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There is a group-theoretical connection between fermion mixing matrices and minimal horizontal

symmetry groups. Applying this connection to the tribimaximal neutrino mixing matrix, we show that the

minimal horizontal symmetry group for leptons is uniquely S4, the permutation group of four objects.
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I. INTRODUCTION

Much expectation is currently being focused on the
discovery of the standard-model Higgs boson, and on
possible experimental indications of what lies beyond.
While we await these exciting results, we should not lose
sight of the generation problem of more than 70 years, of
why there are three generations of fermions and what the
relations are between them, for which a certain amount of
data is already available to guide us. If (horizontal) sym-
metry is to play a role in the generation problem, just as it
does in the standard model, in supersymmetry, and in grand
unified and string theories, then the generation problem
may even have a direct impact on the Higgs boson being
hunted for. This is so because, like other symmetries, the
horizontal symmetry is expected to be spontaneously bro-
ken to yield the measured quark and lepton masses and
mixings. Additional Higgs bosons introduced to break
the horizontal symmetry contribute to the mass matrices
and hence the fermion masses, making the fermion cou-
pling of whichever Higgs bosons that will be first discov-
ered no longer proportional to its mass. That means the
estimated fusion production cross section of the standard-
model Higgs will be off, and its expected decay branching
ratio to different fermion pairs will not be as predicted. If
that is indeed observed, it would be a strong support for the
idea of a horizontal symmetry.

Many horizontal symmetry groups have been proposed
in the literature, among them the groups Zm [1], Zm � Zn

[2],Dn [3,4], S3 [5], S4 [6], A4 [7], T
0 [8],�ð27Þ [9], SOð3Þ,

and SUð3Þ [10]. These models introduce a number of
additional Higgs bosons to break the spontaneous symme-
try, each of which has an adjustable vacuum expectation
value and adjustable Yukawa coupling constants. It is the
tuning of these parameters that allows the same piece of
experimental data to be explained by so many different
models based on many different symmetries.

This is somewhat unsatisfactory because if nature pos-
sesses a horizontal symmetry, it must be unique, but how
should we determine which of these is the correct symme-
try? In a previous paper [11], I suggested what seems to me

to be a natural criterion: the correct symmetry group should
reveal itself experimentally without the adjustment of any
dynamical parameter. It was further argued that neutrino
mixing should be the piece of data used to obtain such a
symmetry, whereas quark mixing and fermion masses have
to be obtained in a model-dependent way from a dynamical
model based on this symmetry. With this criterion, it was
shown that the tribimaximal neutrino mixing matrix [12]
leads to the symmetry group S4. It was further claimed
that this group is unique, in the sense that any other viable
symmetry group must contain it as a subgroup. The pur-
pose of this paper is to show this uniqueness, as well as
other details not fully discussed in [11]. Dynamical models
based on S4 to implement quark mixing and fermion
masses are not unique and their discussion will not be
included in this article.
Since we want to stay away from the adjustment of

parameters, the symmetry must be obtained from group-
theoretical arguments, not dynamical models. The group-
theoretical technique needed for this purpose was
developed in [4], used there and in [11] to obtain the S4
horizontal symmetry from the tribimaximal mixing matrix.
For completeness this result will be reviewed in Sec. II.
The proof of the uniqueness of S4 will be carried out in
Sec. III, by eliminating all other finite subgroups of SOð3Þ
and SUð3Þ one by one. Section IV is devoted to a brief
summary and conclusions.

II. SYMMETRYAND MIXING

We wish to derive the horizontal symmetry from mix-
ing, and vice versa. Since the mixing matrix depends only
on left-handed fermions, instead of the 3� 3 charged-
lepton mass matrix Me, which connects left-handed to
right-handed charged leptons, it is simpler to deal with
�Me :¼ MeM

y
e ¼ �My

e , which connects left-handed charged
leptons on both sides. Assuming the active neutrinos to be
Majorana, their mass matrix M� ¼ MT

� does not involve
right-handed neutrinos and can be used as it is.

If Ue and U� are unitary matrices making Uy
e �MeUe :¼

�me and UT
�M�U� :¼ m� diagonal, then U ¼ Uy

e U� is the
neutrino mixing matrix. Since lepton masses are all dif-
ferent, these unitary matrices are essentially unique up to*Lam@physics.mcgill.ca
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phases. To see that, suppose de and d� are unitary matrices
such that Uede also diagonalizes �Me and U�d� also diag-

onalizesM�; then d
y
e �mede ¼ �me and d

T
�m�d� ¼ m�, so de

and d� must both be diagonal, with dT�d� ¼ d2� ¼ 1. In
other words, Ue is unique up to an overall phase change of
each of its three columns, andU� is unique up to an overall
sign change of each of its three columns.

If F is a unitary transformation of the left-handed
charged leptons, then this transformation is a horizontal
symmetry of the charged leptons iff Fy �MeF ¼ �Me. Simi-
larly, if G is a unitary transformation of the active neutri-
nos, then it is a horizontal symmetry of the active neutrinos
iff GTM�G ¼ M�. These equalities imply that FUe also
diagonalizes �Me and GU� also diagonalizes M�; conse-
quently, they satisfy FUe ¼ Uede and GU� ¼ U�d�. The
condition d2� ¼ 1 implies G2 ¼ 1. Without loss of gener-
ality, we shall confine ourselves to the situation when
detðGÞ ¼ 1, so thatG has oneþ1 and two�1 eigenvalues.
In other words, the columns of Ue are eigenvectors of F,
and the columns of U� are eigenvectors of G with eigen-
value þ1 or �1. The diagonalization matrices Ue and U�,
and hence the mixing matrix U, are thereby intimately
related to the symmetry operations F and G. It is for this
reason that the mixing matrix can determine the symmetry,
and vice versa.

If the Hamiltonian has an unbroken symmetry, this
symmetry must be simultaneously a horizontal symmetry
for the charged leptons and the active neutrinos; thus F ¼
G. This implies Ue ¼ U� up to inconsequential phases,
and hence U ¼ 1. In order to have a mixing, F ¼ G is not
allowed, so whatever horizontal symmetry that is present at
high energies must be broken at the present energy down to
the residual symmetries F for the charged leptons and G
for the active neutrinos. With F � G, the minimal hori-
zontal symmetry group G at high energy is the (finite)
group generated by F and G. We shall denote this by the
notation G ¼ fF;Gg.

From now on we choose a basis in which �Me is diagonal.
That means Ue ¼ 1 and U ¼ U�. F is diagonal in that
basis because it commutes with �Me whose eigenvalues are
all different. Conversely, if F is diagonal and nondegener-
ate, in the sense that all its eigenvalues are different, then
�Me must be diagonal as well. This property will be needed
to recover the mixing matrix U from F and G; hence we
shall assume F to be nondegenerate from now on.

Given thatU ¼ U�,GU ¼ Ud�, it is easy to constructG
from the neutrino mixing matrix U. In fact, there are three

solutions Giði ¼ 1; 2; 3Þ, such that GiU ¼ UdðiÞ� , with þ1

occupying the ðiiÞ position of dðiÞ� and �1 occupying the
other two diagonal entries. If the mixing matrix is chosen
to have the tribimaximal form [12],

U ¼ 1ffiffiffi
6

p
2

ffiffiffi
2

p
0

�1
ffiffiffi
2

p ffiffiffi
3

p
�1

ffiffiffi
2

p � ffiffiffi
3

p

0
B@

1
CA; (1)

a form which is well within 1 standard deviation of the
experimental mixing angles, then

G1 ¼ 1

3

1 �2 �2
�2 �2 1
�2 1 �2

0
@

1
A;

G2 ¼ � 1

3

1 �2 �2
�2 1 �2
�2 �2 1

0
@

1
A; G3 ¼ �

1 0 0
0 0 1
0 1 0

0
@

1
A:

(2)

There is no need to consider G1 from now on because
G1 ¼ G2G3.
In summary, the minimal horizontal group given by the

neutrino mixing matrix U is the finite group G generated
by F, G2, and G3: G ¼ fF;G2; G3g. The matrices G2 and
G3 are given in (2); the matrix F is unitary and diagonal but
otherwise arbitrary.
Conversely, given a horizontal group G for leptons,

whether it can yield the tribimaximal mixing (1) without
fine-tuning depends on whether we can choose three ele-
ments F, G2, and G3 in G to act as the residual symmetries
after breaking, so that F is nondegenerate, and G2, G3 are
given by (2) in the basis where F is diagonal. If this can be

done, then the mixing is given by (1) becauseGiU ¼ UdðiÞ�
and �Me is diagonal in that basis as remarked earlier. If no
such triplets F,G2,G3 can be found, then we cannot obtain
(1) from G without fine-tuning the dynamical parameters.
Since G is assumed to be a finite group, there must be a

natural integer n such that Fn ¼ 1. We require n � 3 in
order to keep F nondegenerate. For n ¼ 3, each entry of
the diagonal F must be a different cube root of unity. Let

! ¼ e2�i=3, then there are six possible F’s, given by F ¼
diagð1; !;!2Þ :¼ F1 and the other five permutations of the
three entries. Correspondingly there should be six groups,
G ¼ fF;G2; G3g. However, since each Gi is invariant
under a simultaneous permutation of its second and third
columns and rows, a permutation of the (22) and (33)
entries of F will not give rise to a new group. In this
way we cut down the six possible G to three, the other
two being generated by F2 ¼ diagð!; 1; !2Þ and F3 ¼
diagð!2; 1; !Þ. However, since F2

2 ¼ F3 and F2
3 ¼ F2,

these two must generate the same group, so altogether
there are only two distinct groups G from the six possible
F’s. These groups can be explicitly calculated by repeat-
edly multiplying the three generators. The result is G ¼
fF1; G2; G3g ¼ S4, G ¼ fF2; G2; G3g ¼ 3:S4, where S4 is
the symmetric (permutation) group of four objects with
24 elements, which is also the symmetry group of the cube
and of the octahedron, and 3:S4 is a 72-element group con-
sisting of S4, !S4, and !2S4. Since 3:S4 � S4, the hori-
zontal symmetry group for n ¼ 3 is uniquely S4, unique
in the sense that any other viable horizontal group must
contain it as a subgroup.
It remains to show the uniqueness of S4 for n > 3. For a

given n, there are n!=ðn� 3Þ! possible F’s, and there is an
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infinite number of n’s; thus a straightforward calculation
by direct multiplication for every case is clearly impos-
sible. Instead, we will provide a proof in the next section in
another way, by enumerating and rejecting the other rele-
vant finite groups.

III. UNIQUENESS OF S4

In this section we shall show that either G ¼ fF;G2; G3g
contains S4 as a subgroup, or else it must have an infinite
order.

To do that, we first assume detðFÞ ¼ 1. Since detðG2Þ ¼
detðG3Þ ¼ 1, and since F, G2, G3 are 3� 3 unitary matri-
ces, G is clearly a finite subgroup of SUð3Þ or SOð3Þ, or a
finite subgroup of SUð3Þ or SUð2Þ since SUð2Þ covers
SOð3Þ twice. The desired conclusion is reached by enu-
merating and considering all the finite subgroups of SUð2Þ
and SUð3Þ, which are known. At the end of the section, we
will show that the conclusion remains valid when the unit-
determinant assumption of F is dropped.

A. Finite subgroups of SUð2Þ and SUð3Þ
The finite subgroups of SUð2Þ are in one-to-one corre-

spondence with the simply laced Lie algebras An, Dn, E6,
E7, E8 [13–15]. The two infinite series An and Dn corre-
spond, respectively, to the cyclic group Zn with n elements,
and the dihedral group Dn with 2n elements. The three ex-
ceptional groups E6, E7, E8 correspond to the three sym-
metry groups T , O, I of the regular polyhedrons, with T
the symmetry of the tetrahedron, O the symmetry of the
cube and the octahedron, and I the symmetry of the do-
decahedron and the icosahedron. They are also equal to the
groups A4, S4, A5, respectively, where Sn is the symmetric
group, namely, the permutation group of n objects, and An

is the alternating group, namely, all the even permutations
of n objects.

The finite subgroups of SUð3Þ not in SUð2Þ are also
known [13,14,16–19]; the notations used below are those
of [16], in which the number within the parentheses is the
order of the group. There are also two infinite series,
�ð3n2Þ and �ð6n2Þ, and six ‘‘exceptional’’ ones: �ð36Þ,
�ð60Þ, �ð72Þ, �ð168Þ, �ð216Þ, �ð360Þ.

We shall show in the subsequent paragraphs that these
groups cannot yield the tribimaximal mixing matrix (1)
without parameter tuning unless they contain S4 as a sub-
group. We shall do that by dividing these groups into
different categories.

B. Groups without three-dimensional
irreducible representations

It was shown in [4] that the horizontal symmetry group
has to possess a three-dimensional (3D) irreducible repre-
sentation (IR), or else we can never recover the tribimax-

imal mixing without a tuning of parameters. This is so
because of the particular form of (2), and because the left-
handed fermions must belong to a 3DIR to avoid the
presence of tunable parameters.
The series of groups Zn, being Abelian, has only 1DIR,

and the series of groups Dn has at most 2DIR, so both are
unsuitable. The groups �ð36Þ, �ð72Þ, and �ð360Þ do not
have 3DIR either [16], so they must be rejected as well.

C. A4

This subgroup of S4 gives automatically trimaximal
mixing, but it can give bimaximal mixing as well only by
tuning some Yukawa coupling constants [20]. To obtain
tribimaximal mixing without any tuning, we need the rest
of the symmetries contained in S4.

D. �ð3m2Þ and �ð6m2Þ
These two infinite series are discussed in [13,14,16–

18,21], with their 3DIR’s given in [17,18,21]. We must
show that none of them are allowed unless they contain S4
as a subgroup.
There are many 3DIR’s, but every one of those matrices

has only one nonzero element in each row and each col-
umn, and these nonzero elements all have absolute value 1.
This is the only property that is required to rule out these
two series.
There are 3! ¼ 6 types of matrices with this property.

They are

t1 :¼
�1 0 0
0 0 �1

0 �1 0

0
@

1
A; t2 :¼

0 0 �2

0 �2 0
�2 0 0

0
@

1
A;

t3 :¼
0 �3 0
�3 0 0
0 0 �3

0
@

1
A; t4 :¼

�4 0 0
0 �4 0
0 0 �4

0
@

1
A;

t5 :¼
0 �5 0
0 0 �5

�5 0 0

0
@

1
A; t6 :¼

0 0 �6

�6 0 0
0 �6 0

0
@

1
A;

(3)

with j�ij ¼ j�ij ¼ j�ij ¼ 1. The question is whether we
can pick from them three members g2, g3, f which can be
turned into G2, G3, and F by a unitary transformation V,
such that F is diagonal and nondegenerate, having an order
n > 3. n ¼ 1, 2 are excluded because we need the three
eigenvalues of F to be different; n ¼ 3 is not considered
because G2, G3, F simply generate S4. Unless three such
members can be picked, there will be no new horizontal
symmetry contained in these two series of groups.
G2 and G3 can be simultaneously diagonalized by the

tribimaximal mixing matrix U of (1) so that
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dð2Þ� ¼ UyG2U ¼
�1 0 0
0 1 0
0 0 �1

0
@

1
A;

dð3Þ� ¼ UyG3U ¼
�1 0 0
0 �1 0
0 0 1

0
@

1
A

(4)

are diagonal. To find V, we first determine the unitary ma-
trix v which simultaneously diagonalizes g2 and g3 into
diagonal forms g2d ¼ vyg2v and g3d ¼ vyg3v, and then

identify g2d with d
ð2Þ
� and g3d with dð3Þ� . The desired matrix

V so that Vg2;3V
y ¼ G2;3 is then given by V ¼ Uvy.

Such a matrix v exists because g2 and g3 commute;
otherwise, G2 and G3 would not have commuted. Let

vað1 � a � 6Þ be the unitary matrix which renders tad ¼
vy
a tava diagonal; then v must be one of these va’s.
Since TrðG2Þ ¼ TrðG3Þ ¼ �1, we must require

Trðg2Þ ¼ Trðg3Þ ¼ �1. Since n > 3 and the three eigen-
values of F are required to be different, we also have
TrðFÞ � 0, and hence TrðfÞ � 0. The trace of any matrix
in t5 and t6 is zero; thus we know that g2, g3, f must all
come from ti for 1 � i � 4. To have the right trace, we
need to have �1 ¼ �2 ¼ �3 ¼ �4 þ �4 þ �4 ¼ �1. To
have the unit determinant which G2 and G3 possess, we
also require �1�1 ¼ �2�2 ¼ �3�3 ¼ �1.

Incidentally, this analysis excludes �ð24Þ ¼ S4, which
has n ¼ 3. In that case TrðfÞ ¼ 0 and its f belongs to type
t5 or t6.

The unitary diagonalization matrices va of the first four
types can be taken to be

v1 ¼ 1ffiffiffi
2

p
ffiffiffi
2

p
0 0

0 w1 �w1

0 1 1

0
B@

1
CA;

v2 ¼ 1ffiffiffi
2

p
w2 0 �w2

0
ffiffiffi
2

p
0

1 0 1

0
@

1
A;

v3 ¼ 1ffiffiffi
2

p
w3 �w3 0
1 1 0
0 0

ffiffiffi
2

p
0
@

1
A;

(5)

with jwij ¼ 1. v4 can be taken to be the identity matrix.
It is easy to check from (3) that the vanishing of the

commutators between g2 and g3 requires either (i) both of
them to belong to the same type ti, or (ii) one of them to
belong to type t4. For j ¼ 1, 2, 3, the ðjjÞmatrix element of
tj and tjd is �1, so we see from (4) that when (i) occurs,

both g2 and g3 must belong to type t1 or type t4. Let us
consider the different cases separately.

i (ia) Both g2 and g3 belong to type t1.

In order for t1d ¼ vy
1 t1v1 to be diagonal, w1�1 ¼

w�
1�1 is required, in which case

t1d ¼
�1 0 0
0 �1w1 0
0 0 ��1w1

0
@

1
A: (6)

This can be identified with dð2Þ� and dð3Þ� in (4) by
setting �1 ¼ �1 and w1 ¼ �1=�1.
Now that we know V ¼ Uvy, we can compute VfVy
to see whether it can be identified with F, which is a
diagonal nondegenerate matrix with order n > 3.
Since f has to be in one of the four types t1, t2, t3,
t4, we can calculate them all. The result is that this
can never happen no matter what parameters we
choose.
(ib) Both g2 and g3 belong to type t4.
In this case v is the identity and V ¼ U. Again we
can verify that none of UtiU

y for i � 4 can be the
desired F.

ii One of g2 and g3 belongs to t4 and the other to ti.
We shall deal with the case when g2 is of type t4. The

other case, when g3 is in t4, is very similar.
Comparing with (4), we see that �4 ¼ �1 ¼ ��4 ¼

�4. If g3 belongs to type ti, its diagonalization matrix vi

must diagonalize g2 as well; hence i ¼ 2. As in case (ia)

above, V ¼ Uvy ¼ Uvy
2 can then be computed and we can

check whether VfVy can lead to a desired F. The result is
the same as before: no matter which one of the four types ti
that f belongs to, it can never give rise to the desired F.
This concludes the proof that �ð3m2Þ and �ð6m2Þ can-

not give rise to a new horizontal symmetry not contain-
ing S4.

E. A5, �ð168Þ, �ð216Þ
The remaining three groups, the icosahedral group A5 ¼

�ð60Þ, the Klein group �ð168Þ ¼ L2ð7Þ [19], and the Hes-
sian group �ð216Þ, can all be ruled out by using their class
structures and character tables. To explain how this is done
let us denote any of these three groups by G.
The question is whether an equivalent representation can

be chosen to enable three members f, g2, g3 2 G to be
picked out to be equal to F, G2:G3, respectively. If so, G is
capable of giving the tribimaximal mixing. If not,G can be
ruled out. Such an identification requires f to have a finite
order n � 3, and g2, g3 to have order 2, and be given by the
formula (2).
Since the proof relies only on characters and eigen-

values, which are the same for all equivalent representa-
tions, we do not have to worry about which equivalent
representation we choose.
We need not consider those f with n ¼ 3 because

they would never give us anything new. If we can find
g2;3 that are equal to G2;3, then G must contain S4 as a

subgroup, so S4 remains the only minimal horizontal group
compatible with tribimaximal mixing without tuning. If
not, then G can never give rise to tribimaximal mixing, so
it is ruled out.

C. S. LAM PHYSICAL REVIEW D 78, 073015 (2008)

073015-4



For n > 3, we rely on the following strategy to rule out
these groups G. It is shown below how the class structure
and character table can be used to determine the eigen-
values of f ¼ F. This tells us what the diagonal forms of F
are. If g2;3 can be found to be equal to G2;3 in this repre-

sentation of diagonal F, then the group generated by
fF;G2; G3g must be a subgroup of G. However, we shall
show that in each case when n > 3, the element FG2 and/or
the element FG3 has an order larger than the order of the
group G; hence this group cannot be a subgroup of these
groups G, and there can be no g2;3 that can be identified

with G2;3. This is how these groups G are ruled out.

1. A5

The character table from [16] is given in Table I, where

b5þ ¼ ð�1þ ffiffiffi
5

p Þ=2 and b5� ¼ ð�1� ffiffiffi
5

p Þ=2. The first
row of the table names the five conjugacy classes; the
second row gives the permutation structure of each class
in cycle notations of S5. For example, 123 consists of two
1-cycles and one 3-cycle. The third row tells us the order of
the elements, for example, class C4 consists of elements of
order 5 and their fourth powers, and C5 consists of the
second and third powers of elements of order 5. E is the
identity element. The next five rows are the characters
of the irreducible representations of each class, with the
boldface numerals in the first column giving the dimen-
sion of the representation. The last two rows will be ex-
plained later.

In principle, F can be taken to be any of the 60 elements
of the group, but to get anything other than S4, we merely
have to concentrate on those elements with order n > 3.
This leaves elements in class C4 or C5, both of order n ¼ 5.
To determine the eigenvalues in each class, we list in the
last two rows of the table what class the square and the
cube of every Ci belong to. Once this is known, the eigen-
values of every element F can be deduced from TrðFÞ,
TrðF2Þ, and TrðF3Þ, namely, from the character table.

Let us illustrate how the last two rows are obtained. For
example, class C4 consists of elements of the type C5 and
C4
5; hence the square of any element f 2 C4 is of the form

C2
5 and C

3
5, so f

2 2 C5. Similarly, if f 2 C5, then f2 2 C4.

We will now proceed to determine the eigenvalues of F
from the characters.
Let !n ¼ expð2�i=nÞ. Then it is well known that

Xn�1

i¼0

!i
n ¼ 0: (7)

Using that for n ¼ 5, it will now be shown that b5þ ¼
!5 þ!4

5, and b5� ¼ !2
5 þ!3

5. To start with, let x ¼ !5 þ
!4

5 and y ¼ !2
5 þ!3

5. Then (7) tells us that xþ y ¼ �1.
Now x2 ¼ yþ 2 ¼ �xþ 1 and y2 ¼ xþ 2 ¼ �yþ 1.
Thus both x and y satisfy the quadratic equation z2 þ z ¼
1, whose two solutions are z ¼ ð�1� ffiffiffi

5
p Þ=2 ¼ b5�, so

one must be x and the other must be y. To determine which
is which, note that!5 is in the first quadrant of the complex
plane and !4

5 is in the fourth quadrant, so x must have a

positive real part. Thus x ¼ b5þ and y ¼ b5�.
Knowing that, it is now easy to verify that if F 2 C4,

then its eigenvalues in the 3 representation are 1, !2
5, !

3
5.

These are also the eigenvalues of F in the 30 representation
if F 2 C5. Similarly, the eigenvalues for any F 2 C5 in the
3 representation and any F 2 C4 in the 30 representation
are 1, !5, !

4
5.

Given three distinct eigenvalues, 3! ¼ 6 diagonal F’s
can be produced, depending on where the eigenvalues are
put. In order to show that h ¼ FG2 or h ¼ FG3 has an
order larger than 60, the order of A5, we compute its three
eigenvalues �1, �2, �3 of h numerically. Let us assume
j�ij ¼ 1; otherwise h cannot have a finite order. In that
case, �i ¼ expð2�i�iÞ, and the numerical value for each �i
is approximated by a rational number ki=mi. Then h would
have an order larger than 60 if mi > 60, and that turns out
to be true in every case.

2. �ð168Þ
This group is studied in great detail in [19], but for our

present purpose, it is sufficient just to use the character
table taken from [16], which is shown in Table II below.
This table is listed in the same way as the table for A5,

with b7� ¼ ð�1� i
ffiffiffi
7

p Þ=2. From this table we see that
candidates for F with n > 3 should come from classes

TABLE I. Character table for A5.

Classes C1 C2 C3 C4 C5
Permutation type 15 123 122 5 5

Element type E ðC3; C
2
3Þ C2 ðC5; C

4
5Þ ðC2

5; C
3
5Þ

1 1 1 1 1 1

3 3 0 �1 �b5� �b5þ
30 3 0 �1 �b5þ �b5�
4 4 1 0 �1 �1
5 5 �1 1 0 0

C2 C1 C2 C1 C5 C4
C3 C1 C1 C3 C4 C5
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C3, C5, or C6. Therefore we need to figure out the eigen-
values of elements in these classes.

For C3, since the order of its elements is n ¼ 4, the three
eigenvalues of F have to be chosen from the four values
�1,�i. Both the 3 and 3� characters of C3 are 1, and the C2
characters are�1. Thus if F 2 C3, then TrðFÞ ¼ TrðF3Þ ¼
1 and TrðF2Þ ¼ �1, so the eigenvalues are 1, þi, �i.

The character of C5 is b7þ in 3 and b7� in 3�. It is the
reverse for C6. Let us now prove that b7þ ¼ !7 þ!2

7 þ
!4

7 and b7� ¼ !3
7 þ!5

7 þ!6
7 ¼ b�7þ. The proof is similar

to the case of b5�. Letting x ¼ !7 þ!2
7 þ!4

7 and y ¼
!3

7 þ!5
7 þ!6

7, it follows that both x and y satisfy the

quadratic equation z2 þ zþ 2 ¼ 0, whose solutions are
b7�. Moreover, x should be identified with b7þ because
their imaginary parts are both positive.

With this relation we can now determine the eigenvalues
of F in C5 and C6, both for 3 and 3�. For C5 and 3 or
C6 and 3�, TrðFÞ ¼ TrðF2Þ ¼ b7þ ¼ !7 þ!2

7 þ!4
7 and

TrðF3Þ ¼ b7� ¼ !3
7 þ!5

7 þ!6
7. Hence the eigenvalues of

F are !7, !
2
7, !

4
7. Similarly, for F 2 C6 and 3 or F 2 C5

and 3�, the eigenvalues are !3
7, !

5
7, !

6
7. For each set of

eigenvalues, 3! ¼ 6 diagonal matrices F can be produced.

As in the case of A5, h ¼ FG2 or h ¼ FG3 has an order
larger than 168 in every case, thereby ruling out �ð168Þ.

3. �ð216Þ
The character table taken from [16] is shown in

Table III, where ! ¼ !3. To have n > 3, F must come
from C4, C5, or C6. From the 3-representation row of the
character table, we find that if F 2 C4, then TrðFÞ ¼
TrðF3Þ ¼ �1 and TrðF2Þ ¼ 3. The eigenvalues of F are
then 1, �1, �1. Since two of the three eigenvalues are
identical, we must reject this case. If F 2 C5 or C6, then
TrðFÞ ¼ TrðF2Þ ¼ 0 and TrðF3Þ ¼ 3. The eigenvalues are
then 1, !, !2. In spite of having order n ¼ 6 for elements
in C5, their 3DIR is identical to an F with n ¼ 3, whose
answer is already known. Hence �ð216Þ cannot produce
anything new.

F. General F

Wewill now relax the condition detðFÞ ¼ 1. Since Fn ¼
1 for some n, � :¼ detðFÞ is an nth root of unity, and the

TABLE III. Character table for �ð216Þ.
Classes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Permutation type 19 1332 1332 142 126 126 124 33 33 33

Element type E C3 C2
3 ðC4; C

3
4Þ C6 C5

6 C2 ðC0
3; C

02
3 Þ C00

3 C002
3

1 1 1 1 1 1 1 1 1 1 1

10 1 ! !2 1 ! !2 1 1 ! !2

10� 1 !2 ! 1 !2 ! 1 1 !2 !
2 2 �1 �1 0 1 1 �2 2 �1 �1
20 2 �! �!2 0 ! !2 �2 2 �! �!2

20� 2 �!2 �! 0 !2 ! �2 2 �!2 �!
3 3 0 0 �1 0 0 3 3 0 0

8 8 2 2 0 0 0 0 �1 �1 �1
80 8 2! 2!2 0 0 0 0 �1 �! �!2

80� 8 2!2 2! 0 0 0 0 �1 �!2 �!
C2 C1 C3 C2 C7 C2 C3 C1 C8 C10 C9
C3 C1 C1 C1 C4 C7 C7 C7 C1 C1 C1

TABLE II. Character table for �ð168Þ.
Classes C1 C2 C3 C4 C5 C6
Permutation type 17 1322 124 132 7 7

Element type E C2 ðC4; C
3
4Þ ðC3; C

2
3Þ ðC7; C

2
7; C

4
7Þ ðC3

7; C
5
7; C

6
7Þ

1 1 1 1 1 1 1

3 3 �1 1 0 b7þ b7�
3� 3 �1 1 0 b7� b7þ
6 6 2 0 0 �1 �1
7 7 �1 �1 1 0 0

8 8 0 0 �1 1 1

C2 C1 C1 C2 C4 C5 C6
C3 C1 C2 C3 C1 C6 C5
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3� 3 unitary matrix F can be written F ¼ �1=3F0, where
detðF0Þ ¼ 1.

If G ¼ fF;G2; G3g forms a finite group, then its presen-
tation [22,23] is defined by a number of relations
RaðF;G2; G3Þ ¼ 1, where Ra are monomials of F, G2,
and G3. Three of these relations are R1 ¼ Fn, R2 ¼ G2

2,

and R3 ¼ G2
3, but there must be others relating F, G2, and

G3. If F appears k times in Ra, then by taking the deter-
minant of the relation on both sides, we see that �k ¼ 1.

Every group element gi of G can be written as a mono-
mial of F, G2, G3: gi ¼ giðF;G2:G3Þ. This monomial is
not unique because we can always insert a number of Ra

in it. Nevertheless, if g1g2 ¼ g3, the sum of powers of F
appearing in g1 and g2 must be equal to the power of F
appearing in g3, modulom, wherem is the smallest integer
such that �m ¼ 1. This conclusion can be reached by
taking the determinant on both sides of the equation.

Now consider the group G0 ¼ fF0; G2; G3g generated by
F0,G2, andG3. Since �

k ¼ 1, RaðF0; G2; G3Þ ¼ 1; hence a
relation of G is also a relation of G0. Moreover, the map-
ping gi ! g0i :¼ giðF0; G2; G3Þ is a homomorphism from
G to G0, preserving multiplication relations. The kernel of
the mapping is a subgroup Z of G, consisting of all
elements zðF;G2; G3Þ for which z0 :¼ zðF0; G2; G3Þ ¼ 1.
If the power of F in the monomial z is d, then it follows that
z ¼ �d1. In other words, Z ¼ f�d1g is isomorphic to a
subgroup of the cyclic group Zn.

Thus G is a central extension of G0, consisting of ele-
ments of the form zg0, with z 2 Z and g0 2 G0. More-

over, G0 is a finite subgroup of SUð3Þ. Since the only
group G0 that can naturally lead to the tribimaximal mix-
ing is a group containing S4, the same is true for G ¼
fF;G2; G3g, so the uniqueness of S4 is established even if
detðFÞ � 1.

IV. CONCLUSION

We have shown that the horizontal group for leptons is
uniquely S4, or any group containing it. To reach this con-
clusion, we have used the criterion that a horizontal group
should be obtained from the neutrino mixing matrix and
vice versa without parameter tuning. To implement this
criterion, a purely group-theoretical link between neutrino
mixing matrices and horizontal symmetry groups is estab-
lished. When this link is applied to the tribimaximal neu-
trino mixing matrix, S4 emerges as a possible horizontal
group. Other finite groups not containing S4 are all ruled
out by studying the finite subgroups of SUð2Þ and SUð3Þ.
Quark mixing and fermion masses are obtained from

S4-invariant dynamical models. They are model depen-
dent and their discussion will be postponed to a future
publication.
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