PHYSICAL REVIEW D 78, 073006 (2008)

Electroweak corrections using effective field theory: Applications to the CERN LHC

Jui-yu Chiu, Randall Kelley, and Aneesh V. Manohar

Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
(Received 9 June 2008; published 9 October 2008)

Electroweak Sudakov logarithms at high energy, of the form (a/sin?@y)"log™s/M3,, are summed
using effective theory (EFT) methods. The exponentiation of Sudakov logarithms and factorization is
discussed in the EFT formalism. Radiative corrections are computed to scattering processes in the
standard model involving an arbitrary number of external particles. The computations include nonzero
particle masses such as the r-quark mass, electroweak mixing effects which lead to unequal W and Z
masses and a massless photon, and Higgs corrections proportional to the top-quark Yukawa coupling.
The structure of the radiative corrections, and which terms are summed by the EFT renormalization
group is discussed in detail. The omitted terms are smaller than 1%. We give numerical results for the
corrections to dijet production, dilepton production, ¢ production, and squark pair production. The purely
electroweak corrections are significant—about 15% at 1 TeV, increasing to 30% at 5 Te'V, and they change
both the scattering rate and angular distribution. The QCD corrections (which are well-known) are also
computed with the EFT. They are much larger—about a factor of 4 at 1 TeV, increasing to a factor of 30
at 5 TeV. Mass effects are also significant; the gg — tf rate is enhanced relative to the light-quark

production rate by 40%.
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I. INTRODUCTION

Radiative corrections to high-energy scattering pro-
cesses have two powers of a large logarithm for each order
in perturbation theory. These logarithms, referred to as
Sudakov logarithms, lead to a breakdown of fixed-order
perturbation theory, and have to be summed to all orders.
The Large Hadron Collider (LHC) has a center-of-mass
energy of /s = 14 TeV, and will be able to measure
collisions with a partonic center-of-mass energy of several
TeV, more than an order of magnitude larger than the
masses of the electroweak gauge bosons. Electroweak
Sudakov corrections are not small at LHC energies, since
alog®s/M3, ,/(4msin?0y) ~ 0.15 at \/s = 4 TeV. In this
paper, we will apply effective theory methods developed in
two previous publications [1,2] to processes relevant for
the LHC; in particular, we consider in detail dijet produc-
tion, dilepton pair production, 7 production, and squark
pair production. In Refs. [1,2], electroweak Sudakov cor-
rections to the matrix element of an external current were
found to be of order 10%. Electroweak corrections to LHC
cross-sections are about 4 times larger. Naively, one factor
of 2 arises because scattering processes lead to four-
particle operators, which have (approximately) twice the
radiative correction of the two-particle current operator.
The other factor of 2 arises in squaring the amplitude to
obtain the cross-section. Thus purely electroweak correc-
tions at the LHC are significant, and resummed contribu-
tions must be properly included to obtain a reliable
prediction for the cross-section. There are, of course,
QCD corrections which are even larger, and are also
included.
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There is an extensive literature on electroweak Sudakov
effects [3—18]. The computations use infrared evolution
equations [5], based on an analysis of the infrared structure
of the perturbation theory amplitude and a factorization
theorem for the Sudakov form factor [19]. These summa-
tions have been checked against one-loop [10-12] and two-
loop [13—17] computations.

The Sudakov logarithm log(s/Mj3, ;) can be thought of
as an infrared logarithm in the electroweak theory, since it
diverges as My, ; — 0. By using an effective field theory
(EFT), these infrared logarithms in the original theory can
be converted to ultraviolet logarithms in the effective
theory, and summed using standard renormalization group
techniques. The effective theory needed is soft-collinear
effective theory (SCET) [20-23], which has been used to
study high energy processes in QCD [24], and to perform
Sudakov resummations arising from radiative gluon
corrections.

This paper studies high energy electroweak corrections
to processes relevant for the LHC, such as dijet production,
dilepton pair production, ¢7 production, and squark pair
production, and expands on our previous works [1,2],
which will be referred to as CGKM1 and CGKM2, respec-
tively. In CGKM1 we showed how to compute logs/ M%V, 7
corrections to the Sudakov form factor for massless fermi-
ons using EFT methods. In CGKM2 the results were
generalized to massive fermions such as the top quark,
including radiative corrections due to Higgs exchange.
The corrections were computed without assuming that
the Higgs and electroweak gauge bosons were degenerate
in mass. The Higgs corrections when expanded to fixed
order agree with previous results of Melles [18]. The
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electroweak corrections to processes involving four exter-
nal particles are computed in this paper. We will show that
the results can be obtained by summing the Sudakov form-
factor results of CGKM2 over all pairs of external particles
with appropriate group theoretic factors. We also show
how the results can be generalized to processes involving
an arbitrary number of external particles.

There are different methods of counting the order of
radiative corrections for the case of Sudakov corrections
depending on whether one uses the amplitude or the loga-
rithm of the amplitude. We discuss this issue in detail in
Sec. III, where we also explain precisely which terms are
summed in our computation. Roughly speaking, we use
NLL running in QCD and LL running in the electroweak
sector. The neglected terms are numerically less than 1%.

The paper is organized as follows: the outline of the
calculation and notation is given in Sec. II. The general
structure of Sudakov double-logarithms, exponentiation,
and the log-counting rules we use are given in Sec. III.
We also discuss the numerical convergence of the pertur-
bation series. The SCET formalism we use for our calcu-
lation is described in Sec. 1V, including the formalism for
Wilson lines needed in multiparticle processes computed
using an analytic regulator [25,26]. The calculation of
quark scattering and production is first calculated in a toy
theory in Sec. V. Results are also given for massive quark
production and squark production. The toy theory illus-
trates the theoretical tools needed for the standard model
computation without the added complications of a chiral
gauge theory with three gauge groups and particles in
many different gauge representations. It also illustrates
how one can compute the radiative corrections for theories
with scalar particles, such as supersymmetric extensions of
the standard model. Some observations on the factorization
of amplitudes are made in Sec. VI. Radiative corrections in
the standard model are given in Sec. VII. There are a total
of 80 different amplitudes that are needed, which are
computed in this section. Detailed numerical results and
plots are given in Sec. VIII. Appendix A discusses the box
graphs needed for the high scale matching computation, as
well as the crossing matrix needed for the case of identical
particles. The parameter integrals we require in Sec. VII
are tabulated in Appendix B. The top quark computation in
CGKM2 was incorrect, and the corrected result is given in
Appendix C. The numerical values change by about 1%.

II. OUTLINE OF CALCULATION AND NOTATION

The Sudakov logarithms are summed by integrating the
renormalization group equations in SCET. The formalism
we use has been explained in detail in CGKM2. In this
section, we outline the computation of four-particle pro-
cesses; most of the results are well-known but will serve to
define the notation we use in the rest of the paper. As in
CGKM2, we first consider a toy gauge theory, a SU(2)
spontaneously broken gauge theory with coupling constant
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a, where all gauge bosons have a common mass M. This is
the theory used in many previous computations [2,6-9,17],
and allows us to compare with previous results. The results
will then be generalized to the realistic case of the standard
model. When extending the results of the toy theory to the
standard model in Sec. VII, Higgs exchange effects will be
included as in CGKM2.

We consider two-to-two scattering at center-of-mass
energies much larger than M,. We will generically use
Q > M, to denote the energetic scale, and work in the
regime where s, ¢, u are all of order Q, so that one has hard
scattering kinematics. Our results apply to high energy
scattering processes at fixed angles, such as jet production,
but not to processes such as diffractive scattering.

The scattering amplitude in the full theory arises from
processes such as gauge boson exchange, as shown in
Fig. 1(a). The exchanged particle has virtuality of order
Q2. At the scale u ~ Q, we make a transition to SCET,
which is an effective theory describing energetic particles
with virtualities parameterically smaller than Q2. The full
theory process is treated in SCET as scattering by a set of
local operators, as shown in the right-hand graph in Fig. 1,

Ay = Zci(ﬂ)<P4P2|@i(M)|Pl P3) (1

where O; are local SCET operators, and C;(u) are match-
ing coefficients chosen so that the right-hand side repro-
duces the full theory amplitude up to power corrections of
order M?/Q?%. Power corrections can be systematically
included by keeping higher dimension operators sup-
pressed by powers of Q2. In our computation, we work to
leading order in M?/Q?. The full and EFT have the same
infrared physics but different ultraviolet behavior, and so
we must introduce a set of matching coefficients, C;(u)
which correct for the different short distance properties of
the two theories. The matching coefficients C;(u) are
computed by comparing on-shell matrix elements in the
full and effective theories at a scale u ~ Q. At this scale,
infrared effects such as gauge boson and particle masses
can be neglected, and so C;(x) can be computed using the
unbroken gauge theory with massless particles.

() (b)

FIG. 1. The full-theory amplitude in (a) turns into scattering by
a local operator in the effective theory, as shown in (b).
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The coefficients C;(u) are evolved from u ~ Q down to
the scale u ~ M using the SCET anomalous dimensions.
The evolution equation for the matching coefficients in-
volves the (matrix) anomalous dimension, ;;, and is

1) = i (WC () @
o

The anomalous dimension depends on the ultraviolet be-
havior of SCET, and is independent of particle masses.
Like the matching at Q, it can be computed using the
unbroken theory with massless particles. In SCET, the
anomalous dimension matrix can depend on logQ?/u?,
so integrating Eq. (2) sums the Sudakov double logarithms.

Once the coefficients C;(w) have been evolved down to
a low scale of order M, we transition to a new effective
theory, which is also SCET, but with the massive gauge
bosons integrated out. In our toy example, this new theory
has no gauge interactions, since all the gauge bosons are
massive. In the standard model, the transition is from a
theory with SU(3) X SU(2) X U(1) gauge bosons which
we call SCETgyw to a new theory where the only gauge
interactions are due to gluons and photons which we call
SCET,,. Operators O; in SCETgy, are matched onto a set of
operators (b,- in SCET,. A single SU(3) X SU(2) X U(1)
invariant operator O; can break up into several operators
(bi which are SU(3) X U(1),, invariant, but need not have
full electroweak gauge invariance. The SCETgyw —
SCET, matching requires treating massive gauge bosons
in SCET, using the formalism developed in CGKMI,
CGKM2..

The operators in SCET,, are evolved down to a scale set
by the experimental observables of interest, and then used
to compute the desired observables. For example, if one is
interested in jet production, then the operators would be
scaled down to w of order the typical jet invariant mass.
The operators can then be used to compute jet observables.
This paper focuses on electroweak corrections, and we will
not discuss this final step of the computation, since it is
performed as discussed in earlier work [27]. In our numeri-
cal results, we will choose this low energy scale to be
30 GeV. The electroweak corrections are not very sensitive
to this scale, since the only effects below M, are electro-
magnetic. The QCD corrections are scale dependent; the
dependence in the SCET running cancels the w depen-
dence of the jet matrix elements to the order of the com-
putation. We have not analyzed this in detail since we
concentrate on electroweak effects in this paper. In
Sec. VIII, only Figs. 12 and 13 have significant w
dependence.

The bulk of the paper discusses the computation of the
anomalous dimensions in SCETgy and SCET,, and the
matching between SCETgw and SCET,, which require
SCET operators involving four-particles. We introduce
the notation necessary to deal with an arbitrary number
of particles. Most of the notation is standard to SCET, and
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we only discuss those features which are necessary for the
extension to r-particles.

The r energetic particles are described by SCET fields
&,,,,p, labeled by momentum p; and light-cone direction n;,
i=1,...,r. There are r light-cone directions #;, n,2 =0,
where n¥ = (1, n;), with n; a unit vector near the direction
of motion of particle i. We will also define r light-cone
directions 7i; by reversing the sign of space components of
n;, i.e. by applying parity to n;, it = (1, —n;). Note that
ii; - n; = 2. The momentum of any particle can be written
as

1
p;u ;u(}’_ll . p,-) + *ﬁ#(ni ' pi) + Pﬁ- 3)

ki
If n; is chosen to be exactly along the direction of p;, then
pff | = 0. The particles are energetic, with 72; - p; ~ Q. In
the case of only two energetic particles, one can work in
the Breit frame where the particles are back-to-back, with
iy = n, and 71, = ny, so that one only deals with two null
vectors n; and 7i;, conventionally called »n and 7.
Consider a radiative correction graph to the tree-level
process Fig. 1, such as the vertex correction shown in Fig. 2
in the full theory. The gauge boson exchanged between the
two fermion lines still has virtuality of order Q2, and so the
diagram behaves like the graph in Fig. 3, with the highly
virtual gauge boson shrunk to a point. As is well-known,
there are several different momentum regions which con-
tribute to the loop integral in Fig. 2. If the components of
the gauge boson loop momentum are of order Q, then the
gauge boson has virtuality of order Q2. This contribution is
not present in SCET, and is included in the one-loop
matching coefficients at the scale Q. The other regions,
which are included in SCET, are when the gauge boson is
collinear to particle 1 (n;-collinear gauge boson), to parti-
cle 2 (n,-collinear gauge bosons), or is ultrasoft. The SCET
theory thus contains n;-collinear gauge bosons for each
particle direction, i = 1, ..., r, with momenta scaling like
pi» denoted by A, , with labels, as well as ultrasoft gauge
bosons denoted by A, with no labels, which couple to all
the particles, analogous to the soft and ultrasoft fields
introduced in NRQCD [28]. We work in the regime where

FIG. 2. Vertex correction to the scattering amplitude in the full
theory.
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4 3

1 2

FIG. 3. Vertex correction in SCET.

the kinematic variables such as s, ¢ are of order Q?, and the
invariant masses of the final states are much smaller than
Q?. The SCET power counting parameter is A = M/Q.
The formalism is valid for observables that can be con-
structed out of variables in the effective theory, for which
the reduction to effective theory vertices such as in Fig. 3 is
valid. In particular, it is valid for jet observables and top
decay observables at the LHC.
Notation: We use the abbreviations

M2 2 2
Ly = log—, L, = logm—, Lo = logQ—2
M % M
) —t —u
L, = log—, L, = log—, L, = log—
2 t 2 2

s “4)
Ly = 10g; = log(—s) — log(—1),

t
Liju = log— = log(—1) — log(—u),
u

t
Ly = logu—2 = log(—u) + log(—1) — 2log(—s).
s

For scattering kinematics, s >0, t <0, and u < 0. All
logarithms arise in the form log(—x — i0") for x = s, t. u,
so that log(—s —i0") = logs — iar. Similarly, L, =
log(—s) — log(—1) = log(—s/t) — i, and L =
log(—1) — log(—s) = log(—1t/s) + im. This procedure
can be used to find the branch cut of logarithms with
negative argument which occur in the subsequent
formulas.

III. EXPONENTIATION AND LOG-COUNTING

The exponentiation properties of Sudakov logarithms,
and the relation between the renormalization group results
and those obtained by exponentiating fixed order compu-
tations was discussed in CGKM2. This section summarizes
the results we need for our standard model calculation.

The scattering amplitude A has an expansion of the
form'

"For multiparticle scattering, A is actually a matrix of ampli-
tudes, and matrix ordering is important. We discuss the simpler
case of the Sudakov form factor, where A is a number. This is
sufficient to study the exponentiating and log power-counting we
need. The matrix case is discussed in Sec. VI.
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1
al?>  alL @
A= | a’L* &’ o’ a’L a? (5)

a,3 |_6

where «a represents a gauge coupling constant (a, @, or
a,), M is an electroweak gauge boson mass (My or M)
and Q > M is of order the center of mass energy of the
scattering process, and L = logQ/M is the large logarithm.
Each entry in Eq. (4) has a numerical coefficient, and the
total amplitude is given by summing all the terms. The first
row is the tree-level result, the second row is the one-loop
contribution, etc. The a” contribution has logarithms up to
power L?".

The logarithm of the scattering amplitude has an expan-
sion of the form [29-31]

al? al o
a3 a2 oL a2
logA = ALt &L P2 &L &P (6)

atld

where the a” contribution now has logarithms only up to
power L""!, and the amplitude has been normalized so that
its tree-level value is unity. The nth row can be computing
using perturbation theory at n loops. There are far fewer
coefficients in Eq. (6) than Eq. (5), so the form Eq. (6) for
log A is highly nontrivial. Equation (6) is referred to as the
exponentiated form of the amplitude, since A is given by
exponentiating the right-hand side. The first column gives
the leading-log (LL) series, the second gives the next-to-
leading-log (NLL) series, etc.”

The EFT computation naturally gives the scattering
amplitude in exponentiated form. In general, there are
several possible gauge invariants that contribute to the
scattering amplitude, so that A is a matrix. The EFT
computation gives the proper matrix ordering to be used
for the exponentiated form of A. The difference between
different matrix orderings can be computed using the
Baker-Cambell-Hausdorff theorem. If X and Y are matri-
ces, then

Z — XY

e e

Z=X+Y+[X Y]+ %[x, X, Y] + é[Y, v, XJ]
b (7

where all the higher order terms are multiple commutators
of X and Y. If X and Y represent contribution to log A of
the form Eq. (6), then X and Y are of order a*rL"xr where

>The LL, NLL, etc. counting used here is different from that
used in fixed order calculations. The relation between the two is
explained in CGKM2, and after Eq. (11) in this section.
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myy = nyy + 1. Thus one could in principle generate
terms in log A of the form «"L™ with m>n + 1 by
reordering a matrix product using Eq. (7). This does not
occur, because, as discussed in Sec. VI, the leading
Sudakov series a"L"*! is proportional to the unit matrix,
and so drops out of the commutators in Eq. (7), so that the
form Eq. (6) is preserved independent of the matrix
ordering.

When L is large, fixed order perturbation theory breaks
down, and one needs to sum the logarithmically enhanced
higher order corrections. There are two interesting regimes
relevant for the standard model, in which resummation is
necessary. The first is the leading-log (LL) regime in which
aL is of order unity.®> This is the regime in TeV scale
scattering for strong interaction corrections, where a —
a;,. Using L ~ 1/a, the various terms in Egs. (5) are of
order

1
éla
1 1 2

A=|a a« 1 a a| (8)
€

Clearly the fixed order perturbation expansion breaks
down, and higher order terms grow with inverse powers
of a. To obtain a reliable value for the amplitude requires
summing all terms along and below the diagonal, i.e. all
terms of order unity or larger. The first superdiagonal gives
the order « correction, the second superdiagonal gives the
order o2 correction, etc.

The terms in the exponentiated form Eq. (6) are of order

l « \
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The expression for log A has already achieved a partial
summation of higher order terms. The largest terms are
order 1/a, and there are no terms with higher powers of
1/a. To obtain log A requires summing the first column
(the LL series) and the second column (the NLL series).
The NNLL series gives order a corrections, the N3LL
series gives the order a? corrections, and so on. While
the NLL series is suppressed by one power of « relative to
the LL series, it cannot be considered as a correction to the
scattering amplitude A, since we have to exponentiate
log A. If we write f, for the N"LL contribution to log A,
then

1
10gA=—f0+f1+af2+
o

1
so that f; and f, are corrections to log A. However,

A =exp|:$f0+f1+af2+...i|

= ol/afo X ofi X e2f2 X .. (11)

and expf; can make a large change in A. Only f, and
higher can be considered as corrections to A.

The counting discussed above is consistent with that
used in renormalization group improved perturbation the-

1
@ ory computations. In much of the literature, it is more
i 1 a o common to use a different counting, which we denote by
log A = % 1 a o o ©) the subscript FO. The LLgg terms are those in A .(not log A)
X of the form a"L?", the NLLg terms are those in A of the
@ form @”L?"~!, and in general, the N¥LLpg terms are those
) in A of the form a"L?"~*. In terms of fixed-order counting,
\ : / | Eq. (6) can be written as
aL2 ~ LLFO C(L -~ NLLFO o~ N2LLFO
CYZL3 ~ NLLFO a2L2 -~ N2LLFO a(2|_ -~ N3LLFO a2 -~ N4LLFO
logA = LY ~N2LLgy o’L> ~N3LLpy @’L> ~N*LLpy o’L~NLLpy o ~NSLLgg (12)

CY4 L5 -~ N3 LLFO

and terms in A obtained by exponentiating are given by
combining the powers of N.

Note that with this counting, terms of a given series grow
at higher order in perturbation theory, e.g. the N*LLp,

*Including loop factors of 4.

f

terms are «?L, o3L3, oL, ..., a"L?"73, which in the
leading-log regime are of order a, 1, 1/a, ..., 1/a"3,
and grow at higher orders. One can see this clearly from
Eq. (11)—f 4, is of order a*, and is small for k = 1, as are
all terms in the expansion of expa’f,.,;. However, the
perturbation expansion for A contains the prefactor

expfo/a, and the terms (f,/a)" in the expansion of this
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prefactor for n > k mutiply the small terms in the expan-
sion of expa*f;4 to produce terms which are larger than
unity, with a series of large contributions of alternating sign
(since f, is negative). The problem is that the tree-level
value A = 1 is not close to the true result for A; the leading
contribution expf,/a has an essential singularity at « = 0
in the perturbation expansion. The second term expf; also
is not small. Only after these two contributions are factored
out and properly exponentiated does one have a reliable
perturbation expansion. Summing all terms up to order
N*LLpo, does not give a reliable calculation, because
NK*ILLgo terms at order a”, r = k + 1 are larger than
unity. It is essential to properly exponentiate the f() and f
contributions to get a reliable expansion. Once this done,
the higher order contributions are a small correction to the
full amplitude A. The amplitude A can be very different
from the tree-level amplitude (a factor of 100 in our prob-
lem), and still be reliably computed in perturbation theory.

The second regime we consider is the leading-log-
squared (LL?) regime in which al? is of order unity.
This is the regime in TeV scale scattering for electroweak
corrections, with @ — a ,. Using L ~ 1/a@!/2, the various
terms in Eq. (5) are of order

1
1 a2 «
A — i a2 o 3?7 (13)

and in Eq. (6) are of order

1 a'?
al/? o 3?2 a2
logA=| a S S N R
a

The computation of A requires summing the first column,
the Sudakov double-logs of order a”"L?". The remaining
terms can be treated in a perturbative expansion. The
second column gives the correction of order a'/2, the third
column the order a correction, etc. The exponentiated
form log A can be computed to order unity from the al?
term. The first correction, of order !/, is from the «2L3
and al terms, the order & correction is from the a’L*,
a?L?, and « terms, etc. We will refer to these as the LL2
(leading-log-squared), NLL?, NNLL?, etc. contributions to
log A.

The scattering amplitude in the EFT computation has the
form [1,2]

2
A= exp[Do(a(M)) + Dy (a(M)) log%]

X exp{— /5 %I:A(a(,u)) loglLQL—i + B(a(M)):I}

X expC(a(Q)) (15)
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Here expC(a(Q)) is the high scale matching coefficient at
07, y(n) = A(a(uw)) log(u?/Q*) + B(a(u)) is the SCET
anomalous dimension between Q and M, expD(a(M)),
D(a(M)) = Dy(a(M)) + D,(a(M))log Q*/M? is the
low scale matching coefficient at M, « the gauge coupling
constant (a, &, or «,), M is the electroweak gauge boson
mass (My, or M,) and Q > M is of order the center of
mass energy of the scattering process. A is called the cusp
anomalous dimension, and is linear in log Q to all orders in
perturbation theory [32,33]. The low-scale matching exp D
has a single-log term D to all orders in perturbation theory
[1,2]. The LL series is given by the one-loop cusp anoma-
lous dimension, the NLL series by the two-loop cusp
anomalous dimension, the one-loop value of B and the
one-loop value of D;, the NNLL series by the three-loop
cusp, two-loop B and D, and one-loop D, and C, and the
N"LL series by the n + 1 loop cusp, the n-loop B and Dy,
and the n — 1 loop Dy and C. Equation (15) for the
standard model, which we study in this paper, sums the
QCD and electroweak corrections, including cross terms
such as aya@;,, a,g?, or a;,g? which depend on mixed
products of the Yukawa, strong and electroweak coupling
constants.

A. Absence of some terms in the Sudakov expansion

In Eq. (6), we wrote the generic expansion for log A. In
the standard model, one gets the form Eq. (5) where a” can
be a product of the gauge or Yukawa couplings. It is
interesting to note that not all possible terms are present.
The leading Sudakov series in log A of the form a”L"*! is
given by integrating the one-loop cusp anomalous dimen-
sion with the leading order B-function. The one-loop cusp
anomalous dimension I'(w) is trivially a sum over the
different gauge groups, since there can be no mixed terms
like a o, at one-loop, and because there is no Yukawa
contribution to the cusp anomalous dimension (see
CGKM1). The one-loop gauge SB-function also does not
mix different gauge couplings. Thus the leading Sudakov
series is a sum of independent terms for each gauge group,
with no mixed contributions, i.e. there are terms of the
form a”L?", aL*" and aL*", but no terms of the form
ala’, L2 for n, m # 0.

The first contribution to the cusp anomalous dimension
which involves couplings from two-different gauge groups,
and so cannot be written as the sum of contributions over
individual groups, arises at four-loop order.* The two-loop
B-function also has contributions from two different gauge
couplings. Thus at LL, the running strong coupling «, only
gets modified by terms of the form a,(a,L)", but at NLL,
one can have terms of the form a(a;,aL)(a,l)" X
(ay,L)™. The (a;,al) factor comes from one insertion

4i.e., F(a’s, aq, a’z) = Fs(as‘) + F](C(]) + F2(a2) up to three-
loop order. We would like to thank Z. Bern and L. Dixon for
helpful correspondence on this point.
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of the two-loop B-function in the renormalization group
integration, and the other factors come from using the
leading-order B-functions for the remaining integration
of a; and a 5.

Using the above, and noting that the matching condi-
tions and non-cusp anomalous dimensions have all allowed
terms, one finds that one can get all possible terms in
Eq. (6) for the N?LL and higher series (third column and
beyond). For the LL series (first column), all terms have a
single gauge coupling. For the NLL (second column), all
terms can occur with the exception of the a*>L? contribu-
tion, which can only have a single gauge coupling, so that
terms such as a,a,L? are absent.

B. Terms included in the computation

In the standard model, the radiative corrections involve
the strong coupling «; and the electroweak couplings a1 ,.
For log-counting purposes, we assume that the strong
coupling is in the leading-log regime, and the electroweak
couplings are in the leading-log-squared regime. Let a be
the log-counting parameter. Then L~ 1/a, a;, ~ a?,
a, ~ a. The top-quark Yukawa coupling is also treated
as the same order as the electroweak couplings, g> ~
@, ~ a*. The terms in log A are given in Eq. (6), but
now each a can be either a strong coupling « of order a or
an electroweak coupling @, of order a?. The order of
terms with all couplings equal to «; are given by Eq. (9)
with a — a, those with one coupling a;, and the rest o
are given by Eq. (9) with a X (o — a), etc. The leading
terms of order 1/a in log A are given by summing the
a"L"*! terms, i.e. the leading-log QCD series. The order 1
terms are given by summing the a”L" and a7 !L"*!
terms, i.e. the NLL QCD series and the LL series with one
power of the electroweak coupling. The order a corrections
are given by summing the a?L""!, aj,a? 'L" and
af,at 2" terms, etc. In the exponentiated form
Eq. (6), one only needs to include electroweak corrections
at low orders, so that summing terms to order unity only
require one-loop electroweak computations, to order a
only requires two-loop electroweak corrections, etc. In
contrast, the unexponentiated form Eq. (5) of fixed-order
computations requires electroweak corrections of arbi-
trarily high order to sum all terms of order unity or larger.

In the numerical results of Sec. VIII, we include the one-
loop QCD, electroweak and Higgs corrections, as well as
the two-loop QCD anomalous dimension [34] and two-
loop running of the gauge coupling constants. This in-
cludes the entire one-loop correction to the scattering
amplitude, as well as all higher order corrections which
are formally of order 1/a or a°. The terms we neglect are
order a or higher in the log counting, and at least second
order in the gauge couplings constants « ; ,. The error due
to the neglected terms is numerically less than 1% in the
rate.

PHYSICAL REVIEW D 78, 073006 (2008)

In terms of the commonly used fixed-order counting, we
have included all LLgg and NLLgq terms for both the QCD
and electroweak corrections. In addition we have included
all NNLLgo of the form «?L*'"2 and af 'a;,L?"72.
Using the counting that a; ~ a and @, ~ a?, and count-
ing a"L*>" "% as N¥LLpy, we have summed all terms of
order N3LLpo. In terms of the exponentiated form
Eq. (6), which is the form given by SCET and used for
the numerics, we have included

v v v

J notai,l? onlyall X
J ot aj, L’ X
J ot aj,Ll?

logA = XX e

where ./ means all terms have been included, X means no
terms have been included. The largest terms omitted are
at,l?, ajl?, and aja,L, and are estimated to be
(a/(msin?6y)*L> ~ 0.006, (a,/m)*L>~0.003, and
a,a/(m*sin’fy, )L ~ 0.003 using L ~ log(4 TeV)?/M% ~
7. This gives a sub-1% error. The a,L* term arises from
the two-loop electroweak cusp anomalous dimension, and
the a’L? term from the three-loop QCD cusp anomalous
dimension. These are known, and could be easily included
in the computation. We have checked that these change the
rates by less than 1%.

IV. SCET FORMALISM AND WILSON LINES

In SCET, n; collinear gauge bosons can interact with
particle 1, or with the other particles in the process. The
coupling of n;-collinear gauge bosons to particle 1 is
included explicitly in the SCET Lagrangian. The
particle-gauge interactions are identical to those in the
full theory, and there is no simplification on making the
transition to SCET. However, if an n;-collinear gauge
boson interacts with a particle other than 1 (pick particle
2 for definiteness), then particle 2 becomes off-shell by an
amount of order Q, and the intermediate particle 2 propa-
gators can integrated out, giving a Wilson line interaction
in SCET. The form of these operators was derived in
Ref. [22]. We will use the definitions

I
Wi = [exp(—g;nz -Aﬁ,‘],qTA>:| (17)

which is the expression given in Ref. [22] with the replace-
ment n — n,, ii — n,. The gauge generators T4 are in the
representation i, of particle 2. The subscript n; is a
reminder that the Wilson line contains n;-collinear gauge
fields, and the superscript (n,) is a reminder that the
integration path is directed along n,, and that the gauge
generators are in the representation of particle 2.
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W,(ffZ) is a d, X d, matrix where d, is the dimension of
N,, and transforms under n,-collinear gauge transforma-
tions as

(W], — ULIW2],, (18)

where U® is the gauge transformation matrix in the )R,

representation. One can similarly define W,(f,.lj ) for any pair
ij of particles, with i # j. It is convenient to treat all gauge
indices as incoming, i.e. an outgoing fermion line in the
gauge representation N will be treated as an incoming
fermion in the representation N.

A generic gauge invariant local operator in the full
theory can be written as the gauge invariant product of
fields,

0 =3 c(ia; })l_[Xl 4,(0), (19)
{a;}

where ;.. is ¥; ,, for incoming particles, x;,, = W for
outgoing particles, and c is a Clebsch-Gordan coefﬁc1ent.
x; transforms as 9, for incoming particles, and as ; for
outgoing particles. The indices a; are gauge indices, and
c({a;}) = clay, ..., a,) is the Clebsch-Gordan coefficient
for combining the product of fields into a gauge singlet. For
ny-collinear gauge couplings, the field y; in Eq. (19) can
be replaced by the SCET field ¢, ,,, and the other fields
are replaced by Wilson lines. Collinear gauge invariance
implies that the operator Eq. (19) in the effective theory is

0 =Y cla)[TWi" &, s (20)
{a;} i

which is gauge invariant under collinear gauge transforma-
tions. The sum of all graphs in the full theory with
ni-collinear gauge emission off any of the particles
1,..., r in the full theory operator Eq. (19) is equivalent
to n;-collinear emission from &, , , or from the Wilson
line Wy! [22] in the operator Eq. (20).

The structure Eq. (20) is nontrivial, and requires com-
bining terms with gluon emission from all the particles,
and using the fact that the operator is a gauge singlet. The
Feynman rules for multiple gauge emission of n;-collinear
gluons from particle i gives factors of the form

PHYSICAL REVIEW D 78, 073006 (2008)
€ n;
k- n; ’

21

The n;-collinear gauge field has momentum k and polar-
ization € in the n;-direction at leading order in SCET
power counting, so the above expression can be replaced
by

El
§|

1

np €y €0
— 22
-n; k- k- (22)

S|
Sl

using the leading (first) term in Eq. (3) for the decompo-
sition of both k and e. This expression is independent of n;.
This means that one can change the direction n;, provided
n; - ny; remains leading order in the power counting, i.e. n;
does not become almost parallel to n;. One can thus move
all the n; labels so that they all point in a common direc-
tion, which can conveniently be chosen to be 7. This
choice only makes reference to particle 1, and has no
information about the directions of the other particles.
This is the basis for soft-collinear factorization.

In this paper, we will use the analytic regulator [25,26]
used in CGKM1, CGKM2. With analytic regularization,
Eq. (22) becomes

€ n; ny - n;

(k ’ ni)1+5 - (i’ll

6'7_11
ni)l+5 (k'ﬁ])]+5

_ 1 € I’_ll
) (et (&)

and the n; dependence no longer cancels. Thus the identi-
ties which allowed one to combine all the n;-collinear
emissions into a single Wilson line in the 77; direction no
longer hold. This is a big drawback of the analytic regula-
tor. It is possible to use other regulators which do not have
this problem [35], but then there are other subtleties which
must be addressed, related to zero-bin subtractions [36],
which are necessary for soft-collinear factorization [37-
40]. With the analytic regulator, n;-colllinear interactions
cannot be encoded in a single Wilson line in the 7i; direc-
tion; instead one needs to include Wilson lines along the
directions of all the other particles. In the scattering case,
this means that n;-collinear interactions at one loop are
given graphically by Fig. 4. This is equivalent to evaluating
the collinear graphs in the full theory using the method of
regions with an analytic regulator. We have followed this

FIG. 4. Graphical representation of n;-collinear interactions in SCET.
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procedure because it allows for a direct comparison of our
intermediate results with previous work.

V. SUDAKOV CORRECTIONS TO SCATTERING
PROCESSES

In this section we use the toy model to calculate the
amplitudes for gqq — qq, 9@ — q4G, qq@ — tf, and gg —
Gq°, where g denotes a colored scalar particle such as a
squark. We will call the gauge symmetry color and the
particles quarks. The corresponding results in the standard
model are given in Sec. VIIL.

An interesting result is that the SCET S-matrix elements
are given by summing the results for the two-particle case,
the on-shell Sudakov form-factor given in CGKMI,
CGKM2, over all pairs of particles. We first compute the
qq — qg amplitude explicitly by summing the diagrams,
and show how the answer can be written as a sum over two-
particle S-matrix elements. The general proof is given in
Sec. VE.

In this section, as in CGKM2 we use the decomposition

C=CO + %Cm . (24)

of coefficients and anomalous dimensions into their tree-
level and one-loop values. In the next section on the
standard model, we will explicitly include the «/(4)
factor in the definition of CU), since there are several
different gauge coupling constants.

A. Light quark production

We start with light quark pair-production, g — ¢'g’.
The kinematics for gg — ¢'q’ is illustrated schematically
in Fig. 5 where the incoming and outgoing particles have
momenta p;, p, and p3, py, respectively, and we work in
the limit s, ¢, u > M? > m?. The external particles are all
on-shell (p? = m?). The Mandelstam variables are s =
(p1+ p2)*, t=(ps — p1)* and u = (p; — p;)*. We as-
sume g and ¢’ are different flavors, so that only the
s-channel annihilation graphs contribute. Identical flavors
are discussed in Appendix A.

At the scale u ~ Q the full theory is matched onto
SCET, and the full theory amplitude at leading order in
the power counting is expressed as a sum of local operator
matrix elements, as in Eq. (1). The gauge-invariant opera-

P4 P3

74
X

Pi P2

FIG. 5. Pair production
Time runs vertically.

q(p1) + a@(p2) = q'(ps) + 7' (p3).
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tors in the effective theory are

@lfuLe = [§4W4]l”7#P§[W§53][52W2]I‘IYMP§[W1T§I]
Oy = [EWa Iy PUIWIENEWLTy, PUW 6] (25)

There are only two operators which contribute because the
fermions are in the fundamental representation of the
gauge group. For other representations, there can be
more invariants which contribute, e.g., for isospin one
fermions, there are three invariant amplitudes in the I =
0, 1, 2 channels.

At tree-level,

d7a
$ (26)
0 _ ~0 _ ~0 _ ~0 _

G = Cour = Copp = Copp =0

0 _ 0 _ A0 _ ~0
Cizr = Cizr = Cirr = Cirr =

from the graph in Fig. 1.

The one-loop corrections in the full theory are given by
the diagrams in Fig. 6, as well as vacuum polarization and
wave function graphs. The one-loop corrections in the
effective theory are given by computing radiative correc-
tions to the matrix elements of the 4 fermi operators ©;
with tree-level coefficients, and the one-loop matching

corrections CEI) are given by the difference of the two
computations. The graphs in the effective theory vanish
on-shell in dimensional regularization, so the one-loop
matching coefficients are given by the full theory graphs
computed on-shell [32,41,42]. In the full theory matching
computation, infrared scales such as the gauge boson mass
M and fermion masses m;, which are all much smaller than
0, can be set to zero. Thus the coefficients C; are given by
the graphs in Fig. 6 with all masses set to zero. The
computation is summarized in Appendix A, and agrees
with previous calculations [9,43,44]. The one-loop coeffi-
cients are (removing an overall «/(41), see Eq. (24)):

_47ma

(C;+ Cy) -
C(IIL)L:C(IQR_—S I:X(S,f)_id A (s, ):I

t
At
n _ A Ama

G, = Cypp = — P f(s, 0)Cy

(Cq— Ch)
4

1 _ A1 _47ma
CILR - CIRL - T

[x<s, u) + 7Gs u)]

a1 _ d7a

C(21L)R = Gy = fls,u)C, 27)

s

where
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E1 3
PLO >

FIG. 6. One loop corrections to pair production in the full
theory. Wave function and vacuum polarization graphs are not
shown.

2
X(s, 1) = 2CF(—L§ + 3L, + % - 8)
1

+ CA<2L§ “al L L %)
4 20 1 8
= 2s s(s + 21)
= — + 2 + 2
Fls,1) s+ tLt/s (s + 1)? (Lt/s )
+ 4Ll (- 5—0)- (28)

Here np and ng are the number of Dirac fermions and
complex scalars. The group theory invariants C, and C; are
defined in Eq. (40) and (41) below. The high scale match-
ing is the only piece of the computation which cannot be
obtained by summing the Sudakov form-factor results over
all pairs of particles.

If the initial and final quark flavors are identical, then
there are also r-channel graphs which contribute to the
matching (see Appendix A).

PHYSICAL REVIEW D 78, 073006 (2008)

The next step is to compute the anomalous dimension in
SCET between Q and M, and the matching corrections in
SCET at M when the gauge bosons are integrated out. Both
results can be obtained simultaneously by computing the
on-shell matrix elements of ©; in SCET. The finite part of
the graph gives the matching correction, and the infinite
part gives the anomalous dimension. The SCET diagrams
are n;-collinear diagrams and ultrasoft graphs. As in
CGKM1, CGKM2 the ultrasoft graphs vanish on-shell
with the analytic regulator, so the only graphs which
contribute are the collinear graphs.

The one-loop n;-sector graphs are given in Fig. 4.
Particle i is given by the field &;, and the remaining
particles are represented by Wilson lines. The computa-
tions are done using the same analytic regularization
method used in CGKMI1, CGKM2. The regulated
n;-collinear propagator denominator is

1 . (— 1/12)51'
(pi + k) [(p; + K)o

The propagator denominator for particle j interacting with
n;-collinear gluons becomes

(29)

1 (— V?)af
(pj + K [(p; + k)]0
At leading order in SCET power counting, p; and k are

n;-collinear, so p = n(@@; - p;)/2, k* =nt(a;-k)/2
and

(—12)?)

[2p; - KI5

(30)

o "
(pj + k)? L@, - p)n; - n)]+°

Thus the analytic continuation of the Wilson line propa-
gator arising from particle j is

3D

O G0 L A
fll’ -k (I’_ll ° k)1+6j ' [%(ﬁ/ : Pj)(n/ : ni)]

(32)

The key observation is that the »; regulator parameter
when particle j is the n;-collinear field §n/_’ »; is related to

the vﬁ.f) regulator parameter when particle j interacts with
n;-collinear gluons as a Wilson line. This feature was
already studied in CGKM1, CGKM2 and leads to a calcu-
lable logarithmic violation of factorization, as discussed
further in Sec. VL.

The n; collinear graph with the particle j Wilson line is
then identical to the n; collinear graph interacting with the
n, Wilson line result in CGKM1, CGKM2 with the re-
placement v; — v, for the collinear particle regulator, and
E’) for the Wilson line regulator. The regulator
variables v;, fo) only appear in logarithms, and VEI) only
appears in the boost-invariant combination

vy — v
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() p2 p?
Vi I (33)

] =
%(ﬁj “p)n;-n)@; - p)  2pi-p;

ni*pi

In the Sudakov form-factor results in CGKM1, CGKM2
2p; - p» = 0%, and Eq. (33) was the origin of the logQ?
terms in SCET. Here 2p; - p; depends on the kinematic
variables, and gives a dependence on logs, logt and logu.

In the Sudakov form-factor computation, there was a
nontrivial cancellation between the n-collinear and
n-collinear graphs, so that the sum of the graphs was
independent of the analytic regulator parameters v;.
There is a similar cancellation here. There are two graphs
which are related to each other: graphs with gauge boson
exchange between i and j in which i is n;-collinear and j is
a Wilson line, and in which i is a Wilson line and j is
n;-collinear (see Fig. 7). These graphs have identical color
factors. The regulator cancellation depended on two iden-
tities given in Appendix A in CGKM2. The corresponding
relations here are

) 2 o 2
<log_V’ + logy—’z) - (log_ I+ log—'lz)
M nj-pj M

n; - p; Pj
1 2303 e
= Og — — — (1 & ] =
Mz(”j : Pj)(”i - p)(n; - "j)
() 2 i) H
(log_vf — logy—’2> + <log_ j — log—jz)
ni D M n;-pj M
2u’v?
= log—— — + (i< j)
V%(”]’ : Pj)(”i “p)n; - nj)
2 2
5 M
= 2log— - = 2log
(nj'pj)(ni'pi)%(ni'nj) 2Pi'P]
(34)

which follow from Eq. (32), so the v cancellation continues
to hold. Thus the collinear graphs are obtained by the
collinear graphs in the Sudakov form-factor case with the
replacement Q> — 2p, - p j» and summing over pairs with
the appropriate group theory factor. The ultrasoft graphs
vanish on-shell, as in the Sudakov form-factor case, so the
complete answer is given by adding the wave function
renormalization graphs to the collinear contribution.

FIG. 7.
related.

Collinear graphs involving particles i and j which are

PHYSICAL REVIEW D 78, 073006 (2008)

The terms which depend on log(p; - p;) arise from the
regularization of Wilson lines using the analytic regulator.
They depend on the momenta of both particles, so it is clear
that in n;-collinear graphs, it is not possible to combine the
Wilson lines for the other particles into a single Wilson
line, as that would lose information on the p; dependence.

Note that the r-particle result obtained by combining the
Sudakov form-factors over all pairs of particles is valid
even if all the momenta flowing into the operator do not
add to zero, i.e. even if there is some momentum inserted at
the vertex. In the case of 2-particle scattering, we are
interested in operator insertions at zero momentum, and
the six p; - p; invariants can be written in terms of two
independent Mandelstam variables.

The SCET graphs do not change the Lorentz or chiral
structure of the operators, and only cause rearrangements
of the gauge indices. Thus @,;; can mix only with O,; ;.
Furthermore, the mixing matrix for @, O, is inde-
pendent of the chirality labels ki, i’. To keep track of the
gauge indices, it is convenient to denote O, Oy by

@1=Ia®ta, @2=1®1 (35)
The SCET graphs are then a 2 X 2 matrix in O, space,
and a unit matrix in chirality (%, ') space.

The sum of the n-collinear and 7i-collinear vertex graphs
with the gauge factor Cr omitted is

a2 4 2
2
— 4L, +4— 5%] (36)

The wave function renormalization, omitting group theory
factors is’

al 1
8Z '=—|-=-Ly—= 37
477[6 M 2] 37
The sum of graphs in Fig. 7 which connect particles 1
and 2 is thus

L(=2pi - p)iiee? @ 1 (38)
if the operator at the vertex is @, and
T(=2py - piP @ 1 (39)

if the operator at the vertex is @,. The minus signs relative
to Eq. (36) arise because both momenta p, , are incoming,
whereas in Eq. (36) computed in CGKM2, p; was incom-
ing, p, was outgoing, and Q> = 2p, - p,. Itis useful to add
subscripts to I' denoting the particles involved in the
diagram.

SThese are Eq. (43) with the wave function correction removed
and Eq. (40) of CGKM?2. Since we work on-shell, there is no
need to introduce infrared modes whose virtuality is governed by
the off-shellness [45].
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The group theory factors can be simplified using N2 —1
1 CA = N’ CF = 2N >
1919 = Cpl 12the = (C ——C )t” 41)
d P N2 —4 N2 -1
1 LN QT
P @1’ =C1®1 + Z(Cd —COt* ® t° (40)
1
@t =C1e1+—(Cy+ C)" ® 1 soCp =4/3,C4 =3,C4=5/3,C; = 2/9 for SU(3) and
4 Cr=13/4,C,=2,C,=0,C, =3/16 for SU(2).
in the notation of Ref. [46]. For an SU(N) gauge theory, The matrix element of O, is

1 1 1
(CF - ECA)(IM ® 1) (—2p; - pa) + (CF - ECA)(ZQ ® 1)y (—2p3 - ps) + (Cl 1®1+ Z(Cd +Cy1*® l“>r14(2171 )
1 1
+ (C] 1 ® 1 + Z(Cd + CA)ta ® ta)F23(2p2 . p3) - (Cll ® 1 + Z(Cd - CA)la ® I“)F13(2p1 : p3)

1 1
- <Cl 1®1+ Z(Cd —Ct°® ta>F24(2p2 “p4) — 5(82;‘ +8Z3V + 62 + 82, ) Cr(1* ® 19). (42)

The terms are given by summing over the six possible choices of particle pairs, and including the wave function
contribution for each particle. The terms from gluon exchange between 13 or 24 have minus signs, from charge
conjugation, since both lines have color flowing into the vertex.’

For O,, one has instead

Cr(1® DI 5(=2p; - pa) + Cp(1 ® DI'54(2p5 - pa) + (17 ® t9)14(—=2py - pg) + (19 @ 1)23(2ps - p3)
1
- (ta ® ta)FB(Zpl . p3) - (ta ® ta)F24(2p2 ° p4) - 5(821_1 + 522_1 + 623_1 + 6ZZI)CF(1 ® 1) (43)

Equations. (42) and (43) can be written in matrix form, by defining the matrix

R =RI1+ Ry
g 1., 1, Loy 1o
R =Cp|T'p(=2py - pa) — 5321 - 5522 + Cp| I'54(—2p5 - ps) — 5523 - 5524

Rsz %Cdrl'k%CArz rl

C1 ry 0

ri =Tu@py - pa) + To32ps - p3) = Ti32py - p3) = Tou(ps - pa)
ry =T42py - pa) + To32pr - p3) + T132py - p3) + T0a2ps - pa) — 2010(=2py - pa) — 2134(=2p3 - pa).

Equation (44) has an interesting structure—It has a diagonal piece R , which is the sum of the on-shell Sudakov form factor
graphs (including wave function factors) for 1 — 2 and 3 — 4, and a term R, which depends on the amplitude linear
combinations r; and r,. R contains differences of I';;. One can include wave function factors in R g by the replacement

(44)

1. 1.
without changing r; and r,. We will thus use Eq. (44) in the form

R =RI1 + Ry
R = CrSia(—2p1 - p2) + CpSaa(—2ps3 - pa)

RS: %Cdrl"‘%CArz ry
C1r1 0

ry = 81Q2py - pa) + S32ps - p3) — Si32py - p3) — Su2py - pa)
ry = S1u2p1 - pa) + S3(2py - p3) + S132p1 - p3) + Sou2py - pa) — 281(=2p; - p2) — 2834(—2p5 - ps)  (46)

®Equation (42) is true even if there is nonzero momentum inserted at the operator vertex, so that p; + p, # p; + pa.
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where S is the on-shell Sudakov form-factor including
wave function corrections, i.e. an S-matrix element, with-
out any color factors. The r; and r, terms contain differ-
ences of Sudakov form factors, and so do not contain
Sudakov double-logs, which are universal, do not depend
on particle type, and cancel in the difference.

The on-shell matrix element of the effective Lagrangian
C;0; including wave function factors is

[0y @]+ ] @

where C; are the operator coefficients and O are the tree-
level matrix elements.

Equations. (46) and (47) are master equations we will
use for our scattering computations. For example, to com-
pute the matching correction when the massive gauge
bosons are integrated out, we use

I:g;:lz(leR)I:g;] (48)

where R is the finite part of R, and C and C are the
coefficients in the high-energy theory with gauge bosons
and the low-energy theory without gauge bosons, respec-
tively. Similarly, the anomalous dimension matrix is

wgsle]=le] “9)

where 7y is the anomalous dimension computed using the
1/€ terms in R, i.e. —2 times the 1/€ terms in R at one
loop. The matching conditions and anomalous dimensions
are given by Eq. (46) with §;; replaced by the correspond-
ing Sudakov form-factor matching correction and anoma-
lous dimension computed in CGKM2 without any
additional Feynman graph computations.

We now apply the master formula to the SCET anoma-
lous dimension for gg — ¢'G’ in the region Q > u > M,
and to the matching condition at M. The anomalous di-
mension is given using Eq. (46) with S replaced by the
SCET anomalous dimension for the Sudakov form factor,
ie. by y for the bifermion operators in Table I of
CGKM2, § — 4L, — 6. The anomalous dimension matrix
is

~ 1
Yy = 501 + 5

S — L

y 2CF<4 IOg,UP 6) (50)
) 2C,log; +2C4 logly  8log;

s T 8C, log! 0

or using the notation defined in Eq. (4),

PHYSICAL REVIEW D 78, 073006 (2008)

S 1
YO = 501 + 50

¥ = 2CL(4L, — 6) (51)
0 2C L,y +2C4L, 2 8Ly |
§ 8C Ly, 0

All logarithms of negative argument are defined by the
branch log(—s —i0"), and log(ut/s?) = log(—u —
i07) + log(—t — i0") — 2log(—s — i0%), etc. as dis-
cussed earlier. The off-diagonal terms vanish at ¢t = u,
i.e. when the center-of-mass scattering angle is /2. yg
is called the soft anomalous dimension. We will see ex-
plicitly that the soft anomalous dimension and the soft-
matching Rg are universal, and independent of the external
states, i.e. they are the same for fermions and scalars, and
independent of the particle masses. In our computation
using the analytic regulator, yg arises from collinear
graphs; the ultrasoft graphs all vanish.

The anomalous dimension ¥ is twice the anomalous
dimension for the Sudakov form-factor, and contains a
log(—s/u?) term which produces double logs in the am-
plitude on integration. The soft anomalous dimension yg
does not contain any parameterically large logarithms,
since s, , u are all formally of order Q2.

The matching matrix is given by replacing S by the
matching D for bifermion operators in Table I of
CGKM2, § — —L3, +2LyL, — 3Ly +9/2 — 577%/6,

R =R + RV,

- 9 572
1) — _ _ _
(1) — Cst/u + C‘Al-ut/s2 4Ll/u

RS LM[ 4C1Ll/u 0 ’

Note that there is a nontrivial low-scale matching correc-
tion. At w =M, L, =0, and R(SI) vanishes. This is an
accident in the toy model at one-loop. In the standard
model, R(S]) does not vanish, and has terms of the form
logM3,/M2,.

This completes the computation for quark production.
The matching and anomalous dimensions are combined to
give the final amplitude in the usual way, and give the
exponentiated SCET form for the Sudakov logarithms
discussed in CGKM2. The matrices ygs and Rg are univer-
sal, and have the same values for heavy quark production
and for squark production, as we see explicitly below.

B. Light quark scattering

The next process we consider is light quark production,
q(p1) + q(p3) — q'(p2) + q'(ps) (see Fig. 8) with g # ¢/,
which is related to quark scattering in Fig. 5 by crossing
symmetry, with the replacements p, — —p,, p3 — —ps.
The Mandelstam variables for quark scattering are s =

(p1 + p3)%, t=(py — p1)?* and u = (ps — py)?, so the
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4 2

3 1

FIG. 8. Quark scattering ¢(p;) + ¢'(p3) — q(p2) + ¢'(pa).
Time runs vertically.

amplitudes are obtained from those in the previous section
by the replacement s — ¢, t — u, u — s. Identical flavors
are discussed in Appendix A.

The anomalous dimension matrix is

Yy = 507 + 5
¥ = 2CR(4L, — 6) (53)

7(1) _ 2C,L, 5 + ZCALM/Iz 8L./s
> 8(jl Lu/s 0

and the matching matrix is

R = RW7 + RY

. 9 572
1 _ CdLu/S + CAI-us/t2 4Lu/s
RS LMI: 4Cl Lu/s 0 '

C. Heavy quark production

Consider the annihilation of a light-quark antiquark pair
to produce a heavy quark-antiquark pair, suggestively
labeled 7, via the process g(p,) + g(p,) — t(ps) +
f(p3). The kinematics and Mandelstam variables are the
same as Sec. VA; the only difference is that the final
particles have mass m which is not negligible compared
with the gauge boson mass M, but is much smaller than Q,
so that s, #, u ~ Q% > m?, M>.

The first step is to match the full theory onto SCET at
wn ~ Q. The fields £, and £, are now taken to have mass
m [47,48]. The matching condition at Q can be computed
by from the full theory graphs with all scales much smaller
than Q set to zero, so the matching at Q is the same as for
the light-quark case.

The second step is to run SCET operators in the effective
theory from Q to m. The SCET anomalous dimension is
independent of low mass scales and again gives the same
result as in the massless case, Eq. (53).

The third step is to switch at the scale u ~m to an
effective theory where the heavy quarks are described by
heavy quark effective theory (HQET) fields 7,, and 7,
[49]. The four-fermi SCET operators of Eq. (25) are
matched onto the SCET/HQET operators:

PHYSICAL REVIEW D 78, 073006 (2008)
0y — O} =, 1y"Put, [£,,W,, 1"y, PIW &, ]
Oy — O, =1, y*Pit, [£,, W, Iy, PUWEE, ] (55)

The HQET fields do not transform under a collinear gauge
transformation; therefore, there is no factor analogous to
the W, Wilson line that goes along with £,. The heavy
fields ¢, still couple to ultrasoft gauge bosons.

The matching condition at u ~ m is given by computing
the difference of the graphs in the theory where particles 3
and 4 are described by SCET fields, and the same graphs
computed when the two particles are described by HQET
fields. Particles 1 and 2 continue to be described by SCET
fields. The group theory and kinematic factors for each pair
of particles remain unchanged as we switch from SCET to
HQET, so the matching condition is given by Eqgs. (46)
with each I being replaced by the difference of the corre-
sponding graph in the two theories. Thus one can use

812_’0, 834—’th, Sij(x)—>Rhl l]=13, 14,23,24

(56)
where R;;, is the matrix element for the Sudakov form-
factor in going from two SCET to two HQET fields, and
R}, is the matrix element for the transition from two SCET
fields to one SCET and one HQET field, dropping any

overall group theory factors. The matching coefficients
can be read off from Eq. (80) and Eq. (85) in CGKM2

512_’0, 834—>R+T, S,](x)—>R l]=13,14,23,24

11 2
R=T=-12—_L, +2 42 (57)
2721

where we use the entries from the first rows of Tables II and
IV of CGKM2. Thus

7 1
RD =RV + R,
R() _ — 2 _ L
RY =Cp(R+T)=CglL; - L, + 5 +4) (58)
RY =0,

using Eq. (46) for the matching. ’Rg) vanishes since r; =
2R—2R=0andr, =4R—2(R+T) = 0.

The anomalous dimension below m is given by using
Eq. (46) with the replacement analogous to Eq. (57) for the
anomalous dimension,

S12(=2p;1 - p2) = vi(—s)
S34(—2p3 - pa) = v3(—s)
S13(2p1 + p3) = ya(—u)
S142p1 - ps) = y2(—1) (59)
S23(2py - p3) = ya(—1)
S4(2ps - ps) = ya(—u)
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where 7y,,3(0%) are the entries from the first rows of
Tables I, II and IV of CGKM2. They are the anomalous
dimensions for I/, hl and hh currents, respectively. The
anomalous dimension matrix in the HQET/SCET theory is

y» =571 + 7591)
U = Cplyi(=9) + y3(—+))
ri—= 2y,(=1) = 2y,2(—u)
ry = 2y,(=1) + 2y2(—u) = 2y,(=s) — 2y3(—s)
y1(Q*) =4Ly — 6

(0% = 4Ly — 2L, — 5 (60)
¥3(0?) = 4[wr(w) — 1]
log(w + Vw? — 1)
riw) =
w2 —1
QZ

Since we are working in the limit Q% > m?, wr(w) — 1 —
log(2w) — 1 — log(Q?/m?) — 1 up to power corrections.
This gives

Y = 501 + 7(51)

yV = Cp(8L, - 4L,, — 10) 61)

1 _ 2Cst/u + 2(jALut/S2 8Lt/u
’s 8C1Lt/u 0 ’

The last step is to integrate out the gauge boson at p ~
M and transition to the theory with no gauge bosons. The
matching is given by Eq. (46) where S;; are replaced by the
corresponding results for the Sudakov form-factor match-
ing,

S12(=2py - p2) = D(—s)

S132p; - p3) — S(—u)
S»(2psy - p3) — S(—1)

S3(=2p3 - py) = U(=s)
S14(2p;1 - py) — S(=1)
S2(2py - ps) — S(—u)

(62)

where D, S, U are given in the first rows of Tables I, IT and
IV, respectively, of CGKM2. The matching is

R =R + RV
RY = Cp(D(—s) + U(~5))
ri— 28(—=1) — 25(—u)
ry — 28(—1) + 28(—u) — 2D(—s) — 2U(—5)

(63)

so that

PHYSICAL REVIEW D 78, 073006 (2008)

R =R + RV

2
RV = CF<—L,2W + 4Lyl —2LyL, — 5Ly + g - 5%)
Cilyju + Culyye 4Ly
RY = L, | e T A ] (64)
4CiLy, 0

In summary, the computation proceeds as follows:
(a) Match at u ~ /s using Eq. (25) and (27) (b) Run
between /s and m using Eq. (50) (c) Matching at m using
Eq. (58) (d) Run between m and M using Eq. (61)
(e) Match at M using Eq. (64).

If the fermion mass is not much larger than M, as is the
case for the top-quark, one can replace (c), (d) and (e) by a
single step, (¢’) Integrate out the fermion and gauge bosons
simultaneously at w ~m ~ M, as in Secs. VIII D,G of
CGKM2. In this case, the matching is given by Eq. (87) and
(91) of CGKM2:

S12(=2py - p2) — D(—s)

S34(=2p3 - ps) = D(=s) + 2fp(z) — hp(2)
S132py - p3) = D(—u) + fr(z) = hp(2)/2
S142p1+ pa) = D(=1) + fr(2) = hp(2)/2 ©65)
S23(2py - p3) = D(=1) + fr(z) — hp(2)/2
S2(2py - pa) = D(—u) + fr(z) — hp(2)/2
2
= ie

where the functions f and &y are given in Appendix B of
CGKM2. They are the change in the matching condition
due to the quark mass. The matching matrix becomes

RO = RO + RY
RV = Co(2D(=5) + 2f5(2) — hp(2))

2
= 2Cp<—L%4 FolL, — 3Ly + 22T
2 6
+ fe(0) - hF<z>/z)
c,L,, +C,sL ., 4L
1 _ d-t/u Alut/s t/u

R. =1L 66
s M[ 4Ly 0 ] (66)

The fr and hp terms cancel in Ry.

D. Squark pair production

As the final example, we consider heavy scalar (squark)
pair  production via g(py) + §(ps) = #p3) + I*(pa),
where 7, 7 are the squark and antisquark. The squarks
are taken to have mass m < \/s. This example shows
how one can use the scalar and scalar/fermion results in
CGKM2 to compute squark production. The discussion
parallels that for heavy quark production in the previous
section. The only difference is that since some of the
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particles are scalars, we need to use the /¢, ¢ and ¢ T ¢
entries from the tables given in CGKM2.

The first step is to match onto SCET at the scale u ~ \/s.
The four-particle operators are

0, =[®],W, 1it"Ds + iDyt) [Wi D, ]

X [énz an]ta ')/M[WJI fn]]
C02 = [(I)LWVM](I.@B + iD4),u[W7-lr3(I)n3]

X [512 an]'}"u [Wii'] fnl ]

(67)

where iD; = P + g(ii5 - A,,,)(n3/2), iDy = P + gy -
A,,,)(n4/2) are the label covariant derivatives on particles
3 and 4, respectively.

The tree-level coefficients are

V' =amals V=0 (68)

from the graph in Fig. 9.

The anomalous dimension in SCET below the scale Q is
given by using Eq. (46), and the values for the graphs in the
region between Q and m given in CGKM2. For the anoma-
lous dimension matrix, this means the replacements

Sip(=2py - p2) — thl//(_s)

S34(—2p3 - ps— 71¢¢(—S)
Si3(2py - p3) — 71¢¢(—M)
S142p1 - pa) = Yige(—1)
S23(2ps * p3) = Vige(—1)
S (2ps - ps) — 71¢¢(_M)-

(69)

The anomalous dimensions are given in Table I of
CGKM2. The subscript ¥, y¢p and ¢ ¢ means we use
the anomalous dimension for bi-fermion operators,
fermion-scalar, and bi-scalar operators, respectively. The
anomalous dimension is

(@) (b)

FIG. 9. Tree level squark production in (a) the full theory and
(b) the effective theory.

PHYSICAL REVIEW D 78, 073006 (2008)
Yy = 1 + 4D
U = Cr(y1yy(=5) + v1g(—5) = 2Cr(4L, = 7)
t
ry— 272¢¢(—f) - 272¢¢(—M) = 8102%;

7y — 2 —t)+2 —u)—2 -5
2 72¢¢( ) 721,//4)( ) 71¢¢( ) (70)

ut
- 271¢¢(—S) = 810gs—2

i _ [ 2Calyu +2CsLuye 8Ly,
8C\L,/, o |

Vs

After running the operators down to u ~ m using
Eq. (70), one matches to an effective theory in which the
scalars are replaced by HQET fields. This is given by using
Eq. (56), where the scalar values of R, and R;,; are used.
This means in Eq. (5§7), R + T should be replaced by the
bi-scalar value on the second rows of Tables III and IV, and
for I';;, R should be replaced by R ot the entry on the

fourth row of Table III for a bilinear with a heavy scalar
and massless fermion:

R =RV + RY)
~ 1 77'2

r1=0

— — (M —

The running in the HQET/SCET theory below m, and
the matching at M is identical to Eq. (60) and (63) in the
previous section, since it does not matter whether the
HQET field is a scalar or a fermion.

In summary, the computation proceeds as follows:
(a) Match at u ~ /s using Eq. (67) (b) Run between /s
and m using Eq. (50) (c) Matching at m using Eq. (71)
(d) Run between m and M using Eq. (60) (e) Match at M
using Eq. (63).

If the squark mass is not much larger than M, one can
replace (¢), (d) and (e) by a single step, (¢’) Integrate out
the squark and gauge bosons simultaneously at u ~ m ~
M, as in Sec. VIII G,D of CGKM2. In this case, the
matching is given by

S12(=2p1 - p2) = Dyy(—s)

S34(=2p3 - ps) = Dyy(—s) + 2f5(2) — hg(z)
S132p; - p3) = Dygy(—u) + fs(z) — hg(2)/2
S14(2p1 - pa) = Dyy(—0) + fs(2) — hs(2)/2 (72)
S523(2ps * p3) = Dyy(—1) + fs(2) — hs(2)/2
8524 (2p; - ps) = Dyy(—u) + fs(z) — hg(2)/2
2
= ie
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where the functions fg and &g are given in Appendix B of
CGKM2. The matching matrix becomes

RD =RW7 + R

R = Cp(Dyy(=5) + Dy y(—s) + 2f5(2) — hs(2))
= 2CF<—|_§4 +2L,L, —%LM +4 —5%2
+£5(0) = 3hs(2)
11— 2D 44(—1) — 2Dy (—u) = 4Ly logé
ry— 2D 4y (1) + 2D 4y (—t1) — 4Dy s (—5) = AL, 1og:‘—2’
Y = LM[ C"L’/: ;fZL“’/ - 4LO’/ ‘ ] (73)

E. Extension to more particles

In the previous examples, we saw that the four-particle
S-matrix elements could be obtained by summing the two-
particle S-matrix elements over all pairs of particles. This
result can be generalized to gauge singlet operators with an
arbitrary of particles.

The SCET graphs do not depend on the Lorentz struc-
ture of the operators, the nontrivial dependence is on the
gauge structure of the operators. We write the operators
with all incoming fields. An outgoing particle can be
represented as an incoming field in the complex conjugate
representation. The incoming fields are combined into a net
gauge singlet, and we have

(ZTg)(Q,. =0

where T¢ acts on the indices O; associated with field . To
make the notation clear: Assume ¢ and y transform in the
fundamental and antifundamental of SU(N), and O =
X't;. The action of Ty, and T on O are:

TS0 = (T%) X/,

Here (7T¢),/ and (T“)’ ; are the representation matrices in the
fundamental and antifundamental representations, so that

(74)

T50 = x'(T%)/; (75)

(Tu)ij = _(Ta)ji (76)
from which it follows that
(Tf,j + T;)Cf) =0. (77)

The sum of graphs with gauge boson exchange between
particles @ and B, without any gauge factors, will be
denoted by I',5(2p, - pg), as in the preceeding section.
The graph is computed with momentum p, incoming, and
pp outgoing. Treating all particles as incoming for both
color and momentum flow means that the graph including

PHYSICAL REVIEW D 78, 073006 (2008)

color factorsis —I'yg(=2p, - p)T4Tj. The minus sign of

the argument takes care of the change in momentum label-

ing for B, and the overall minus sign is the charge con-

jugation minus sign from reversing the color flow of .
The sum of graphs including gauge factors is then

Z - Faﬁ(_zpa ' pﬁ)<TgT?3@i>(0)
(ap)

(78)

where we sum over all pairs (a/3), and (T4 T 0,)© is the
tree-level matrix element of the operator after the action of
the gauge operators.

The one-loop contribution to the on-shell matrix element
is

<(9j>(0)Rji = Z - Faﬁ(_zpa ’ Pﬁ)<T§T;a;(9i>(0)
(aB)

1 _
=3 282N TETE0,)" (79)

a

including the wave function corrections for each external
leg. This can be rewritten as

(0)OR;
! - 1 - aa
=<azﬁ>— [Faﬁ(—Zpa “Pp) _§8Z“l _Eazﬂl]<TaTB@i>(O)
<ZB:>[2(‘SZ +- (SZB ](Tgth;@i)(o)

—EZBZ;‘<T3T3(91»><°>. (80)

The first term in square brackets is the on-shell Sudakov
form-factor for the two-particle case, including the wave
function correction,

1 1
Lop(—2ps - pp) — 55251 - §5Z51
= Saﬁ(_zpa : p,B) (81)

We can simplify the remaining terms using

0= (%52;@3)(%#)

= <Z>[5z;1 + 825" IT4T40; + Y 67, 'TaT40;
af a

Zaz 'T4T40

(82)
which follows from Eq. (74), and reduces Eq. (80) to
(O)OR; = —8,5(~2ps - ppTaTEONO. (83)
(ap)

The final answer can be written directly in terms of the on-
shell two-particle matrix elements, as we found in the
previous section for the four-particle case. Equation (83)
is valid even without a summation on the gauge index a,

073006-17



JUI-YU CHIU, RANDALL KELLEY, AND ANEESH V. MANOHAR

and this will be useful in breaking up the electroweak
corrections into the W, Z and +y contributions.

It is conventional to take the multiparticle scattering
amplitude and divide it by the Sudakov form factors,

/]'[FQ(QZ)AS (84)

where A is the scattering amplitude, and F,(Q?) is the
Sudakov form factor for particle r at some reference mo-
mentum, e.g. Q% = —s. Ag is called the soft amplitude in
the literature. With this definition, the soft amplitude has
the form at one-loop

A

1
As = X =5 Saal @ATETE0)
+ <Z> — Sap(—2pa - pp)TETH0)?),  (85)
apB

since the one-loop Sudakov form factor for particle « is
T4TES 4o (02).

The Sudakov form factor has the form at one-loop (see
the next section)

2pa P
TB + B, + B, (86)

80(,8(_2[)& ’ pﬁ) = Alog
where A is a universal coefficient independent of particle
type proportional to the cusp anomalous dimension which
is known to be universal [50], plus one-particle terms B,
which depend on the particle type, but are independent of
Pa" P B

Using Eq. (82) with §Z,! — B, and with §Z,' — 1
shows that the soft amplitude is given by a sum of the cusp
part of the Sudkaov form factors, with coefficients which
add up to zero, i.e. it can be written as differences of
A-terms. The B terms all cancel. We have seen this explic-
itly in Eq. (46). Thus the soft amplitude is universal,
proportional to the cusp anomalous dimension, and for-
mally has no large log terms since the differences of two A
terms gives a logarithm whose argument is order unity in
the power counting, e.g. logt/u = log(—1) — log(—u).
This also implies that the soft anomalous dimension is
proportional to the cusp anomalous dimension. While the
above argument is at one-loop, we believe the general
structure persists at higher loops. This property has been
seen explicitly at two-loops in a very interesting recent
computation [34].

VI. FACTORIZATION

There are strong constraints on the form of the scattering
amplitude in SCET. We will discuss these in the context of
the analytic regulator. The results hold for the S-matrix
elements, and so are independent of any specific regulator.
We have obtained the same results using a different regu-
lator [35]. We study the case where there is only a single

PHYSICAL REVIEW D 78, 073006 (2008)

amplitude to avoid problems with matrix ordering. This is
the case, for example, for scattering in a U(1) gauge theory.
If there are several gauge structures which can contribute,
then the amplitude A is a matrix, and one has to worry
about matrix ordering. For example in SU(N) gauge the-
ory, there are two gauge invariant four-particle operators,
T°®7T% and 1®1, so A is a 2 X 2 matrix. We briefly
comment on the matrix ordering problem at the end of
this section.

The r-particle scattering amplitudes are given by
n;-collinear sectors, i = 1,..., r and the ultrasoft graphs.
With the analytic regulator, the on-shell ultrasoft graphs
vanish, and we only have to consider the collinear sectors.’

The n;-collinear graphs have the form Fig. 4, where
particle i is given by the SCET field, and all the other
particles are Wilson lines. The on-shell graph depends on
the particle masses {m;}, the renormalization scale u, and
the analytic regulator parameters. The particle masses are
the masses of any particles given by n;-collinear SCET
fields, such as the gauge boson masses, and the mass of
particle i. They can also include the masses of other
particles which couple to particle i. For example, in the
standard model, a graph with a final n;-collinear ¢t-quark
can depend on m; and my, since n-collinear W bosons
couple ¢ to b. The analytic regulator parameters for an
n;-collinear graph are v? from the SCET field, and ng ), Jj#F
9 1o
occur in the combination # /(7i; - p;) = vi/@2p; - p)) as
noted in Sec. V. The analytic regulator parameters only
occur in logarithms, and we use the abbreviations
(i #J)

(87)

i from the Wilson lines. Boost invariance requires v

L; = logv?, Py = log(2p; - p;)

ij
The total n;-collinear amplitude has the form
epri({Lj - Pij}r {mid, m, {64 (83)

A; depends on the momenta of all the particles in the
process through its dependence on 2p; - p; in L;;. The total
connected amplitude expA is given by the product of the
different collinear sectors, so that

Alped b 1) = 3 AL, = Pub {meh 48,1, (89)
i=1

The amplitudes A; and A begin at order «. The tree-level
amplitude is the 1 in the expansion of expA.

The individual terms A; depend on the regulator parame-
ters {»;} and {6,} and are singular as {;} — 0, as can be
seen explicitly in the one-loop results given in I and
CGKM2. However, the sum A is finite as {8;} — 0 and
independent of the analytic regulator parameters {v;}. It
can only depend on the particle masses (including internal

"With other regulators, the ultrasoft graphs can be nonzero.
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particles), the external momenta, and w, as written in
Eq. (89).

The cancellation of the L; dependence is a powerful
constraint on the form of the SCET amplitudes. We showed
in CGKM?2 how it implied that the low-scale matching D
when the massive gauge bosons were integrated out had to
be at most linear in logQ? to all orders in perturbation
theory. In Eq. (89), the right-hand side depends on mo-
menta only through the terms P;;, which occur only in the
combination L; — P;; in A;. The L; cancellation implies
that A; and A can be at most linear in P, to all orders in
perturbation theory. The proof follows from a straightfor-
ward but tedious application of the principle of separation
of variables used in partial differential equations—if
f(x) + g(y) is a constant, and x and y are independent
variables, then f(x) and g(y) must both be constant.

The linearity of A in P;; implies that the anomalous
dimension and low-scale matching conditions D are linear
in P;;, since they are determined by the infinite and finite
parts of A, respectively. The only multiparticle dependence
of A is through the P;; dependence in the analytic regula-
tor. Since A is linear in P;;, this leads to a two-particle
dependence, plus one-particle terms, i.e. A has the form
Eq. (86) to all orders. The A term is universal; it cannot
depend on the properties of the particles such as masses,
because it is generated from Wilson line vertices which are
independent of m. The m-dependence must be in one-
particle contributions.

If A is a matrix, then the analysis becomes more com-
plicated, but the general features discussed above continue
to hold. The SCET anomalous dimension still contains
only a single logarithm to all orders in perturbation theory
[32,33]. The amplitude Eq. (15) is now a matrix equation,
and the anomalous dimension integration is path-ordered
in u. The L, terms in the anomalous dimension 7y are
proportional to the unit matrix 1, and can be pulled out as
an overall multiplicative factor that commutes with the
non-Abelian exponentiation of the integral of the rest of y.

The high-scale matching need not be a square matrix,
and one should replace expC(Q) — ¢(Q) in Eq. (15). There
are no large logs in either C(Q) or ¢(Q). The low-scale
matching D is also not a square matrix. It has the form

dO(a(M))eDl(a(M)) logQ?/M? (90)

where d) is a matrix, and D, is a number, i.e. it is propor-
tional to the unit matrix. Thus our result that the low scale
matching has the form expD, where D has a single log to
all orders in perturbation theory still holds in the matrix
case, in the form Eq. (90).

The structure of the amplitudes discussed in this and the
previous section are a very powerful constraint. They
follow from renormalization invariance of the effective
theory and the universality of the cusp anomalous dimen-
sion. More extensive comments will be given elsewhere
[35].
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VII. APPLICATION TO THE STANDARD MODEL

In this section, we apply the methods developed so far to
compute radiative corrections in the standard model. There
are several major differences between the toy theory and
the standard model. The standard model is a chiral theory
and the couplings of the matter fields to the gauge fields are
more complicated, with matter fields in several different
representations of the gauge group. The gauge group is not
simple and, we have to treat several different gauge inter-
actions. After electroweak symmetry breaking, there is
electroweak gauge boson mixing between the W3 and B,
which gives W and Z bosons with different masses, and a
massless photon. Finally, there are also Higgs exchange
corrections proportional to the fermion mass, which are
relevant for the top quark. It is straightforward to obtain the
results for the standard model, following the same proce-
dure used for the toy model. We have already shown in
CGKM?2 how to obtain the Sudakov form-factor for the
standard model including all these effects. In this section,
we use the methods demonstrated in the previous section to
calculate the radiative corrections to dijet, dilepton, top
quark and squark production in the standard model. These
calculation are a nontrival example of the techniques de-
veloped in the previous sections and in CGKM?2. There are
80 independent amplitudes we need to compute, not in-
cluding those related by crossing or flavor symmetry.

The left-handed quarks and right-handed quarks are in
different representations of the unbroken gauge group of
the standard model. The left-handed quark doublets will be

denoted by (Li), where i = u, c, t is a flavor index, the

right-handed charge 2/3 quarks by U, the right-handed

charge —1/3 quarks by D%), the left-handed lepton dou-

blets by L(Li) and the right-handed lepton singlets by E%).
Written in terms of SU(2) components, Q) is

b U B y'
-(h)-(i) o
L

and LY is

(@) ( V(Li) ) (92)
LY = ;
EY

where the neutrinos are weak-eigenstates.

All the lepton and down-type quark masses can be
neglected in our calculation, so we can work in the weak
eigenstate basis, the CKM matrix V does not enter the
SCET computation, and generation number is conserved.
The only place where V enters is in the matrix element of
SCET operators in the proton state, i.e. in computing the
cross-section from the amplitude using the parton distri-
bution functions, since these are given in terms of mass-
eigenstate quarks.
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A. Matching at Q

For scattering processes, we need to consider four-
particle operators in SCETgy generated at the scale Q by
the graphs in Figs. 1 and 6. The SCET fields corresponding
to a standard model field will be given by the replacement
0 — £.(0W), etc. We will drop the n, p labels on &, and
instead use the subscript r = 1, ..., 4 to denote the particle
|

PHYSICAL REVIEW D 78, 073006 (2008)

label in the scattering process. Thus &;(u) described col-
linear u quarks with momentum p,, etc.

At the scale Q, the effective Lagrangian is the sum of
terms representing the scattering of the various particles. If
the initial and final particles are both quark doublets, then
the Lagrangian is

L o0 = Coon il E4(QUYW,TAy ,WT £(0)]L[E,(QD)W,TA Ly Wi £, (0],
+ CQQ]Z,fi[g4(Q(f))W4taYMW; §3(Q(f))]L[gz(Q(i))WZZG')’MWFgl(Q(i))]L
+ CQQZl,fi[g4(Q(f))W4TA')’MW’;F 53(Q(f))]L[gz(Q(i))WzTAY“W;rfl(Q(i))]L

+ CQQ22,fi[§_4(Qm)W47;LW3T E(ONLLEQNWyyr W €(0D)],.

We will write this in the abbreviated form

L oo = Copur, il T* 1], ® [T 1], + Cooua il 1“1 ® [1°], + Cpoo1,sil T ® [T*], + Cppan i1, ® [1];.-

(93)

(94)

The flavor quantum numbers are encoded in the subscripts on C. Recall that T4 are the SU(3) generators, and ¢* are the
SU(2) generators. The subscript 1 is used for 74 ® T4 or t* ® t*, and the subscript 2 for 1 ® 1. Similarly, one has the other

terms

Loy = Cour sl T*1L ® [T*]x + Coua il 1], ® [1]k
Lo = Corrpilt]L ®[1*], + Cora 1], ® [1],
Lyo = Cyor il TR ® [T*], + Cypo i1l ® [1],
Lyp = Cyp1sil T*1r ® [T g + Cypo,pi[11x ® [11x
Lyg = Cygplllg ®[1]g

Ly = Cpur sl T*r ® [Tk + Cpya, il 11x ® [11x
Lp,=Cprslllr®[1],

Lo = Croiplt*]l, ®[t*], + Cpros (1], ®[1],
Lip=Crpsill]l, ®[1]g

L= Crpplll, ®[1]g

Ly = Cpypilllg ® [1]g

Lop = Cop1 il T, ® [T*]r + Copa sil1], ® [1]g
Log = CQE,fi[l]L ®[1]z

Lyy = Cypr sl Tk ® [Tk + Cyya, sl 11 ® [11x
Ly, = Cypp(llr®[1],

Lpo = Cporsil T ® [T, + Cppa il 11g ® [1],
Lpp = Cpp1silT*1r ® [TA]g + Cppo sl 11x ® [11x
Lpg = Cpgplllg ®[1]g

Ly =Crypnlll, @1k

L= Crpplt®ly ® 1], + Crpp 1], © [1],,
Lo = Crosilllr ®[1],

Lgp = Cep pil1]g ® [1]g

Lgp = Cpryilllg ® [1g Lip = Cigyilllg ® [z (95)
The tree-level matching coefficients from the graph in Fig. 1 are (f # i)
C(Q())Qn,ﬂ =0, sC(é))le,fi = 47y, SC(Q02221,fi = 47y, SC(QO)QZZ,fi = 47Ta1Yé,
chgfl,fi = 47as, ngbz,ﬁ =d7ma YyYy, sC(QO)LLfi = 47a,, SCSB‘Zﬂ =d7ma YoY,,
sC(QO)Eﬁ = 47Ta1YQYE, SC(UO;)Lﬁ = 47mas, sC(l%Zﬁ =4mo, Yy Yp, sC(L(,)Lﬁ =4d7a,YyYg,
sC(l%vfi =4maYyYE, sCrpipi = 4may, sC(LoL)Z,ﬁ =47, Y?, sC(LO%’fi =47 Y, Y,
SC(EOgVﬂ = 47Ta1Y,25, (96)

and the one loop matching coefficients are
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sC(lemﬁ = —2a,asf(s, 1)

sC(Ql)le,fi = a} -Xz(s, 1) — (CdZZ—CAZ)f(s, t):l +2[a @, Yy + ara3Cp, W — 200, Y3 f(s, 1)

SCopatpi = a%-X3(s, 7 — (Ca, Z Ca) (s, z)] + 2 a3Y) + aya3Cr, IW — 20, a3 Y3 f(s, 1)

SC(QI)sz,fi = —[a3Cy, + aiCy, + 3YE1f(s. 1) + YR + 2 a3 Y)Cr, + ayayY3Cp, + aiYHIW

SCS;JI,fi = ag—X3(s, u) + wﬂs, u)] + [a1a3(Yé +Y}) + ayasCp JW + 2a,a3Y Yy f(s, u)

sC(QILZﬂ = [a}C, + a%YéY%]]f(s, u) + adYyYolly + [a;anYyYoCr, + 2a a3YyYoCr, + a%(Y3QYU + Y{Y)IW
SC(QI)Ll,fi = a3 —Xz(s, ) — (qdzzicf‘z)f(s, t)] + [ara3Cr, + ajay(Yy + Y2)IW — 2aa,Y, Yo f(s, 1)

SCoLa g = —[a3Cy, + a3YIYRIF(s. 1) + @AY YoII, + [ 3 Y YoCr, + 20105, Yo Cr, + a} (Y] Yo + Y3V, )IW

sC(ng,f,. = a}YEYRf(s,u) + a}YpYolly + [a1a3YpYoCp, + ajarYpYoCr, + ai(YiY, + Y3 Y)W

Cy. +Cy) - -
SCSLLﬁ = a%[X3(s, 1) — Mf(s, t)] —2a,a3YpYyf(s, D) + ajasz(Yh + Y)W

4
SC(K}E)Z,f'i = _[CY%C13 + a’%Y%]Y%]f(S, t) + a%YUYDHI + [2a1a3YUYDCF3 + a%(Y%YU + Y?JYD)]W
SC(I})L,fi - OZ%Y%Y(Z]]?(S, u) + a%YLYUHI + [a1a3YLYUCF3 + alazyLYUCFz + a%(YzYU + Y3UYL):|W
SCyp s = —adYRYEF(s. 1) + a3YeYull, + [a,asYe Yy Cp, + a}(Y3Yy + Y3 Y)W

(Cq, + Cy,)
4
ng_lzz = —[a3C,, + a2Yi1f(s, ) + a?YZIT, + 2a;0,YiCr, + afYiIW

sCrp = a3[Xy(s, 1) — s, 0]+ 20,0, YiW — 2, Y3 £ (s, 1)

SCUL i = AYRY2F(s,u) + a3YpY, I1, + [y asY, YiCr, + a3(Y; Yy + Y3V, )IW
sCipj = —alYEf(s. 1) + aYEIL, + 2alYiW (97)

11 2 1 1
XN(S, t) = ZCFNW + CAN(2L§ - 2L—s—tLS - ?LS + ’7T2 + %) + (g Ls - EO)TFNnFN + (g Ls - g)TFNnSN

a? 41 104 ~ 2s s(s + 21)
W=—-L2+3L,+——3, I, =—L,——, )= — L/, +
s 6 e 9 fis, 1) s+¢ " (s + 1)?

(Ltz/s + 7Tz) + 4LsLt/(—s—t)!

(98)

for N = 2,3 for SU(2) and SU(3), respectively. np, (ng,)  portional to the fermion masses, and the only Yukawa

denotes the number of Weyl fermions and complex scalars
in the fundamental representation of SU(N). The matching
is symmetric between initial and final fermions, so that
Cup,1 = Cgu,1, etc. The coefficients Cypp ; are given by
Cou,jWith Yy — Yp, Cyy by Cyp jwithYp — Yy, Cpp
by CUD,j with YU - YD’ CDL,j by CUL,j with YU - YD,
and Cpg; by Cyg; with Yi; — Yp, and so have not been
listed above. For identical particles (i.e. Cyg r=i» Crp, r=i»
etc.) there is also the crossed-channel contribution as dis-
cussed in Appendix A.

The above matching coefficients do not include Higgs
exchange contributions. The Yukawa couplings are pro-

coupling large enough to be relevant is the top quark
Yukawa coupling. Higgs corrections only arise at one-
loop for LHC processes, since the initial state is pp, and
contains no f-quarks.® The Higgs contributions to the
matching for operators containing Q) in the final state are

80ne can always treat the proton as a hadron in QCD with all
heavy flavors integrated out. Heavy quark distribution functions
in the proton are calculable in terms of light-quark distribution
functions; see e.g. Ref. [51].
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2 3 1
5CQQ12,ti = 8%z [— - Ls]

dms 2 2

sns -1
S

scans -2 {1- 10

s 5210

3oy =42n[ ~ 5~ 5L ]

Cons =525 51 ]

i =5min] 355t

5Corn f:; YE[ - 15—2 - % L, ] (99)

whereas the contribution matching for operators contain-
ing U" in the final state are

2
o
5CUQ1,n‘ = %77;[1 - LS]

2

gra; 4 1 ]
=Sy | XL

41rs Q[3 3¢

2
5CUU1,n‘ = %[1 - Ls]

0Cyooi

4s
6Cyu2i = %YU[_g - ll—s]
(100)
6Cuyp1ii = i%—:;[l - L]
8Cyposi = itz—:leD[% - %Ls]
8CuL = % YL[% - %L]
6Cyg. = %YEI:;—‘ - %L{I,

with i = u, ¢ for Q or U, and i = d, s, b for D. The
logarithmic terms for 6Cyg, and 6Cyg, agree with

Ref. [52].

Once we match onto SCET, Higgs vertex corrections are
power suppressed, as shown in Ref. [2], and the only Higgs
contributions in SCET are wave function renormalization

corrections.
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B. Anomalous dimension below Q

The anomalous dimensions in SCET between Q and m
are obtained using the results of Sec. VA. The anomalous
dimension due to gluon exchange depends on the color
quantum numbers of the initial and final fermions. If both
are color triplets, then the operators have the color struc-
ture C,T4 ® T4 + C,1 ® 1. The anomalous dimension is
given by Eq. (50) with group invariants replaced by their
values for N = 3, and with the «/(44r) prefactor for QCD,

Ysue) = Ysuz) 1 + Vssui)
B 8 a
Ysue) = 3 ﬁ(‘“—.\' —0),

Rz 13—°L,/u + 6Lm/sz 8L,/u
Ys.suB) = g 16 Lz/ 0 .
9 u

(101)

This 2 X 2 anomalous dimension matrix acts on operators
with color structure 74 ® 7% and 1 ® 1, and does not mix
different flavors, chiralities or SU(2) quantum numbers.
Thus the renormalization group equation has the form

Llel=le]
- dM C2 Y CZ
(Cy,Cy) are the (Coor, i Coora fi)s
(Cooar i Coonpi)s (Coungi- Counsi)s (Copu i Copa, i),
(Cuouyi- Cugayi)s (Cuurgi Cuuvngi)s (Cuprgis Cupagi)s
(CDQI,fi’ CDQZ,fi)’ (CDUl,fi’ CDU2,fi)’ and
(Cppu,ri» Copo,fi)-
If one of the fermions is a color triplet and the other is a
color singlet, the operator has the color structure C1 ® 1.

The QCD anomalous dimension for C is identical to the
Sudakov form-factor case,

(102)

where pairs

4 asj
=_-—(4L, — 6). 103
Ysue) = 3 477_( s —6) (103)
If both fermions are color singlets, then
Ysu@) = 0. (104)

The anomalous dimension due to SU(2) gauge boson
exchange is obtained similarly. If both fermions are dou-
blets, the operator has the form C;#* ® * + C,1® 1, and
the anomalous dimension matrix is

Ysue) = Ysul T Yssu@)»

Vsu@e) = % %(‘H - 6), (105)
oy 4Lut/s2 8Lz/u
where the (Cy,C,) pairs are (Cgoi1 i Cooor fi)s

(Coo12,5i Cooarfi)s (Corrfir Corai)s (Croisis Croa,fi)»
and (Cppy fi» Cria fi)-
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If one of the fermions is a weak doublet and the other is a
weak singlet, the operator has the structure C1 ® 1, and the
SU(2) anomalous dimension for C is identical to the
Sudakov form-factor case,

3 (4%)
=-—=(4L, — 6). 106
Ysu@) = g 477_( s — 6) (106)
If both fermions are weak singlets, then
Ysu@) = 0. (107)

B exchange gives the diagonal contribution
a
Yo = 5 L0F + Y@L = 6) + 8Y,¥ L] (108)

where Y; and Y are the hypercharges of the initial and final
representations. Note that Y(Ug) = 2/3, Y(Dg) = —1/3
and Y(ER) = —1.

The Higgs wave function graphs give the diagonal con-
tribution

® g 1
=2 _. 109
yu(Q"Y) 62 2 (109)
to an operator for each Q" field, and
2
Yalte) = 5 (110)

1672

for each tp = U;e’) field. This term breaks the flavor sym-
metry in the anomalous dimension. The total anomalous
dimension is the sum,

Y=vYut Yua) T Ysue) T Ysue) (111)

and is used to run the operators from pw = s to w ~ M.

C. Matching at the low scale to SCET,,

At a low scale u of order M, (or m,) one matches from
SCETgw with dynamical gluons and electroweak bosons
onto SCET,, with dynamical gluons and photons, by inte-
grating out the W and Z bosons. The electroweak symme-
try is broken in SCET,, so the operators in Eq. (95) must
now be decomposed into separate SU(2) component fields.

We start by considering the case where all particles have
mass much smaller than m,, i.e. for all particles except the
t-quark. This includes all the operators in Eq. (95) except
those that contain Q(L’) and U%). The photon and gluon
graphs are the same in SCETgw and SCET,, and do not
contribute to the matching condition. The W contribution
depends on whether the particles involved are SU(2) dou-
blets or singlets. For the case of two doublets, consider the
operators

Coon sl 1L ® [t + Coom ril1], ® [1],

with i # ¢, f # t, which are two of the terms in Eq. (94).
For definiteness, let f = ¢ and i = u. These operators
match onto a linear combination of

(112)
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O, = [eraypcsliipy us,]
Oy = [Erayucrslld,y*d;,]
Oz = [543V usp3lli v up,]
Oy = [§/L4'}’MS/L3][‘?/Lz7’Md/Ll]

Os, = [543y ucrallii oyt dy ]

(113)

Oy = [Erav sy s d) v upy]

where the flavor label represents the SCET,, fields wte.

The matching from Eq. (112) in SCETgy onto Eq. (113)
in SCET, is computed as in Sec. VB. As shown in
Sec. VE, the matching can be written as the sum of the
Sudakov form-factor S-matrix elements, even though we
are considering W= exchange, Z exchange and y exchange
separately, and not summing over all the SU(2) gauge
bosons. The matching matrix is

¢n ]
Gy .

| = R|: Coona ] (114)
q42 CQQZZ,cu

Cs

Cor

where C’iz are the coefficients of (biz. At tree-level R is

-1
1
1 1W
1
-1
RO =1 4 (115)
1
4
10
[ 1o
At one-loop
-
1 _ QXem 1 2 2\ p(0)
Ry = —FFF— = {2F,(—s, My, R
W' Azsin®6y, 2 o8 My, 1)
\
( log! 0 I3
—log% 0
M2 — log¥ 0
+ 2log—% ' (116)

w? logt 0

A
t

5 log4  2logt

1 ut
2 log

2logt |J

U -

where
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M2 MZ QZ
F (0% M?, p?) = —log? — + 2log—5 log=;
n nr Cu

M> 9 57
—310g—2+——l.
M

5 e (117)

The Z exchange contribution is

=

r

N
8]

)

~
w

(1 _ Xem r3

2 Azsin?0ycosOy

(118)

~
~

Iy

<
W

RI= R= A= B B B—

~
W

M% ot
_g log—
7 u
M2 ¢
_g log—
n u
2 2 2,2 Myt
ry = (81, t 81)Fo (=8, M7, u*) + 48,81 log—’uz log;
M2t

22

ri = (87 + 81)F (=5, M%, u?) + 4g;, .81, log

ry = (87, + g2 )F (=5, M3, u?) + 4g; 814108

ry = (82, + 81 )F (=5, M%, u?) + 4g 48, log—% log -

1
rs = _(g%c + g%s + g%u + g%d)Fg(_S’ M%’ lu’z)
2
M.t
+2(8u8Lc T nggLs)log—Mf IOgE

M%  u
—2(8Lu8Ls T 8La8Le) IOg? logg (119)
where
12,
8Lc = 8Lu = ) - gsm Ow
11 (120)
8Ls = 8La= T 5 + gSin29W

are the couplings to the Z. The total one-loop matching is
Ry +RY.
The remaining two operators in L,

Loo = Coon sl T41], ® [T*],

+ Cooo1, il TA]L ® [TA], (121)

match onto

PHYSICAL REVIEW D 78, 073006 (2008)

Oy, = [Ty yers i Ty uy ]

Oy = [ep4s Ty yors]ldy, TAy*d) ]

O3 = [5,,T4y u 573 i Ty up ]

0,4 = [§/L4TAYMSIL3][d_ILZTA’y#d/Ll]

Osy =[5, Ty sl Ty d) | ]

Og) = [E1aT y 55 d) Ay up, ).

Since W exchange leaves the color indices unaffected, the

matching matrix is identical to Eq. (115), (116), and (118),

and the matching relation is given by Eq. (114) with the

replacement é,-z — C‘[l, CA‘QQ,-Z,C,, — CA'QQ[LCM. The results

Eq. (115) and (116) hold for all cases where both fermions

are doublets. If the final quark doublet is replaced by a

lepton doublet, the coupling constants in Eq. (119) have the
obvious replacement g; . — g;,, 1.5 — &1, With

1

8Ly ) ’

and similarly if the initial doublet is a lepton doublet, or

both doublets are lepton doublets.

The second case is where one fermion is a doublet and
the other is a singlet. As an example, consider
Couafilll, ® [1]g with f = ¢ and i = u. This matches
onto a linear combination of

(122)

1
gro= =5 +sinfy  (123)

01, = [Crayucrslligy*ug]

. (124)
Oy = [514Y w513 liga vy  ugy 1
The matching matrix is
¢ A
|: élz ] = RCou»2,cu (125)
2

where C,-z are the coefficients of (biz. At tree-level R is

RO — [ i ] (126)
At one-loop
1
R = __Fem " p (o2 ,2)RO
W' 4arsin26y, 2 o5 w)
2 2
(n _ HXem { 2 2| Ste * 8k
R B F - ;M )
Z 47sin0ycos20y o # )|: 815 T &k
M? t c8Ru
+ 4log—% log—|: Srefi ]} (127)
1% u 8Ls8Ru

where F, is given in Eq. (117). The singlet fermion Z
couplings are

2

2 1.
8Ru = — §511129Wr 8Rd = gsm Ow,

(128)
8Re = Sinzew.
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Equations. (125)—(127) apply to all cases where one
fermion is weak doublet, and the other is a weak singlet,
with the obvious replacement of the Z charges for lepton
doublets. Since electroweak exchange does not affect the
color indices, the same matching matrix applies, for ex-
ample, to the transition from Cyyy ,[T4], ® [T4]g to

0, = [eLaT y pers g T4y ug, ]
R (129)
Oy = [5,T*y o5 3 Liga Ty ugy 1
The last case is if both fermions are weak singlets—take
Cyuafil1lg ® [1]g as an example with f = ¢ and i = u.
The operator matches to

O = [erayperslliigny*ug: ] (130)

The one-loop matching condition is € = (1 + Rﬁ,},) +
R(Zl))CUUZ,cu with

Ry =0
(1 — Pem 2 2 )
=  + F.(—s, M3,
Z 47sin20ycos20y {(gRL g Fe(=s )
Mt
+ 4chgRu log_g IOg—}. (131)
o u
Again, the same matching coefficient holds for
the matching between Cpyyy [T*]r®[T*]x and

[CraT*y ucr3liigo T4 y*ug, ], and the equations hold with
an obvious substitution of Z charges if the quarks are
replaced by leptons.

Anomalous dimensions in SCETY

Finally, one computes the anomalous dimension of the
operator in SCET,, between u ~ M, and some low scale
Mo, at which point one takes operator matrix elements to
compute the desired observables. The matrix elements of
the initial state SCET fields in the proton are the usual
parton distribution functions, and the final state fields are
used to construct jet observables. The scale . is chosen to
minimize logarithms in the matrix element computation.
For LHC jet observables, it is of order the typical invariant
mass of a single jet.

The QCD anomalous dimensions given in Eq. (101),
(103), and (113) continue to hold for the case of two
quarks, one quark and one lepton, or two leptons, respec-
tively. The QED anomalous dimension is

o r , -5
=l (@ZF+qp+g+ 2(41 ——6)
Yem . [2(6]1 g5+ 95+ q3) Og,u2

t u
+ 4(q194 + qzt]s)log; — 4(q195 *+ 92q4) log;]
(132)

where ¢;_4 are the charges of the four fields, and ¢; +
gz = g, + q4. The initial particle charges are ¢; and —g¢5,
and the final particle charges are —¢g3 and g,.
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D. ¢t-quark production

In processes involving the r-quark, m? /M3, , terms must
be included in the loop graphs, as discussed in CGKM2. At
a scale u, we transition to an effective theory in which the
t-quark is represented by an HQET field, whereas the light
quarks are still represented by SCET fields. Since m, is not
much larger than My, and M, it is convenient to make this
transition at the same time that the W, Z and Higgs bosons
are integrated out of the theory in the transition from
SCETgyw to SCET,. This method was used in CGKM2
for the Sudakov form-factor of the r-quark, and allows one
to include the complete m7/Mj, , dependence in the
matching computation. Here we apply the same procedure
to the operators relevant for r-quark production—the op-

erators in Egs. (94) and (95) which contain either Q(L’) or g
fields. The initial state in proton-proton collisions contains
only light quarks, so we will only look at operators with
top-quarks in the final state and light quarks in the initial
state.

The matching at Q and the anomalous dimension below
Q are mass independent, and identical to those for light
quarks. The m, dependent terms give an additive correction
to the low-scale matching matrices sz of the previous

section. There are also contributions R(yl)s to low-scale
matching from the photon and gluon, because of the tran-
sition to an HQET field for the f-quark. The graphs in
SCETgw use a SCET field for the t-quark, and those in
SCETY use a HQET field for the r-quark, so there is a
matching correction even for massless gauge bosons, as
computed in CGKM2.

The Higgs only contributes through wave function re-
normalization in SCET. The matching contribution from
the Higgs is

1 y2 11 1
H(t;)= ) 16;2 I:EF;L(MZ ,m?) + 5Fh(Mg, m?)

1 1
+ Ed(hz: hz) + Ed(zp Zz) + E(hn hr) + E(Zt’ Zl)

+&(w, 0) = b(h, h,) + bz, 2,)]
2

1
Htg) = H{1y) =5 7= (Fy (M, m?) + (0, 0)
, 1 y7 s o
H(bL) = _EW[Fh(M ,mr) + a(O, Wt)];
1 1
Fh(Mz,M2)=Z_§LM
m2 m2 m2
M M T YT (133)
H w VA

where the functions are tabulated in Appendix B. For each
t, tg or by field, one adds H(t;), H(tg) or H(b}) to the
matching matrix. For example the operator 7, y*t, b} y ubr
gets the Higgs matching contribution 2H(t;) + 2H(b}).
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The matching for operators containing Q') and a light
quark doublet, Eq. (112) with f = tand i = u, c, is given
by Eq. (116), with the additional additive contribution

K %H(IL) 2H(1;) ]
- %H(IL) 2H(1)
—LH(b)) 2H(bY)
SRY) = R e LD
iH(bL) 2H(bL)
TH(1p) + 1H(b)) 0
| JH(r,) +3H(b) 0
from the Higgs,
-1
- % Wl 2W1
—1
sRY = Yem 1 W 2 )
w )
47rsin=Oy, 2 %Wz 2W,
Wi +iw, 0
| Wi +3W, 0 J
from the W,
_2l 2
O2 0
SRY = Fem U 136
Z " Amsin?fycostfy | O 0 (136)
1
5 0
2
Lol
from the Z,
— l 2
2
_% 2
: 0 0
(1) _ ¥em of 7T
ORy yp q’<12 + 2) 0 0 (137)
1
> 0
2
| i o]
from the photon, where g, = 2/3 is the t-quark charge, and
B
sy A 0o
SR = 25 7(1 + 2) 138
£ 47 3\12 0 0 (138)
1
2 0
[ ; 0

from the gluon where

1 1

Wl = fF(Wtr O) - Ea(wtr 0) - Ec(wtr O)
1

W2 = fF(O) Wt) - Ea(ox Wt)

1 1
Uy = 81 r(zn 2) = 581a(z0 2) = 5 (8L, + gr)e(zn 20)
+ thgRtb(Zv Zl)
1 1
U, = g%esz(Zt: Zt) - Eg%eza(zt’ Zr) - 5(8%1 + g%z)c(zt! Zt)

+ g1.:8rib (24 2,) (139)
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and the functions fp, a, b and ¢ are tabulated in
Appendix B. The matching matrix multiplied by
(Coo111q» Cooairg) gives the  coefficients Cn k=
l,...,6, [ =1, 2 of the operators in SCET,, listed in
Eq. (113) and (122) with ¢ — ¢ and s — b’ for the final
state quarks, and the initial state flavors replaced by the two
members of the light quark doublet g, (4, d’) — (c, '), or
(u, d") — (u, d'). Note that Os;, Os,, Og,, O, are relevant
for single-top production.

The gluon matching SRE;) is diagonal in color space, and
does not mix the 1 ® 1 and 74 ® T* operators. This follows
from Eq. (46) and the additive nature of the mass correc-
tions to the amplitudes.

The matching for operators containing Q) and a light
quark singlet are given by Eq. (127) with the additional
terms

5Rg) _ |: 2H(t;) i|

2H(b})
1| 2w
SR = —Zem _ ~| “"1
4arsin“ Oy 2| 2W,
2U
SRY = — em 1
4arsin“@ycos Oy | 0

(140)

2 1
(1) _ %em of T
Ry, = —+4
ORy 47th<6 )|:0i|

as4<77'2 ) 1
=T |
473\ 6 0

with X, and U, given in Eq. (139).

The matching for operators containing 7 and a light
quark doublet are given by Eq. (127) with the additional
terms

[ 2H(tg)
ok = Sl |

BR(I) _ dem 1[ _C(Wt’ 0) ]
W' 4asin?6y, 2L —c(w, 0)
2U
SRY = Fem [ 2 ]
2 4gsin?@ycos2Oy L 2U, (141)

2
(1) _ %em of T 1:|
= —+
ORy yp q,( 5 4)[ |

m_ a4 1
SRS 4773(6 +4)[1 .

The matching for operators containing tz and singlet
light quarks is given by Eq. (131) with the additional terms
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SRY = 2H(1y)
SR — e 160 0)
47sin?6y, 2
SR = Tem oy
2 Amsin?OycosiOy 2 (142)
SR = Zem 2( 2+4)
4 47Tq 6
4 2
SRY) = —( +4>.
¢ 4x3\6

Anomalous dimension in SCET,

The anomalous dimension in SCET,, after integrating
out the electroweak gauge bosons and switching to HQET
for the top quarks, is given by gluon and photon exchange.
For ¢ pair production, particles 3 and 4 are HQET #-quarks,
and 7y can be obtained from Eq. (44), using the heavy-
heavy anomalous dimension (y; of CGKM?2) for exchange
between (3, 4), the heavy-light anomalous dimension (y,
of CGKM2) for exchange between (3, 4) and (1, 2) and the
light-light anomalous dimension (y; of CGKM?2) for ex-
change between (1, 2). This gives Eq. (61) for the QCD
part of the anomalous dimension, with &« — «,, and group
theory factors replaced by their SU(3) values,

~ 1
PV =701 + 5§,

4
g =% 2 (gL, — 4L, — 10
Y 47 3 ( s m, ), (143)
'y(l) = & %Lt/u + 6'—,4[/.92 8Lt/u
§ 4ar 16 Lt/u 0 :
The QED anomalous dimension is
Oem ) —s
e [q%(“ log 7~ 6) + %2(4 log_5 ~ 4)
t
+ 84,9, log;:l (144)

where g, = 2/3 and q; = 2/3, —1/3 is the charge of the
light quark.

For smgle top production from the operators Os1, Og,,
052, 062, there is only one heavy quark in the final state,
and

y =¥01 + 9y,

2
y =% Tfg) 11 —2] )
YTy 3( &2

o

(145)
) = ﬁ ?Lf/u + 6"14[/s2 8'—[/“
7S 477[ % Lt/u 0 ’

and the QED anomalous dimension
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2
_ ®em 2 2 -5 _ mi

+ 89,4, 1og§:| (146)

where ¢, = 2/3 and g, = —1/3 are the charges of the up-
type and down-type quarks, respectively.

This completes the computation of radiative corrections
in the standard model. The formulas derived in this section
will be used for the numerical computations in the next
section. The only case we have not treated is when both
initial and final particles are top quarks. This can be
obtained from the case we have analyzed, with a heavy
quark in the final state, by also adding heavy quark correc-
tions terms for the initial quark.

E.g¢— 499,89 — gqand gq — gq

The computations in this paper have been restricted to
those involving external matter fields. In top-quark pro-
duction and in jet production, processes involving external
gluons are also important. Consider, for definiteness, the
case gg — ¢q¢q. At the high-scale Q, the tree-graphs which
contribute to gg — ¢g are shown in Fig. 10. In the EFT,
one generates a local operator which involves the fields g,
g, and two collinear-gluon field strength tensors, shown
graphically in Fig. 11. The QCD corrections involve study-
ing operators with gauge field strength tensors, and will be
discussed elsewhere. The QCD corrections are known from
existing fixed-order computations [53]. The new feature
discussed in this article is the electroweak correction. If we
restrict ourselves to the electroweak corrections alone, then
we can compute these using the results in CGKM?2. The
gluon field strength tensor is an electroweak singlet, and so
the ggqg operator in the EFT is equivalent to the electro-
weak singlet currents gy* Py rq studied in CGKM2 and
the running and matching corrections in the effective the-

66 % 66002p,
& o 66 0q,
§0
6 )
& %
& N
FIG. 10. Graphs contributing to gg — ¢g in the full theory.
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FIG. 11. Operator contributing to gg¢ — ¢4 in the EFT.

ory are identical, with the identification —Q* — 5. Thus
the total radiative corrections are given by combining the
known QCD corrections, with the electroweak corrections
for the current given in CGKMI1, CGKM2. The other
important parton subprocesses which contributes to dijet
production are gg — gq, gq — gg, and gg — gg. For
gluon-quark or gluon-antiquark scattering, the EFT opera-
tor is a ggqq operator, and the electroweak corrections are
the same as those for the Sudakov form-factor, with Q% —
—t. For gg scattering, there are no electroweak corrections
to the order we are working, since the gluons do not couple
to the electroweak gauge bosons, and the radiative correc-
tions can be computed using the known QCD corrections.

F. Squark production

The techniques developed in the previous sections can
be used to calculate the radiative corrections in a theory
involving scalar particles in the final state such as SUSY.
To perform a high precision computation requires specify-
ing a particular supersymmetric theory, and computing the
matching conditions and radiative corrections using the
given SUSY particle spectrum. This is beyond the scope
of the present work.

To estimate the size of electroweak Sudakov corrections
in squark production, we will compute the SU(2) correc-
tions in the toy model of Sec. V D, assuming the squark is a
doublet, and & — «,, the weak interaction coupling con-
stant. This gives the expected size of electroweak Sudakov
corrections in squark production.

VIII. NUMERICS

The formulas for the EFT computation of standard
model scattering processes have been given in Sec. VII.
As discussed in Sec. III, the anomalous dimensions are
integrated using the two-loop S-functions, and we also
include the known two-loop QCD anomalous dimensions
[34] in addition to the one-loop results of Sec. VII. The
corrections have a very small dependence on the Higgs
mass (much less than 1%). In the numerics, we use a Higgs
mass of 200 GeV. The EFT coefficients should be run down
to a scale u( of order a typical jet invariant mass. We have
chosen to use o = 30 GeV. The electroweak corrections
are insensitive to this scale, because the only electroweak
correction below M is due to photon exchange.
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The matching corrections at the high scale Q are about
2%, and dominated by the QCD contribution. The low-
scale matching due to integrating out the W and Z is about
2%. Both matching corrections are not very strongly de-
pendent on Q. The largest corrections are from the anoma-
lous dimension running. These corrections grow rapidly
with energy. The one-loop QCD corrections are very large,
and reduce the rate by factors of 3-30 in the range NG
between 1 and 5 TeV. The two-loop QCD cusp anomalous
dimension reduces the rate by about 10% at \/5 = 5 TeV.
This is smaller than the electroweak corrections, but not
negligible. The two-loop noncusp QCD anomalous dimen-
sion (the B term in Eq. (15)) increases the rate by about 2%.
We have included the QCD two-loop cusp and noncusp
terms in the numerical results. The two-loop cusp anoma-
lous dimension has been shown to be proportional to the
one-loop result [34], and we use their K factor to determine
the two-loop cusp anomalous dimension (the A term in
Eq. (15)). The two-loop noncusp anomalous dimension
was determined in CGKM2 by comparing the EFT result
with the two-loop results of Jantzen and Smirnov [17]. The
two-loop cusp anomalous dimension also determines the
two-loop contribution to the soft anomalous dimension
matrix yg. The noncusp contribution vanishes, since yg
depends on differences of anomalous dimensions. The
three-loop QCD cusp anomalous dimension contribution
[54] is less than 0.1%, and can be omitted. The one-loop
electroweak anomalous dimension corrections are signifi-
cant, ranging from 5% at 1 TeV to around 30% at 5 TeV.
Higher order electroweak corrections, such as the two-loop
electroweak cusp anomalous dimension are smaller than
0.1%. The numerical results are accurate at the one-percent
level, so that the error in LHC cross-sections is dominated
by other uncertainties, such as in the parton distribution
functions.

The EFT analysis neglected power corrections of the
form M?/§, M?/t and M?/i. The dominant power correc-
tions arise from one-loop QCD graphs, so we use the
estimate (a,M?/m) X 1/(8, 1, it) since the graphs have a
color factor of (roughly) 4Cra;,/(47). To keep the power

corrections below 1% requires +/3, |7, |ii| to be larger than
about 200 GeV for light-quark processes, where the largest
M is My, and larger than about 350 GeV for processes
involving the top-quark. Note that we have included all
power corrections that depend on ratios such as M;/m, or
M;/My, and not expanded in these ratios. There are tree-
level power corrections due to gauge boson mass effects in
the propagators, e.g. the s-channel propagator § — M2 is
approximated as §. These trivial effects cancel in our
results, because we normalize all amplitudes to their tree-
level values.

The LHC cross-sections are given by using the coeffi-
cients computed earlier to compute the parton scattering
cross-sections, and then convoluting them with parton
distribution functions. For processes involving four-quark
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operators, the effective interaction at the low-scale is a
linear combination of two color structures,
O=C|(T*®T%) +C,(1®1). 147)
Color-averaging over initial particles and color summing
over final particles lead to a contribution to the cross-

section which is proportional to an effective coefficient
C, with

2
ICI> = §|C1|2 + G, |~ (148)

For qg — ¢'q’, e.g. uiit — bb, the parton scattering

cross-section is

do _

~

TR [(ICLLIZ, + |Crel2)i?

+ (ICLrl3s + ICRLIE NP (149)
where C;;, etc. are the coefficients of the LL, etc. opera-
tors. The " denote partonic variables. The subscript s, ¢ is a
reminder that one uses the coefficients as computed in
Sec. VII with annihilation channel kinematics. From this,
one can compute hadronic cross-sections. For example, the
dijet invariant mass distribution from the partonic subpro-
cess uii — dd is given by

§ do
Erfl———
T\If — 4E2 di
where M? is the dijet invariant mass, Ey is the transverse
energy of the jet, 7 = M?/s, /s = 14 TeV is the LHC

center of mass energy, and the parton luminosity function
L;; is defined by

d2o

2 =
dM2dE,

r

= (150)

S=7s

dLl'~ _ 1 ldx (1) (2)
bl B VAU
+ @) (r/x)] (151)

where ff»l‘z) are the distribution functions for parton i in
beams 1 and 2.” For the LHC, both are proton distribution
functions. The 1 + §;; is the symmetry factor for identical
partons in the initial state. For the case g = ¢/, e.g. uit —
uii, Eq. (149) still holds, and the coefficients C;; pg get
contributions from both the direct and crossed graphs.

For identical particles, e.g. uit — uii, the partonic cross-
section has the schematic form

92ET = /5sinf and 7 = —§sin®6/2, where 6 is the center of
mass scattering angle. Thus in Eq. (150), a given E7 values gets
contributions from two values of 7, or equivalently, one should
symmetrize dé/df under 7« 2. We will plot dé/df before
symmetrizing.
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T 16 Tond [(ICLL + Crl?, + |Cre + Cpp |2 )02?

+ (ICLgl2; + 1Cr 12 + (ICLgI2s + |Crp1?)5%].

(152)

There is the direct channel as well as the crossed-channel
with s < ¢. For LL and RR, the crossed-channel ampli-
tudes have the same fermion chiralities as the direct chan-
nel, and are included as C, which includes both s — ¢ and
the crossing matrix. One has to add the amplitudes in the
two channels before squaring. For LR and RL, the crossed
diagrams do not interfere because the initial and final
chiralities do not match, and one adds the probabilities.

For g4’ scattering processes not involving identical par-
ticles the cross-section is

dé’ A
& 168 [(ICLLI7, + |CrrlF)3?
+ (ICLrl?, + ICe 17 )0 (153)
and for gg’ scattering
do R
E 16 Az [(lCLLl |CRR|I2,S)u2
+ (1Crl?s + 1CRL17)8%] (154)

The subscripts ¢, u, etc. are a reminder the one has to use
the amplitudes of Sec. VII with the replacements s — f,
t— u, etc.

For identical quark scattering,
the cross-section is

do 1
df  16m§?

qq9 — qq, e.g. uu — uu,

1 ~ ~ .
I:E(chL + Crol?, + |Crg + Crr12,)5?

+ 20Cugl2i? + 21Cl2, P2 ] (155)
The 1/2 is from final state phase space for identical parti-
cles. The initial state 1/2 is included in the parton lumi-
nosity function.

There are 72 four-fermion amplitudes that have been
computed in Sec. VII in the s-channel, not including those
which are identical by flavor symmetry, and another 72
amplitudes in the t-channel, and we cannot plot them all
here. We will choose some representative examples to
illustrate the size of the radiative corrections in high energy
LHC processes. Rather than plot the hadronic cross-
sections, which involve convolutions over rapidly falling
parton luminosities, we have chosen to plot the ratio of the
partonic cross-sections dé/df to their tree-level values.
From Eq. (150), it follows that this also gives the ratio of
the hadronic cross-section to its tree-level value. We will
also neglect the CKM matrix in the plots, since the flavor
dependence of the electroweak corrections is small, and the
CKM factors enter as off-diagonal CKM matrix elements
multiplied by the difference of electroweak corrections
between d’ and s/, and d' and b’.
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FIG. 12 (color online). Rates for uit — u™ u~ (dotted black),
uit — uii (solid cyan), uit — c¢ (long-dashed red), uit — tf
(short-dashed blue), uit — dd (dot-dashed green) and uii — bb
(double-dot-dashed magenta) as a function of J5inGeVat g =
90°, normalized to their tree-level values without any electro-
weak corrections. Note the logarithmic scale.

Plots

Figure 12 show the ratio dg-/d7 to its tree-level value for
wii — w* ", ui, c¢, 17 and bb as a function of /3 for 90°
scattering, t=—5§/2, including QCD and electroweak
corrections. The radiative corrections are enormous, and
reduce the cross-sections by 1.15-2 at V3 =500 GeVtoa
factor of 7-38 at /§ = 5 TeV compared to the tree-level
value, depending on the process.'® The bulk of the correc-
tion is due to QCD effects. Some of the QCD corrections
are included in parton shower Monte-Carlos, because
gluon radiation from tree-level branching is related to the
LL Sudakov series. However, the electroweak corrections,
and some of the QCD corrections are not included in the
shower algorithms, so the Monte-Carlo results can have
substantial ( ~ 50%) corrections.

The wuii rate differs from cc because of the crossed-
channel graph for identical particles. The difference be-
tween c¢ and 7, and between s3 (not shown) and bb is due
to top-quark mass effects. The wuit — w™ u~ rate has
smaller QCD corrections, since the final state is a color
singlet. The anomalous dimension ¥ is proportional to
4L, — 6. At large values of §, the 4L, term dominates,
and produces the large Sudakov (double-log) suppression.
At smaller values of §, the —6 can compensate the 4L;
term, leading to an enhancement of the cross-section. This
leads to a flattening of the curves at the smallest values of §.
The cross-sections will decrease slightly if we continue the
plot to even smaller values of §. This effect can also be seen
in the plots of Ref. [9]. Figure 13 show the radiative
corrections to the angular distribution for uit — u* u™,

'Note that the parton luminosity is falling by about 4 orders of
magnitude over the same range.
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FIG. 13 (color online). Rates for uiit — u* u~ (dotted black),
uit — uii (solid cyan), uit — c¢ (long-dashed red), uit — tf
(short-dashed blue), uii — dd (dot-dashed green) and uii — bbh
(double-dot-dashed magenta) as a function of 7/§ for V=
1 TeV, normalized to their tree-level values without any elec-
troweak corrections.

uii, cc, tf and bb at /8 = 1 TeV. There is about a factor of
2 variation in the radiative correction over the range
-0.8 =1/5§ = —0.2.

Figures 14 and 15 show the ratios d&(uii —
tf)/di/d6(uit — c¢)/di and dé(uit — bb)/di/dé(uin —
s5)/df as a function of /3 for different values of 7 (i.e.
the scattering angle 6), including QCD and electroweak
corrections. These ratios are unity in the absence of top-
quark mass effects. There is a ~40% increase in the ¢7 rate
due to the top-quark mass. About —4% is from the Higgs
contribution, —2% from mass effects in the low-scale
electroweak matching, and the rest from mass effects in
the QCD matching at m, and running below m,. There is a

)/dt
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FIG. 14 (color online). The ratio (uii — t7)/(uit — c¢) at f =
—0.28, (dotted blue), f = —0.355 (long-dashed red), 7 = —0.58
(solid black), = —0.655 (double-dot-dashed magenta) and 7 =
—0.85§ (dot-dashed cyan) as a function of /3 in GeV.

do(u

5000 7000
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FIG. 15 (color online). The ratio (uit — bb)/(uit — s5) at =
—0.28, (dotted blue), f = —0.355 (long-dashed red), 7 = —0.58
(solid black), 7 = —0.658 (double-dot-dashed magenta) and 7 =
—0.85 (dot-dashed cyan) as a function of V3 in GeV.
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FIG. 16 (color online). The ratio (dd — t7)/(dd — c¢) at =
—0.28, (dotted blue), 7 = —0.355 (long-dashed red), 7 = —0.58
(solid black), 7 = —0.655 (double-dot-dashed magenta) and 7 =
—0.85§ (dot-dashed cyan) as a function of V3 in GeV.
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FIG. 17 (color online). The ratio of (dd — bb)/(dd — s5) at
f= —0.25, (dotted blue), 7 = —0.35§5 (long-dashed red), 7 =
—0.5§ (solid black), f = —0.655 (double-dot-dashed magenta)
and 7 = —0.85 (dot-dashed cyan) as a function of 5 in GeV.

PHYSICAL REVIEW D 78, 073006 (2008)
1 . 1 T T T T T T

1.0 F

— 4
e s -
L -~ ~
. Ta—
S ~o et T .
L ~o Tet— J
09 F ~o R ]
. ~o ]
[ ~o R )
~o e SN
L ~o S SN
L ~ S SN
08 F S~ el SN~
. ~ .
L ~ el N
L ~ Sel SO
N
~ el ~
~ “ed
-~

0.6 &

1000 1500 2000 3000 5000 7000

Vs Gev)

FIG. 18 (color online). Electroweak corrections to wuit —
ut ™ (dotted black), uit — uii (solid cyan), uit — c¢ (long-
dashed red), uii — 17 (short-dashed blue), uit — dd (dot-dashed
green) and uii — bb (double-dot-dashed magenta) as a function
of +/3 in GeV at § = 90°. The large corrections for uii — dd
arise from the 7-channel W exchange graph.

much smaller enhancement of dé(uit — bb)/df/dé(uiz —
55)/df due to virtual top-quark effects in the b-sector.'!
Figures 16 and 17 show the corresponding results for dd —
tt, bb.

The plots discussed above include QCD and electroweak
corrections. To show the importance of electroweak cor-
rections, we show in Fig. 18, the same processes as in
Fig. 12, but instead of plotting the ratio of the partonic
cross-section to the tree-level value, we plot the ratio of the
cross-section to the value including only QCD corrections,
ie with @y, — 0. This ratio shows the additional effect
of electroweak corrections beyond the QCD corrections,
which have been computed previously. The electroweak
corrections are significant, increasing from (—4)—(—22)%
at 1 TeV to (—18)—(—32)% at 5 TeV, depending on the
process. The electroweak corrections to the angular distri-
bution are shown in Fig. 19. There are 10-30% variations
in the corrections in the range —0.8 =7/§ = —0.2 for
Js =1 TeV.

The electroweak corrections alone (defined as just dis-
cussed) for lepton pair production from wu-quark and
d-quark annihilation are shown in Figs. 20 and 21 for
different values of 7. At \/§ = 1 TeV, the corrections range
from (0.4)—(—14)%, increasing to (—13)—(—32)% at \/§ =
5 TeV. The electroweak corrections also change the angu-
lar distribution of the lepton pairs. Figures 22 and 23 show

""Even though our individual radiative corrections have cor-
rections under 1%, ratios such as dé(uii — bb)/di/dé(uii —
55)/df have much smaller errors, so that the deviation from unity
in Fig. 15 is a real effect.

2In q3 — " u~, we include tree-level electroweak exchange,
and keep aa, terms in the one-loop matching, but drop order
a?f, terms.
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FIG. 19 (color online). Electroweak corrections to wuii —
ut ™ (dotted black), uit — uii (solid cyan), uit — c¢ (long-
dashed red), uii — 17 (short-dashed blue), uii — dd (dot-dashed
green) and uii — bb (double-dot-dashed magenta) as a function
of 7/ for /§ = 1 TeV. The large corrections for uii — dd arise
from the f-channel W exchange graph.

the 7 dependence of the cross-section for different values of
§. The angular dependence is approximately independent
of §. The reason is that the dominant 7 dependence arises
from the soft anomalous dimension g, which is a function
only of the dimensionless ratio 7/§. The angular depen-
dence of the electroweak corrections differ for uii —
wrp anddd — put .

The electroweak corrections to heavy quark production
via u and d quark annihilation are shown in Figs. 24-27 for
t-quark production, and Figs. 28-31 for b-quark produc-
tion. Electroweak corrections to heavy quark production
have been computed previously [55-63]. We find the same
qualitative behavior—the electroweak corrections give a

(EW only)

A~

do(uu — ptpo)/de

06"

1000 15002000 3000 5000 7000

Vs @Gev)

FIG. 20 (color online). Electroweak corrections to wuiz —
putu~ at = —0.28, (dotted blue), 7 = —0.355 (long-dashed
red), f = —0.55 (solid black), 7 = —0.655 (double-dot-dashed
magenta) and f = —0.85 (dot-dashed cyan) as a function of V3in
GeV.
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FIG. 21 (color online). Electroweak corrections to dd —
utu~ at F= —0.28, (dotted blue), 7 = —0.355 (long-dashed
red), f = —0.55 (solid black), 7 = —0.655 (double-dot-dashed
magenta) and 7 = —0.85 (dot-dashed cyan) as a function of VS in
GeV.
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FIG. 22 (color online). Electroweak corrections to wuii —
wrp” at +/§=1TeV, (dotted blue), /5§ =2.5TeV (long-
dashed red) and J5=5TeV (solid black) as a function of 7/3.
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FIG. 23 (color online). Electroweak corrections to dd —
wtu” at /§=1TeV, (dotted blue), /5 =2.5TeV (long-
dashed red) and \/§ = 5 TeV (solid black) as a function of 7/5.
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FIG. 24 (color online). Electroweak corrections to uit — tf at
f= —0.25, (dotted blue), 7 = —0.355 (long-dashed red), 7=
—0.58 (solid black), 7 = —0.658 (double-dot-dashed magenta)
and 7 = —0.8§ (dot-dashed cyan) as a function of V5 in GeV.
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FIG. 25 (color online). Electroweak corrections to dd — (7 at
f= —0.25, (dotted blue), 7 = —0.35§5 (long-dashed red), 7 =
—0.58 (solid black), 7 = —0.655 (double-dot-dashed magenta)
and 7 = —0.8§ (dot-dashed cyan) as a function of 5 in GeV.
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FIG. 26 (color online). Electroweak corrections to uii — tf at
V3 =1 TeV, (dotted blue), V/§ =2.5 TeV (long-dashed red)
and /5 = 5 TeV (solid black) as a function of 7/3.
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FIG. 27 (color online). Electroweak corrections to dd — (7 at
V& =1 TeV, (dotted blue), +/§ =2.5 TeV (long-dashed red)
and /3 =5 TeV (solid black) as a function of 7/5.
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FIG. 28 (color online). Electroweak corrections to uit — bb at
f= —0.25, (dotted blue), 7 = —0.35§5 (long-dashed red), 7 =
—0.5§ (solid black), 7 = —0.655 (double-dot-dashed magenta)
and 7 = —0.85 (dot-dashed cyan) as a function of /5 in GeV.
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FIG. 29 (color online). Electroweak corrections to dd — bb at
f = —0.25, (dotted blue), 7 = —0.355 (long-dashed red), 7 =
—0.5§ (solid black), f = —0.655 (double-dot-dashed magenta)
and 7 = —0.8§ (dot-dashed cyan) as a function of /5 in GeV.
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FIG. 30 (color online).

Electroweak corrections to uii — bb at

V8 =1 TeV, (dotted blue), +/§ =2.5 TeV (long-dashed red)
and /3 =5 TeV (solid black) as a function of #/5.
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FIG. 31 (color online). Electroweak corrections to dd — bb at

V5 =1TeV, (dotted blue), V5 =25TeV (long-dashed red)
and /3 =5 TeV (solid black) as a function of 7/5.
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FIG. 33 (color online). Electroweak corrections to uu — uu
(dotted black), ud — ud (long-dashed red), dd — dd (solid
blue) and ud — ud, dii — dii (dot-dashed green) as a function
/5 at /5 =1 TeV.

small (~ —6%) suppression, and the QCD corrections
give a large ( ~ 50%) enhancement.

The above plots have been for s-channel processes.
There are also 7-channel parton subprocesses that contrib-
ute to dijet production. Rather than go through these in
detail, we show two illustrative plots: Fig. 32 shows the
electroweak corrections to uu — uu, ud — ud, dd — dd
and ud — ud (which is equal to dit — dii) as a function of
V5 for 90° scattering, and Fig. 33 shows the angular
dependence of the electroweak corrections at /s = 1 TeV.

There are also scattering processes involving external
gluons. For gg — ¢4, gg — gq, and gg — gg, we have
only computed the electroweak part of the correction,
which is equal to that for the Sudakov form-factor. For
the s-channel process gg — ¢4, the electroweak correction

1.00 . . T . . T

0.95

0.90

(gg — qq)

0.85
b

0.80

0.75

1000 15002000 3000

5000 7000

08 ]
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FIG. 32 (color online). Electroweak corrections to uu — uu
(dotted black), ud — ud (long-dashed red), dd — dd (solid
blue) and ud — ud, dii — dii (dot-dashed green) as a function
of \/3 in GeV at § = 90°.

Vs (Gev)

FIG. 34 (color online). Electroweak corrections to gg — ui,
c€ (dotted black), gg — dd, s5 (long-dashed red), gg — 7 (solid
blue) and gg — bb (dot-dashed green) as a function of /3 in
GeV. The electroweak corrections are independent of 7 to the
order we are working. The same plot also gives the electroweak
corrections to gg — gq and gg — g¢g, as a function of V=i
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FIG. 35 (color online). Electroweak corrections to g — Gg*
in the toy theory at 7 = —0.28, (dotted blue), 7 = —0.355 (long-
dashed red), 7 = —0.55 (solid black) as a function of 5 in GeV.
The rate is symmetric under § — 180° — 6.

5000 7000

only depends on /3, and is shown in Fig. 34. The same plot
also gives the electroweak correction to the #-channel
scattering processes gg — gq and gg — g4 as a function
of /=1, by crossing symmetry. The imaginary parts from
the logarithmic branch cuts in the s-channel amplitude do
not change the absolute value of the amplitude.

Finally, we show the electroweak corrections for squark
production. As discussed earlier, we use the electroweak
correction for squark production in the toy theory, with the
gauge coupling constant set equal to a, of the standard
model. This gives an indication of the size of electroweak
corrections to squark production in supersymmetric exten-
sions of the standard model. A more precise computation
depends on the specific scenario. The electroweak correc-
tion to squark production is shown in Fig. 35 for a squark
mass of 250 GeV. The radiative correction to the angular
distribution is shown in Fig 36. For discovering squarks,

1.10

1.05

(EW only)

______
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dé(gg — qg")/dt

FIG. 36 (color online). Electroweak corrections to ¢g — Gg*
in the toy theory at /§ = 1 TeV as a function of —7/§ at /5 =
1 TeV (black), \/§ = 2.5 TeV (long-dashed red) and \/§ =
5 TeV (dotted blue).
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the only correction which matters is that at threshold, \/§ =
2mg since the parton luminosity falls steeply with §. The
electroweak corrections give a small (5%) enhancement of
the rate for § near threshold.

IX. CONCLUSIONS

This paper extends the analysis of two previous publi-
cations [1,2], and gives detailed numerical results for
radiative corrections to high energy scattering processes
in the standard model. The electroweak and QCD correc-
tions have been computed using EFT methods, and the
Sudakov logarithms have been summed using renormal-
ization group methods. The EFT also properly sums mixed
higher order logarithms that depend on both a; and « 5, as
well as those that depend on the top-quark Yukawa cou-
pling. We have checked that our results agree with previous
results when expanded in powers of «.

The electroweak corrections can be important for LHC
processes, particularly in searches for new physics that
look for deviations from the standard model. The correc-
tions vary in size from about (0.4)—(—14)% at 1 TeV to
about (—13)—(—32)% at 5 TeV, and need to be included to
obtain LHC cross-sections with accuracies under 10%.

We have also shown that the radiative corrections to
four-quark operators are given in terms of those for two-
quark operators by summing over pairs of particles. The
relation between this and factorization, and with the two-
loop soft anomalous dimension of Aybat et al. [34] was
discussed in Sec. VI. Further work on this important topic
is in progress.
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APPENDIX A: MATCHING AT Q INCLUDING THE
CASE OF IDENTICAL PARTICLES

In this appendix, we summarize the matching computa-
tion at scale Q, including the case of identical particles. We
start with the case of an SU(N) gauge theory with left-
handed fermions in the fundamental representation.

The tree-graph in Fig. 37 gives

4
AW = ﬂ[b_l4’)’”TaU3]L[1727’M7wu1]L (A1)
s
which is written as
4
A0 =28 (108 T?)
s (A2)

Ay = [agy*v3] [y u, ],
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4 3

1 2

FIG. 37. s-channel tree level diagram.

factoring out the color structure from the spinor structure
of the graph. The left T is contracted with the color
indices of particles 4 and 3, and the right 7% with those
of particles 2 and 1.

If the initial and final particles are identical, there is also
the z-channel graph in Fig. 38 which gives

A0 — _Ama

[y y*Tuy ) [0,y T vs],

= - ‘”T—“[unﬂul]L[vzwvg]L(T“ 87T (A3)
and the relative minus sign is from Wick’s theorem. The
subscript ¢ indicates that the color structure is in the
crossed t-channel. The left 7¢ is contracted with the color
indices of particles 4 and 1, and the right 7¢ with those of
particles 2 and 3.

It is convenient to convert the r-channel graph to the
standard basis used in the paper. The #-channel color
structure can be converted to the s-channel using the
SU(N) color crossing matrix

[TeT). A®1).]=[(T*®TY) (1&1)]My.
(A4)
The color Fierz identity
1
a\i a\k — _ - k
(T) (T, 5 5 2N5]5 (AS)
can be written as
1 1
T"®T7T)=-(1®1), ——(11). A
(re7) =11, ~ s (1el. (A6

Using this and the same equation with direct and crossed
channels exchanged, one finds

4 3

1 2

FIG. 38. t-channel tree level diagram.
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_ 1 2
MN:[l_Nl 1
2 2N? N

with M% = 1. There is no color crossing matrix required
for a U(1) gauge theory. For SU(2) and SU(3),

-1 9 -1 9
M, =[ 32 1], M; =|: 43 1]' (A8)
8 2 9 3

The spinor Fierz is

(A7)

gy uy 1 [Dry*v3], = —[agy*v3] [y u ], (A9)

so Eq. (A3) is
4o [ 1

1 1
A=—A ——T4®T7T*+ 191 A10
Al Ty (2 N ) ] (A10)

Comparing with Eq. (25) in Sec. V, we see that the
s-channel contribution to the matching coefficient is

s da s
C (s, 1) = — cy, (s,1)=0 (A11)
and the ¢-channel contribution is
ErEE
(s, 1) ()

The total contribution is

s 47Ta 4
Cir = C(IL)L(Sr 1)+ C(IIZL(S 1= N

s 1 V47«
Corp = C(ZL)L(S 1+ C(szL(s 1= (E - W) p

(A13)

where the ¢-channel pieces should only be included for
identical particles.

This sets up the notation and procedure to be used for the
one-loop matching computation. The full theory diagrams
of Fig. 6 were computed in order to match the full gauge
theory onto SCET at u = Q. Dimensional regularization
was used to regulate both the infrared and ultraviolet
divergences, which are distinguished by subscripts on
1/e. The diagrams are computed with all masses set to
zero. The logarithms are expressed using the short hand
notation

—Xx
x = log—, Lyy = logf (Al14)
u
forx,y =s, t, u.

The first two vertex graphs of Fig. 6 each give a con-

tribution of

a2

1 1 2 4 2
v, = _ALL<CF - _CA)[— - - —+—L
N 2 €Epv GIR €R €R

2
—L2+3L, -8+ %] (A15)
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The next two vertex graphs in Fig. 6 each involve a triple
gauge boson coupling, and give

a? Gy 3 4
V ALL A[—_—_2+LS]

Al6
¢ 2 Leyy  €Rr ( )

The s-channel box graph in Fig. 39 with all fermions
left-handed gives

1
Vb = a’zlz(s, t)ALL[Cll ®1+ Z(Cd + CA)Ta ® Ta]
N? -1 2-2
= azlz(s, t)ALL[Wl ®1+ T ® Ta]
(A17)
where
1
Lis, ) = Ii(s, 1) =~ f(s.1)
4 1 1 1 T
L(s,)=-(——5+— L——L2+—) —L
1(s, 1) S( IR e t Tk 2 ( s/t )
_s(s+21) 2s
flo1) = (L + ) — Ly, (A18)

(s + 1)?

The s-channel crossed-box graph in Fig. 40 with all
fermions left-handed gives
) 1
VC = - a Il(s, M)ALL Cll ®1+ Z(Cd - CA)Ta ®T¢
N?—1

1
= —a?l,(s, u)A [ 1®1——T“®T"]
ali(s, u)ApL AN? N

(A19)

The gauge boson self-energy graphs combine to give a
contribution of

2
5
V, = ALL{CA[

31 5
+ = 2L |+ Tpng| —
3eqy 9 3 S] F"F[

€uv

-2l

]+—T [ ! 8+—1L]}
ng| — ——+ =L
9 ESL 3egy 9 3°°
(A20)

and the wave function graph is

4 3

FIG. 39. Box diagram.
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4 3

1 2

FIG. 40. Crossed-box diagram.

a? 1 1
= ?CFALL[ +—]

V.,
¢ 2EUV 2EIR

(A21)
The sum of all of the diagrams of Fig. 6 including the
gauge boson self-energy graphs and the wave function
graphs is

=2V, 42V, + V, + V. + V, +4V,  (A22)

total

and gives

2 2 3 2 2
AlLL =a—{2Cp|:—T——+—LS - L? +3Ls _8 +1]
N €R €R €R 6

+CA[ 2 L, +2L2-2L,L,— 31LS+7T2+§:|

+TFnF[ 0+4L i|+TFn5|:_§+lLS]

9
+
*[:Lhm—4hhm f@ﬁ]gi—gﬁ}
€IR

a?

A= L=l Ly = s | (A23)
S LeR

which are the coefficients of A; ; (T ® T%) and A;; (1 ® 1),
respectively.

The counterterms of the full theory have been used to
cancel to the 1/eyy terms and the remaining poles are all
1/ €rr infrared divergences. These infrared divergent terms
agree with the ultraviolet divergences in the effective the-
ory. The finite parts of Eq. (A23) give the high scale
matching condition at u ~ Q.

Equation (A23) gives the one-loop matching result for
fermions which are distinguishable. If the fermions are
identical, then there are also one-loop graphs in the crossed
channel, analogous to the crossed channel tree graph
Fig. 38. They are obtained by the crossing relation
Eq. (A12) used earlier for the tree-level graphs.

The one-loop matching conditions for initial and final
fermions of the same chirality (i.e. LL or RR) is Eq. (A23).
If the fermions have opposite chirality, then one can obtain
the matching coefficients using charge conjugation. The
right-handed field ¢, is replaced by the charge conjugate
field ¢ . This reverses the sign of the fermion arrow on the
fermion line, and exchanges the box and crossed box
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graphs. One can now use Eq. (A23) for the same-chirality
case, and then use charge conjugation on the final ampli-
tude to rewrite the i spinors in terms of the original ¢/
spinors. The result of this procedure is that the matching
Eq. (A23) for opposite chirality (i.e. LL or RR) is given by
Eq. (A23) with the replacement C; — —C;, C; — —Cy
and t < u.

APPENDIX B: PARAMETER INTEGRALS

The parameter integrals tabulated below arise from ver-
tex and wave function graphs where the gauge boson has
mass M, the external particle has mass m.,, and the
internal particle has mass m. They depend on the variables
w = m2,/M?* and z = m?>/M?. For any function f(w, z)
defined below, we define the corresponding function of a
single argument by f(z) = f(z, z). In the standard model,
where the only fermion with mass comparable to the gauge
boson masses is the top quark, we need the integrals f(z, z),
f(z,0) and £(0, z), with z = m?/M%,, m?>/M%, m?/M?%,.

For 4z = 1, the f(z, z) results can be analytically con-
tinued using /1 — 4z — iv/4z — 1 and tanh™ ! (/1 —47) —
itan~!(y/4z —1). In each integral, the factors of i cancel,
and the function remains real. The f(w, 0) formulas are
given by using f(w + i0*,0) for w = 1. They have an
imaginary part for large values of w.

1. Fermions

The gauge boson vertex graph leads to the integral

fF(W,Z)=2]OIdx1;xlog<1—X-i-zx—wx(l—x))'

1—x
(B1)
1 1
friz2) =2+ (E — 2) log(z) + Elog (z)
T E
z
— 2(tanh~'T = 42)2. (B2)
The function f(z) = fr(z, z) was used in CGKM2.
2
2
£p(0,2) = % + _ZZ logz — 2Lix(1 —2z)  (B3)
1—w .
friw,0)=2+2 log(l — w) — 2Li,(w) (B4)

w

The inverse propagator including the gauge boson wave
function graph is

S = pl1 + A(p?)] = me[1 + B(p?)]

The parameter integrals required are

(BS)
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a(p*/M?, m*/M?) = A(p*/M?, m* | M?)

oB
b(pz/Mzr mZ/MZ) =P28—172(P2/M2’ mZ/MQ) (B6)

0A
c(p?/M?, m*/M?) = Pza—pz(PZ/Mz, m?*/M?)
where m is the mass of the internal fermion, and the

integrals are evaluated on-shell, with p?> = m2,, where
Mgy 18 the mass of the external fermion.

alw,z) = _ZLI dx(1 — x) log(

1—x+zx—wx(1—x))
1—x

1 4. /wzx(1 — x)
bw,z) = d
v, 2) j;) o —x+zx—wx(l —x)
1 2wx(1l — x)?
,2) = dx B7
<tw. 2) fo I —x+zx—wx(l—x) (BY)
5 1 (1-29)(1—42)
a(z, z) ZE_E_Wtanh V1 —4z
1 —4z + 272
S logz
‘ (BS)
a(0,z) = — S e logz
’ (1-2 (-2 ¢
3 1 1 — w)?
alw 0) = 2= L =W — )
2w
43z —1)
b(z,z) = —4 + —=—tanh~!\/1 — 4z
) 1 — 4z
1
+ 2(1 — —) logz
: (B9)
b(0,z) =0
b(w,0)=0
2 21 —5z+572)
=3+ 2T X nh T4
c(z,2) . EN an Z
1 —3z+ 22
T lw
¢(0,2) =0 (10
2 2(1 —
cw,0)=——1 +(—2W)10g(1 —w)
w w
The function
hp(z) = a(z, z) — 2b(z, 2) + 2¢(z, 2) (B11)

was used in CGKM2 and is the wave function correction in
a vectorlike theory.

The corresponding functions for radiative corrections
due to a virtual scalar are
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alw,z) = %a(w, 2)

b(w,z) = — ib(w, 2) (B12)
éw, z) = %c(w, 7)
and
hp(z) = alz, z) — 2b(z, 2) + 2é(z, 2) (B13)

was used in CGKM2.

2. Scalars

The gauge boson vertex graph for scalar particles leads
to the integral

x) . 1—x+zx—wx(l—x)

fsw, 2) = /: dx(z; log

1—x
(B14)
fslz2) =1~ (1 - 2%) log(z) + %logzz
M Z_ 42 fanh= (VT —42)
— 2(tanh~ VT = 42)? (B15)

2
f5(0.2) =T+ = _ logz — 2Lix(1 — 2)

Fs(w,0) =1+ L=w log(1 — w) — 2Li,y(w).

Scalar wave function renormalization due to gauge bo-
son exchange gives the integral

hs(w, z) = '[01 dx{(3x2 —6x +4)
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3 1 3 1
= - + —
hs(z, 2) 3 [Zz 27 2] log(z)

z
\/1—42(1 t i (VT 30)
3 (B17)
_z(1-32) z2222-2z+1)
hs(o, Z) = 2(1 — Z)2 - (1 — 2)3 IOgZ

1

1 1
hg(w, 0) = —5—;4- (2—W)log(1 - w)

Scalar wave function renormalization due to scalar ex-
change gives:

~ _ X3
hs(w.2) = .[o dxl —x+zx — wx(l —x) (B18)
- 1 1 1 1
(e 2) = —§—g+ (5~ 52| roet
3z
+ _t h~'(VT—4z
= anh™!( 2) B19)

~ 2272 -7z + 11) Z
hS(O’ )_ 6(1 — 2)3 (1 — Z)4 IOgZ
fig(w, 0) = 0

APPENDIX C: ERRATUM

The low-scale matching for the f-quark in CGKM?2 is
incorrect. The corrected expressions are

[ECW, 1y P IWS €)1 ayt,, y* Py 1y,
+ a2[§5l{7122 Wn]’y#PL[Wr"!. f('b) ]:

— J’_ — J—
v 10g<1 x zlx_ wx(1 x)) ) v
¥ [0, W Iy PRlWE &), 1= asl, v Py, (C1)
wx(l — x)(2 — x)? } (B16)
I—x+zx —wx(l1 —x) where the matching coefficients a;_5 are given by
|
(L7 Xem
loga () = st [ (0, My ) + 2011 + =5 (S)[F(Q. My ) + 2]
a, 4 agy, 4\[(T
+ =+ +4)+2H(zy),
(477 3 47w 9)( 6 ) (1)
o o
1 = o 2 F.(0 M, +$<)F My, +2W, ]| + 2H(b!
ogay(m,) Lrsin0,y 0020y 81, F (O, Mz, m)) sy \2 [F,(Q, My, m,) 2] (b1),
o a a, 4 agy, 4\
1 = F,(Q, Mz m) +2U,] + —5— () ,0 +(—f e“‘7)(—+4)
ogas(m,) = 47rsin 6y cos?0 [gR’ <(Q Mz, m)) 2] 47sin?6y, \2 [=elws, 0)] 473 47 9J\ 6
+ 2H(tg), (C2)

and the required functions U, ,, X ,, H(ty), H(tg), and H(b}) are given in Egs. (117), (133), and (139).
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