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In this work, we look for possible new physics effects on the electromagnetic charge and anapole form

factors, fQðq2Þ and fAðq2Þ, for a massless Dirac neutrino, when these quantities are calculated in the

context of an effective electroweak Yang-Mills theory, which induces the most general SULð2Þ-invariant
Lorentz tensor structure of nonrenormalizable type for the WW� vertex. It is found that in this context,

besides the standard model contribution, the additional contribution to fQðq2Þ and fAðq2Þ (fOW

Q ðq2Þ and
f
OW

A ðq2Þ, respectively) are gauge independent and finite functions of q2 after adopting a renormalization

scheme. These form factors, f
OW

Q ðq2Þ and f
OW

A ðq2Þ, get contribution at the one-loop level only from the

proper neutrino electromagnetic vertex. Besides, the relation feffQ ðq2Þ ¼ q2feffA ðq2Þ (feffQ ðq2Þ ¼ fSMQ ðq2Þ þ
f
OW

Q ðq2Þ, feffA ðq2Þ ¼ fSMA ðq2Þ þ f
OW

A ðq2Þ) is still fulfilled and hence the relation aeff� ¼ hr2�ieff=6 (aeff� ¼
aSM� þ a

OW
� , hr2�ieff ¼ hr2�iSM þ hr2�iOW ) is gotten, just as in the standard model (SM). Using the experi-

mental constraint on the anomalous WW� vertex, a value for the additional contribution to the charge

radius of jhr2�iOW j & 10�34 cm2 is obtained, which is 1 order of magnitude lower than the SM value.
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I. INTRODUCTION

Many authors have studied the neutrino charge radius
(NCR) [1–13]. In 1972, Bardeen, Gastmans, and Lautrup
[2] showed in the frame of the standard model (SM) and
using the unitary gauge that the NCR is infinite and there-
fore it is not a physical quantity. Later, in the same year,
S. Y. Lee [14] working in the unitary gauge considered the
�ll

0 scattering and defined the NCR including besides the
usual terms, diagrams in which the photon is replaced by a
neutral gauge boson Z. In this way, he obtained a finite,
although gauge dependent quantity [15]. One of the earliest
analyses of the neutrino charge radius, in the context of the
general one-loop electromagnetic form factor of a fermion
in electroweak theories, was carried out in 1977 by Lee and
Shrock [3]. These authors working in the context of the SM
and using the linear R� gauge showed explicitly that the

NCR is not only infinite, but also gauge dependent (see
Figs. 1 and 2). Lee and Shrock showed in their paper how a
full calculation, including not just charge-radius terms, but
also box diagrams (which could not be considered to be
corrections to the neutrino electromagnetic vertex) com-
bined together to yield a gauge independent total ampli-
tude. Hence, in order to look for a definition of a physical
neutrino charge radius one has to consider other diagrams
which contribute to the total amplitude of the physical
process �ll

0 ! �ll
0. The papers written by S. Y. Lee, and

by B.W. Lee and R. E. Shrock inspired many works in

which finite and gauge independent quantities, based on
the NCR, were introduced by considering the �ll

0 scatter-
ing [15–27]. Wewant to end this paragraph pointing out the
following. Even though it has been already shown that the
neutrino charge radius is an infinite and gauge dependent
quantity in the frame of the SM when just the proper
diagrams are taken into account, it is possible to define a
physical neutrino charge radius by considering the �ll

0
scattering, which becomes a finite and gauge independent
quantity, independent of the lepton l0 used to define it and
also which only gets contribution from the proper neutrino
electromagnetic vertex [18–20,22]. Discussions on the
experimental bounds on the NCR can be found, for ex-
ample, in Refs. [28–33].
On the other hand, it is well known that any fermion may

develop an anapole moment a [34]. In particular, the
neutrino, even massless, may have an anapole moment
a�. Measurements of the solar neutrino flux at Super-
Kamiokande established that at least one neutrino is not
massless [35]. Besides, from atmospheric and accelerator
neutrino oscillations, we know that there is a nonvanishing
mass difference [36]. From solar and reactor neutrino
oscillations, we know that there is a different nonvanishing
mass difference [37]. So, at least two neutrinos are not
massless. The neutrino anapole moment (NAM) has been
discussed in great detail in the literature [38–46]. Besides,
it has been shown that in the frame of the standard model
[47] it is satisfied the relation aSM� ¼ hr2�iSM=6 for a mass-
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less Dirac neutrino [40,45]. The relation between the
charge form factor and the anapole form factor for mass-
less active (left-handed) neutrinos is not model dependent.
In fact, it is a consequence of having an effective vertex for
the neutrino with the left-handed chirality projector.

In this work, we study possible new physics effects on
the NCR in a model independent approach by using the
effective Lagrangian technique [48,49], which is an appro-
priate scheme to study those processes that are suppressed
or forbidden in the SM. Motivated by the highly gauge
dependent behavior of the charge and the anapole form
factors, fQðq2Þ and fAðq2Þ, within the context of the SM,

we will focus on those effects that could be induced by a
Yang-Mills sector possessing a richer gauge structure than
that of the dimension-four theory. To this end, we will
consider an effective electroweak Yang-Mills sector that
includes SULð2Þ invariants of dimension higher than four.
As we will see below, there is only one dimension-six
SULð2Þ invariant that induces the WW� vertex and con-

tributes at the one-loop level to these form factors, f
OW

Q ðq2Þ
and fOW

A ðq2Þ, respectively. Hence, we can write feffQ ðq2Þ ¼
fSMQ ðq2Þ þ fOW

Q ðq2Þ and feffA ðq2Þ ¼ fSMA ðq2Þ þ fOW

A ðq2Þ,
where fSMQ ðq2Þ and fSMA ðq2Þ are the standard model form

factors. We will show that, as a consequence of the SULð2Þ
symmetry, the dimension-six WW� vertex gives a contri-
bution which leads to manifest gauge independent expres-

sions for the fOW

Q ðq2Þ and fOW

A ðq2Þ form factors. This result

arises, in part, due to the fact that the SULð2Þ �UYð1Þ
invariants of dimension higher than four are not affected by
the gauge-fixing procedure used in the dimension-four
theory. As a consequence, in the context of effective theo-
ries, fermionic form factors would be made of vertices that
are not affected by the gauge-fixing procedure, which
eventually would lead to gauge independent form factors
[50]. Even more, we will show that it is possible to express
these form factors as finite functions of q2 by renormaliz-
ing them in the sense of effective field theories [51].
These form factors get contribution at the one-loop level
only from the proper neutrino electromagnetic vertex.
Besides, for a massless neutrino and as a consequence of
having an effective vertex for the neutrino with the left-

handed chirality projector the relation fOW

Q ðq2Þ ¼
q2fOW

A ðq2Þ is fulfilled. Hence, feffQ ðq2Þ ¼ q2feffA ðq2Þ and

therefore we get the relation aeff�l
¼ hr2�l

ieff=6, as in the

standard model.
This paper is organized as follows. In Sec. II, the struc-

ture of the electromagnetic and anapole form factors of the
neutrino in the context of the SM is briefly discussed,
mainly to fix our notation. In Sec. III, the calculation of
the electromagnetic and anapole form factors of the neu-
trino in the context of an effective Yang-Mills electroweak
theory is presented. The gauge independence of these form
factors, as well as the possibility of introducing a renor-
malization scheme beyond the Dyson’s sense, will be

emphasized. Finally, in Sec. IV the conclusions are
presented.

II. THE ELECTROMAGNETIC STRUCTURE OF
THE ���� VERTEX IN THE SM

In this section, we will present a schematic discussion on
the main features of the charge and anapole form factors of
a massless Dirac neutrino within the context of the SM
[47]. We will introduce the notation and conventions that
will be used through the paper. For a massless left-handed
neutrino the matrix element of the electromagnetic current
can be expressed in terms of only one form factor Fðq2Þ as

M � ¼ ieFðq2Þ �u�ðp0Þ��ð1� �5Þu�ðpÞ: (1)

For a massless neutrino, this expression can easily be
rewritten as follows:

M� ¼ ie �u�ðp0Þf��f
SM
Q ðq2Þ � ���5½g��q2 � q�q��

� fSMA ðq2Þgu�ðpÞ; (2)

where [52] fSMQ ðq2Þ ¼ Fðq2Þ and fSMA ðq2Þ ¼ Fðq2Þ=q2 are
the charge and anapole form factors of the neutrino, re-
spectively. fSMQ ðq2Þ satisfies the physical requirement:

fSMQ ð0Þ ¼ 0: (3)

On the other hand, the NCR and the NAM are defined,
respectively, by

hr2�i ¼ 6
@fSMQ ðq2Þ

@q2

��������q2¼0
¼ 6

@Fðq2Þ
@q2

��������q2¼0
; (4)

and

a� ¼ fSMA ð0Þ ¼ Fðq2Þ
q2

��������q2¼0
¼ @Fðq2Þ

@q2

��������q2¼0
: (5)

That is,

aSM� ¼ hr2�iSM=6: (6)

III. ELECTROMAGNETIC STRUCTURE OFA
DIRAC MASSLESS NEUTRINO IN AN EFFECTIVE

YANG-MILLS THEORY

We now turn to calculating the one-loop contribution of
an anomalous (nonrenormalizable) WW� vertex to the
charge and anapole form factors of the SM Dirac neutrino.
Next, we will predict the corresponding charge radius by
adopting an appropriate renormalization scheme.

A. Themost general gauge structure of theWW� vertex

The gauge structure of the WW� vertex (and also of
WWZ) has been the subject of important attention in the
literature in diverse contexts. The one-loop radiative cor-
rections to the renormalizable vertex have been calculated
in the SM [53] and some of its extensions [54]. Its most
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general structure has been parametrized in a model inde-
pendent manner using the effective Lagrangian approach
[55–57] and used in countless phenomenological applica-
tions [58]. One effective electroweak Lagrangian can be
constructed by adding to the dimension-four Lagrangian
all the SULð2Þ �UYð1Þ invariants of dimension higher
than four, which may respect or no discrete transforma-
tions, such as P, T, and C or some combinations of them.
The effective Lagrangian can be written as

L eff ¼ LSM þ X
n¼5

XN
i¼1

�i

�n�4
Oi; (7)

where LSM represents the SM Lagrangian and Oi are
SUð2Þ �UYð1Þ invariants of dimension higher than four.
� represents the new physics scale and the �i are unknown
coefficients, which can be calculated once the fundamental
theory is known. The SULð2Þ �UYð1Þ structure of some of
the Oi operators depend on the mechanism responsible for
the electroweak symmetry breaking. If this breaking occurs
through the Higgs mechanism, the SULð2Þ �UYð1Þ sym-
metry is linearly realized through the Higgs doublet. If this
is not the case, the electroweak symmetry is realized non-
linearly through the introduction of the matrix field U ¼
expð�a�a=vÞ instead of the Higgs doublet. Here, the
�aðxÞ fields represent the pseudo Goldstone bosons and

v is the Fermi scale. In this case, the effective Lagrangian
parametrizes new physics that are the responsible for the
electroweak symmetry breaking [59]. In this paper, we will
focus on those type of effective interactions that are inde-
pendent of the mechanism responsible for the electroweak
symmetry breaking. As we will see below, this class of
invariants induce the nonrenormalizable structure of the
WW� vertex, which is dictated exclusively by the SULð2Þ
group.
From the known particles, the W gauge boson, whose

properties would exhaustively be studied at the next gen-
eration of linear colliders, is the one which possesses the
richer collection of electromagnetic form factors, as it is
charged and has the highest spin within the category of
renormalizable theories. To our best knowledge, Gaemers
and Gounaris [55] derived initially 9 form factors for the
WW� vertex, but further on a careful analysis carried out
by Hagiwara-Peccei-Zeppenfeld-Hikasa [56] showed that
only 7 of these quantities are independent indeed.
Subsequent studies have confirmed these results [60].
These form factors define the charge, the magnetic and
electric dipole moments, the magnetic and electric quad-
rupole moments, and the CP-even and CP-odd anapole
moments of this particle. The WW� vertex is given by the
following Lagrangian:

LWW� ¼ ie½ðW�
��W

þ� �Wþ
��W

��ÞA� þ F��W
��Wþ� þ 2�	�F��W

��Wþ� þ ~	�
~F��W

��Wþ� þ ��

m2
W

W�
��W

þ�
� F��

þ
~��

m2
W

W�
��W

þ�
� ~F�� � i~a�W

m2
W

ðWþ
��W

�� þW�
��W

þ�Þ@
F
� � ia�W
m2

W

ð ~Wþ
��W

�� þ ~W�
��W

þ�Þ@
F
��; (8)

where F�� ¼ @�A� � @�A�, ~F�� ¼ ð1=2Þ�����F
��, etc. While the CP-even ð�	�; ��Þ parameters define the magnetic

dipole and electric quadrupole moments, the CP-odd ones ð~	�; ~��Þ determine the electric dipole and magnetic quadrupole
moments of theW gauge boson [56]. On the other hand, a�W and ~a�W represent the CP-even and CP-odd anapole moments
of this particle. The only terms in the above equation which are explicitly invariant under the electromagnetic Ueð1Þ gauge
group are those associated with the form factors 	� and ~	�. However, the above interactions arise from a more fundamental
Lagrangian which is invariant under the electroweak SULð2Þ �UYð1Þ gauge group. In the linear realization of the group
[48,49], the electroweak effective Lagrangian that induces LWW� can be written in terms of SULð2Þ �UYð1Þ invariants
that comprise interactions of up to dimension eight as follows:

Leff ¼ � 1

4
Wa

��W
a�� þ �WB

�2
ð�yW���ÞB�� þ ~�WB

�2
ð�yW���Þ ~B�� þ �W

�2

�abc
3!

Wa
��W

b�
� Wc��

þ ~�W

�2

�abc
3!

Wa
��W

b�
� ~Wc�� þ �WDB

�4
ðið�yW��D

��Þ þ H:c:Þ@�B�� þ ~�WDB

�4
ðið�y ~W��D

��Þ þ H:c:Þ@�B��; (9)

where the dimension-four Yang-Mills term has been in-
cluded. Here, D� is the covariant derivative of the
SULð2Þ �UYð1Þ group and Wa

�� (W�� ¼ �aWa
��=2) and

B�� are the respective field tensors. In addition, � is the
Higgs doublet. The two dimension-eight operators were
introduced in order to generate the anapole moments of the
W boson. They are made of the SULð2Þ �UYð1Þ-invariant
piece ð�yW��D

��Þ [61] needed to generate theW current.
These operators, which have not been considered in the

literature, can be eliminated using the equations of motion,
as must be. As for the dimension-six invariants, their
properties have widely been studied in the literature in
diverse contexts [58].

B. The anapole moment of the neutrino

As already mentioned in Sec. II, a massless Dirac neu-
trino possess only two electromagnetic form factors, which
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are not independent. These form factors are the charge
fQðq2Þ, and the anapole fAðq2Þ, which satisfy the relation

fQðq2Þ ¼ q2fAðq2Þ. TheWW� vertex can contribute at the

one-loop level to these form factors through the
CP-conserving structures. However, in this work we will
focus on the contribution given by the CP-even �� com-

ponent of this vertex, which is governed exclusively by the
SULð2Þ gauge group. A comprehensive analysis for the off
shell vertex �ffV, with f an arbitrary fermion and V ¼ �,
Z, will be presented elsewhere [50]. There are several good
reasons to consider the contribution given by the

SULð2Þ-invariant OW ¼ ð�abc=3!ÞWa
��W

b�
� Wc�� to the

neutrino form factors. In first place is its pure Yang-Mills
nature, which leads to the most general structure for the
gauge WW� vertex. Therefore, this invariant constitutes a
good theoretical instrument to studying the gauge structure
of electromagnetic form factors of elementary particles.
Another important reason to use this operator is, as we will
see below, that it leads to a NCR and NAM that are gauge
independent in a manifest way. Also, due its nonrenorma-
lizable nature, OW is necessarily generated at one-loop or
higher orders in any renormalizable theory, which means
that it maybe sensitive to new physics effects.

Using the notation given in Fig. 3, the vertex function

ðie��=m
2
WÞ��
�ðk1; k2; k3Þ for the ie��

m2
W

W�
��W

þ�
� F�� inter-

action can be written as

��
�ðk1; k2; k3Þ ¼ ðk3�g�
 � k3�g�
Þðk�2 g�� � k2�
�
� Þ

� ðk�1�
� � k�1

�
�Þ; (10)

which, as it is evident, satisfies the following simple Ward

identities:

k�1 ��
�ðk1; k2; k3Þ ¼ 0; (11)

k�2��
�ðk1; k2; k3Þ ¼ 0; (12)

k
3��
�ðk1; k2; k3Þ ¼ 0: (13)

We now turn to calculating the contribution of the above
vertex to the NAM. Since the OW operator is not affected
by the gauge-fixing procedure of the dimension-four the-
ory, there are no contributions from ghost fields. Also,
there are not contributions from Goldstone bosons, as
OW does not depend on the mechanism responsible
for the electroweak symmetry breaking. Accordingly, OW

only can contribute through the proper diagram of Fig. 1(a)
and the self-energy diagrams given in Figs. 2(b) and 2(c).
The latter one being induced by OW through the quartic
WWZ� vertex. From all the involved vertices, only the
SM WW� one, which contributes through the diagram in
Fig. 2(b), depends on the gauge-fixing procedure.
However, we have verified that due to the above Ward
identities, this diagram gives a vanishing contribution.
Also, we have encountered that there is no contribution
from diagram in Fig. 2(c). So, the contribution to the NAM
arises only through the proper diagram given in Fig. 1(a),
whose vertices are all independent of the gauge-fixing
procedure. This means that the only gauge dependence of
the NAM could arise through the W propagator, which in
the R� gauge is given by

��� ¼ �i

k2 �m2
W

�
g�� � ð�� 1Þ k�k�

k2 � �m2
W

�
: (14)

FIG. 1. (a)–(f) Proper diagrams contributing to the neutrino charge radius in the standard model in the linear R� gauge at the lowest
order in �.
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However, it is clear that due to the Ward identities given
above, the longitudinal components of the W propagators
do not contribute to the proper diagram given in Fig. 1(a).
As a consequence, the amplitude for this diagram is man-
ifestly gauge independent. This amplitude is given by

M OW
� ¼ ig2��

2m2
W

Z dDk

ð2�ÞD

� PR�

k6 ����
�

½k2 �m2
l �½ðk� pÞ2 �m2

W�½ðk� p0Þ2 �m2
W�

;

(15)

where ml is the mass of the charge lepton to which is
associated the neutrino in consideration. Using the
Passarino-Veltman [62] covariant decomposition, a direct
calculation leads to the following expressions for the
charge and anapole form factors:

f
OW

Q ðq2Þ ¼ q2f
OW

A ðq2Þ; (16)

fOW

A ðq2Þ ¼ ���

8�m2
W

1

1� xl
½B0ð2Þ � xlB0ð1Þ�; (17)

where B0ð1Þ ¼ B0ð0; m2
l ; m

2
WÞ and B0ð2Þ ¼

B0ðq2; m2
W;m

2
WÞ are Passarino-Veltman two-point scalar

functions. In addition, the dimensionless variable xl ¼
m2

l =m
2
W was introduced. The above expression was ob-

tained after expressing a scalar C0 three-point function as
a combination of B0 functions [63]. From the above ex-

pressions, it is clear that the fOW

Q ð0Þ ¼ 0 condition is

fulfilled. It is also evident that, although gauge indepen-
dent, the anapole form factor is divergent. In the next
subsection, the possibility of renormalizing this quantity
within the context of effective field theories will be
explored.

FIG. 2. Reducible diagram contributing to the neutrino charge radius [(a)–(g): different �Z contributions] in the standard model in
the linear R� gauge.

FIG. 3. The trilinear WW� vertex.
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C. The neutrino charge radius

The anapole form factor can be expressed in terms of
elementary functions as follows:

f
OW

A ðq2Þ ¼ ���

8�m2
W

1

1� xl

�
�ð1� xlÞ þ 2� xl þ ð1� xlÞ

� log

�
�2

m2
W

�
� x2l

1� xl
logðxlÞ � gðxqÞ

�
; (18)

where � is the dimensional regularization scale and the
ultraviolet divergence is contained in

� ¼ 2

4�D
� �E þ logð4�Þ; (19)

with �E the Euler’s constant. In addition,

gðxqÞ ¼

8>>>>><
>>>>>:

2

ffiffiffiffiffiffiffiffiffi
4�xq
xq

r
tan�1ð

ffiffiffiffiffiffiffiffiffi
xq

4�xq

q
Þ; if xq < 4

ffiffiffiffiffiffiffiffiffi
xq�4

xq

r
½logð1þ

ffiffiffiffiffiffiffi
xq�4

xq

q
1�

ffiffiffiffiffiffiffi
xq�4

xq

q Þ � i��; if xq > 4;
(20)

where xq ¼ q2=m2
W . Following Refs. [49,51], the divergent

term in this amplitude can be absorbed by renormalizing
the coefficients of Leff since it already contains all the
invariants allowed by the SM symmetry. The invariant
needed to absorb the divergence is

�A

�2 ð �L��LÞ@�B��; (21)

where L is the usual lepton doublet and B�� is the gauge
tensor associated with the UYð1Þ group. In this way, the
divergence can be absorbed by the �A parameter of the
effective Lagrangian. Here, we want to point out the fol-
lowing. The divergency of Eq. (18) needs a counterterm in
the effective neutrino-photon vertex to be renormalized.
The invariant of Eq. (21) absorbs this divergence.
However, after renormalization, the contribution of the
counterterm is not zero, but a finite value. As a conse-
quence, the final result is, in fact, the sum of two finite
contributions: one explicit depending on the effective
WW� coupling, and a second one coming from the coun-
terterm proportional to �A. The result quoted in this paper

originates from the first contribution. Using the MS renor-
malization scheme with � ¼ �, the renormalized anapole
form factor can be written as follows:

fOW

A ðq2Þ ¼ ���

8�m2
W

fðxqÞ
1� xl

; (22)

where

fðxqÞ ¼ 2� xl þ ð1� xlÞ log
�
�2

m2
W

�
� x2l

1� xl
logðxlÞ

� gðxqÞ: (23)

The anapole moment is the on shell quantity a� ¼
fAðq2 ¼ 0Þ. In this limit, the loop function fðq2Þ takes
the way

fð0Þ ¼ ð1� xlÞ
�
2 log

�
�

mW

�
þ 1

�
� x2l

1� xl
logðxlÞ; (24)

� 2 log

�
�

mW

�
þ 1; (25)

which leads to the following expression for the additional
contribution in the frame of an effective theory to the
neutrino charge radius

hr2�iOW ¼ 3���

4�m2
W

�
2 log

�
�

mW

�
þ 1

�
; (26)

¼ 0:95� 10�34 cm2��

�
2 log

�
�

mW

�
þ 1

�
: (27)

We now turn to discussing our results. In order to make
predictions, we need to assume some value for the ��

parameter and the new physics scale �. We will use the
most recent experimental limit on �� obtained by the D0

Collaboration [64], namely, �0:29< �� < 0:30 for � ¼
2:0 TeV. More recently, this collaboration limited the tri-
linearWWZ vertex to�0:17< �Z < 0:21 at the 95% C.L.
and for the same value of� [65]. We will make predictions
assuming that j��j & 0:3 and � ¼ 2:0 TeV. Using these

values, we obtain the following additional contribution to
the neutrino charge radius:

jhr2�iOW j & 2� 10�34 cm2: (28)

It is interesting to compare our result with the theoretical
one obtained, within the frame of the SM and by using the
pinch technique [66], in Ref. [18]. In this reference, it was
derived that hr2�l

iSM ¼ 4:1; 2:4; 1:5� 10�33 cm2 for l ¼ e,

�, �, respectively. Hence we can conclude that our result is
about 1 order of magnitude lower than the results derived
in Ref. [18]. On the other hand, our result is of the same
order of magnitude as the new physics contribution derived
in the context of the minimal supersymmetric standard
model [67].
Finally, it is worthwhile to compare our result for the

additional contribution in the context of an effective theory
to the neutrino charge radius with some experimental
bounds existing in the literature. The upper bound
hr2�iexp < 7� 10�33 cm2 was derived from primordial nu-
cleosynthesis [28]. In Ref. [29], the bound hr2�iexp < 2�
10�33 cm2 for the charge radius of a right-handed neutrino
was derived using astrophysical information obtained from
observational data on the SN 1987A. The bound �2:74�
10�32 < hr2�iexp < 4:88� 10�33 cm2 was derived in
Ref. [30] from neutral-current neutrino reaction. In
Ref. [31], the upper limit hr2�i< 2� 10�32 cm2 was de-
rived from Kamiokande II and Chlorine solar experiments.
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From the above considerations, we can see that in general
terms our result for jhr2�iOW j is about 1 order of magnitude
lower than the best bounds derived so far.

IV. CONCLUSIONS

Our aim in this paper has been to present the calculation
of the additional contribution, in the frame of an effective
Yang-Mills theory, to the charge and the anapole form

factors, fOW

Q ðq2Þ and fOW

A ðq2Þ, for a massless Dirac neu-

trino. These form factors get contribution at the one-loop
level only from the proper neutrino electromagnetic vertex.
We showed that this vertex function is independent of the
gauge-fixing parameter and ultraviolet finite, as it can be
renormalized within the framework of the effective theory.

We also showed that the relation f
OW

Q ðq2Þ ¼ q2f
OW

A ðq2Þ is
fulfilled and hence we get the relation aOW

� ¼ hr2�iOW=6.
Therefore, aeff� ¼ hr2�ieff=6 as in the standard model. This
well-known relation between the charge form factor and
the anapole form factor for massless active (left-handed)
neutrinos does not depend on an specific model. This
relation is a consequence of having an effective vertex
for the neutrino with the left-handed chirality projector.

An interesting point, long discussed in the literature, is
the gauge independence and nondivergence of the neutrino
charge radius. In the SM, this issue is now clarified with a
definition of this quantity with all the required properties,
which is furthermore gauge independent and finite. In the
model discussed by the present paper, one should again

treat these points with care, particularly in the context of
effective theories. The question of gauge independence is
solved favorably because only the transverse part of the W
propagator appears. However, the divergency of Eq. (18)
needs a counterterm in the effective neutrino-photon vertex
to be renormalized. As it was stated in Sec. III C, the
invariant of Eq. (21) absorbs this divergence. However,
after renormalization, the contribution of the counterterm
is not zero, but a finite value. As a consequence, the final
result is the sum of two finite contributions: one explicit
depending on the effective WW� coupling and a second
one coming from the counterterm proportional to �A. The
result quoted in this work originates from the first
contribution.
Finally, we obtain hr2�iOW � 3

4 ð���=m
2
WÞ�

½2 logðð�2=M2
WÞ þ 1�. Using the recent D0 Collaboration

constraint on the �� parameter, we estimate the value

jhr2�iOW j & 2� 10�34 cm2, which is of the order of mag-
nitude that may be expected in theories beyond the SM, as
supersymmetry, and about 1 order of magnitude lower than
the current bounds.
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