV
�
cd

�
�a4 þ 1

2
a10 þ r�

�
�a6 þ 1

2
a8

���
þGFffiffiffi

2
p m2

Bfa1f
B!�þ fVubV

�
ud½a1 þ a4 þ a10�

þ VcbV
�
cd½a4 þ a10�g: (9)

Because of the small values of a3–10, the penguin contri-
butions can be safely neglected:

ffiffiffi
2

p
AðB� ! ��a01Þ ¼

GFffiffiffi
2

p m2
BVubV

�
ud½a1f�VB!a1

0

þ a2fa1f
B!�þ �; (10)

ffiffiffi
2

p
AðB� ! �0a�1 Þ ¼

GFffiffiffi
2

p m2
BVubV

�
ud½a2f�VB!a1

0

þ a1fa1f
B!�þ �: (11)

Furthermore, in the hierarchy of a2 	 a1, branching ratios
are required to satisfy the following relation:

BRð �B0 ! aþ1 �
�Þ ¼ 2BRðB� ! ��a01Þ;

BRð �B0 ! �þa�1 Þ ¼ 2BRðB� ! a�1 �
0Þ: (12)

But the experimental data shows

BRðB� ! �0a�1 Þ>BRð �B0 ! a�1 �
þÞ;

BRðB� ! ��a01Þ>BRð �B0 ! aþ1 ��Þ; (13)

which is dramatically different. This situation is very simi-

lar with that in B ! �� decays: the branching ratio of
B� ! �0�� is measured with almost equal magnitude
with BRð �B0 ! ���þÞ but it is expected as one half of
BRð �B0 ! ���þÞ. To solve these problems, an efficient
approach is to enhance the color-suppressed contribution
which is proportional to a2. For example, if the Wilson
coefficient a2 can be enhanced to 0.5, the branching ratios
ofBRðB� ! �0a�1 Þ andBRðB� ! ��a01Þ are predicted
as 20:0� 10�6 and 16:7� 10�6, where we have utilized
the experimental data on branching ratios of B0= �B0 !
��a�1 . And these results are well consistent with the
experimental data.
The decay constant of b1 vanishes because of the G-

parity, thus �B0 ! �þb�1 is factorization-suppressed and

only the �B0 ! ��bþ1 decay survives. From the experimen-

tal results collected in Table I, we can infer that the form
factors of B ! a1 and B ! b1 are almost equal in magni-

tude at maximal recoiling: jVB!a1
0 ðq2 ¼ 0Þj ’

jVB!b1
0 ðq2 ¼ 0Þj ’ 0:35. One should be careful that the

two form factors have different signs, if we use the light-
cone distribution amplitudes (LCDAs) of a1 and b1 eval-
uated by the QCD sum rules. The absolute value of these
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form factors can be checked by the future measurements on
semileptonic B ! A decays such as �B0 ! ðaþ1 ; bþ1 Þl� ��.

Flavor structures of �B0 ! bþ1 K� and �B0 ! aþ1 K� are
the same, thus they have the same factorization formulas:

Að �B0 ! ðaþ1 ; bþ1 ÞK�Þ ¼ GFffiffiffi
2

p m2
BfKV

B!ða1;b1Þ
0 fVubV

�
us½a1

þ a4 þ a10 þ rKða6 þ a8Þ�
þ VcbV

�
cs½a4 þ a10

þ rKða6 þ a8Þ�g: (14)

The same Wilson coefficients and almost equal form fac-
tors will induce almost equal branching ratios for �B0 !
aþ1 K� and �B0 ! bþ1 K�. To reduce the uncertainties, we
will utilize the �B0 ! �þK� decay which also has the same
flavor structures with �B0 ! ðaþ1 ; bþ1 ÞK�. The only differ-
ence between the three modes is that the different form
factors which can be extracted from tree-dominated pro-
cesses �B0 ! �þ�� and �B0 ! ðaþ1 ; bþ1 Þ�� decay. The
branching ratio of �B0 ! �þK� has been measured as [16]

BRð �B0 ! �þK�Þ ¼ ð19:4� 0:6Þ � 10�6; (15)

which implies

BRð �B0 ! aþ1 K�Þ ¼ 45:9� 10�6;

BRð �B0 ! bþ1 K
�Þ ¼ 41:0� 10�6:

(16)

Comparing with the experimental measurements in Table I,
we see that our theoretical prediction on BRð �B0 !
aþ1 K

�Þ is 2.8 times larger while the prediction on
BRð �B0 ! bþ1 K

�Þ is 5.5 times larger. This discrepancy
should be clarified by the theoretical studies with next-to-
leading order corrections and improved experimental
measurements.
Besides �B0 ! ðaþ1 ; bþ1 ÞK� decays, B� ! a�1 �K0 and

B� ! b01K
� decays are also measured by experimentalists

whose factorization formulas are

TABLE I. Theoretical predictions and experimental results [1–9] on branching ratios (in unit of 10�6) of B ! a1ðb1Þ�ðKÞ decays.
The QCDF predictions are quoted from Ref. [14]. In the PQCD approach, the uncertainties are from: (i) the hadronic inputs: decay
constants of B meson, and shape parameters in the wave function of B meson; (ii) �QCD, the hard scale t, and the threshold

resummation parameter c; (iii) the CKM matrix elements Vub and � angle. In the SCET framework, the uncertainties are from:
(i) hadronic parameters: form factors and charming penguins; (ii) the CKMmatrix elements. In the last row, we give the total �2=d:o:f:
for the measured channels in the three models and see the text for the definition.

Channel QCDF PQCD SCET Exp.

B� ! a�1 �0 14:4þ1:4þ3:5þ2:1
�1:3�3:2�1:9 8:1þ4:1þ2:1þ0:7

�2:7�1:2�0:9 19:0þ5:1þ1:8
�4:7�1:7 26:4� 5:4� 4:1

B� ! a01�
� 7:6þ0:3þ1:7þ1:4

�0:3�1:3�1:0 6:7þ2:9þ2:8þ0:5
�2:2�1:7�0:7 17:2þ4:7þ1:7

�4:3�1:6 20:4� 4:7� 3:4
�B0 ! a�1 �þ 23:4þ2:3þ6:2þ1:9

�2:2�5:5�1:3 15:7þ8:3þ5:9þ1:2
�5:6�3:6�1:7 17:0þ5:8þ1:6

�5:2�1:4 21:0� 5:4
�B0 ! aþ1 �

� 9:1þ0:2þ2:2þ1:7
�0:2�1:8�1:1 12:7þ5:6þ6:2þ0:9

�4:4�3:8�1:3 10:7þ2:5þ1:0
�2:4�0:9 12:2� 4:5

B0= �B0 ! aþ1 �
� — 28:1þ13:8þ12:0þ2:1

�9:9�7:3�3:0 28:2þ6:5þ2:6
�5:9�2:4

B0= �B0 ! a�1 �
þ — 28:6þ13:9þ12:1þ2:2

�10:1�7:4�3:0 27:1þ6:9þ2:5
�6:2�2:3

�B0 ! a�1 �
� 32:5þ2:5þ8:4þ3:6

�2:4�7:3�2:4 28:3þ13:9þ12:0þ2:2
�10:0�7:4�3:0 27:7þ6:3þ2:5

�5:7�2:3 31:7� 3:7
�B0 ! a01�

0 0:9þ0:1þ0:3þ0:7
�0:1�0:2�0:3 0:12þ0:07þ0:02þ0:02

�0:04�0:03�0:02 5:5þ1:7þ0:6
�1:5�0:6

B� ! a01K
� 13:9þ0:9þ9:5þ12:9

�0:9�5:1�4:9 15:4þ7:8þ10:1þ2:4
�5:4�5:5�2:5 10:5þ3:3þ1:8

�2:9�1:5

B� ! a�1 �K0 21:6þ1:2þ16:5þ23:6
�1:1�8:5�11:9 25:5þ12:9þ18:0þ3:7

�9:2�10:2�3:9 15:5þ5:8þ2:5
�5:0�2:1 34:9� 5:0� 4:4

�B0 ! aþ1 K� 18:3þ1:0þ14:2þ21:1
�1:0�7:2�7:5 20:6þ10:2þ14:6þ3:2

�7:3�8:5�3:3 15:8þ5:6þ2:7
�4:9�2:3 16:3� 2:9� 2:3

�B0 ! a01
�K0 6:9þ0:3þ6:1þ9:5

�0:3�2:9�3:2 8:0þ3:9þ6:4þ1:2
�2:8�3:4�1:2 6:3þ2:5þ1:0

�2:1�0:8

B� ! b�1 �0 0:4þ0:0þ0:2þ0:4
�0:0�0:1�0:2 1:0þ0:2þ0:3þ0:1

�0:2�0:2�0:2 2:0þ0:8þ0:2
�0:6�0:2 <3:3 a

B� ! b01�
� 9:6þ0:3þ1:6þ2:5

�0:3�1:6�1:5 5:1þ3:1þ3:1þ0:3
�1:9�1:7�0:5 5:0þ1:3þ0:5

�1:2�0:4 6:7� 1:7� 1:0
�B0 ! b�1 �

þ 0:3þ0:1þ0:1þ0:3
�0:0�0:1�0:1 1:4þ0:4þ0:1þ0:1

�0:4�0:2�0:2 0:6þ0:3þ0:1
�0:2�0:1

�B0 ! bþ1 �
� 11:2þ0:3þ2:8þ2:2

�0:3�2:4�1:9 18:7þ9:6þ8:2þ1:3
�6:4�4:5�1:9 7:7þ2:1þ0:7

�1:9�0:7

B0= �B0 ! bþ1 �
� — 14:8þ8:5þ6:6þ1:3

�5:6�3:8�1:7 5:0þ1:8þ0:6
�1:5�0:5

B0= �B0 ! b�1 �
þ — 25:6þ11:4þ9:6þ1:6

�8:3�6:0�2:6 11:6þ2:7þ1:0
�2:5�0:9

�B0 ! b�1 �� 11:4þ0:4þ2:9þ2:5
�0:3�2:5�2:0 20:2þ9:9þ8:1þ1:4

�6:9�4:9�2:1 8:3þ2:1þ0:7
�1:9�0:7 10:9� 1:2� 0:9

�B0 ! b01�
0 1:1þ0:2þ0:1þ0:2

�0:2�0:1�0:2 1:5þ0:6þ0:3þ0:1
�0:5�0:3�0:2 1:8þ0:5þ0:2

�0:4�0:1 <1:9 a

B� ! b01K
� 6:2þ0:5þ5:0þ6:4

�0:5�2:5�5:2 24:9þ9:8þ14:9þ3:7
�7:8�9:3�3:9 4:6þ1:9þ0:7

�1:5�0:6 9:1� 1:7� 1:0
B� ! b�1 �K0 14:0þ1:3þ11:5þ13:9

�1:2�5:9�8:3 55:0þ23:6þ33:5þ8:0
�17:0�21:2�8:3 8:6þ3:8þ1:4

�3:1�1:2 9:6� 1:7� 0:9 a

�B0 ! bþ1 K� 12:1þ1:0þ9:7þ12:3
�0:9�4:9�30:2 42:9þ17:7þ26:9þ6:6

�13:4�16:9�6:9 8:5þ3:5þ1:3
�2:8�1:1 7:4� 1:0� 1:0

�B0 ! b01
�K0 7:3þ0:5þ5:4þ6:7

�0:5�2:8�6:5 23:3þ10:6þ15:5þ3:5
�6:8�8:8�3:6 4:0þ1:8þ0:7

�1:4�0:6 <7:8 a

�2=d:o:f: 8= . . . 13=ð29� 5Þ 10=ð29� 14Þ
aThe experimental data [9] is obtained on the assumption that the daughter decay b1 ! �! has a branching ratio BR ¼ 1.
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AðB� ! a�1 �K0Þ ¼GFffiffiffi
2

p m2
BfKV

B!a1
0

�
VubV

�
us

�
a4� 1

2
a10

þ rK

�
a6� 1

2
a8

��
þVcbV

�
cs

�
a4� 1

2
a10

þ rK

�
a6� 1

2
a8

���
; (17)

ffiffiffi
2

p
AðB� ! b01K

�Þ ¼GFffiffiffi
2

p m2
BfKV

B!b1
0 fVubV

�
us½a1 þ a4

þ a10 þ rKða6 þ a8Þ�
þVcbV

�
cs½a4 þ a10 þ rKða6 þ a8Þ�g:

(18)

In these b ! s transitions, the CKM matrix elements for
penguin operators are jVcbV

�
csj � 40� 10�3 and those for

tree operators are jVubV
�
usj � 0:8� 10�3. Recalling the

values for the Wilson coefficient combinations: a1 � 1
and a4 � a6 ��0:03, we can see that contributions from
tree operators with the coefficient a1 are smaller than those
from penguin operators at least by a factor of 2 in magni-
tude. In order to characterize the contribution from tree
operators and symmetry breaking effects between B� and
�B0 mesons, it is useful to define the two ratios:

R1 
 BRðB� ! a�1 �K0Þ
BRð �B0 ! aþ1 K�Þ �

� �B0

��B
;

R2 
 BRðB� ! b01K
�Þ

BRð �B0 ! bþ1 K�Þ �
� �B0

��B
;

(19)

where � is the lifetime of the B meson. Neglecting tree
operators and electroweak penguins, the ratios obey the
limit:

R1 ¼ 1; R2 ¼ 0:5; (20)

which are quite different from the experimental results:

Rexp
1 ¼ 2:00� 0:59; Rexp

2 ¼ 1:15� 0:34: (21)

The difference between the two channels in the ratio R1 is
the tree operator and electroweak penguin operators. Since
the contribution of tree operator is smaller than QCD
penguins and the two kinds of amplitudes are perpendicu-
lar with each other due to the CKM angle � close to 90�,
the tree operator cannot change the branching ratio of
�B0 ! aþ1 K

� too much. Thus this does not improve theo-
retical predictions on R1. Large electroweak penguins may
help us to diminish the large deviation for R1. In the �B0 !
bþ1 K� and B� ! b01K

� decays, the factorization formulas

are exactly the same since the b1 decay constant vanishes.
Thus in order to explain the large ratio R2, one needs some
mechanism beyond factorization to enhance the ratio of R2

by roughly 2.5.
In the above, we have analyzed the charmless nonlep-

tonic B ! AP data under the factorization approach. The

decay constant of the a1 meson and B ! a1, b1 form
factors V0 is extracted from the �B0 ! a1� and �B0 !
b1� decays. The form factors are consistent with the
predictions evaluated in light-cone sum rules and the
PQCD approach. But there exist several problems which
can be summarized as the following:
(i) The Wilson coefficient combination a2 needs to be

enhanced to a2 ¼ 0:5 in order to solve the problem
in B� ! a�1 �

0 and B� ! a01�
�.

(ii) Since the form factors B ! a1 and B ! b1 are al-
most equal in magnitude, the �B0 ! aþ1 K� and �B0 !
bþ1 K

� decays should possess similar and large
branching ratios. Compared with the experimental
data, theoretical predictions need to be reduced by
the factors of 2.8 and 5.5, respectively.

(iii) B� ! a�1 �K0 and B� ! b01K
� are related to �B0 !

ðaþ1 ; bþ1 ÞK� through relations given in Eq. (19),
which also have large deviations from the data.

III. THE SOFT-COLLINEAR EFFECTIVE THEORY

The recent development of SCET places the analysis of
B ! M1M2 decays on a more rigorous foundation. The
SCET is a powerful method to systematically separate the
dynamics at different scales: hard scalemb (b quark mass),

hard intermediate scale �hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
, soft scale, and

to sum large logs using the renormalization group technics.
Integrating out the hard fluctuations, we arrive at the
intermediate effective theory—SCETI where the factori-
zation formulas for B ! M1M2 decays to leading power in

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCD=mb

q
are given by

AðB ! M1M2Þ ¼ GFffiffiffi
2

p m2
B

�
fM1

Z
du	M1

ðuÞT1ðuÞ�B!M2

þ fM1

Z
du	M1

ðuÞ
Z

dzT1Jðu; zÞ

� �B!M2

J ðzÞ þ ð1 $ 2Þ
�
; (22)

where functions � and �J also enter into the heavy-to-light
form factors. T1ðuÞ and T1Jðu; zÞ are hard kernels which
can be calculated using perturbation theory. With the hard-
collinear fluctuation integrated out, the final effective
theory-SCETII is obtained where the function �J can be
factorized into convolutions of LCDAs with hard kernels:

�B!M2

J ðzÞ ¼ 	Bð!Þ � Jðz; !; vÞ �	M2
ðvÞ: (23)

Jðz; !; vÞ is the hard kernel and 	B and 	M1;M2
are the

light-cone distribution amplitudes. With our knowledge of
these LCDAs, one can predict the decay amplitude by
convoluting the LCDAs with the perturbatively calculated
hard kernels. But there is another alternative way for
phenomenological studies: one can fit experimental results,
including branching ratios and CP asymmetries, to deter-
mine essential nonperturbative inputs. Note that in this
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way, no expansions in 
sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
Þ are needed and thus

the exploration of the convergence is spontaneously
avoided. This method is especially useful at tree level:
T1ðuÞ is a constant, and T1Jðu; zÞ is a function of one
argument u. It leads to a rather simple form for decay
amplitudes:

AðB!M1M2Þ ¼GFffiffiffi
2

p m2
B

�
fM1

T1�
B!M2 þfM1

Z
du	M1

ðuÞ

�T1JðuÞ�B!M2

J þð1$ 2Þ
�
; (24)

where the functions �B!M2 and

�B!M2
J ¼

Z
dz�B!M2

J ðzÞ (25)

are treated as nonperturbative parameters to be fitted from
the data. With the help of the flavor SU(3) symmetry, the
B ! AP decays involve only 6 parameters:

�B!P; �B!P
J ; �B!1P1 ;

�B!
1P1

J ; �B!3P1 ; �B!
3P1

J ;
(26)

which contribute to the B ! P and B ! A form factors.
Including the nonperturbative contributions from loop

diagrams involving c �c [20–25], the SCET can successfully
explain most of B ! PP and B ! VP decays [21,26,27].
This phenomenological approach has many important fea-
tures. In b ! d transitions such as �B0 ! �þ��, tree op-
erators provide the dominant contributions, and
contributions from charming penguins and penguin opera-
tors are subleading. From the experience in the B ! PP
and B ! VP phenomenological study, we know that the
hard-scattering form factor �J is potentially large.
Furthermore, as we have shown in Ref. [27], the corre-
sponding Wilson coefficient is of order 1 which amounts to
a large effective Wilson coefficient a2. Here we take �B0 !
a�1 �þ and B� ! a�1 �0 as an example: if hard-scattering
form factors are equal with soft form factors for the pion
and a1 meson: � ¼ �J, the effective Wilson coefficient

equals to a2 ’ �J
�þ�J

¼ 0:5. Thus it is easy to solve the

problems in B ! a1� decays under the SCET framework.
For decays induced by b ! s transition, since tree op-

erators are suppressed by the CKM matrix elements
jVubV

�
us=ðVcbV

�
csÞj � 0:02 and penguin operators have

smaller Wilson coefficients (max½C3�10� 	 
sð2mcÞC1),
charming penguins play a significant role. Because of the
nonperturbative nature, charming penguins are totally un-
known from perturbation theory and need to be extracted
from data. This stuff depends on the three involved me-
sons: the B meson, recoiling meson and emitted meson.
Thus in order to predict physical observables, too many
parameters for charming penguins are required. An effi-
cient way to reduce the independent inputs is to utilize the
flavor SU(3) symmetry, and as a result only 8 parameters
for charming penguins in B ! AP decays are left. But even

so, due to the lack of data, one can always obtain proper
branching ratios of �B0 ! bþ1 K

� and �B0 ! aþ1 K
� by ad-

justing charming penguins. Despite that, there is another
deficit: since the inputs, form factors, and charming pen-
guins have been assumed to respect the SU(3) symmetry,
large deviations of the ratios shown in Eqs. (20) and (21)
cannot be eliminated by the SCET either.

IV. THE PERTURBATIVE QCD APPROACH

There is another commonly accepted approach to handle
hadronic B decays: the perturbative QCD approach [28–
30]. The basic idea of the PQCD approach is that it takes
into account the transverse momentum of the valence
quarks in hadrons. Decay amplitudes and form factors
can be written as convolutions of wave functions with
perturbatively hard kernels integrated over the longitudinal
and transverse component. When considering radiative
corrections, one encounters double logarithm divergences
when soft and collinear momenta overlap. These large
double logarithms can be resummed into the Sudakov
factor. Loop corrections to the weak decay vertex also
give rise to double logarithms in the threshold region.
Resummation of this type of double logarithms leads to
the Sudakov factor St. This factor decreases faster than any
power of x as x ! 0 and changes the behavior at the end-
point region. The Sudakov factor and threshold resumma-
tion make the PQCD approach more self-consistent. This
approach has successfully explained the B ! �� and B !
�K decay rates and CP asymmetries [31] together with the
proper polarizations in B ! VV decays [32].
In the PQCD approach, the predicted B ! a1 form

factor [17] is consistent with the one derived from the
data, thus our PQCD prediction on BRð �B0 ! aþ1 ��Þ is
in good agreement with the data. But due to the small value
of a2, the color-suppressed contribution is too small to
explain the large decay rates of B� ! a�1 �

0 and B� !
a01�

�. The investigations of next-to-leading order correc-

tions in Ref. [33] show that the branching ratio of B� !
���0 is enhanced by the factor 4:0=3:5 while �B0 !
�þ�� is reduced by 6:5=7:0. But even if we assume the
same k factor for B ! a1� decays, the PQCD predictions
on B� ! a�1 �0 and B� ! a01�

� are still smaller than the

data. The PQCD prediction on the B ! b1 form factor is
large, thus the branching ratio of �B0 ! bþ1 �

� is 2 times
larger than the experimental data and the QCDF results.
From the factorization formulas of B ! PP decays given
in the literature [30], one can see that the contributions
from hard spectator scattering diagrams are small due to
the cancellation between two diagrams where a gluon is
attached to either the positive quark or the antiquark in the
emitted hadron. But if the emitted meson is a P-wave
meson and the twist-2 LCDA is antisymmetric (like a
scalar or an axial-vector meson with quantum number
2Sþ1LJ ¼ 1P1), the two diagrams give constructive contri-
butions to make them sizable. For example, the large hard
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spectator scattering contributions to B� ! b01�
� make

BRðB� ! b01�
�Þ< 1

2BRð �B0 ! bþ1 ��Þ. Moreover, an-

nihilation diagrams play an important role in the PQCD
approach which often enters into decay amplitudes as
imaginary. It provides the dominant strong phase which
is essential to explain the large CP asymmetries. Thus
unlike the situation in the QCDF approach, annihilation
diagrams do not cancel with emission diagrams in �B0 !
bþ1 K� which results in much larger predictions on branch-
ing ratios of �B0 ! bþ1 K

�. Similar to the factorization
approach, there are large differences between the PQCD
approach predictions on ratios R1;2 and those extracted

from the data.

V. NUMERICAL RESULTS

In the PQCD framework and SCET framework, we
calculate the decay rates, direct CP asymmetries and
time-dependent CP asymmetries shown in Tables I, II,
III, and IV. We have adopted the same conventions with
Ref. [14] for observables in time-dependent decay widths
of B ! a�1 �� and B ! b�1 ��.2 In the SCET calculation,
we use the following values for the 14 inputs:

�B!� ¼ 0:12; �B!�
J ¼ 0:12; �B!a1¼ 0:17;

�B!a1
J ¼ 0:17; �B!b1 ¼ �0:16; �B!b1

J ¼ �0:16;

jA3P1P
cc j ¼ 40� 10�4; arg½A3P1P

cc � ¼ 160�;

jAP3P1
cc j ¼ 40� 10�4; arg½AP3P1

cc � ¼ 145�;

jA1P1P
cc j ¼ 40� 10�4; arg½A1P1P

cc � ¼ 155�;

jAP1P1
cc j ¼ 35� 10�4; arg½AP1P1

cc � ¼ 100�: (27)

We should point out that this set of inputs is presented by
hand instead of any reasonable way. To test the sensitivities
on these parameters, we show the first uncertainty in
numerical results by varying the form factors by 0.03,
20% for magnitudes of charming penguins and 20� for
the phases. The second uncertainty is from CKM matrix
elements. In the PQCD calculation, we have used the same
inputs as those in Refs. [17,37,38]. The theoretical uncer-
tainties are from: (i) the hadronic inputs: decay constants of
the Bmeson, and shape parameters in the wave function of
the B meson; (ii) �QCD, the hard scale t and the threshold

resummation parameter c; (iii) the CKM matrix elements
Vub and � angle. The factorization formula for each type of
diagrams in B ! AP decays is the same as those in B !
PP decays which can be found in the literature.3 Because

of the same flavor structures, the hard spectator scattering
diagrams often accompany with the factorizable diagrams.
One only needs to consider the flavor structure for factor-
izable diagrams and to use meson matrices by evaluating
the master equations [34]. For the CKM matrix elements,
we use the updated global fit results from CKMfitter group
[36]:

Vud ¼ 0:97400; Vus ¼ 0:22653;

jVubj ¼ ð3:57þ0:17
�0:17Þ � 10�3; Vcd ¼ �0:22638;

Vcs ¼ 0:97316; Vcb ¼ ð40:5þ3:2
�2:9Þ � 10�3;

� ¼ ð21:7þ0:017
�0:017Þ�; � ¼ ð67:6þ2:8

�4:5Þ�:

(28)

Predictions in the QCDF approach are also collected in
the tables to make a comparison [14] In the QCDF ap-
proach, a2 (to be precise, 
2) are much smaller than 0.5,
thus their amplitude from color-suppressed tree diagrams
is not large enough to resolve the problem in B0= �B0 !
a�1 �� and B0 ! ða�1 �0; a01�

�Þ decays. Their prediction
on the branching ratio of �B0 ! aþ1 K

� is compatible with
the data. For B ! b1K, they found that decay rates are
sensitive to the interference between emission diagrams
and annihilation diagrams. The small decay rate of �B0 !
bþ1 K� arises from the destructive interference between
emission diagrams and annihilations, thus the prediction
on branching ratio �B0 ! bþ1 K

� is basically consistent with
the data. But their predictions on four ratios of branching
fractions R1�4 (R3 and R4 are related to ratios R1 and R2

defined in the present paper; their ratios R1 and R2 char-
acterize the magnitude of color-suppressed contributions in
B ! a1� decay modes) deviate from experimental data.
To be more quantitative, we also define the �2 for the

measured observables:

�2 ¼ ðFthe � FexpÞ2
F2
err

; (29)

where F denotes either branching ratio or direct CP asym-
metry for any specific channel. Fthe denotes the theoretical
prediction, Fexp denotes the central value for the observ-

ables provided by the experimentalists, and Ferr denotes
the experimental and theoretical errors added in quadra-
ture. At the end of Tables I and II, we present the total
�2=N for branching ratios and direct CP asymmetries in
these three models, where N is the number of degrees of
freedom. In the PQCD approach, the inputs for the light
axial-vector and pseudoscalar mesons are evaluated by the
QCD sum rules method. The B-meson decay constant and
shape parameter, the factor in the factorization scale,
�QCD, threshold resummation parameter c can be viewed

as fitted parameters. But these parameters will also be
constrained by the B ! PP, VP, VV data. In the SCET
method, the 14 hadronic inputs are the fitted parameters. It
should also be pointed out that this set of inputs is pre-

2The Aa�
1
�� in the present paper correspond to Aa�

1
��

defined in Refs. [16,35,36].
3There still exist two differences between the factorizable

emission diagrams of B ! AP and B ! PP decays: the axial-
vector meson cannot be generated by the scalar or pseudoscalar
current, thus the chiraly enhanced penguins vanish; due to the
vanishing decay constant, b1 can not be factorized from the B
meson and the recoiling meson.
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sented by hand instead of any reasonable way. With more
data in the future, one can perform a comprehensive �2-fit.

Several remarks on the numerical results in the PQCD
approach and SCET approach are in order:

(i) The predictions on BRð �B0 ! a�1 �
þÞ in both ap-

proaches are a bit smaller than experimental data,
because the decay constant of fa1 ¼ 0:238 GeV [39]

is a bit smaller than that extracted from the data.

(ii) As we expected, color-suppressed contributions to
B ! a1� decays are large in the SCET framework
but small in the PQCD approach: SCET predictions
are much larger and consistent with the present data
within the uncertainties.

(iii) In the PQCD approach, �B0 ! b�1 �
þ occur via the

so-called hard spectator scattering diagrams, despite
the zero decay constant of b1. In B� ! b01�

�, the

TABLE III. Same as Table I but for time-dependent CP asymmetry parameters in B0= �B0 ! a�1 �� and B0= �B0 ! b�1 �� decays.

Observables QCDF PQCD SCET Exp.

Aa1� 0:003þ0:001þ0:002þ0:043
�0:002�0:003�0:045 �0:009þ0:002þ0:002þ0:001

�0:002�0:003�0:001 0:02þ0:08þ0:00
�0:08�0:00 �0:07� 0:07� 0:02

C 0:02þ0:00þ0:00þ0:14
�0:00�0:00�0:14 �0:12þ0:02þ0:02þ0:01

�0:02�0:03�0:01 �0:15þ0:08þ0:01
�0:07�0:01 �0:10� 0:15� 0:09

�C 0:44þ0:03þ0:03þ0:03
�0:04�0:05�0:04 0:11þ0:03þ0:06þ0:01

�0:01�0:05�0:01 0:23þ0:18þ0:00
�0:19�0:00 0:26� 0:15� 0:07

S �0:37þ0:01þ0:05þ0:09
�0:01�0:08�0:16 �0:23þ0:02þ0:03þ0:09

�0:01�0:03�0:14 �0:45þ0:07þ0:08
�0:06�0:11 0:37� 0:21� 0:07

�S 0:01þ0:00þ0:00þ0:02
�0:00�0:00�0:02 �0:03þ0:01þ0:01þ0:00

�0:01�0:01�0:00 0:02þ0:04þ0:00
�0:05�0:00 �0:14� 0:21� 0:06


þ
eff ð97:2þ0:3þ1:0þ4:7

�0:3�0:6�2:5Þ� ð93:8þ0:4þ0:7þ4:4
�0:4�0:4�2:8Þ� ð103:5þ2:4þ4:0

�2:5�2:6Þ�

�
eff ð107:0þ0:5þ3:6þ6:6

�0:5�2:3�3:7Þ� ð99:8þ0:5þ1:5þ4:2
�0:7�1:4�2:7Þ� ð104:8þ2:7þ4:0

�3:2�2:6Þ�

eff ð102:0þ0:4þ2:3þ5:7

�0:4�1:5�3:1Þ� ð96:8þ0:4þ1:0þ4:3
�0:6�0:9�2:7Þ� ð104:2þ1:8þ4:0

�2:0�2:6Þ� ð78:6� 7:3Þ�
Ab1� �0:06þ0:01þ0:01þ0:23

�0:01�0:01�0:23 �0:27þ0:05þ0:04þ0:02
�0:05�0:04�0:02 �0:39þ0:08þ0:03

�0:08�0:03 �0:05� 0:10� 0:02
C �0:03þ0:01þ0:01þ0:06

�0:02�0:02�0:01 �0:03þ0:01þ0:01þ0:00
�0:01�0:01�0:00 0:07þ0:04þ0:02

�0:03�0:01 0:22� 0:23� 0:05
�C �0:96þ0:03þ0:02þ0:08

�0:03�0:03�0:01 �0:87þ0:02þ0:04þ0:01
�0:02�0:04�0:01 �0:83þ0:08þ0:03

�0:07�0:03 �1:04� 0:23� 0:08
S 0:05þ0:03þ0:02þ0:15

�0:03�0:02�0:26 0:08þ0:00þ0:02þ0:06
�0:01�0:02�0:04 �0:46þ0:14þ0:03

�0:10�0:03

�S 0:12þ0:04þ0:04þ0:08
�0:03�0:04�0:09 �0:24þ0:01þ0:06þ0:02

�0:02�0:07�0:01 �0:17þ0:06þ0:03
�0:05�0:02


þ
eff

a ð107:6þ0:7þ3:5þ155:4
�0:2�4:9�17:8 Þ� ð174:1þ0:0þ2:5þ5:0

�0:8�3:9�3:2Þ� 68.3�

�
eff ð101:3þ0:4þ2:1þ4:9

�0:4�1:4�8:6Þ� ð13:3þ0:2þ1:9þ4:1
�0:3�1:7�2:7Þ� ð3:4þ0:2þ4:6

�0:1�2:9Þ�

eff ð104:4þ0:6þ2:6þ80:4

�0:3�2:1�1:6 Þ� ð93:7þ0:0þ0:9þ4:5
�0:5�1:6�2:8Þ� ð35:8þ0:1þ2:3

�0:0�1:5Þ�
aOne needs to be careful about the phase of the B-meson decay amplitudes [34]. For example, the �B0 ! b�1 �

þ and B0 ! bþ1 �
� decay

amplitudes are determined as

Að �B0 ! b�1 �þÞ ¼ VubV
�
udT þ VcbV

�
cdP; AðB0 ! bþ1 ��Þ ¼ �½V�

ubVudT þ V�
cbVcdP�: (32)

TABLE II. Similar as Table I. but for direct CP asymmetries (in %) of B ! a1ðb1Þ�ðKÞ decays.
Channel QCDF PQCD SCET Exp.

B� ! a�1 �
0 0:5þ0:3þ0:6þ12:0

�0:2�0:3�11:0 1:6þ0:0þ0:1þ0:2
�0:6�1:3�0:1 �5:4þ10:7þ0:5

�10:1�0:5

B� ! a01�
� �4:3þ0:3þ1:4þ14:1

�0:3�2:2�14:5 �0:9þ0:6þ0:3þ0:1
�0:3�0:3�0:1 5:7þ11:1þ0:5

�11:3�0:5
�B0 ! aþ1 �

� �3:6þ0:1þ0:3þ20:8
�0:1�0:5�20:2 12:6þ1:8þ3:5þ1:0

�1:2�2:5�1:1 21:5þ11:3þ1:6
�12:7�1:9 7� 21� 15

�B0 ! a�1 �þ �1:9� 0:0� 0:0þ14:6
�14:3 11:7þ2:1þ2:7þ1:1�1:9�2:0�1:1 10:4þ9:9þ0:8

�10:6�0:9 15� 15� 7
�B0 ! a01�

0 60:1þ4:6þ6:8þ37:6
�4:9�8:3�60:7 28:9þ7:6þ42:5þ2:6

�22:1�88:1�2:5 �29:5þ15:7þ2:6
�13:0�2:8

B� ! a�1 �K0 0:8þ0:0þ0:1þ0:6
�0:0�0:1�0:0 �1:0þ0:2þ0:2þ0:1

�0:0�0:2�0:1 0:3þ0:2þ0:0
�0:2�0:0 12� 11� 2

B� ! a01K
� 8:4þ0:3þ1:4þ10:3

�0:3�1:6�12:0 �6:1þ1:1þ1:3þ0:6
�1:3�1:4�0:6 �25:6þ14:9þ2:3

�14:8�2:4
�B0 ! aþ1 K� 2:6þ0:0þ0:7þ10:1

�0:1�0:7�11:0 �8:9þ1:5þ2:1þ0:8
�2:3�2:4�0:9 �17:7þ10:3þ1:6

�10:0�1:7 �16� 12� 1
�B0 ! a01

�K0 �7:7þ0:6þ2:1þ6:8
�0:6�2:2�7:0 �1:8þ0:3þ0:6þ0:2

�0:3�0:6�0:2 17:9þ10:1þ1:4
�11:1�1:6

B� ! b�1 �
0 �36:5þ4:4þ18:4þ82:2

�4:3�17:7�59:6 12:5þ16:0þ23:5þ1:1
�27:3�40:3�0:6 34:1þ27:1þ3:2

�26:7�2:9 5� 16� 2
B� ! b01�

� 0:9þ0:6þ2:3þ18:0
�0:4�2:7�20:5 �65:8þ11:1þ13:4þ4:6

�9:0�8:2�3:8 �17:7þ13:8þ1:6
�14:6�1:3

�B0 ! bþ1 �
� �4:0þ0:2þ0:4þ26:2

�0:0�0:6�25:5 �25:0þ4:0þ3:9þ2:2
�4:3�4:1�1:9 �42:3þ9:3þ3:6

�9:4�3:5
�B0 ! b�1 �

þ 66:1þ1:2þ7:4þ30:3
�1:4�4:8�96:6 49:0þ3:5þ7:1þ4:2

�8:0�6:0�4:0 0
�B0 ! b01�

0 53:4þ6:4þ9:0þ5:2
�6:3�7:3�4:7 15:9þ4:0þ7:2þ1:0

�7:8�10:7�1:4 52:7þ12:7þ2:7
�13:9�3:9

B� ! b�1 �K0 1:4þ0:1þ0:1þ5:6
�0:1�0:1�0:1 �0:30þ0:02þ0:00þ0:03

�0:38�0:58�0:03 �0:8þ0:2þ0:1
�0:2�0:1 �3� 15� 2

B� ! b01K
� 18:7þ1:6þ7:8þ57:7

�1:7�6:1�44:9 19:4þ0:0þ4:4þ1:8
�0:4�4:0�1:8 46:3þ10:5þ3:8

�8:8�3:9 �46� 20� 2
�B0 ! bþ1 K� 5:5þ0:2þ1:2þ47:2

�0:3�1:2�30:2 16:6þ2:4þ3:8þ1:6
�2:3�3:2�1:5 46:3þ10:5þ3:8

�8:8�3:9 �7� 12� 2
�B0 ! b01

�K0 �8:6þ0:8þ3:3þ8:3
�0:8�4:2�25:4 �4:3þ1:6þ1:8þ0:4

�1:6�1:8�0:4 �0:8þ0:2þ0:1
�0:2�0:1

�2=d:o:f: 4= . . . 15=ð29� 5Þ 29=ð29� 14Þ
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hard spectator scattering diagrams’ contributions
(tree operators), with a b01 meson emitted, are sizable

and cancel with the color-allowed contribution
where the pion is emitted. Thus the branching ratio
of B� ! b01�

� is smaller than one half of
BRð �B0 ! bþ1 ��Þ.

(iv) In the SCET approach, �B0 ! b�1 �
þ only receive

contributions from charming penguins and corre-
spondingly the direct CP asymmetry in this channel
is 0. The predicted branching ratio is smaller than the
PQCD prediction but larger than the QCDF
prediction.

(v) In the SCET, the direct CP asymmetries in �B0 !
aþ1 K� and B� ! a01K

� have the same sign and

similar size. Moreover, their branching ratios obey
the simple relation: BRð �B0 ! aþ1 K

�Þ ¼
2BRðB� ! a01K

�Þ. It is also similar for �B0 !
bþ1 K

� and B� ! b01K
�: the direct CP asymmetries

are equal with each other; the branching ratios also
satisfy the relation BRð �B0 ! bþ1 K

�Þ ¼
2BRðB� ! b01K

�Þ, where the small deviation

arises from the different mass and decay width of
the �B0 and B� meson.

(vi) As expected, the two ratios R1 and R2 are predicted
with large deviations from the data:

R1 ¼ 1:16; R2 ¼ 0:54; PQCD (30)

R1 ¼ 0:91; R2 ¼ 0:50: SCET: (31)

(vii) Predictions on the observables in the time-dependent
decay width of B0= �B0 ! a�1 �� and B0= �B0 !
b�1 �� are basically consistent with the experimental
data except the �S, the 
eff in �B0 ! a�1 �

�, and
Ab1�. For

�B0 ! b�1 �� decays, predictions on �C

in the two approaches are close to �1 and they are
consistent with the QCDF prediction [14] and the
data. In the SCET framework, the angle 
þ

effð �B0 !
b�1 �

�Þ is equal to �
2 � �which is also a consequence

of the vanishing decay constant of the b1 meson.
(viii) If only branching fractions are taken into account,

the QCDF method gives the smallest �2: the reason

is that theoretical uncertainties in this framework are
large, and thus Ferr is large. If only experimental
errors are taken into account, the SCET method
provides the smallest �2, while the value in the
PQCD approach is extraordinarily large and the
main reason is that the �2 for the three B ! b1K
channels is 1251. The situation can be improved by
reducing the B ! b1 form factors, which also make
the prediction on �B0 ! b�1 �

� better.
(ix) The total �2 for the direct CP asymmetries in the

three phenomenological methods are in the same
size: most of theoretical predictions on direct CP
asymmetries are close to the experimental data. The
largest value in the SCET for �2 does not mean that
predictions on direct CP asymmetries in this method
deviate the data a lot, as these predictions are pre-
sented only for an illustration and the total �2 can be
reduced by tuning the magnitudes and strong phases
of charming penguins with more experimental data
in the future.

VI. SUMMARY

In summary, we have investigated the B ! a1ðb1Þ�ðKÞ
decays under the factorization framework and find large
differences between theoretical predictions and experi-
mental data. In tree-dominated processes B ! a1�, large
contributions from color-suppressed tree diagrams are re-
quired. In �B0 ! ðaþ1 ; bþ1 ÞK� decays, theoretical results are
larger than data by factors of 2.8 and 5.5, respectively;
meanwhile ratios R1 and R2 defined in Eq. (19) are much
larger too. In the PQCD framework, the predicted decay
rates of B ! a�1 �

� are consistent with data. But the other
problems cannot be resolved. The SCET approach has the
potential to resolve the first two problems: if large hard-
scattering form factors are allowed, theoretical predictions
BRðB� ! a�1 �

0Þ and BRðB� ! a01�
�Þ are in good

agreement with data; with the help of charming penguins,
large branching ratios of �B0 ! ðaþ1 ; bþ1 ÞK� are also pulled
down to the same magnitude with the data. However, the
two problems on ratios in b ! s transitions remain in the
present theoretical methods. These two problems may
indicate some new mechanism, from the nonperturbative
contributions such as final state interactions or new physics
scenarios, which needs further study.
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TABLE IV. Mixing-induced CP asymmetries in �B0 ! a01KS

and �B0 ! b01KS decays.

Channel PQCD SCET

�B0 ! a01�
0 0:09þ0:20þ0:78þ0:08

�0:19�0:87�0:08 0:48þ0:11þ0:09
�0:14�0:15

�B0 ! a01KS 0:71þ0:01þ0:02þ0:00
�0:01�0:02�0:00 0:85þ0:05þ0:01

�0:06�0:01
�B0 ! b01�

0 0:67þ0:02þ0:09þ0:09
�0:00�0:06�0:07 0:61þ0:09þ0:09

�0:11�0:06
�B0 ! b01KS �0:61þ0:01þ0:03þ0:01

�0:01�0:03�0:01 �0:69

WEI WANG, RUN-HUI LI, AND CAI-DIAN LÜ PHYSICAL REVIEW D 78, 074009 (2008)
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