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Electroweak Sudakov logarithms at high energy, of the form ð�=sin2�WÞnlogms=M2
Z;W , are summed

using effective theory (EFT) methods. The exponentiation of Sudakov logarithms and factorization is

discussed in the EFT formalism. Radiative corrections are computed to scattering processes in the

standard model involving an arbitrary number of external particles. The computations include nonzero

particle masses such as the t-quark mass, electroweak mixing effects which lead to unequal W and Z

masses and a massless photon, and Higgs corrections proportional to the top-quark Yukawa coupling.

The structure of the radiative corrections, and which terms are summed by the EFT renormalization

group is discussed in detail. The omitted terms are smaller than 1%. We give numerical results for the

corrections to dijet production, dilepton production, t�t production, and squark pair production. The purely

electroweak corrections are significant—about 15% at 1 TeV, increasing to 30% at 5 TeV, and they change

both the scattering rate and angular distribution. The QCD corrections (which are well-known) are also

computed with the EFT. They are much larger—about a factor of 4 at 1 TeV, increasing to a factor of 30

at 5 TeV. Mass effects are also significant; the q �q! t�t rate is enhanced relative to the light-quark

production rate by 40%.
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I. INTRODUCTION

Radiative corrections to high-energy scattering pro-
cesses have two powers of a large logarithm for each order
in perturbation theory. These logarithms, referred to as
Sudakov logarithms, lead to a breakdown of fixed-order
perturbation theory, and have to be summed to all orders.
The Large Hadron Collider (LHC) has a center-of-mass
energy of

ffiffiffi
s

p ¼ 14 TeV, and will be able to measure
collisions with a partonic center-of-mass energy of several
TeV, more than an order of magnitude larger than the
masses of the electroweak gauge bosons. Electroweak
Sudakov corrections are not small at LHC energies, since
�log2s=M2

W;Z=ð4�sin2�WÞ � 0:15 at
ffiffiffi
s

p ¼ 4 TeV. In this

paper, we will apply effective theory methods developed in
two previous publications [1,2] to processes relevant for
the LHC; in particular, we consider in detail dijet produc-
tion, dilepton pair production, t�t production, and squark
pair production. In Refs. [1,2], electroweak Sudakov cor-
rections to the matrix element of an external current were
found to be of order 10%. Electroweak corrections to LHC
cross-sections are about 4 times larger. Naively, one factor
of 2 arises because scattering processes lead to four-
particle operators, which have (approximately) twice the
radiative correction of the two-particle current operator.
The other factor of 2 arises in squaring the amplitude to
obtain the cross-section. Thus purely electroweak correc-
tions at the LHC are significant, and resummed contribu-
tions must be properly included to obtain a reliable
prediction for the cross-section. There are, of course,
QCD corrections which are even larger, and are also
included.

There is an extensive literature on electroweak Sudakov
effects [3–18]. The computations use infrared evolution
equations [5], based on an analysis of the infrared structure
of the perturbation theory amplitude and a factorization
theorem for the Sudakov form factor [19]. These summa-
tions have been checked against one-loop [10–12] and two-
loop [13–17] computations.
The Sudakov logarithm logðs=M2

W;ZÞ can be thought of

as an infrared logarithm in the electroweak theory, since it
diverges as MW;Z ! 0. By using an effective field theory

(EFT), these infrared logarithms in the original theory can
be converted to ultraviolet logarithms in the effective
theory, and summed using standard renormalization group
techniques. The effective theory needed is soft-collinear
effective theory (SCET) [20–23], which has been used to
study high energy processes in QCD [24], and to perform
Sudakov resummations arising from radiative gluon
corrections.
This paper studies high energy electroweak corrections

to processes relevant for the LHC, such as dijet production,
dilepton pair production, t�t production, and squark pair
production, and expands on our previous works [1,2],
which will be referred to as CGKM1 and CGKM2, respec-
tively. In CGKM1 we showed how to compute logs=M2

W;Z

corrections to the Sudakov form factor for massless fermi-
ons using EFT methods. In CGKM2 the results were
generalized to massive fermions such as the top quark,
including radiative corrections due to Higgs exchange.
The corrections were computed without assuming that
the Higgs and electroweak gauge bosons were degenerate
in mass. The Higgs corrections when expanded to fixed
order agree with previous results of Melles [18]. The
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electroweak corrections to processes involving four exter-
nal particles are computed in this paper. We will show that
the results can be obtained by summing the Sudakov form-
factor results of CGKM2 over all pairs of external particles
with appropriate group theoretic factors. We also show
how the results can be generalized to processes involving
an arbitrary number of external particles.

There are different methods of counting the order of
radiative corrections for the case of Sudakov corrections
depending on whether one uses the amplitude or the loga-
rithm of the amplitude. We discuss this issue in detail in
Sec. III, where we also explain precisely which terms are
summed in our computation. Roughly speaking, we use
NLL running in QCD and LL running in the electroweak
sector. The neglected terms are numerically less than 1%.

The paper is organized as follows: the outline of the
calculation and notation is given in Sec. II. The general
structure of Sudakov double-logarithms, exponentiation,
and the log-counting rules we use are given in Sec. III.
We also discuss the numerical convergence of the pertur-
bation series. The SCET formalism we use for our calcu-
lation is described in Sec. IV, including the formalism for
Wilson lines needed in multiparticle processes computed
using an analytic regulator [25,26]. The calculation of
quark scattering and production is first calculated in a toy
theory in Sec. V. Results are also given for massive quark
production and squark production. The toy theory illus-
trates the theoretical tools needed for the standard model
computation without the added complications of a chiral
gauge theory with three gauge groups and particles in
many different gauge representations. It also illustrates
how one can compute the radiative corrections for theories
with scalar particles, such as supersymmetric extensions of
the standard model. Some observations on the factorization
of amplitudes are made in Sec. VI. Radiative corrections in
the standard model are given in Sec. VII. There are a total
of 80 different amplitudes that are needed, which are
computed in this section. Detailed numerical results and
plots are given in Sec. VIII. Appendix A discusses the box
graphs needed for the high scale matching computation, as
well as the crossing matrix needed for the case of identical
particles. The parameter integrals we require in Sec. VII
are tabulated in Appendix B. The top quark computation in
CGKM2 was incorrect, and the corrected result is given in
Appendix C. The numerical values change by about 1%.

II. OUTLINE OF CALCULATION AND NOTATION

The Sudakov logarithms are summed by integrating the
renormalization group equations in SCET. The formalism
we use has been explained in detail in CGKM2. In this
section, we outline the computation of four-particle pro-
cesses; most of the results are well-known but will serve to
define the notation we use in the rest of the paper. As in
CGKM2, we first consider a toy gauge theory, a SUð2Þ
spontaneously broken gauge theory with coupling constant

�, where all gauge bosons have a common massM. This is
the theory used in many previous computations [2,6–9,17],
and allows us to compare with previous results. The results
will then be generalized to the realistic case of the standard
model. When extending the results of the toy theory to the
standard model in Sec. VII, Higgs exchange effects will be
included as in CGKM2.
We consider two-to-two scattering at center-of-mass

energies much larger than MZ. We will generically use
Q� MZ to denote the energetic scale, and work in the
regimewhere s, t, u are all of orderQ2, so that one has hard
scattering kinematics. Our results apply to high energy
scattering processes at fixed angles, such as jet production,
but not to processes such as diffractive scattering.
The scattering amplitude in the full theory arises from

processes such as gauge boson exchange, as shown in
Fig. 1(a). The exchanged particle has virtuality of order
Q2. At the scale ��Q, we make a transition to SCET,
which is an effective theory describing energetic particles
with virtualities parameterically smaller than Q2. The full
theory process is treated in SCET as scattering by a set of
local operators, as shown in the right-hand graph in Fig. 1,

iAfull ¼
X
i

Cið�Þhp4p2jOið�Þjp1p3i; (1)

where Oi are local SCET operators, and Cið�Þ are match-
ing coefficients chosen so that the right-hand side repro-
duces the full theory amplitude up to power corrections of
order M2=Q2. Power corrections can be systematically
included by keeping higher dimension operators sup-
pressed by powers of Q2. In our computation, we work to
leading order in M2=Q2. The full and EFT have the same
infrared physics but different ultraviolet behavior, and so
we must introduce a set of matching coefficients, Cið�Þ
which correct for the different short distance properties of
the two theories. The matching coefficients Cið�Þ are
computed by comparing on-shell matrix elements in the
full and effective theories at a scale ��Q. At this scale,
infrared effects such as gauge boson and particle masses
can be neglected, and so Cið�Þ can be computed using the
unbroken gauge theory with massless particles.

(a) (b)

FIG. 1. The full-theory amplitude in (a) turns into scattering by
a local operator in the effective theory, as shown in (b).
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The coefficients Cið�Þ are evolved from��Q down to
the scale ��M using the SCET anomalous dimensions.
The evolution equation for the matching coefficients in-
volves the (matrix) anomalous dimension, �ij, and is

�
d

d�
Cið�Þ ¼ �ijð�ÞCjð�Þ: (2)

The anomalous dimension depends on the ultraviolet be-
havior of SCET, and is independent of particle masses.
Like the matching at Q, it can be computed using the
unbroken theory with massless particles. In SCET, the
anomalous dimension matrix can depend on logQ2=�2,
so integrating Eq. (2) sums the Sudakov double logarithms.

Once the coefficients Cið�Þ have been evolved down to
a low scale of order M, we transition to a new effective
theory, which is also SCET, but with the massive gauge
bosons integrated out. In our toy example, this new theory
has no gauge interactions, since all the gauge bosons are
massive. In the standard model, the transition is from a
theory with SUð3Þ � SUð2Þ �Uð1Þ gauge bosons which
we call SCETEW to a new theory where the only gauge
interactions are due to gluons and photons which we call
SCET�. OperatorsOi in SCETEW are matched onto a set of

operators Ôi in SCET�. A single SUð3Þ � SUð2Þ �Uð1Þ
invariant operator Oi can break up into several operators

Ôi which are SUð3Þ �Uð1Þem invariant, but need not have
full electroweak gauge invariance. The SCETEW !
SCET� matching requires treating massive gauge bosons

in SCET, using the formalism developed in CGKM1,
CGKM2..

The operators in SCET� are evolved down to a scale set

by the experimental observables of interest, and then used
to compute the desired observables. For example, if one is
interested in jet production, then the operators would be
scaled down to � of order the typical jet invariant mass.
The operators can then be used to compute jet observables.
This paper focuses on electroweak corrections, and we will
not discuss this final step of the computation, since it is
performed as discussed in earlier work [27]. In our numeri-
cal results, we will choose this low energy scale to be
30 GeV. The electroweak corrections are not very sensitive
to this scale, since the only effects below MZ are electro-
magnetic. The QCD corrections are scale dependent; the�
dependence in the SCET running cancels the � depen-
dence of the jet matrix elements to the order of the com-
putation. We have not analyzed this in detail since we
concentrate on electroweak effects in this paper. In
Sec. VIII, only Figs. 12 and 13 have significant �
dependence.

The bulk of the paper discusses the computation of the
anomalous dimensions in SCETEW and SCET�, and the

matching between SCETEW and SCET�, which require

SCET operators involving four-particles. We introduce
the notation necessary to deal with an arbitrary number
of particles. Most of the notation is standard to SCET, and

we only discuss those features which are necessary for the
extension to r-particles.
The r energetic particles are described by SCET fields

�ni;pi labeled by momentum pi and light-cone direction ni,

i ¼ 1; . . . ; r. There are r light-cone directions ni, n
2
i ¼ 0,

where n
�
i ¼ ð1;niÞ, with ni a unit vector near the direction

of motion of particle i. We will also define r light-cone
directions �ni by reversing the sign of space components of
ni, i.e. by applying parity to ni, �n

�
i ¼ ð1;�niÞ. Note that

�ni � ni ¼ 2. The momentum of any particle can be written
as

p�i ¼ 1

2
n�i ð �ni � piÞ þ

1

2
�n�i ðni � piÞ þ p�i;?: (3)

If ni is chosen to be exactly along the direction of pi, then
p
�
i;? ¼ 0. The particles are energetic, with �ni � pi �Q. In

the case of only two energetic particles, one can work in
the Breit frame where the particles are back-to-back, with
�n1 ¼ n2 and �n2 ¼ n1, so that one only deals with two null
vectors n1 and �n1, conventionally called n and �n.
Consider a radiative correction graph to the tree-level

process Fig. 1, such as the vertex correction shown in Fig. 2
in the full theory. The gauge boson exchanged between the
two fermion lines still has virtuality of orderQ2, and so the
diagram behaves like the graph in Fig. 3, with the highly
virtual gauge boson shrunk to a point. As is well-known,
there are several different momentum regions which con-
tribute to the loop integral in Fig. 2. If the components of
the gauge boson loop momentum are of order Q, then the
gauge boson has virtuality of orderQ2. This contribution is
not present in SCET, and is included in the one-loop
matching coefficients at the scale Q. The other regions,
which are included in SCET, are when the gauge boson is
collinear to particle 1 (n1-collinear gauge boson), to parti-
cle 2 (n2-collinear gauge bosons), or is ultrasoft. The SCET
theory thus contains ni-collinear gauge bosons for each
particle direction, i ¼ 1; . . . ; r, with momenta scaling like
pi, denoted by Ani;pi with labels, as well as ultrasoft gauge

bosons denoted by A, with no labels, which couple to all
the particles, analogous to the soft and ultrasoft fields
introduced in NRQCD [28]. We work in the regime where

FIG. 2. Vertex correction to the scattering amplitude in the full
theory.
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the kinematic variables such as s, t are of orderQ2, and the
invariant masses of the final states are much smaller than
Q2. The SCET power counting parameter is � ¼ M=Q.
The formalism is valid for observables that can be con-
structed out of variables in the effective theory, for which
the reduction to effective theory vertices such as in Fig. 3 is
valid. In particular, it is valid for jet observables and top
decay observables at the LHC.

Notation: We use the abbreviations

LM ¼ log
M2

�2
; Lm ¼ log

m2

�2
; LQ ¼ log

Q2

�2

Ls ¼ log
�s
�2

; Lt ¼ log
�t
�2

; Lu ¼ log
�u
�2

Ls=t ¼ log
s

t
¼ logð�sÞ � logð�tÞ;

Lt=u ¼ log
t

u
¼ logð�tÞ � logð�uÞ;

Lut=s2 ¼ log
ut

s2
¼ logð�uÞ þ logð�tÞ � 2 logð�sÞ:

(4)

For scattering kinematics, s > 0, t < 0, and u < 0. All
logarithms arise in the form logð�x� i0þÞ for x ¼ s, t. u,
so that logð�s� i0þÞ ¼ logs� i�. Similarly, Ls=t ¼
logð�sÞ � logð�tÞ ¼ logð�s=tÞ � i�, and Lt=s ¼
logð�tÞ � logð�sÞ ¼ logð�t=sÞ þ i�. This procedure
can be used to find the branch cut of logarithms with
negative argument which occur in the subsequent
formulas.

III. EXPONENTIATION AND LOG-COUNTING

The exponentiation properties of Sudakov logarithms,
and the relation between the renormalization group results
and those obtained by exponentiating fixed order compu-
tations was discussed in CGKM2. This section summarizes
the results we need for our standard model calculation.

The scattering amplitude A has an expansion of the
form1

A ¼

1
�L2 �L �
�2L4 �2L3 �2L2 �2L �2

�3L6 . . .
..
.

0
BBBBBB@

1
CCCCCCA (5)

where � represents a gauge coupling constant (�1, �2 or
�s), M is an electroweak gauge boson mass (MW or MZ)
and Q� M is of order the center of mass energy of the
scattering process, and L ¼ logQ=M is the large logarithm.
Each entry in Eq. (4) has a numerical coefficient, and the
total amplitude is given by summing all the terms. The first
row is the tree-level result, the second row is the one-loop
contribution, etc. The �n contribution has logarithms up to
power L2n.
The logarithm of the scattering amplitude has an expan-

sion of the form [29–31]

log A ¼

�L2 �L �
�2L3 �2L2 �2L �2

�3L4 �3L3 �3L2 �3L �3

�4L5 . . .
..
.

0
BBBBBB@

1
CCCCCCA (6)

where the �n contribution now has logarithms only up to
power Lnþ1, and the amplitude has been normalized so that
its tree-level value is unity. The nth row can be computing
using perturbation theory at n loops. There are far fewer
coefficients in Eq. (6) than Eq. (5), so the form Eq. (6) for
log A is highly nontrivial. Equation (6) is referred to as the
exponentiated form of the amplitude, since A is given by
exponentiating the right-hand side. The first column gives
the leading-log (LL) series, the second gives the next-to-
leading-log (NLL) series, etc.2

The EFT computation naturally gives the scattering
amplitude in exponentiated form. In general, there are
several possible gauge invariants that contribute to the
scattering amplitude, so that A is a matrix. The EFT
computation gives the proper matrix ordering to be used
for the exponentiated form of A. The difference between
different matrix orderings can be computed using the
Baker-Cambell-Hausdorff theorem. If X and Y are matri-
ces, then

eZ ¼ eXeY

Z ¼ Xþ Y þ ½X; Y� þ 1

12
½X; ½X; Y�� þ 1

12
½Y; ½Y; X��

þ . . . (7)

where all the higher order terms are multiple commutators
of X and Y. If X and Y represent contribution to log A of
the form Eq. (6), then X and Y are of order �nX;YLmX;Y where

21

34

FIG. 3. Vertex correction in SCET.

1For multiparticle scattering, A is actually a matrix of ampli-
tudes, and matrix ordering is important. We discuss the simpler
case of the Sudakov form factor, where A is a number. This is
sufficient to study the exponentiating and log power-counting we
need. The matrix case is discussed in Sec. VI.

2The LL, NLL, etc. counting used here is different from that
used in fixed order calculations. The relation between the two is
explained in CGKM2, and after Eq. (11) in this section.
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mX;Y � nX;Y þ 1. Thus one could in principle generate

terms in log A of the form �nLm with m> nþ 1 by
reordering a matrix product using Eq. (7). This does not
occur, because, as discussed in Sec. VI, the leading
Sudakov series �nLnþ1 is proportional to the unit matrix,
and so drops out of the commutators in Eq. (7), so that the
form Eq. (6) is preserved independent of the matrix
ordering.

When L is large, fixed order perturbation theory breaks
down, and one needs to sum the logarithmically enhanced
higher order corrections. There are two interesting regimes
relevant for the standard model, in which resummation is
necessary. The first is the leading-log (LL) regime in which
�L is of order unity.3 This is the regime in TeV scale
scattering for strong interaction corrections, where �!
�s. Using L� 1=�, the various terms in Eqs. (5) are of
order

A ¼

1
1
� 1 �

1
�2

1
� 1 � �2

1
�3 . . .

..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (8)

Clearly the fixed order perturbation expansion breaks
down, and higher order terms grow with inverse powers
of �. To obtain a reliable value for the amplitude requires
summing all terms along and below the diagonal, i.e. all
terms of order unity or larger. The first superdiagonal gives
the order � correction, the second superdiagonal gives the
order �2 correction, etc.

The terms in the exponentiated form Eq. (6) are of order

log A ¼

1
� 1 �

1
� 1 � �2

1
� 1 � �2 �3

1
� . . .

..

.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (9)

The expression for log A has already achieved a partial
summation of higher order terms. The largest terms are
order 1=�, and there are no terms with higher powers of
1=�. To obtain log A requires summing the first column
(the LL series) and the second column (the NLL series).
The NNLL series gives order � corrections, the N3LL
series gives the order �2 corrections, and so on. While
the NLL series is suppressed by one power of � relative to
the LL series, it cannot be considered as a correction to the
scattering amplitude A, since we have to exponentiate
log A. If we write fn for the NnLL contribution to log A,
then

log A ¼ 1

�
f0 þ f1 þ �f2 þ . . .

¼ 1

�
½f0 þ �f1 þ �2f2 þ . . .� (10)

so that f1 and f2 are corrections to log A. However,

A ¼ exp

�
1

�
f0 þ f1 þ �f2 þ . . .

�
¼ eð1=�Þf0 � ef1 � e�f2 � . . . (11)

and expf1 can make a large change in A. Only f2 and
higher can be considered as corrections to A.
The counting discussed above is consistent with that

used in renormalization group improved perturbation the-
ory computations. In much of the literature, it is more
common to use a different counting, which we denote by
the subscript FO. The LLFO terms are those inA (not log A)
of the form �nL2n, the NLLFO terms are those in A of the
form �nL2n�1, and in general, the NkLLFO terms are those
in A of the form �nL2n�k. In terms of fixed-order counting,
Eq. (6) can be written as

log A ¼

�L2 � LLFO �L� NLLFO �� N2LLFO

�2L3 � NLLFO �2L2 � N2LLFO �2L� N3LLFO �2 � N4LLFO

�3L4 � N2LLFO �3L3 � N3LLFO �3L2 � N4LLFO �3L� N5LLFO �3 � N6LLFO

�4L5 � N3LLFO . . .

..

.

0
BBBBBBB@

1
CCCCCCCA (12)

and terms in A obtained by exponentiating are given by
combining the powers of N.

Note that with this counting, terms of a given series grow
at higher order in perturbation theory, e.g. the N3LLFO

terms are �2L, �3L3, �4L5, . . ., �nL2n�3, which in the
leading-log regime are of order �, 1, 1=�, . . ., 1=�n�3,
and grow at higher orders. One can see this clearly from
Eq. (11)—fkþ1 is of order �

k, and is small for k � 1, as are
all terms in the expansion of exp�kfkþ1. However, the
perturbation expansion for A contains the prefactor
expf0=�, and the terms ðf0=�Þn in the expansion of this3Including loop factors of 4�.
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prefactor for n > k mutiply the small terms in the expan-
sion of exp�kfkþ1 to produce terms which are larger than
unity, with a series of large contributions of alternating sign
(since f0 is negative). The problem is that the tree-level
value A ¼ 1 is not close to the true result for A; the leading
contribution expf0=� has an essential singularity at � ¼ 0
in the perturbation expansion. The second term expf1 also
is not small. Only after these two contributions are factored
out and properly exponentiated does one have a reliable
perturbation expansion. Summing all terms up to order
NkLLFO does not give a reliable calculation, because
Nkþ1LLFO terms at order �r, r � kþ 1 are larger than
unity. It is essential to properly exponentiate the f0 and f1
contributions to get a reliable expansion. Once this done,
the higher order contributions are a small correction to the
full amplitude A. The amplitude A can be very different
from the tree-level amplitude (a factor of 100 in our prob-
lem), and still be reliably computed in perturbation theory.

The second regime we consider is the leading-log-
squared (LL2) regime in which �L2 is of order unity.
This is the regime in TeV scale scattering for electroweak

corrections, with �! �1;2. Using L� 1=�1=2, the various

terms in Eq. (5) are of order

A ¼

1
1 �1=2 �
1 �1=2 � �3=2 �2

1 . . .
..
.

0
BBBBBB@

1
CCCCCCA (13)

and in Eq. (6) are of order

log A ¼

1 �1=2 �
�1=2 � �3=2 �2

� �3=2 �2 �5=2 �3

�3=2 . . .
..
.

0
BBBBBB@

1
CCCCCCA: (14)

The computation of A requires summing the first column,
the Sudakov double-logs of order �nL2n. The remaining
terms can be treated in a perturbative expansion. The

second column gives the correction of order �1=2, the third
column the order � correction, etc. The exponentiated
form log A can be computed to order unity from the �L2

term. The first correction, of order �1=2, is from the �2L3

and �L terms, the order � correction is from the �3L4,
�2L2, and � terms, etc. We will refer to these as the LL2

(leading-log-squared), NLL2, NNLL2, etc. contributions to
log A.

The scattering amplitude in the EFT computation has the
form [1,2]

A ¼ exp

�
D0ð�ðMÞÞ þD1ð�ðMÞÞ logQ

2

M2

�

� exp

�
�
Z Q

M

d�

�

�
Að�ð�ÞÞ log�

2

Q2
þ Bð�ð�ÞÞ

��
� expCð�ðQÞÞ (15)

Here expCð�ðQÞÞ is the high scale matching coefficient at
Q2, �ð�Þ ¼ Að�ð�ÞÞ logð�2=Q2Þ þ Bð�ð�ÞÞ is the SCET
anomalous dimension between Q and M, expDð�ðMÞÞ,
Dð�ðMÞÞ ¼ D0ð�ðMÞÞ þD1ð�ðMÞÞ log Q2=M2 is the
low scale matching coefficient atM, � the gauge coupling
constant (�1, �2 or �s),M is the electroweak gauge boson
mass (MW or MZ) and Q� M is of order the center of
mass energy of the scattering process. A is called the cusp
anomalous dimension, and is linear in log Q to all orders in
perturbation theory [32,33]. The low-scale matching exp D
has a single-log termD1 to all orders in perturbation theory
[1,2]. The LL series is given by the one-loop cusp anoma-
lous dimension, the NLL series by the two-loop cusp
anomalous dimension, the one-loop value of B and the
one-loop value of D1, the NNLL series by the three-loop
cusp, two-loop B and D1, and one-loop D0 and C, and the
NnLL series by the nþ 1 loop cusp, the n-loop B and D1,
and the n� 1 loop D0 and C. Equation (15) for the
standard model, which we study in this paper, sums the
QCD and electroweak corrections, including cross terms
such as �s�1;2, �sg

2
t , or �1;2g

2
t which depend on mixed

products of the Yukawa, strong and electroweak coupling
constants.

A. Absence of some terms in the Sudakov expansion

In Eq. (6), we wrote the generic expansion for log A. In
the standard model, one gets the form Eq. (5) where �n can
be a product of the gauge or Yukawa couplings. It is
interesting to note that not all possible terms are present.
The leading Sudakov series in log A of the form �nLnþ1 is
given by integrating the one-loop cusp anomalous dimen-
sion with the leading order �-function. The one-loop cusp
anomalous dimension �ð�Þ is trivially a sum over the
different gauge groups, since there can be no mixed terms
like �s�1;2 at one-loop, and because there is no Yukawa

contribution to the cusp anomalous dimension (see
CGKM1). The one-loop gauge �-function also does not
mix different gauge couplings. Thus the leading Sudakov
series is a sum of independent terms for each gauge group,
with no mixed contributions, i.e. there are terms of the
form �nsL

2n, �n1L
2n and �n2L

2n, but no terms of the form

�ns�
m
1;2L

2nþ2m for n, m � 0.

The first contribution to the cusp anomalous dimension
which involves couplings from two-different gauge groups,
and so cannot be written as the sum of contributions over
individual groups, arises at four-loop order.4 The two-loop
�-function also has contributions from two different gauge
couplings. Thus at LL, the running strong coupling �s only
gets modified by terms of the form �sð�sLÞn, but at NLL,
one can have terms of the form �sð�1;2�sLÞð�sLÞn�
ð�1;2LÞm. The ð�1;2�sLÞ factor comes from one insertion

4i.e., �ð�s; �1; �2Þ ¼ �sð�sÞ þ �1ð�1Þ þ �2ð�2Þ up to three-
loop order. We would like to thank Z. Bern and L. Dixon for
helpful correspondence on this point.
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of the two-loop �-function in the renormalization group
integration, and the other factors come from using the
leading-order �-functions for the remaining integration
of �s and �1;2.

Using the above, and noting that the matching condi-
tions and non-cusp anomalous dimensions have all allowed
terms, one finds that one can get all possible terms in
Eq. (6) for the N2LL and higher series (third column and
beyond). For the LL series (first column), all terms have a
single gauge coupling. For the NLL (second column), all
terms can occur with the exception of the �2L2 contribu-
tion, which can only have a single gauge coupling, so that
terms such as �s�1L

2 are absent.

B. Terms included in the computation

In the standard model, the radiative corrections involve
the strong coupling �s and the electroweak couplings �1;2.

For log-counting purposes, we assume that the strong
coupling is in the leading-log regime, and the electroweak
couplings are in the leading-log-squared regime. Let a be
the log-counting parameter. Then L� 1=a, �1;2 � a2,
�s � a. The top-quark Yukawa coupling is also treated
as the same order as the electroweak couplings, g2t �
�1;2 � a2. The terms in log A are given in Eq. (6), but

now each � can be either a strong coupling �s of order a or
an electroweak coupling �1;2 of order a2. The order of

terms with all couplings equal to �s are given by Eq. (9)
with �! a, those with one coupling �1;2 and the rest �s
are given by Eq. (9) with a� ð�! aÞ, etc. The leading
terms of order 1=a in log A are given by summing the
�nsL

nþ1 terms, i.e. the leading-log QCD series. The order 1
terms are given by summing the �nsL

n and �1;2�
n�1
s Lnþ1

terms, i.e. the NLL QCD series and the LL series with one
power of the electroweak coupling. The order a corrections
are given by summing the �nsL

n�1, �1;2�
n�1
s Ln and

�2
1;2�

n�2
s Lnþ1 terms, etc. In the exponentiated form

Eq. (6), one only needs to include electroweak corrections
at low orders, so that summing terms to order unity only
require one-loop electroweak computations, to order a
only requires two-loop electroweak corrections, etc. In
contrast, the unexponentiated form Eq. (5) of fixed-order
computations requires electroweak corrections of arbi-
trarily high order to sum all terms of order unity or larger.

In the numerical results of Sec. VIII, we include the one-
loop QCD, electroweak and Higgs corrections, as well as
the two-loop QCD anomalous dimension [34] and two-
loop running of the gauge coupling constants. This in-
cludes the entire one-loop correction to the scattering
amplitude, as well as all higher order corrections which
are formally of order 1=a or a0. The terms we neglect are
order a or higher in the log counting, and at least second
order in the gauge couplings constants �s;1;2. The error due
to the neglected terms is numerically less than 1% in the
rate.

In terms of the commonly used fixed-order counting, we
have included all LLFO andNLLFO terms for both the QCD
and electroweak corrections. In addition we have included
all NNLLFO of the form �nsL

2n�2 and �n�1
s �1;2L

2n�2.

Using the counting that �s � a and �1;2 � a2, and count-

ing anL2n�k as NkLLFO, we have summed all terms of
order N3LLFO. In terms of the exponentiated form
Eq. (6), which is the form given by SCET and used for
the numerics, we have included

logA ¼

p p p
p

not �2
1;2L

2 only �2
sL �

p
not �3

1;2L
3 � � �

p
not �4

1;2L
4 . . .

..

. ..
.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (16)

where
p

means all terms have been included, � means no
terms have been included. The largest terms omitted are
�2
1;2L

2, �3
sL

2, and �s�1;2L, and are estimated to be

ð�=ð�sin2�WÞ2L2 � 0:006, ð�s=�Þ3L2 � 0:003, and
�s�=ð�2sin2�WÞL� 0:003 using L� logð4 TeVÞ2=M2

Z �
7. This gives a sub-1% error. The �2

1;2L
2 term arises from

the two-loop electroweak cusp anomalous dimension, and
the �3

sL
2 term from the three-loop QCD cusp anomalous

dimension. These are known, and could be easily included
in the computation. We have checked that these change the
rates by less than 1%.

IV. SCET FORMALISM AND WILSON LINES

In SCET, n1 collinear gauge bosons can interact with
particle 1, or with the other particles in the process. The
coupling of n1-collinear gauge bosons to particle 1 is
included explicitly in the SCET Lagrangian. The
particle-gauge interactions are identical to those in the
full theory, and there is no simplification on making the
transition to SCET. However, if an n1-collinear gauge
boson interacts with a particle other than 1 (pick particle
2 for definiteness), then particle 2 becomes off-shell by an
amount of order Q, and the intermediate particle 2 propa-
gators can integrated out, giving a Wilson line interaction
in SCET. The form of these operators was derived in
Ref. [22]. We will use the definitions

Wðn2Þ
n1 ¼

�
exp

�
�g 1

�P
n2 � AAn1;qTA

��
(17)

which is the expression given in Ref. [22] with the replace-
ment n! n1, �n! n2. The gauge generators T

A are in the
representation R2 of particle 2. The subscript n1 is a
reminder that the Wilson line contains n1-collinear gauge
fields, and the superscript (n2) is a reminder that the
integration path is directed along n2, and that the gauge
generators are in the representation of particle 2.
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Wðn2Þ
n1 is a d2 � d2 matrix where d2 is the dimension of

R2, and transforms under n1-collinear gauge transforma-
tions as

½Wðn2Þ
n1 �ab ! Uð2Þ

ac ½Wðn2Þ
n1 �cb (18)

where Uð2Þ is the gauge transformation matrix in the R2

representation. One can similarly define W
ðnjÞ
ni for any pair

ij of particles, with i � j. It is convenient to treat all gauge
indices as incoming, i.e. an outgoing fermion line in the
gauge representation R will be treated as an incoming

fermion in the representation �R.
A generic gauge invariant local operator in the full

theory can be written as the gauge invariant product of
fields,

O ¼ X
faig
cðfaigÞ

Y
i

	i;aið0Þ; (19)

where 	i;ai is  i;ai for incoming particles, 	i;ai ¼  y
i;ai

for

outgoing particles, and c is a Clebsch-Gordan coefficient.

	i transforms as Ri for incoming particles, and as �Ri for
outgoing particles. The indices ai are gauge indices, and
cðfaigÞ 	 cða1; . . . ; arÞ is the Clebsch-Gordan coefficient
for combining the product of fields into a gauge singlet. For
n1-collinear gauge couplings, the field 	1 in Eq. (19) can
be replaced by the SCET field �n1;p1

, and the other fields

are replaced by Wilson lines. Collinear gauge invariance
implies that the operator Eq. (19) in the effective theory is

O ¼ X
faig
cðfaigÞ

Y
i

½Wð �niÞy
ni �ni;pi�ai ; (20)

which is gauge invariant under collinear gauge transforma-
tions. The sum of all graphs in the full theory with
n1-collinear gauge emission off any of the particles
1; . . . ; r in the full theory operator Eq. (19) is equivalent
to n1-collinear emission from �n1;p1

, or from the Wilson

line W
�n1
n1 [22] in the operator Eq. (20).

The structure Eq. (20) is nontrivial, and requires com-
bining terms with gluon emission from all the particles,
and using the fact that the operator is a gauge singlet. The
Feynman rules for multiple gauge emission of n1-collinear
gluons from particle i gives factors of the form


 � ni
k � ni : (21)

The n1-collinear gauge field has momentum k and polar-
ization 
 in the n1-direction at leading order in SCET
power counting, so the above expression can be replaced
by


 � ni
k � ni !

n1 � ni
n1 � ni


 � �n1
k � �n1 ¼


 � �n1
k � �n1 (22)

using the leading (first) term in Eq. (3) for the decompo-
sition of both k and 
. This expression is independent of ni.
This means that one can change the direction ni, provided
ni � n1 remains leading order in the power counting, i.e. ni
does not become almost parallel to n1. One can thus move
all the ni labels so that they all point in a common direc-
tion, which can conveniently be chosen to be �n1. This
choice only makes reference to particle 1, and has no
information about the directions of the other particles.
This is the basis for soft-collinear factorization.
In this paper, we will use the analytic regulator [25,26]

used in CGKM1, CGKM2. With analytic regularization,
Eq. (22) becomes


 � ni
ðk � niÞ1þ� ! n1 � ni

ðn1 � niÞ1þ�

 � �n1

ðk � �n1Þ1þ�

¼ 1

ðn1 � niÞ�

 � �n1

ðk � �n1Þ1þ�
(23)

and the ni dependence no longer cancels. Thus the identi-
ties which allowed one to combine all the n1-collinear
emissions into a single Wilson line in the �n1 direction no
longer hold. This is a big drawback of the analytic regula-
tor. It is possible to use other regulators which do not have
this problem [35], but then there are other subtleties which
must be addressed, related to zero-bin subtractions [36],
which are necessary for soft-collinear factorization [37–
40]. With the analytic regulator, n1-colllinear interactions
cannot be encoded in a single Wilson line in the �n1 direc-
tion; instead one needs to include Wilson lines along the
directions of all the other particles. In the scattering case,
this means that n1-collinear interactions at one loop are
given graphically by Fig. 4. This is equivalent to evaluating
the collinear graphs in the full theory using the method of
regions with an analytic regulator. We have followed this

1 2

34

1 2

34

1 2

34

FIG. 4. Graphical representation of n1-collinear interactions in SCET.
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procedure because it allows for a direct comparison of our
intermediate results with previous work.

V. SUDAKOV CORRECTIONS TO SCATTERING
PROCESSES

In this section we use the toy model to calculate the
amplitudes for qq! qq, q �q! q �q, q �q! t�t, and q �q!
~q~qc, where ~q denotes a colored scalar particle such as a
squark. We will call the gauge symmetry color and the
particles quarks. The corresponding results in the standard
model are given in Sec. VII.

An interesting result is that the SCET S-matrix elements
are given by summing the results for the two-particle case,
the on-shell Sudakov form-factor given in CGKM1,
CGKM2, over all pairs of particles. We first compute the
q �q! q �q amplitude explicitly by summing the diagrams,
and show how the answer can be written as a sum over two-
particle S-matrix elements. The general proof is given in
Sec. VE.

In this section, as in CGKM2 we use the decomposition

C ¼ Cð0Þ þ �

4�
Cð1Þ . . . (24)

of coefficients and anomalous dimensions into their tree-
level and one-loop values. In the next section on the
standard model, we will explicitly include the �=ð4�Þ
factor in the definition of Cð1Þ, since there are several
different gauge coupling constants.

A. Light quark production

We start with light quark pair-production, q �q! q0 �q0.
The kinematics for q �q! q0 �q0 is illustrated schematically
in Fig. 5 where the incoming and outgoing particles have
momenta p1, p2 and p3, p4, respectively, and we work in
the limit s, t, u� M2 � m2

i . The external particles are all
on-shell (p2

i ¼ m2
i ). The Mandelstam variables are s ¼

ðp1 þ p2Þ2, t ¼ ðp4 � p1Þ2 and u ¼ ðp3 � p1Þ2. We as-
sume q and q0 are different flavors, so that only the
s-channel annihilation graphs contribute. Identical flavors
are discussed in Appendix A.

At the scale ��Q the full theory is matched onto
SCET, and the full theory amplitude at leading order in
the power counting is expressed as a sum of local operator
matrix elements, as in Eq. (1). The gauge-invariant opera-

tors in the effective theory are

O1LR
L
R
¼ ½ ��4W4�ta��PL

R
½Wy

3 �3�½ ��2W2�ta��PL
R
½Wy

1 �1�
O2LR

L
R
¼ ½ ��4W4���PL

R
½Wy

3 �3�½ ��2W2���PL
R
½Wy

1 �1�: (25)

There are only two operators which contribute because the
fermions are in the fundamental representation of the
gauge group. For other representations, there can be
more invariants which contribute, e.g., for isospin one
fermions, there are three invariant amplitudes in the I ¼
0, 1, 2 channels.
At tree-level,

Cð0Þ
1LL ¼ Cð0Þ

1LR ¼ Cð0Þ
1RL ¼ Cð0Þ

1RR ¼ 4��

s

Cð0Þ
2LL ¼ Cð0Þ

2LR ¼ Cð0Þ
2RL ¼ Cð0Þ

2RR ¼ 0

(26)

from the graph in Fig. 1.
The one-loop corrections in the full theory are given by

the diagrams in Fig. 6, as well as vacuum polarization and
wave function graphs. The one-loop corrections in the
effective theory are given by computing radiative correc-
tions to the matrix elements of the 4 fermi operators Oi

with tree-level coefficients, and the one-loop matching

corrections Cð1Þ
i are given by the difference of the two

computations. The graphs in the effective theory vanish
on-shell in dimensional regularization, so the one-loop
matching coefficients are given by the full theory graphs
computed on-shell [32,41,42]. In the full theory matching
computation, infrared scales such as the gauge boson mass
M and fermion massesmi, which are all much smaller than
Q, can be set to zero. Thus the coefficients Ci are given by
the graphs in Fig. 6 with all masses set to zero. The
computation is summarized in Appendix A, and agrees
with previous calculations [9,43,44]. The one-loop coeffi-
cients are (removing an overall �=ð4�Þ, see Eq. (24)):

Cð1Þ
1LL ¼ Cð1Þ

1RR ¼ 4��

s

�
Xðs; tÞ � ðCd þ CAÞ

4
~fðs; tÞ

�

Cð1Þ
2LL ¼ Cð1Þ

2RR ¼ � 4��

s
~fðs; tÞC1

Cð1Þ
1LR ¼ Cð1Þ

1RL ¼ 4��

s

�
Xðs; uÞ þ ðCd � CAÞ

4
~fðs; uÞ

�

Cð1Þ
2LR ¼ Cð1Þ

2RL ¼ 4��

s
~fðs; uÞC1 (27)

where

p2

p3

p1

p4

FIG. 5. Pair production qðp1Þ þ �qðp2Þ ! q0ðp4Þ þ �q0ðp3Þ.
Time runs vertically.
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Xðs; tÞ ¼ 2CF

�
�L2s þ 3Ls þ �2

6
� 8

�

þ CA

�
2L2s � 2L�s�tLs � 11

3
Ls þ �2 þ 85

9

�

þ
�
4

3
Ls � 20

9

�
TFnF þ

�
1

3
Ls � 8

9

�
TFns

~fðs; tÞ ¼ � 2s

sþ t
Lt=s þ sðsþ 2tÞ

ðsþ tÞ2 ðL2t=s þ �2Þ
þ 4LsLt=ð�s�tÞ: (28)

Here nF and nS are the number of Dirac fermions and
complex scalars. The group theory invariantsCd andC1 are
defined in Eq. (40) and (41) below. The high scale match-
ing is the only piece of the computation which cannot be
obtained by summing the Sudakov form-factor results over
all pairs of particles.

If the initial and final quark flavors are identical, then
there are also t-channel graphs which contribute to the
matching (see Appendix A).

The next step is to compute the anomalous dimension in
SCET between Q and M, and the matching corrections in
SCETatM when the gauge bosons are integrated out. Both
results can be obtained simultaneously by computing the
on-shell matrix elements of Oi in SCET. The finite part of
the graph gives the matching correction, and the infinite
part gives the anomalous dimension. The SCET diagrams
are ni-collinear diagrams and ultrasoft graphs. As in
CGKM1, CGKM2 the ultrasoft graphs vanish on-shell
with the analytic regulator, so the only graphs which
contribute are the collinear graphs.
The one-loop ni-sector graphs are given in Fig. 4.

Particle i is given by the field �i, and the remaining
particles are represented by Wilson lines. The computa-
tions are done using the same analytic regularization
method used in CGKM1, CGKM2. The regulated
ni-collinear propagator denominator is

1

ðpi þ kÞ2 ! ð��2i Þ�i
½ðpi þ kÞ2�1þ�i : (29)

The propagator denominator for particle j interacting with
ni-collinear gluons becomes

1

ðpj þ kÞ2 ! ð��2j Þ�j
½ðpj þ kÞ2�1þ�j !

ð��2j Þ�j
½2pj � k�1þ�j

: (30)

At leading order in SCET power counting, pi and k are
ni-collinear, so p�i ¼ n�i ð �ni � piÞ=2, k� ¼ n�i ð �ni � kÞ=2
and

1

ðpj þ kÞ2 ! ð��2j Þ�j
½12 ð �nj � pjÞðnj � niÞ�1þ�j

: (31)

Thus the analytic continuation of the Wilson line propa-
gator arising from particle j is

1

�ni � k ! ð��ðjÞi Þ�j
ð �ni � kÞ1þ�j

; �ðjÞi ¼ �2j

½12 ð �nj � pjÞðnj � niÞ�
:

(32)

The key observation is that the �j regulator parameter

when particle j is the nj-collinear field �nj;pj is related to

the �ðjÞi regulator parameter when particle j interacts with
ni-collinear gluons as a Wilson line. This feature was
already studied in CGKM1, CGKM2 and leads to a calcu-
lable logarithmic violation of factorization, as discussed
further in Sec. VI.
The ni collinear graph with the particle jWilson line is

then identical to the n1 collinear graph interacting with the
n2 Wilson line result in CGKM1, CGKM2 with the re-
placement �1 ! �i for the collinear particle regulator, and

�þ2 ! �ðjÞi for the Wilson line regulator. The regulator

variables �i, �
ðjÞ
i only appear in logarithms, and �ðjÞi only

appears in the boost-invariant combination

FIG. 6. One loop corrections to pair production in the full
theory. Wave function and vacuum polarization graphs are not
shown.
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�ðjÞi
�ni � pi

¼ �2j
1
2 ð �nj � pjÞðnj � niÞð �ni � piÞ

¼ �2j
2pi � pj : (33)

In the Sudakov form-factor results in CGKM1, CGKM2
2p1 � p2 ¼ Q2, and Eq. (33) was the origin of the logQ2

terms in SCET. Here 2pi � pj depends on the kinematic

variables, and gives a dependence on logs, logt and logu.
In the Sudakov form-factor computation, there was a

nontrivial cancellation between the n-collinear and
�n-collinear graphs, so that the sum of the graphs was
independent of the analytic regulator parameters �i.
There is a similar cancellation here. There are two graphs
which are related to each other: graphs with gauge boson
exchange between i and j in which i is ni-collinear and j is
a Wilson line, and in which i is a Wilson line and j is
nj-collinear (see Fig. 7). These graphs have identical color

factors. The regulator cancellation depended on two iden-
tities given in Appendix A in CGKM2. The corresponding
relations here are

�
log

�ðjÞi
�ni � pi þ log

�2i
�2

�
�
�
log

�ðiÞj
�nj � pj þ log

�2j

�2

�

¼ log
2�2i �

2
j

�2ð �nj � pjÞð �ni � piÞðni � njÞ
� ði$ jÞ ¼ 0

�
log

�ðjÞi
�ni � pi � log

�2i
�2

�
þ
�
log

�ðiÞj
�nj � pj � log

�2j

�2

�

¼ log
2�2�2j

�2i ð �nj � pjÞð �ni � piÞðni � njÞ
þ ði$ jÞ

¼ 2 log
�2

ð �nj � pjÞð �ni � piÞ 12 ðni � njÞ
¼ 2 log

�2

2pi � pj
(34)

which follow from Eq. (32), so the � cancellation continues
to hold. Thus the collinear graphs are obtained by the
collinear graphs in the Sudakov form-factor case with the
replacement Q2 ! 2pi � pj, and summing over pairs with

the appropriate group theory factor. The ultrasoft graphs
vanish on-shell, as in the Sudakov form-factor case, so the
complete answer is given by adding the wave function
renormalization graphs to the collinear contribution.

The terms which depend on logðpi � pjÞ arise from the

regularization of Wilson lines using the analytic regulator.
They depend on the momenta of both particles, so it is clear
that in ni-collinear graphs, it is not possible to combine the
Wilson lines for the other particles into a single Wilson
line, as that would lose information on the pj dependence.

Note that the r-particle result obtained by combining the
Sudakov form-factors over all pairs of particles is valid
even if all the momenta flowing into the operator do not
add to zero, i.e. even if there is some momentum inserted at
the vertex. In the case of 2-particle scattering, we are
interested in operator insertions at zero momentum, and
the six pi � pj invariants can be written in terms of two

independent Mandelstam variables.
The SCET graphs do not change the Lorentz or chiral

structure of the operators, and only cause rearrangements
of the gauge indices. Thus O1LL can mix only with O2LL.
Furthermore, the mixing matrix for O1hh0 , O2hh0 is inde-
pendent of the chirality labels h, h0. To keep track of the
gauge indices, it is convenient to denote O1hh0 , O2hh0 by

O 1 ¼ ta 
 ta; O2 ¼ 1 
 1: (35)

The SCET graphs are then a 2� 2 matrix in O1;2 space,

and a unit matrix in chirality ðh; h0Þ space.
The sum of the n-collinear and �n-collinear vertex graphs

with the gauge factor CF omitted is

�ðQ2Þ ¼ �

4�

�
2


2
þ 4



� 2



LQ � L2M þ 2LMLQ

� 4LM þ 4� 5�2

6

�
: (36)

The wave function renormalization, omitting group theory
factors is5

�Z�1 ¼ �

4�

�
1



� LM � 1

2

�
(37)

The sum of graphs in Fig. 7 which connect particles 1
and 2 is thus

�12ð�2p1 � p2Þtbtatb 
 ta (38)

if the operator at the vertex is O1, and

�12ð�2p1 � p2Þtbtb 
 1 (39)

if the operator at the vertex is O2. The minus signs relative
to Eq. (36) arise because both momenta p1;2 are incoming,

whereas in Eq. (36) computed in CGKM2, p1 was incom-
ing, p2 was outgoing, andQ

2 ¼ 2p1 � p2. It is useful to add
subscripts to � denoting the particles involved in the
diagram.

i j i j

FIG. 7. Collinear graphs involving particles i and j which are
related.

5These are Eq. (43) with the wave function correction removed
and Eq. (40) of CGKM2. Since we work on-shell, there is no
need to introduce infrared modes whose virtuality is governed by
the off-shellness [45].
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The group theory factors can be simplified using

tata ¼ CF1 tatbta ¼
�
CF � 1

2
CA

�
tb

tatb 
 tatb ¼ C11 
 1þ 1

4
ðCd � CAÞta 
 ta

tatb 
 tbta ¼ C11 
 1þ 1

4
ðCd þ CAÞta 
 ta

(40)

in the notation of Ref. [46]. For an SUðNÞ gauge theory,

CA ¼ N; CF ¼ N2 � 1

2N
;

Cd ¼ N2 � 4

N
; C1 ¼ N2 � 1

4N2
;

(41)

so CF ¼ 4=3, CA ¼ 3, Cd ¼ 5=3, C1 ¼ 2=9 for SUð3Þ and
CF ¼ 3=4, CA ¼ 2, Cd ¼ 0, C1 ¼ 3=16 for SUð2Þ.
The matrix element of O1 is

�
CF� 1

2
CA

�
ðta
 taÞ�12ð�2p1 �p2Þþ

�
CF� 1

2
CA

�
ðta
 taÞ�34ð�2p3 �p4Þþ

�
C11
 1þ 1

4
ðCdþCAÞta
 ta

�
�14ð2p1 �p4Þ

þ
�
C11
 1þ 1

4
ðCdþCAÞta
 ta

�
�23ð2p2 �p3Þ�

�
C11
 1þ 1

4
ðCd�CAÞta
 ta

�
�13ð2p1 �p3Þ

�
�
C11
 1þ 1

4
ðCd�CAÞta
 ta

�
�24ð2p2 �p4Þ� 1

2
ð�Z�1

1 þ�Z�1
2 þ�Z�1

3 þ�Z�1
4 ÞCFðta
 taÞ: (42)

The terms are given by summing over the six possible choices of particle pairs, and including the wave function
contribution for each particle. The terms from gluon exchange between 13 or 24 have minus signs, from charge

conjugation, since both lines have color flowing into the vertex.6

For O2, one has instead

CFð1 
 1Þ�12ð�2p1 � p2Þ þ CFð1 
 1Þ�34ð2p3 � p4Þ þ ðta 
 taÞ�14ð�2p1 � p4Þ þ ðta 
 taÞ�23ð2p2 � p3Þ
� ðta 
 taÞ�13ð2p1 � p3Þ � ðta 
 taÞ�24ð2p2 � p4Þ � 1

2
ð�Z�1

1 þ �Z�1
2 þ �Z�1

3 þ �Z�1
4 ÞCFð1 
 1Þ: (43)

Equations. (42) and (43) can be written in matrix form, by defining the matrix

R ¼ ~R1þRS

~R ¼ CF

�
�12ð�2p1 � p2Þ � 1

2
�Z�1

1 � 1

2
�Z�1

2

�
þ CF

�
�34ð�2p3 � p4Þ � 1

2
�Z�1

3 � 1

2
�Z�1

4

�

RS ¼
1
4Cdr1 þ 1

4CAr2 r1

C1r1 0

" #

r1 ¼ �14ð2p1 � p4Þ þ �23ð2p2 � p3Þ � �13ð2p1 � p3Þ � �24ð2p2 � p4Þ
r2 ¼ �14ð2p1 � p4Þ þ �23ð2p2 � p3Þ þ �13ð2p1 � p3Þ þ �24ð2p2 � p4Þ � 2�12ð�2p1 � p2Þ � 2�34ð�2p3 � p4Þ:

(44)

Equation (44) has an interesting structure—It has a diagonal piece ~R, which is the sum of the on-shell Sudakov form factor
graphs (including wave function factors) for 1 ! 2 and 3 ! 4, and a term RS, which depends on the amplitude linear
combinations r1 and r2. RS contains differences of �ij. One can include wave function factors in RS by the replacement

�ij ! Sij 	 �ij � 1

2
�Z�1

i � 1

2
�Z�1

j (45)

without changing r1 and r2. We will thus use Eq. (44) in the form

R ¼ ~R1þRS

~R ¼ CFS12ð�2p1 � p2Þ þ CFS34ð�2p3 � p4Þ

RS ¼
1
4Cdr1 þ 1

4CAr2 r1

C1r1 0

" #

r1 ¼ S14ð2p1 � p4Þ þ S23ð2p2 � p3Þ � S13ð2p1 � p3Þ � S24ð2p2 � p4Þ
r2 ¼ S14ð2p1 � p4Þ þ S23ð2p2 � p3Þ þ S13ð2p1 � p3Þ þ S24ð2p2 � p4Þ � 2S12ð�2p1 � p2Þ � 2S34ð�2p3 � p4Þ (46)

6Equation (42) is true even if there is nonzero momentum inserted at the operator vertex, so that p1 þ p2 � p3 þ p4.
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where S is the on-shell Sudakov form-factor including
wave function corrections, i.e. an S-matrix element, with-
out any color factors. The r1 and r2 terms contain differ-
ences of Sudakov form factors, and so do not contain
Sudakov double-logs, which are universal, do not depend
on particle type, and cancel in the difference.

The on-shell matrix element of the effective Lagrangian
CiOi including wave function factors is

hO1ið0Þ hO2ið0Þ
h i

ð1þRÞ C1

C2

� �
(47)

where Ci are the operator coefficients andOð0Þ are the tree-
level matrix elements.

Equations. (46) and (47) are master equations we will
use for our scattering computations. For example, to com-
pute the matching correction when the massive gauge
bosons are integrated out, we use

~C1
~C2

" #
¼ ð1þ RÞ C1

C2

� �
(48)

where R is the finite part of R, and C and ~C are the
coefficients in the high-energy theory with gauge bosons
and the low-energy theory without gauge bosons, respec-
tively. Similarly, the anomalous dimension matrix is

�
d

d�

C1

C2

� �
¼ �

C1

C2

� �
(49)

where � is the anomalous dimension computed using the
1=
 terms in R, i.e. �2 times the 1=
 terms in R at one
loop. The matching conditions and anomalous dimensions
are given by Eq. (46) with Sij replaced by the correspond-

ing Sudakov form-factor matching correction and anoma-
lous dimension computed in CGKM2 without any
additional Feynman graph computations.

We now apply the master formula to the SCET anoma-
lous dimension for q �q! q0 �q0 in the region Q>�>M,
and to the matching condition at M. The anomalous di-
mension is given using Eq. (46) with S replaced by the
SCET anomalous dimension for the Sudakov form factor,

i.e. by �ð1Þ for the bifermion operators in Table I of
CGKM2, S ! 4LQ � 6. The anomalous dimension matrix

is

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ 2CF

�
4 log

�s
�2

� 6

�

�ð1Þ
S ¼ 2Cd log

t
uþ 2CA log

ut
s2

8 log tu

8C1 log
t
u 0

" # (50)

or using the notation defined in Eq. (4),

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ 2CFð4Ls � 6Þ

�ð1Þ
S ¼ 2CdLt=u þ 2CALut=s2 8Lt=u

8C1Lt=u 0

" #
:

(51)

All logarithms of negative argument are defined by the
branch logð�s� i0þÞ, and logðut=s2Þ 	 logð�u�
i0þÞ þ logð�t� i0þÞ � 2 logð�s� i0þÞ, etc. as dis-
cussed earlier. The off-diagonal terms vanish at t ¼ u,
i.e. when the center-of-mass scattering angle is �=2. �S
is called the soft anomalous dimension. We will see ex-
plicitly that the soft anomalous dimension and the soft-
matching RS are universal, and independent of the external
states, i.e. they are the same for fermions and scalars, and
independent of the particle masses. In our computation
using the analytic regulator, �S arises from collinear
graphs; the ultrasoft graphs all vanish.
The anomalous dimension ~� is twice the anomalous

dimension for the Sudakov form-factor, and contains a
logð�s=�2Þ term which produces double logs in the am-
plitude on integration. The soft anomalous dimension �S
does not contain any parameterically large logarithms,
since s, t, u are all formally of order Q2.
The matching matrix is given by replacing S by the

matching Dð1Þ for bifermion operators in Table I of
CGKM2, S ! �L2M þ 2LMLQ � 3LM þ 9=2� 5�2=6,

Rð1Þ ¼ ~Rð1Þ1þ Rð1Þ
S ;

~Rð1Þ ¼ 2CF

�
�L2M þ 2LMLs � 3LM þ 9

2
� 5�2

6

�
;

Rð1Þ
S ¼ LM

CdLt=u þ CALut=s2 4Lt=u
4C1Lt=u 0

� �
:

(52)

Note that there is a nontrivial low-scale matching correc-

tion. At � ¼ M, LM ¼ 0, and Rð1Þ
S vanishes. This is an

accident in the toy model at one-loop. In the standard

model, Rð1Þ
S does not vanish, and has terms of the form

logM2
W=M

2
Z.

This completes the computation for quark production.
The matching and anomalous dimensions are combined to
give the final amplitude in the usual way, and give the
exponentiated SCET form for the Sudakov logarithms
discussed in CGKM2. The matrices �S and RS are univer-
sal, and have the same values for heavy quark production
and for squark production, as we see explicitly below.

B. Light quark scattering

The next process we consider is light quark production,
qðp1Þ þ qðp3Þ ! q0ðp2Þ þ q0ðp4Þ (see Fig. 8) with q � q0,
which is related to quark scattering in Fig. 5 by crossing
symmetry, with the replacements p2 ! �p2, p3 ! �p3.
The Mandelstam variables for quark scattering are s ¼
ðp1 þ p3Þ2, t ¼ ðp2 � p1Þ2 and u ¼ ðp4 � p1Þ2, so the
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amplitudes are obtained from those in the previous section
by the replacement s! t, t! u, u! s. Identical flavors
are discussed in Appendix A.

The anomalous dimension matrix is

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ 2CFð4Lt � 6Þ

�ð1Þ
S ¼ 2CdLu=s þ 2CALus=t2 8Lu=s

8C1Lu=s 0

" # (53)

and the matching matrix is

Rð1Þ ¼ ~Rð1Þ1þ Rð1Þ
S

~Rð1Þ ¼ 2CF

�
�L2M þ 2LMLt � 3LM þ 9

2
� 5�2

6

�

Rð1Þ
S ¼ LM

CdLu=s þ CALus=t2 4Lu=s
4C1Lu=s 0

� �
:

(54)

C. Heavy quark production

Consider the annihilation of a light-quark antiquark pair
to produce a heavy quark-antiquark pair, suggestively
labeled t�t, via the process qðp1Þ þ �qðp2Þ ! tðp4Þ þ
�tðp3Þ. The kinematics and Mandelstam variables are the
same as Sec. VA; the only difference is that the final
particles have mass m which is not negligible compared
with the gauge boson massM, but is much smaller than Q,
so that s, t, u�Q2 � m2, M2.

The first step is to match the full theory onto SCET at
��Q. The fields �n3 and �n4 are now taken to have mass

m [47,48]. The matching condition at Q can be computed
by from the full theory graphs with all scales much smaller
than Q set to zero, so the matching at Q is the same as for
the light-quark case.

The second step is to run SCEToperators in the effective
theory from Q to m. The SCET anomalous dimension is
independent of low mass scales and again gives the same
result as in the massless case, Eq. (53).

The third step is to switch at the scale ��m to an
effective theory where the heavy quarks are described by
heavy quark effective theory (HQET) fields tv3 and tv4
[49]. The four-fermi SCET operators of Eq. (25) are
matched onto the SCET/HQET operators:

O1 ! O0
1 ¼ �tv4 t

a��PL
R
tv3½ ��n2Wn2�ta��PL

R
½Wy

n1�n1�
O2 ! O0

2 ¼ �tv4�
�PL

R
tv3½ ��n2Wn2���PL

R
½Wy

n1�n1�: (55)

The HQET fields do not transform under a collinear gauge
transformation; therefore, there is no factor analogous to

the Wy
n Wilson line that goes along with �n. The heavy

fields tvi still couple to ultrasoft gauge bosons.

The matching condition at��m is given by computing
the difference of the graphs in the theory where particles 3
and 4 are described by SCET fields, and the same graphs
computed when the two particles are described by HQET
fields. Particles 1 and 2 continue to be described by SCET
fields. The group theory and kinematic factors for each pair
of particles remain unchanged as we switch from SCET to
HQET, so the matching condition is given by Eqs. (46)
with each � being replaced by the difference of the corre-
sponding graph in the two theories. Thus one can use

S 12!0; S34!Rhh; SijðxÞ!Rhl ij¼13;14;23;24

(56)

where Rhh is the matrix element for the Sudakov form-
factor in going from two SCET to two HQET fields, and
Rhl is the matrix element for the transition from two SCET
fields to one SCET and one HQET field, dropping any
overall group theory factors. The matching coefficients
can be read off from Eq. (80) and Eq. (85) in CGKM2

S12!0; S34!RþT; SijðxÞ!R ij¼13;14;23;24

R¼T¼1

2
L2m�1

2
Lmþ�

2

12
þ2; (57)

where we use the entries from the first rows of Tables II and
IV of CGKM2. Thus

R ð1Þ ¼ ~Rð1Þ1þRð1Þ
S ;

~Rð1Þ ¼ CFðRþ TÞ ¼ CF

�
L2m � Lm þ �2

6
þ 4

�
;

Rð1Þ
S ¼ 0;

(58)

using Eq. (46) for the matching. Rð1Þ
S vanishes since r1 ¼

2R� 2R ¼ 0 and r2 ¼ 4R� 2ðRþ TÞ ¼ 0.
The anomalous dimension below m is given by using

Eq. (46) with the replacement analogous to Eq. (57) for the
anomalous dimension,

S12ð�2p1 � p2Þ ! �1ð�sÞ
S34ð�2p3 � p4Þ ! �3ð�sÞ
S13ð2p1 � p3Þ ! �2ð�uÞ
S14ð2p1 � p4Þ ! �2ð�tÞ
S23ð2p2 � p3Þ ! �2ð�tÞ
S24ð2p2 � p4Þ ! �2ð�uÞ

(59)

1

2

3

4

FIG. 8. Quark scattering qðp1Þ þ q0ðp3Þ ! qðp2Þ þ q0ðp4Þ.
Time runs vertically.
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where �1;2;3ðQ2Þ are the entries from the first rows of

Tables I, II and IV of CGKM2. They are the anomalous
dimensions for ll, hl and hh currents, respectively. The
anomalous dimension matrix in the HQET/SCET theory is

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ CFð�1ð�sÞ þ �3ð�sÞÞ
r1 ! 2�2ð�tÞ � 2�2ð�uÞ
r2 ! 2�2ð�tÞ þ 2�2ð�uÞ � 2�1ð�sÞ � 2�3ð�sÞ

�1ðQ2Þ ¼ 4LQ � 6

�2ðQ2Þ ¼ 4LQ � 2Lm � 5

�3ðQ2Þ ¼ 4½wrðwÞ � 1�

rðwÞ ¼ logðwþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p

w ¼ 1þ Q2

2m2

(60)

Since we are working in the limit Q2 � m2, wrðwÞ � 1 !
logð2wÞ � 1 ! logðQ2=m2Þ � 1 up to power corrections.
This gives

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ CFð8Ls � 4Lm � 10Þ

�ð1Þ
S ¼ 2CdLt=u þ 2CALut=s2 8Lt=u

8C1Lt=u 0

" #
:

(61)

The last step is to integrate out the gauge boson at ��
M and transition to the theory with no gauge bosons. The
matching is given by Eq. (46) where Sij are replaced by the
corresponding results for the Sudakov form-factor match-
ing,

S12ð�2p1 �p2Þ !Dð�sÞ S34ð�2p3 �p4Þ !Uð�sÞ
S13ð2p1 �p3Þ ! Sð�uÞ S14ð2p1 �p4Þ ! Sð�tÞ
S23ð2p2 �p3Þ ! Sð�tÞ S24ð2p2 �p4Þ ! Sð�uÞ

(62)

where D, S, U are given in the first rows of Tables I, II and
IV, respectively, of CGKM2. The matching is

Rð1Þ ¼ ~Rð1Þ1þ Rð1Þ
S

~Rð1Þ ¼ CFðDð�sÞ þUð�sÞÞ
r1 ! 2Sð�tÞ � 2Sð�uÞ
r2 ! 2Sð�tÞ þ 2Sð�uÞ � 2Dð�sÞ � 2Uð�sÞ

(63)

so that

Rð1Þ ¼ ~Rð1Þ1þ Rð1Þ
S

~Rð1Þ ¼ CF

�
�L2M þ 4LMLs � 2LMLm � 5LM þ 9

2
� 5�2

6

�

Rð1Þ
S ¼ LM

CdLt=u þ CALut=s2 4Lt=u

4C1Lt=u 0

" #
: (64)

In summary, the computation proceeds as follows:
(a) Match at �� ffiffiffi

s
p

using Eq. (25) and (27) (b) Run
between

ffiffiffi
s

p
and m using Eq. (50) (c) Matching at m using

Eq. (58) (d) Run between m and M using Eq. (61)
(e) Match at M using Eq. (64).
If the fermion mass is not much larger than M, as is the

case for the top-quark, one can replace (c), (d) and (e) by a
single step, (c0) Integrate out the fermion and gauge bosons
simultaneously at ��m�M, as in Secs. VIII D,G of
CGKM2. In this case, the matching is given by Eq. (87) and
(91) of CGKM2:

S12ð�2p1 � p2Þ ! Dð�sÞ
S34ð�2p3 � p4Þ ! Dð�sÞ þ 2fFðzÞ � hFðzÞ
S13ð2p1 � p3Þ ! Dð�uÞ þ fFðzÞ � hFðzÞ=2
S14ð2p1 � p4Þ ! Dð�tÞ þ fFðzÞ � hFðzÞ=2
S23ð2p2 � p3Þ ! Dð�tÞ þ fFðzÞ � hFðzÞ=2
S24ð2p2 � p4Þ ! Dð�uÞ þ fFðzÞ � hFðzÞ=2

z ¼ m2

M2

(65)

where the functions fF and hF are given in Appendix B of
CGKM2. They are the change in the matching condition
due to the quark mass. The matching matrix becomes

Rð1Þ ¼ ~Rð1Þ1þ Rð1Þ
S

~Rð1Þ ¼ CFð2Dð�sÞ þ 2fFðzÞ � hFðzÞÞ

¼ 2CF

�
�L2M þ 2LMLs � 3LM þ 9

2
� 5�2

6

þ fFðzÞ � hFðzÞ=2
�

Rð1Þ
S ¼ LM

CdLt=u þ CALut=s2 4Lt=u

4C1Lt=u 0

" #
(66)

The fF and hF terms cancel in RS.

D. Squark pair production

As the final example, we consider heavy scalar (squark)
pair production via qðp1Þ þ �qðp2Þ ! ~tðp3Þ þ ~t�ðp4Þ,
where ~t, ~t� are the squark and antisquark. The squarks
are taken to have mass m� ffiffiffi

s
p

. This example shows
how one can use the scalar and scalar/fermion results in
CGKM2 to compute squark production. The discussion
parallels that for heavy quark production in the previous
section. The only difference is that since some of the
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particles are scalars, we need to use the � 
,
y and
y

entries from the tables given in CGKM2.

The first step is to match onto SCETat the scale�� ffiffiffi
s

p
.

The four-particle operators are

O 1 ¼ ½�y
n4Wn4�ðitaD3 þ iD4t

aÞ�½Wy
n3�n3�

� ½ ��n2Wn2�ta��½Wy
n1�n1�

O2 ¼ ½�y
n4Wn4�ðiD3 þ iD4Þ�½Wy

n3�n3�
� ½ ��yn2Wn2���½Wy

n1�n1�:

(67)

where iD3 ¼ P þ gð �n3 � An3qÞðn3=2Þ, iD4 ¼ P þ gð �n4 �
An4qÞðn4=2Þ are the label covariant derivatives on particles

3 and 4, respectively.
The tree-level coefficients are

Cð0Þ
1 ¼ 4��=s Cð0Þ

2 ¼ 0 (68)

from the graph in Fig. 9.
The anomalous dimension in SCET below the scale Q is

given by using Eq. (46), and the values for the graphs in the
region betweenQ andm given in CGKM2. For the anoma-
lous dimension matrix, this means the replacements

S12ð�2p1 � p2Þ ! �1  ð�sÞ
S34ð�2p3 � p4 ! �1

ð�sÞ
S13ð2p1 � p3Þ ! �1 
ð�uÞ
S14ð2p1 � p4Þ ! �1 
ð�tÞ
S23ð2p2 � p3Þ ! �1 
ð�tÞ
S24ð2p2 � p4Þ ! �1 
ð�uÞ:

(69)

The anomalous dimensions are given in Table I of
CGKM2. The subscript   ,  
 and 

 means we use
the anomalous dimension for bi-fermion operators,
fermion-scalar, and bi-scalar operators, respectively. The
anomalous dimension is

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S

~�ð1Þ ¼ CFð�1  ð�sÞ þ �1

ð�sÞÞ ¼ 2CFð4Ls � 7Þ
r1 ! 2�2 
ð�tÞ � 2�2 
ð�uÞ ¼ 8 log

t

u

r2 ! 2�2 
ð�tÞ þ 2�2 
ð�uÞ � 2�1  ð�sÞ
� 2�1

ð�sÞ ¼ 8 log

ut

s2

�ð1Þ
S ¼ 2CdLt=u þ 2CALut=s2 8Lt=u

8C1Lt=u 0

" #
:

(70)

After running the operators down to ��m using
Eq. (70), one matches to an effective theory in which the
scalars are replaced by HQET fields. This is given by using
Eq. (56), where the scalar values of Rhh and Rhl are used.
This means in Eq. (57), Rþ T should be replaced by the
bi-scalar value on the second rows of Tables III and IV, and
for �ij, R should be replaced by R
y

2
 1
, the entry on the

fourth row of Table III for a bilinear with a heavy scalar
and massless fermion:

Rð1Þ ¼ ~Rð1Þ1þRð1Þ
S

~Rð1Þ ¼ CFðR

 þ T

Þ ¼ CF

�
L2m � 2Lm þ �2

6
þ 4

�
r1 ¼ 0

r2 ¼ 4R
y
2
 1

� 2R

 � 2T

 ¼ 0 ) Rð1Þ
S ¼ 0: (71)

The running in the HQET/SCET theory below m, and
the matching at M is identical to Eq. (60) and (63) in the
previous section, since it does not matter whether the
HQET field is a scalar or a fermion.
In summary, the computation proceeds as follows:

(a) Match at �� ffiffiffi
s

p
using Eq. (67) (b) Run between

ffiffiffi
s

p
and m using Eq. (50) (c) Matching at m using Eq. (71)
(d) Run between m and M using Eq. (60) (e) Match at M
using Eq. (63).
If the squark mass is not much larger than M, one can

replace (c), (d) and (e) by a single step, (c0) Integrate out
the squark and gauge bosons simultaneously at ��m�
M, as in Sec. VIII G,D of CGKM2. In this case, the
matching is given by

S12ð�2p1 � p2Þ ! D  ð�sÞ
S34ð�2p3 � p4Þ ! D

ð�sÞ þ 2fSðzÞ � hSðzÞ
S13ð2p1 � p3Þ ! D 
ð�uÞ þ fSðzÞ � hSðzÞ=2
S14ð2p1 � p4Þ ! D 
ð�tÞ þ fSðzÞ � hSðzÞ=2
S23ð2p2 � p3Þ ! D 
ð�tÞ þ fSðzÞ � hSðzÞ=2
S24ð2p2 � p4Þ ! D 
ð�uÞ þ fSðzÞ � hSðzÞ=2

z ¼ m2

M2

(72)

(a) (b)

FIG. 9. Tree level squark production in (a) the full theory and
(b) the effective theory.

JUI-YU CHIU, RANDALL KELLEY, AND ANEESH V. MANOHAR PHYSICAL REVIEW D 78, 073006 (2008)

073006-16



where the functions fS and hS are given in Appendix B of
CGKM2. The matching matrix becomes

Rð1Þ ¼ ~Rð1Þ1þRð1Þ
S

~Rð1Þ ¼ CFðD  ð�sÞ þD

ð�sÞ þ 2fSðzÞ � hSðzÞÞ

¼ 2CF

�
�L2Mþ 2LMLs� 3

2
LM þ 4� 5�2

6

þ fSðzÞ � 1

2
hSðzÞ

�

r1 ! 2D

ð�tÞ � 2D

ð�uÞ ¼ 4LM log
t

u

r2 ! 2D

ð�tÞ þ 2D

ð�uÞ � 4D

ð�sÞ ¼ 4LM log
ut

s2

Rð1Þ
S ¼ LM

CdLt=uþCALut=s2 4Lt=u

4C1Lt=u 0

" #
: (73)

E. Extension to more particles

In the previous examples, we saw that the four-particle
S-matrix elements could be obtained by summing the two-
particle S-matrix elements over all pairs of particles. This
result can be generalized to gauge singlet operators with an
arbitrary of particles.

The SCET graphs do not depend on the Lorentz struc-
ture of the operators, the nontrivial dependence is on the
gauge structure of the operators. We write the operators
with all incoming fields. An outgoing particle can be
represented as an incoming field in the complex conjugate
representation. The incoming fields are combined into a net
gauge singlet, and we have�X

�

Ta�

�
Oi ¼ 0 (74)

where Ta� acts on the indicesOi associated with field �. To
make the notation clear: Assume  and 	 transform in the
fundamental and antifundamental of SUðNÞ, and O ¼
	i i. The action of Ta and Ta	 on O are:

Ta O ¼ 	iðTaÞij j Ta	O ¼ ðTaÞij	j i: (75)

Here ðTaÞij and ðTaÞij are the representation matrices in the

fundamental and antifundamental representations, so that

ðTaÞij ¼ �ðTaÞji (76)

from which it follows that

ðTa þ Ta	ÞO ¼ 0: (77)

The sum of graphs with gauge boson exchange between
particles � and �, without any gauge factors, will be
denoted by ���ð2p� � p�Þ, as in the preceeding section.

The graph is computed with momentum p� incoming, and
p� outgoing. Treating all particles as incoming for both

color and momentum flow means that the graph including

color factors is����ð�2p� � p�ÞTa�Ta�. The minus sign of

the argument takes care of the change in momentum label-
ing for �, and the overall minus sign is the charge con-
jugation minus sign from reversing the color flow of �.
The sum of graphs including gauge factors is thenX

h��i
� ���ð�2p� � p�ÞhTa�Ta�Oiið0Þ (78)

where we sum over all pairs h��i, and hTa�Ta�Oiið0Þ is the
tree-level matrix element of the operator after the action of
the gauge operators.
The one-loop contribution to the on-shell matrix element

is

hOjið0ÞRji ¼
X
h��i

� ���ð�2p� � p�ÞhTa�Ta�Oiið0Þ

� 1

2

X
�

�Z�1
� hTa�Ta�Oiið0Þ (79)

including the wave function corrections for each external
leg. This can be rewritten as

hOjið0ÞRji
¼X

h��i
�
�
���ð�2p� �p�Þ�1

2
�Z�1

� �1

2
�Z�1

�

�
hTa�Ta�Oiið0Þ

�X
h��i

�
1

2
�Z�1

� þ1

2
�Z�1

�

�
hTa�Ta�Oiið0Þ

�1

2

X
�

�Z�1
� hTa�Ta�Oiið0Þ: (80)

The first term in square brackets is the on-shell Sudakov
form-factor for the two-particle case, including the wave
function correction,

���ð�2p� � p�Þ � 1

2
�Z�1

� � 1

2
�Z�1

�

¼ S��ð�2p� � p�Þ: (81)

We can simplify the remaining terms using

0 ¼
�X
�

�Z�1
� Ta�

��X
�

Ta�

�
Oi ¼

X
�;�

�Z�1
� Ta�T

a
�Oi

¼ X
h��i

½�Z�1
� þ �Z�1

� �Ta�Ta�Oi þ
X
�

�Z�1
� Ta�T

a
�Oi

(82)

which follows from Eq. (74), and reduces Eq. (80) to

hOjið0ÞRji ¼
X
h��i

� S��ð�2p� � p�ÞhTa�Ta�Oiið0Þ: (83)

The final answer can be written directly in terms of the on-
shell two-particle matrix elements, as we found in the
previous section for the four-particle case. Equation (83)
is valid even without a summation on the gauge index a,
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and this will be useful in breaking up the electroweak
corrections into the W, Z and � contributions.

It is conventional to take the multiparticle scattering
amplitude and divide it by the Sudakov form factors,

A 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
�

F�ðQ2Þ
s

AS (84)

where A is the scattering amplitude, and FrðQ2Þ is the
Sudakov form factor for particle r at some reference mo-
mentum, e.g. Q2 ¼ �s. AS is called the soft amplitude in
the literature. With this definition, the soft amplitude has
the form at one-loop

AS ¼
X
�

� 1

2
S��ðQ2ÞhTa�Ta�Oiið0Þ

þ X
h��i

� S��ð�2p� � p�ÞhTa�Ta�Oiið0Þ; (85)

since the one-loop Sudakov form factor for particle � is
Ta�T

a
�S��ðQ2Þ.

The Sudakov form factor has the form at one-loop (see
the next section)

S ��ð�2p� � p�Þ ¼ A log
�2p� � p�

�2
þ B� þ B�; (86)

where A is a universal coefficient independent of particle
type proportional to the cusp anomalous dimension which
is known to be universal [50], plus one-particle terms B�
which depend on the particle type, but are independent of
p� � p�.

Using Eq. (82) with �Z�1
� ! B�, and with �Z�1

� ! 1
shows that the soft amplitude is given by a sum of the cusp
part of the Sudkaov form factors, with coefficients which
add up to zero, i.e. it can be written as differences of
A-terms. The B terms all cancel. We have seen this explic-
itly in Eq. (46). Thus the soft amplitude is universal,
proportional to the cusp anomalous dimension, and for-
mally has no large log terms since the differences of two A
terms gives a logarithm whose argument is order unity in
the power counting, e.g. logt=u ¼ logð�tÞ � logð�uÞ.
This also implies that the soft anomalous dimension is
proportional to the cusp anomalous dimension. While the
above argument is at one-loop, we believe the general
structure persists at higher loops. This property has been
seen explicitly at two-loops in a very interesting recent
computation [34].

VI. FACTORIZATION

There are strong constraints on the form of the scattering
amplitude in SCET. We will discuss these in the context of
the analytic regulator. The results hold for the S-matrix
elements, and so are independent of any specific regulator.
We have obtained the same results using a different regu-
lator [35]. We study the case where there is only a single

amplitude to avoid problems with matrix ordering. This is
the case, for example, for scattering in aUð1Þ gauge theory.
If there are several gauge structures which can contribute,
then the amplitude A is a matrix, and one has to worry
about matrix ordering. For example in SUðNÞ gauge the-
ory, there are two gauge invariant four-particle operators,
Ta 
 Ta and 1 
 1, so A is a 2� 2 matrix. We briefly
comment on the matrix ordering problem at the end of
this section.
The r-particle scattering amplitudes are given by

ni-collinear sectors, i ¼ 1; . . . ; r and the ultrasoft graphs.
With the analytic regulator, the on-shell ultrasoft graphs
vanish, and we only have to consider the collinear sectors.7

The ni-collinear graphs have the form Fig. 4, where
particle i is given by the SCET field, and all the other
particles are Wilson lines. The on-shell graph depends on
the particle masses fmkg, the renormalization scale �, and
the analytic regulator parameters. The particle masses are
the masses of any particles given by ni-collinear SCET
fields, such as the gauge boson masses, and the mass of
particle i. They can also include the masses of other
particles which couple to particle i. For example, in the
standard model, a graph with a final n1-collinear t-quark
can depend on mt and mb, since n-collinear W bosons
couple t to b. The analytic regulator parameters for an

ni-collinear graph are �
2
i from the SCET field, and �ðjÞi , j �

i from the Wilson lines. Boost invariance requires �ðjÞi to

occur in the combination �ðjÞi =ð �ni � piÞ ¼ �2j=ð2pi � pjÞ, as
noted in Sec. V. The analytic regulator parameters only
occur in logarithms, and we use the abbreviations

L i ¼ log�2i ; Pij ¼ logð2pi � pjÞ ði � jÞ
Pii 	 0; Pij 	 Pji:

(87)

The total ni-collinear amplitude has the form

expAiðfLj � Pijg; fmkg; �; f�kgÞ (88)

Ai depends on the momenta of all the particles in the
process through its dependence on 2pi � pj in Lij. The total
connected amplitude expA is given by the product of the
different collinear sectors, so that

Aðfpkg; fmkg; �Þ ¼
Xr
i¼1

AiðfLj � Pijg; fmkg; �; f�kgÞ: (89)

The amplitudes Ai and A begin at order �. The tree-level
amplitude is the 1 in the expansion of expA.
The individual terms Ai depend on the regulator parame-

ters f�kg and f�kg and are singular as f�kg ! 0, as can be
seen explicitly in the one-loop results given in I and
CGKM2. However, the sum A is finite as f�kg ! 0 and
independent of the analytic regulator parameters f�kg. It
can only depend on the particle masses (including internal

7With other regulators, the ultrasoft graphs can be nonzero.
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particles), the external momenta, and �, as written in
Eq. (89).

The cancellation of the Li dependence is a powerful
constraint on the form of the SCETamplitudes. We showed
in CGKM2 how it implied that the low-scale matching D
when the massive gauge bosons were integrated out had to
be at most linear in logQ2 to all orders in perturbation
theory. In Eq. (89), the right-hand side depends on mo-
menta only through the terms Pij, which occur only in the

combination Lj � Pij in Ai. The Li cancellation implies

that Ai and A can be at most linear in Pij, to all orders in

perturbation theory. The proof follows from a straightfor-
ward but tedious application of the principle of separation
of variables used in partial differential equations—if
fðxÞ þ gðyÞ is a constant, and x and y are independent
variables, then fðxÞ and gðyÞ must both be constant.

The linearity of A in P ij implies that the anomalous

dimension and low-scale matching conditions D are linear
in P ij, since they are determined by the infinite and finite

parts of A, respectively. The only multiparticle dependence
of A is through the P ij dependence in the analytic regula-

tor. Since A is linear in P ij, this leads to a two-particle

dependence, plus one-particle terms, i.e. A has the form
Eq. (86) to all orders. The A term is universal; it cannot
depend on the properties of the particles such as masses,
because it is generated fromWilson line vertices which are
independent of m. The m-dependence must be in one-
particle contributions.

If A is a matrix, then the analysis becomes more com-
plicated, but the general features discussed above continue
to hold. The SCET anomalous dimension still contains
only a single logarithm to all orders in perturbation theory
[32,33]. The amplitude Eq. (15) is now a matrix equation,
and the anomalous dimension integration is path-ordered
in �. The LQ terms in the anomalous dimension � are

proportional to the unit matrix 1, and can be pulled out as
an overall multiplicative factor that commutes with the
non-Abelian exponentiation of the integral of the rest of �.

The high-scale matching need not be a square matrix,
and one should replace expCðQÞ ! cðQÞ in Eq. (15). There
are no large logs in either CðQÞ or cðQÞ. The low-scale
matching D is also not a square matrix. It has the form

d0ð�ðMÞÞeD1ð�ðMÞÞ logQ2=M2
(90)

where d0 is a matrix, and D1 is a number, i.e. it is propor-
tional to the unit matrix. Thus our result that the low scale
matching has the form expD, where D has a single log to
all orders in perturbation theory still holds in the matrix
case, in the form Eq. (90).

The structure of the amplitudes discussed in this and the
previous section are a very powerful constraint. They
follow from renormalization invariance of the effective
theory and the universality of the cusp anomalous dimen-
sion. More extensive comments will be given elsewhere
[35].

VII. APPLICATION TO THE STANDARD MODEL

In this section, we apply the methods developed so far to
compute radiative corrections in the standard model. There
are several major differences between the toy theory and
the standard model. The standard model is a chiral theory
and the couplings of the matter fields to the gauge fields are
more complicated, with matter fields in several different
representations of the gauge group. The gauge group is not
simple and, we have to treat several different gauge inter-
actions. After electroweak symmetry breaking, there is
electroweak gauge boson mixing between the W3 and B,
which gives W and Z bosons with different masses, and a
massless photon. Finally, there are also Higgs exchange
corrections proportional to the fermion mass, which are
relevant for the top quark. It is straightforward to obtain the
results for the standard model, following the same proce-
dure used for the toy model. We have already shown in
CGKM2 how to obtain the Sudakov form-factor for the
standard model including all these effects. In this section,
we use the methods demonstrated in the previous section to
calculate the radiative corrections to dijet, dilepton, top
quark and squark production in the standard model. These
calculation are a nontrival example of the techniques de-
veloped in the previous sections and in CGKM2. There are
80 independent amplitudes we need to compute, not in-
cluding those related by crossing or flavor symmetry.
The left-handed quarks and right-handed quarks are in

different representations of the unbroken gauge group of
the standard model. The left-handed quark doublets will be

denoted by QðiÞ
L , where i ¼ u, c, t is a flavor index, the

right-handed charge 2=3 quarks by UðiÞ
R , the right-handed

charge �1=3 quarks by DðiÞ
R , the left-handed lepton dou-

blets by LðiÞ
L and the right-handed lepton singlets by EðiÞ

R .

Written in terms of SUð2Þ components, QðiÞ is

QðiÞ ¼ UðiÞ
L

D0ðiÞ
L

 !
¼ UðiÞ

L

VijD
ðjÞ
L

 !
(91)

and LðiÞ is

LðiÞ ¼ �ðiÞL
EðiÞ
L

 !
(92)

where the neutrinos are weak-eigenstates.
All the lepton and down-type quark masses can be

neglected in our calculation, so we can work in the weak
eigenstate basis, the CKM matrix V does not enter the
SCET computation, and generation number is conserved.
The only place where V enters is in the matrix element of
SCET operators in the proton state, i.e. in computing the
cross-section from the amplitude using the parton distri-
bution functions, since these are given in terms of mass-
eigenstate quarks.
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A. Matching at Q

For scattering processes, we need to consider four-
particle operators in SCETEW generated at the scale Q by
the graphs in Figs. 1 and 6. The SCET fields corresponding
to a standard model field will be given by the replacement

QðiÞ ! �rðQðiÞÞ, etc. We will drop the n, p labels on �, and
instead use the subscript r ¼ 1; . . . ; 4 to denote the particle

label in the scattering process. Thus �1ðuÞ described col-
linear u quarks with momentum p1, etc.
At the scale Q, the effective Lagrangian is the sum of

terms representing the scattering of the various particles. If
the initial and final particles are both quark doublets, then
the Lagrangian is

L QQ ¼ CQQ11;fi½ ��4ðQðfÞÞW4T
Atb��W

y
3 �3ðQðfÞÞ�L½ ��2ðQðiÞÞW2T

Atb��Wy
1 �1ðQðiÞÞ�L

þ CQQ12;fi½ ��4ðQðfÞÞW4t
a��W

y
3 �3ðQðfÞÞ�L½ ��2ðQðiÞÞW2t

a��Wy
1 �1ðQðiÞÞ�L

þ CQQ21;fi½ ��4ðQðfÞÞW4T
A��W

y
3 �3ðQðfÞÞ�L½ ��2ðQðiÞÞW2T

A��Wy
1 �1ðQðiÞÞ�L

þ CQQ22;fi½ ��4ðQðfÞÞW4��W
y
3 �3ðQðfÞÞ�L½ ��2ðQðiÞÞW2�

�Wy
1 �1ðQðiÞÞ�L: (93)

We will write this in the abbreviated form

L QQ ¼ CQQ11;fi½TAta�L 
 ½TAta�L þ CQQ12;fi½ta�L 
 ½ta�L þ CQQ21;fi½TA�L 
 ½TA�L þ CQQ22;fi½1�L 
 ½1�L: (94)

The flavor quantum numbers are encoded in the subscripts on C. Recall that TA are the SUð3Þ generators, and ta are the
SUð2Þ generators. The subscript 1 is used for TA 
 TA or ta 
 ta, and the subscript 2 for 1 
 1. Similarly, one has the other
terms

LQU ¼ CQU1;fi½TA�L 
 ½TA�R þ CQU2;fi½1�L 
 ½1�R LQD ¼ CQD1;fi½TA�L 
 ½TA�R þ CQD2;fi½1�L 
 ½1�R
LQL ¼ CQL1;fi½ta�L 
 ½ta�L þ CQL2;fi½1�L 
 ½1�L LQE ¼ CQE;fi½1�L 
 ½1�R
LUQ ¼ CUQ1;fi½TA�R 
 ½TA�L þ CUQ2;fi½1�R 
 ½1�L LUU ¼ CUU1;fi½TA�R 
 ½TA�R þ CUU2;fi½1�R 
 ½1�R
LUD ¼ CUD1;fi½TA�R 
 ½TA�R þ CUD2;fi½1�R 
 ½1�R LUL ¼ CUL;fi½1�R 
 ½1�L
LUE ¼ CUE;fi½1�R 
 ½1�R LDQ ¼ CDQ1;fi½TA�R 
 ½TA�L þ CDQ2;fi½1�R 
 ½1�L
LDU ¼ CDU1;fi½TA�R 
 ½TA�R þ CDU2;fi½1�R 
 ½1�R LDD ¼ CDD1;fi½TA�R 
 ½TA�R þ CDD2;fi½1�R 
 ½1�R
LDL ¼ CDL;fi½1�R 
 ½1�L LDE ¼ CDE;fi½1�R 
 ½1�R
LLQ ¼ CLQ1;fi½ta�L 
 ½ta�L þ CLQ2;fi½1�L 
 ½1�L LLU ¼ CLU;fi½1�L 
 ½1�R
LLD ¼ CLD;fi½1�L 
 ½1�R LLL ¼ CLL1;fi½ta�L 
 ½ta�L þ CLL2;fi½1�L 
 ½1�L
LLE ¼ CLE;fi½1�L 
 ½1�R LEQ ¼ CEQ;fi½1�R 
 ½1�L
LEU ¼ CEU;fi½1�R 
 ½1�R LED ¼ CED;fi½1�R 
 ½1�R
LEL ¼ CEL;fi½1�R 
 ½1�R LEE ¼ CEE;fi½1�R 
 ½1�R: (95)

The tree-level matching coefficients from the graph in Fig. 1 are (f � i)

Cð0Þ
QQ11;fi ¼ 0; sCð0Þ

QQ12;fi ¼ 4��2; sCð0Þ
QQ21;fi ¼ 4��3; sCð0Þ

QQ22;fi ¼ 4��1Y
2
Q;

sCð0Þ
QU1;fi ¼ 4��3; sCð0Þ

QU2;fi ¼ 4��1YQYU; sCð0Þ
QL1;fi ¼ 4��2; sCð0Þ

QL2;fi ¼ 4��1YQYL;

sCð0Þ
QE;fi ¼ 4��1YQYE; sCð0Þ

UD1;fi ¼ 4��3; sCð0Þ
UD2;fi ¼ 4��1YUYD; sCð0Þ

UL;fi ¼ 4��1YUYL;

sCð0Þ
UE;fi ¼ 4��1YUYE; sCLL1;fi ¼ 4��2; sCð0Þ

LL2;fi ¼ 4��1Y
2
L; sCð0Þ

LE;fi ¼ 4��1YLYE;

sCð0Þ
EE;fi ¼ 4��1Y

2
E; (96)

and the one loop matching coefficients are
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sCð1Þ
QQ11;fi ¼ �2�2�3

~fðs; tÞ

sCð1Þ
QQ12;fi ¼ �2

2

�
X2ðs; tÞ �

ðCd2 þ CA2
Þ

4
~fðs; tÞ

�
þ 2½�1�2Y

2
Q þ �2�3CF3

�W � 2�1�2Y
2
Q
~fðs; tÞ

sCð1Þ
QQ21;fi ¼ �2

3

�
X3ðs; tÞ �

ðCd3 þ CA3
Þ

4
~fðs; tÞ

�
þ 2½�1�3Y

2
Q þ �2�3CF2

�W � 2�1�3Y
2
Q
~fðs; tÞ

sCð1Þ
QQ22;fi ¼ �½�2

3C13 þ �2
2C12 þ �2

1Y
4
Q�~fðs; tÞ þ �2

1Y
2
Q�1 þ 2½�1�3Y

2
QCF3

þ �1�2Y
2
QCF2

þ �2
1Y

4
Q�W

sCð1Þ
QU1;fi ¼ �2

3

�
X3ðs; uÞ þ

ðCd3 � CA3
Þ

4
~fðs; uÞ

�
þ ½�1�3ðY2

Q þ Y2
UÞ þ �2�3CF2

�W þ 2�1�3YQYU ~fðs; uÞ

sCð1Þ
QU2;fi ¼ ½�2

3C13 þ �2
1Y

2
QY

2
U�~fðs; uÞ þ �2

1YUYQ�1 þ ½�1�2YUYQCF2
þ 2�1�3YUYQCF3

þ �2
1ðY3

QYU þ Y3
UYQÞ�W

sCð1Þ
QL1;fi ¼ �2

2

�
X2ðs; tÞ �

ðCd2 þ CA2
Þ

4
~fðs; tÞ

�
þ ½�2�3CF3

þ �1�2ðY2
Q þ Y2

LÞ�W � 2�1�2YLYQ ~fðs; tÞ

sCð1Þ
QL2;fi ¼ �½�2

2C12 þ �2
1Y

2
LY

2
Q�~fðs; tÞ þ �2

1YLYQ�1 þ ½�1�3YLYQCF3
þ 2�1�2YLYQCF2

þ �2
1ðY3

LYQ þ Y3
QYLÞ�W

sCð1Þ
QE;fi ¼ �2

1Y
2
EY

2
Q
~fðs; uÞ þ �2

1YEYQ�1 þ ½�1�3YEYQCF3
þ �1�2YEYQCF2

þ �2
1ðY3

EYQ þ Y3
QYEÞ�W

sCð1Þ
UD1;fi ¼ �2

3

�
X3ðs; tÞ �

ðCd3 þ CA3
Þ

4
~fðs; tÞ

�
� 2�1�3YDYU ~fðs; tÞ þ �1�3ðY2

D þ Y2
UÞW

sCð1Þ
UD2;fi ¼ �½�2

3C13 þ �2
1Y

2
UY

2
D�~fðs; tÞ þ �2

1YUYD�1 þ ½2�1�3YUYDCF3
þ �2

1ðY3
DYU þ Y3

UYDÞ�W
sCð1Þ

UL;fi ¼ �2
1Y

2
LY

2
U
~fðs; uÞ þ �2

1YLYU�1 þ ½�1�3YLYUCF3
þ �1�2YLYUCF2

þ �2
1ðY3

LYU þ Y3
UYLÞ�W

sCð1Þ
UE;fi ¼ ��2

1Y
2
EY

2
U
~fðs; tÞ þ �2

1YEYU�1 þ ½�1�3YEYUCF3
þ �2

1ðY3
EYU þ Y3

UYEÞ�W

sCLL1 ¼ �2
2½X2ðs; tÞ �

ðCd2 þ CA2
Þ

4
~fðs; tÞ� þ 2�1�2Y

2
LW � 2�1�2Y

2
L
~fðs; tÞ

sCð1Þ
LL2 ¼ �½�2

2C12 þ �2
1Y

4
L�~fðs; tÞ þ �2

1Y
2
L�1 þ 2½�1�2Y

2
LCF2

þ �2
1Y

4
L�W

sCð1Þ
LE;fi ¼ �2

1Y
2
EY

2
L
~fðs; uÞ þ �2

1YEYL�1 þ ½�1�2YLYECF2
þ �2

1ðY3
LYE þ Y3

EYLÞ�W
sCð1Þ

EE;fi ¼ ��2
1Y

4
E
~fðs; tÞ þ �2

1Y
2
E�1 þ 2�2

1Y
4
EW (97)

where

XNðs; tÞ ¼ 2CFNW þ CAN

�
2L2s � 2L�s�tLs � 11

3
Ls þ �2 þ 85

9

�
þ
�
2

3
Ls � 10

9

�
TFNnFN þ

�
1

3
Ls � 8

9

�
TFNnSN

W ¼ �L2s þ 3Ls þ �2

6
� 8; �1 ¼ 41

6
Ls � 104

9
; ~fðs; tÞ ¼ � 2s

sþ t
Lt=s þ sðsþ 2tÞ

ðsþ tÞ2 ðL2t=s þ �2Þ þ 4LsLt=ð�s�tÞ;

(98)

for N ¼ 2,3 for SUð2Þ and SUð3Þ, respectively. nFN ðnSN Þ
denotes the number of Weyl fermions and complex scalars
in the fundamental representation of SUðNÞ. The matching
is symmetric between initial and final fermions, so that
CUQ;1 ¼ CQU;1, etc. The coefficients CQD;j are given by
CQU;j with YU ! YD,CUU;j byCUD;j with YD ! YU,CDD;j
by CUD;j with YU ! YD, CDL;j by CUL;j with YU ! YD,
and CDE;j by CUE;j with YU ! YD, and so have not been
listed above. For identical particles (i.e. CQQ;f¼i, CLL;f¼i,
etc.) there is also the crossed-channel contribution as dis-
cussed in Appendix A.

The above matching coefficients do not include Higgs
exchange contributions. The Yukawa couplings are pro-

portional to the fermion masses, and the only Yukawa
coupling large enough to be relevant is the top quark
Yukawa coupling. Higgs corrections only arise at one-
loop for LHC processes, since the initial state is pp, and
contains no t-quarks.8 The Higgs contributions to the

matching for operators containing QðtÞ in the final state are

8One can always treat the proton as a hadron in QCD with all
heavy flavors integrated out. Heavy quark distribution functions
in the proton are calculable in terms of light-quark distribution
functions; see e.g. Ref. [51].
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�CQQ12;ti ¼ g2t �2

4�s

�
3

2
� 1

2
Ls

�

�CQQ21;ti ¼ g2t �3

4�s

�
1

2
� 1

2
Ls

�

�CQQ22;ti ¼ g2t �1

4�s
YQu

�
� 5

12
� 1

12
Ls

�

�CQU1;ti ¼ g2t �3

4�s

�
1

2
� 1

2
Ls

�

�CQU2;ti ¼ g2t �1

4�s
YU

�
� 5

12
� 1

12
Ls

�

�CQD1;ti ¼ g2t �3

4�s

�
1

2
� 1

2
Ls

�

�CQD2;ti ¼ g2t �1

4�s
YD

�
� 5

12
� 1

12
Ls

�

�CQL1;ti ¼ g2t �2

4�s

�
3

2
� 1

2
Ls

�

�CQL2;ti ¼ g2t �1

4�s
YL

�
� 5

12
� 1

12
Ls

�

�CQE;ti ¼ g2t �1

4�s
YE

�
� 5

12
� 1

12
Ls

�
; (99)

whereas the contribution matching for operators contain-

ing UðtÞ in the final state are

�CUQ1;ti ¼ g2t �3

4�s
½1� Ls�

�CUQ2;ti ¼ g2t �1

4�s
YQ

�
4

3
� 1

3
Ls

�

�CUU1;ti ¼ g2t �3

4�s

�
1� Ls�

�CUU2;ti ¼ g2t �1

4�s
YU

�
� 4

3
� 1

3
Ls

�

�CUD1;ti ¼ g2t �3

4�s
½1� Ls�

�CUD2;ti ¼ g2t �1

4�s
YD

�
4

3
� 1

3
Ls

�

�CUL;ti ¼ g2t �1

4�s
YL

�
4

3
� 1

3
Ls

�

�CUE;ti ¼ g2t �1

4�s
YE

�
4

3
� 1

3
Ls

�
;

(100)

with i ¼ u, c for Q or U, and i ¼ d, s, b for D. The
logarithmic terms for �CQE;ti and �CUE;ti agree with

Ref. [52].
Once we match onto SCET, Higgs vertex corrections are

power suppressed, as shown in Ref. [2], and the only Higgs
contributions in SCET are wave function renormalization
corrections.

B. Anomalous dimension below Q

The anomalous dimensions in SCET between Q and m
are obtained using the results of Sec. VA. The anomalous
dimension due to gluon exchange depends on the color
quantum numbers of the initial and final fermions. If both
are color triplets, then the operators have the color struc-
ture C1T

A 
 TA þ C21 
 1. The anomalous dimension is
given by Eq. (50) with group invariants replaced by their
values for N ¼ 3, and with the �=ð4�Þ prefactor for QCD,

�SUð3Þ ¼ ~�SUð3Þ1þ �S;SUð3Þ;

~�SUð3Þ ¼ 8

3

�3

4�
ð4Ls � 6Þ;

�S;SUð3Þ ¼ �3

4�

10
3 Lt=u þ 6Lut=s2 8Lt=u

16
9 Lt=u 0

2
4

3
5:

(101)

This 2� 2 anomalous dimension matrix acts on operators
with color structure TA 
 TA and 1 
 1, and does not mix
different flavors, chiralities or SUð2Þ quantum numbers.
Thus the renormalization group equation has the form

�
d

d�

C1

C2

� �
¼ �

C1

C2

� �
(102)

where ðC1; C2Þ are the pairs ðCQQ11;fi; CQQ12;fiÞ,
ðCQQ21;fi; CQQ22;fiÞ, ðCQU1;fi; CQU2;fiÞ, ðCQD1;fi; CQD2;fiÞ,
ðCUQ1;fi; CUQ2;fiÞ, ðCUU1;fi; CUU2;fiÞ, ðCUD1;fi; CUD2;fiÞ,
ðCDQ1;fi; CDQ2;fiÞ, ðCDU1;fi; CDU2;fiÞ, and

ðCDD1;fi; CDD2;fiÞ.
If one of the fermions is a color triplet and the other is a

color singlet, the operator has the color structure C1 
 1.
The QCD anomalous dimension for C is identical to the
Sudakov form-factor case,

�SUð3Þ ¼ 4

3

�3

4�
ð4Ls � 6Þ: (103)

If both fermions are color singlets, then

�SUð3Þ ¼ 0: (104)

The anomalous dimension due to SUð2Þ gauge boson
exchange is obtained similarly. If both fermions are dou-
blets, the operator has the form C1t

A 
 tA þ C21 
 1, and
the anomalous dimension matrix is

�SUð2Þ ¼ ~�SUð2Þ1þ �S;SUð2Þ;

~�SUð2Þ ¼ 3

2

�2

4�
ð4s � 6Þ;

�S;SUð2Þ ¼ �2

4�

4Lut=s2 8Lt=u
3
2Lt=u 0

" #
;

(105)

where the ðC1; C2Þ pairs are ðCQQ11;fi; CQQ21;fiÞ,
ðCQQ12;fi; CQQ22;fiÞ, ðCQL1;fi; CQL2;fiÞ, ðCLQ1;fi; CLQ2;fiÞ,
and ðCLL1;fi; CLL2;fiÞ.
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If one of the fermions is a weak doublet and the other is a
weak singlet, the operator has the structure C1 
 1, and the
SUð2Þ anomalous dimension for C is identical to the
Sudakov form-factor case,

�SUð2Þ ¼ 3

4

�2

4�
ð4Ls � 6Þ: (106)

If both fermions are weak singlets, then

�SUð2Þ ¼ 0: (107)

B exchange gives the diagonal contribution

�Uð1Þ ¼ �1

4�
½ðY2

i þ Y2
fÞð4Ls � 6Þ þ 8YiYfLt=u� (108)

where Yi and Yf are the hypercharges of the initial and final

representations. Note that YðURÞ ¼ 2=3, YðDRÞ ¼ �1=3
and YðERÞ ¼ �1.

The Higgs wave function graphs give the diagonal con-
tribution

�HðQðtÞÞ ¼ g2t
16�2

1

2
: (109)

to an operator for each QðtÞ field, and

�HðtRÞ ¼ g2t
16�2

(110)

for each tR ¼ UðtÞ
R field. This term breaks the flavor sym-

metry in the anomalous dimension. The total anomalous
dimension is the sum,

� ¼ �H þ �Uð1Þ þ �SUð2Þ þ �SUð3Þ; (111)

and is used to run the operators from � ¼ s to ��MZ.

C. Matching at the low scale to SCET�

At a low scale � of order MZ (or mt) one matches from
SCETEW with dynamical gluons and electroweak bosons
onto SCET� with dynamical gluons and photons, by inte-

grating out the W and Z bosons. The electroweak symme-
try is broken in SCET� so the operators in Eq. (95) must

now be decomposed into separate SUð2Þ component fields.
We start by considering the case where all particles have

mass much smaller than mt, i.e. for all particles except the
t-quark. This includes all the operators in Eq. (95) except

those that contain QðtÞ
L and UðtÞ

R . The photon and gluon
graphs are the same in SCETEW and SCET� and do not

contribute to the matching condition. The W contribution
depends on whether the particles involved are SUð2Þ dou-
blets or singlets. For the case of two doublets, consider the
operators

CQQ12;fi½ta�L 
 ½ta�L þ CQQ22;fi½1�L 
 ½1�L (112)

with i � t, f � t, which are two of the terms in Eq. (94).
For definiteness, let f ¼ c and i ¼ u. These operators
match onto a linear combination of

Ô12 ¼ ½ �cL4��cL3�½ �uL2��uL1�
Ô22 ¼ ½ �cL4��cL3�½ �d0L2��d0L1�
Ô32 ¼ ½ �s0L4��s0L3�½ �uL2��uL1�
Ô42 ¼ ½ �s0L4��s0L3�½ �d0L2��d0L1�
Ô52 ¼ ½ �s0L4��cL3�½ �uL2��d0L1�
Ô62 ¼ ½ �cL4��s0L3�½ �d0L2��uL1�

(113)

where the flavor label represents the SCET� fields Wy�.
The matching from Eq. (112) in SCETEW onto Eq. (113)

in SCET� is computed as in Sec. VB. As shown in

Sec. VE, the matching can be written as the sum of the
Sudakov form-factor S-matrix elements, even though we
are consideringW
 exchange, Z exchange and � exchange
separately, and not summing over all the SUð2Þ gauge
bosons. The matching matrix is

Ĉ12

Ĉ22

Ĉ32

Ĉ42

Ĉ52

Ĉ62

2
666666664

3
777777775

¼ R
ĈQQ12;cu
ĈQQ22;cu

" #
(114)

where Ĉi2 are the coefficients of Ôi2. At tree-level R is

Rð0Þ ¼

1
4 1

� 1
4 1

� 1
4 1

1
4 1

1
2 0

1
2 0

2
66666666666664

3
77777777777775
: (115)

At one-loop

Rð1Þ
W ¼ �em

4�sin2�W

1

2

8>>>>>>>>>><
>>>>>>>>>>:
2Fgð�s;M2

W;�
2ÞRð0Þ

þ 2 log
M2
W

�2

logts 0

� logus 0

� logus 0

logts 0

1
2 log

ut
s2

2 log tu
1
2 log

ut
s2

2 log tu

2
6666666666664

3
7777777777775

9>>>>>>>>>>=
>>>>>>>>>>;

(116)

where
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FgðQ2;M2; �2Þ ¼ �log2
M2

�2
þ 2 log

M2

�2
log
Q2

�2

� 3 log
M2

�2
þ 9

2
� 5�2

6
: (117)

The Z exchange contribution is

Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

1
4 r1 r1

� 1
4 r2 r2

� 1
4 r3 r3
1
4 r4 r4
1
2 r5 0

1
2 r5 0

2
66666666666664

3
77777777777775

(118)

r1 ¼ ðg2Lc þ g2LuÞFgð�s;M2
Z; �

2Þ þ 4gLcgLu log
M2
Z

�2
log

t

u

r2 ¼ ðg2Lc þ g2LdÞFgð�s;M2
Z; �

2Þ þ 4gLcgLd log
M2
Z

�2
log

t

u

r3 ¼ ðg2Lu þ g2LsÞFgð�s;M2
Z;�

2Þ þ 4gLugLs log
M2
Z

�2
log

t

u

r4 ¼ ðg2Ld þ g2LsÞFgð�s;M2
Z;�

2Þ þ 4gLdgLs log
M2
Z

�2
log

t

u

r5 ¼ 1

2
ðg2Lc þ g2Ls þ g2Lu þ g2LdÞFgð�s;M2

Z; �
2Þ

þ 2ðgLugLc þ gLdgLsÞ logM
2
Z

�2
log

t

s

� 2ðgLugLs þ gLdgLcÞ logM
2
Z

�2
log
u

s
(119)

where

gLc ¼ gLu ¼ 1

2
� 2

3
sin2�W

gLs ¼ gLd ¼ � 1

2
þ 1

3
sin2�W

(120)

are the couplings to the Z. The total one-loop matching is

Rð1Þ
W þ Rð1Þ

Z .
The remaining two operators in LQQ,

LQQ ¼ CQQ11;fi½TAta�L 
 ½TAta�L
þ CQQ21;fi½TA�L 
 ½TA�L (121)

match onto

Ô11 ¼ ½ �cL4TA��cL3�½ �uL2TA��uL1�
Ô21 ¼ ½ �cL4TA��cL3�½ �d0L2TA��d0L1�
Ô31 ¼ ½ �s0L4TA��s0L3�½ �uL2TA��uL1�
Ô41 ¼ ½ �s0L4TA��s0L3�½ �d0L2TA��d0L1�
Ô51 ¼ ½ �s0L4TA��cL3�½ �uL2TA��d0L1�
Ô61 ¼ ½ �cL4TA��s0L3�½ �d0L2TA��uL1�:

(122)

Since W exchange leaves the color indices unaffected, the
matching matrix is identical to Eq. (115), (116), and (118),
and the matching relation is given by Eq. (114) with the

replacement Ĉi2 ! Ĉi1, ĈQQi2;cu ! ĈQQi1;cu. The results

Eq. (115) and (116) hold for all cases where both fermions
are doublets. If the final quark doublet is replaced by a
lepton doublet, the coupling constants in Eq. (119) have the
obvious replacement gLc ! gL�, gLs ! gLe with

gL� ¼ 1

2
; gLe ¼ � 1

2
þ sin2�W (123)

and similarly if the initial doublet is a lepton doublet, or
both doublets are lepton doublets.
The second case is where one fermion is a doublet and

the other is a singlet. As an example, consider
CQU2;fi½1�L 
 ½1�R with f ¼ c and i ¼ u. This matches

onto a linear combination of

Ô 12 ¼ ½ �cL4��cL3�½ �uR2��uR1�
Ô22 ¼ ½ �s0L4��s0L3�½ �uR2��uR1�:

(124)

The matching matrix is

Ĉ12

Ĉ22

" #
¼ RĈQU2;cu (125)

where Ĉi2 are the coefficients of Ôi2. At tree-level R is

Rð0Þ ¼ 1
1

� �
: (126)

At one-loop

Rð1Þ
W ¼ �em

4�sin2�W

1

2
Fgð�s;M2

W;�
2ÞRð0Þ

Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

�
Fgð�s;M2

Z;�
2Þ g2Lc þ g2Ru

g2Ls þ g2Ru

" #

þ 4 log
M2
Z

�2
log

t

u

gLcgRu

gLsgRu

" #�
(127)

where Fg is given in Eq. (117). The singlet fermion Z

couplings are

gRu ¼ � 2

3
sin2�W; gRd ¼ 1

3
sin2�W;

gRe ¼ sin2�W:

(128)
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Equations. (125)–(127) apply to all cases where one
fermion is weak doublet, and the other is a weak singlet,
with the obvious replacement of the Z charges for lepton
doublets. Since electroweak exchange does not affect the
color indices, the same matching matrix applies, for ex-
ample, to the transition from CQU1;fi½TA�L 
 ½TA�R to

Ô 11 ¼ ½ �cL4TA��cL3�½ �uR2TA��uR1�
Ô21 ¼ ½�s0L4TA��s0L3�½ �uR2TA��uR1�:

(129)

The last case is if both fermions are weak singlets—take
CUU2;fi½1�R 
 ½1�R as an example with f ¼ c and i ¼ u.

The operator matches to

Ô ¼ ½ �cR4��cR3�½ �uR2��uR1�: (130)

The one-loop matching condition is Ĉ ¼ ð1þ Rð1Þ
W þ

Rð1Þ
Z ÞCUU2;cu with
Rð1Þ
W ¼ 0

Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

�
ðg2Rc þ g2RuÞFgð�s;M2

Z;�
2Þ

þ 4gRcgRu log
M2
Z

�2
log

t

u

�
: (131)

Again, the same matching coefficient holds for
the matching between CUU1;fi½TA�R
½TA�R and

½ �cR4TA��cR3�½ �uR2TA��uR1�, and the equations hold with

an obvious substitution of Z charges if the quarks are
replaced by leptons.

Anomalous dimensions in SCET�

Finally, one computes the anomalous dimension of the
operator in SCET� between ��MZ and some low scale

�0, at which point one takes operator matrix elements to
compute the desired observables. The matrix elements of
the initial state SCET fields in the proton are the usual
parton distribution functions, and the final state fields are
used to construct jet observables. The scale�0 is chosen to
minimize logarithms in the matrix element computation.
For LHC jet observables, it is of order the typical invariant
mass of a single jet.

The QCD anomalous dimensions given in Eq. (101),
(103), and (113) continue to hold for the case of two
quarks, one quark and one lepton, or two leptons, respec-
tively. The QED anomalous dimension is

�em ¼ �em

4�

�
1

2
ðq21 þ q22 þ q23 þ q24Þ

�
4 log

�s
�2

� 6

�

þ 4ðq1q4 þ q2q3Þ logts� 4ðq1q3 þ q2q4Þ logus
�

(132)

where q1�4 are the charges of the four fields, and q1 þ
q3 ¼ q2 þ q4. The initial particle charges are q1 and �q2,
and the final particle charges are �q3 and q4.

D. t-quark production

In processes involving the t-quark,m2
t =M

2
W;Z terms must

be included in the loop graphs, as discussed in CGKM2. At
a scale �, we transition to an effective theory in which the
t-quark is represented by an HQET field, whereas the light
quarks are still represented by SCET fields. Since mt is not
much larger thanMW andMZ, it is convenient to make this
transition at the same time that theW, Z and Higgs bosons
are integrated out of the theory in the transition from
SCETEW to SCET�. This method was used in CGKM2

for the Sudakov form-factor of the t-quark, and allows one
to include the complete m2

t =M
2
W;Z dependence in the

matching computation. Here we apply the same procedure
to the operators relevant for t-quark production—the op-

erators in Eqs. (94) and (95) which contain either QðtÞ
L or tR

fields. The initial state in proton-proton collisions contains
only light quarks, so we will only look at operators with
top-quarks in the final state and light quarks in the initial
state.
The matching at Q and the anomalous dimension below

Q are mass independent, and identical to those for light
quarks. Themt dependent terms give an additive correction

to the low-scale matching matrices Rð1Þ
W;Z of the previous

section. There are also contributions Rð1Þ
�;g to low-scale

matching from the photon and gluon, because of the tran-
sition to an HQET field for the t-quark. The graphs in
SCETEW use a SCET field for the t-quark, and those in
SCET� use a HQET field for the t-quark, so there is a

matching correction even for massless gauge bosons, as
computed in CGKM2.
The Higgs only contributes through wave function re-

normalization in SCET. The matching contribution from
the Higgs is

HðtLÞ¼�1

2

y2t
16�2

�
1

2
FhðM2

H;m
2
t Þþ1

2
FhðM2

Z;m
2
t Þ

þ1

2
~aðht;htÞþ1

2
~aðzt;ztÞþ ~cðht;htÞþ ~cðzt;ztÞ

þ ~cðwt;0Þ� ~bðht;htÞþ ~bðzt;ztÞ�

HðtRÞ¼HðtLÞ�1

2

y2t
16�2

ðFhðM2
W;m

2
t Þþ ~aðwt;0ÞÞ

Hðb0LÞ¼�1

2

y2t
16�2

½FhðM2
W;m

2
t Þþ ~að0;wtÞ�;

FhðM2;�2Þ¼ 1

4
�1

2
LM

ht¼ m2
t

M2
H

; wt¼ m2
t

M2
W

; zt¼ m2
t

M2
Z

(133)

where the functions are tabulated in Appendix B. For each
tL, tR or bL field, one adds HðtLÞ, HðtRÞ or Hðb0LÞ to the
matching matrix. For example the operator �tL�

�tL �b
0
L��b

0
L

gets the Higgs matching contribution 2HðtLÞ þ 2Hðb0LÞ.
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The matching for operators containing QðtÞ and a light
quark doublet, Eq. (112) with f ¼ t and i ¼ u, c, is given
by Eq. (116), with the additional additive contribution

�Rð1Þ
H ¼

1
2HðtLÞ 2HðtLÞ
� 1

2HðtLÞ 2HðtLÞ
� 1

2Hðb0LÞ 2Hðb0LÞ
1
2Hðb0LÞ 2Hðb0LÞ

1
2HðtLÞ þ 1

2Hðb0LÞ 0

1
2HðtLÞ þ 1

2Hðb0LÞ 0

2
66666666666664

3
77777777777775

(134)

from the Higgs,

�Rð1Þ
W ¼ �em

4�sin2�W

1

2

1
2W1 2W1

� 1
2W1 2W1

� 1
2W2 2W2

1
2W2 2W2

1
2W1 þ 1

2W2 0

1
2W1 þ 1

2W2 0

2
66666666666664

3
77777777777775

(135)

from the W,

�Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

U1

1
2 2
� 1

2 2
0 0
0 0
1
2 0
1
2 0

2
666666664

3
777777775

(136)

from the Z,

�Rð1Þ
� ¼ �em

4�
q2t

�
�2

12
þ 2

�
1
2 2
� 1

2 2
0 0
0 0
1
2 0
1
2 0

2
666666664

3
777777775

(137)

from the photon, where qt ¼ 2=3 is the t-quark charge, and

�Rð1Þ
g ¼ �s

4�

4

3

�
�2

12
þ 2

�
1
2 2
� 1

2 2
0 0
0 0
1
2 0
1
2 0

2
666666664

3
777777775

(138)

from the gluon where

W1 ¼ fFðwt; 0Þ � 1

2
aðwt; 0Þ � 1

2
cðwt; 0Þ

W2 ¼ fFð0; wtÞ � 1

2
að0; wtÞ

U1 ¼ g2LtfFðzt; ztÞ �
1

2
g2Ltaðzt; ztÞ �

1

2
ðg2Lt þ g2RtÞcðzt; ztÞ

þ gLtgRtbðzt; ztÞ
U2 ¼ g2RtfFðzt; ztÞ �

1

2
g2Rtaðzt; ztÞ �

1

2
ðg2Lt þ g2RtÞcðzt; ztÞ

þ gLtgRtbðzt; ztÞ (139)

and the functions fF, a, b and c are tabulated in
Appendix B. The matching matrix multiplied by

ðCQQ1l;tq; CQQ2l;tqÞ gives the coefficients Ĉkl, k ¼
1; . . . ; 6, l ¼ 1, 2 of the operators in SCET� listed in

Eq. (113) and (122) with c! t and s! b0 for the final
state quarks, and the initial state flavors replaced by the two
members of the light quark doublet q, ðu; d0Þ ! ðc; s0Þ, or
ðu; d0Þ ! ðu; d0Þ. Note thatO51,O52,O61,O62 are relevant
for single-top production.

The gluon matching �Rð1Þ
g is diagonal in color space, and

does not mix the 1 
 1 and TA 
 TA operators. This follows
from Eq. (46) and the additive nature of the mass correc-
tions to the amplitudes.

The matching for operators containing QðtÞ and a light
quark singlet are given by Eq. (127) with the additional
terms

�Rð1Þ
H ¼ 2HðtLÞ

2Hðb0LÞ

" #

�Rð1Þ
W ¼ �em

4�sin2�W

1

2

2W1

2W2

" #

�Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

2U1

0

" #

�Rð1Þ
� ¼ �em

4�
q2t

�
�2

6
þ 4

�
1

0

" #

�Rð1Þ
g ¼ �s

4�

4

3

�
�2

6
þ 4

�
1

0

" #
:

(140)

with X1;2 and U1 given in Eq. (139).

The matching for operators containing tR and a light
quark doublet are given by Eq. (127) with the additional
terms

�Rð1Þ
H ¼ 2HðtRÞ

2HðtRÞ
� �

�Rð1Þ
W ¼ �em

4�sin2�W

1

2

�cðwt; 0Þ
�cðwt; 0Þ

� �

�Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

2U2

2U2

� �

�Rð1Þ
� ¼ �em

4�
q2t

�
�2

6
þ 4

�
1
1

� �

�Rð1Þ
g ¼ �s

4�

4

3

�
�2

6
þ 4

�
1
1

� �
:

(141)

The matching for operators containing tR and singlet
light quarks is given by Eq. (131) with the additional terms
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�Rð1Þ
H ¼ 2HðtRÞ

�Rð1Þ
W ¼ �em

4�sin2�W

1

2
ð�cðwt; 0ÞÞ

�Rð1Þ
Z ¼ �em

4�sin2�Wcos
2�W

2U2

�Rð1Þ
� ¼ �em

4�
q2t

�
�2

6
þ 4

�

�Rð1Þ
g ¼ �s

4�

4

3

�
�2

6
þ 4

�
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(142)

Anomalous dimension in SCET�

The anomalous dimension in SCET� after integrating

out the electroweak gauge bosons and switching to HQET
for the top quarks, is given by gluon and photon exchange.
For t pair production, particles 3 and 4 are HQET t-quarks,
and � can be obtained from Eq. (44), using the heavy-
heavy anomalous dimension (�1 of CGKM2) for exchange
between (3, 4), the heavy-light anomalous dimension (�2

of CGKM2) for exchange between (3, 4) and (1, 2) and the
light-light anomalous dimension (�3 of CGKM2) for ex-
change between (1, 2). This gives Eq. (61) for the QCD
part of the anomalous dimension, with �! �s, and group
theory factors replaced by their SUð3Þ values,

�ð1Þ ¼ ~�ð1Þ1þ �ð1Þ
S ;

~�ð1Þ ¼ �s
4�

4

3
ð8Ls � 4Lmt

� 10Þ;

�ð1Þ
S ¼ �s

4�

10
3 Lt=u þ 6Lut=s2 8Lt=u

16
9 Lt=u 0

" #
:

(143)

The QED anomalous dimension is

� ¼ �em

4�

�
q2l

�
4 log

�s
�2

� 6

�
þ q2t

�
4 log

�s
m2
t

� 4

�

þ 8qlqt log
t

u

�
(144)

where qt ¼ 2=3 and ql ¼ 2=3, �1=3 is the charge of the
light quark.

For single-top production from the operators Ô51, Ô61,

Ô52, Ô62, there is only one heavy quark in the final state,
and

� ¼ ~�ð1Þ1þ �ð1Þ
S ;

~�ð1Þ ¼ �s
4�

4

3

�
8Ls � 11� 2 log

m2
t

�2

�
;

�ð1Þ
S ¼ �s

4�

10
3 Lt=u þ 6Lut=s2 8Lt=u

16
9 Lt=u 0

" #
;

(145)

and the QED anomalous dimension

� ¼ �em

4�

�
ðq2u þ q2dÞ

�
8 log

�s
�2

� 11� 2 log
m2
t

�2

�

þ 8quqd log
s

u

�
(146)

where qu ¼ 2=3 and qd ¼ �1=3 are the charges of the up-
type and down-type quarks, respectively.
This completes the computation of radiative corrections

in the standard model. The formulas derived in this section
will be used for the numerical computations in the next
section. The only case we have not treated is when both
initial and final particles are top quarks. This can be
obtained from the case we have analyzed, with a heavy
quark in the final state, by also adding heavy quark correc-
tions terms for the initial quark.

E. gg ! q �q, gq ! gq and g �q ! g �q

The computations in this paper have been restricted to
those involving external matter fields. In top-quark pro-
duction and in jet production, processes involving external
gluons are also important. Consider, for definiteness, the
case gg! q �q. At the high-scale Q, the tree-graphs which
contribute to gg! q �q are shown in Fig. 10. In the EFT,
one generates a local operator which involves the fields q,
�q, and two collinear-gluon field strength tensors, shown
graphically in Fig. 11. The QCD corrections involve study-
ing operators with gauge field strength tensors, and will be
discussed elsewhere. The QCD corrections are known from
existing fixed-order computations [53]. The new feature
discussed in this article is the electroweak correction. If we
restrict ourselves to the electroweak corrections alone, then
we can compute these using the results in CGKM2. The
gluon field strength tensor is an electroweak singlet, and so
the ggq �q operator in the EFT is equivalent to the electro-
weak singlet currents �q��PL;Rq studied in CGKM2 and

the running and matching corrections in the effective the-

FIG. 10. Graphs contributing to gg! q �q in the full theory.
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ory are identical, with the identification �Q2 ! s. Thus
the total radiative corrections are given by combining the
known QCD corrections, with the electroweak corrections
for the current given in CGKM1, CGKM2. The other
important parton subprocesses which contributes to dijet
production are gq! gq, g �q! g �q, and gg! gg. For
gluon-quark or gluon-antiquark scattering, the EFT opera-
tor is a ggq �q operator, and the electroweak corrections are
the same as those for the Sudakov form-factor, with Q2 !
�t. For gg scattering, there are no electroweak corrections
to the order we are working, since the gluons do not couple
to the electroweak gauge bosons, and the radiative correc-
tions can be computed using the known QCD corrections.

F. Squark production

The techniques developed in the previous sections can
be used to calculate the radiative corrections in a theory
involving scalar particles in the final state such as SUSY.
To perform a high precision computation requires specify-
ing a particular supersymmetric theory, and computing the
matching conditions and radiative corrections using the
given SUSY particle spectrum. This is beyond the scope
of the present work.

To estimate the size of electroweak Sudakov corrections
in squark production, we will compute the SUð2Þ correc-
tions in the toy model of Sec. VD, assuming the squark is a
doublet, and �! �2, the weak interaction coupling con-
stant. This gives the expected size of electroweak Sudakov
corrections in squark production.

VIII. NUMERICS

The formulas for the EFT computation of standard
model scattering processes have been given in Sec. VII.
As discussed in Sec. III, the anomalous dimensions are
integrated using the two-loop �-functions, and we also
include the known two-loop QCD anomalous dimensions
[34] in addition to the one-loop results of Sec. VII. The
corrections have a very small dependence on the Higgs
mass (much less than 1%). In the numerics, we use a Higgs
mass of 200 GeV. The EFT coefficients should be run down
to a scale �0 of order a typical jet invariant mass. We have
chosen to use �0 ¼ 30 GeV. The electroweak corrections
are insensitive to this scale, because the only electroweak
correction below MZ is due to photon exchange.

The matching corrections at the high scale Q are about
2%, and dominated by the QCD contribution. The low-
scale matching due to integrating out theW and Z is about
2%. Both matching corrections are not very strongly de-
pendent on Q. The largest corrections are from the anoma-
lous dimension running. These corrections grow rapidly
with energy. The one-loop QCD corrections are very large,

and reduce the rate by factors of 3–30 in the range
ffiffiffî
s

p
between 1 and 5 TeV. The two-loop QCD cusp anomalous

dimension reduces the rate by about 10% at
ffiffiffî
s

p ¼ 5 TeV.
This is smaller than the electroweak corrections, but not
negligible. The two-loop noncusp QCD anomalous dimen-
sion (theB term in Eq. (15)) increases the rate by about 2%.
We have included the QCD two-loop cusp and noncusp
terms in the numerical results. The two-loop cusp anoma-
lous dimension has been shown to be proportional to the
one-loop result [34], and we use theirK factor to determine
the two-loop cusp anomalous dimension (the A term in
Eq. (15)). The two-loop noncusp anomalous dimension
was determined in CGKM2 by comparing the EFT result
with the two-loop results of Jantzen and Smirnov [17]. The
two-loop cusp anomalous dimension also determines the
two-loop contribution to the soft anomalous dimension
matrix �S. The noncusp contribution vanishes, since �S
depends on differences of anomalous dimensions. The
three-loop QCD cusp anomalous dimension contribution
[54] is less than 0.1%, and can be omitted. The one-loop
electroweak anomalous dimension corrections are signifi-
cant, ranging from 5% at 1 TeV to around 30% at 5 TeV.
Higher order electroweak corrections, such as the two-loop
electroweak cusp anomalous dimension are smaller than
0.1%. The numerical results are accurate at the one-percent
level, so that the error in LHC cross-sections is dominated
by other uncertainties, such as in the parton distribution
functions.
The EFT analysis neglected power corrections of the

formM2=ŝ,M2=t̂ and M2=û. The dominant power correc-
tions arise from one-loop QCD graphs, so we use the
estimate ð�sM2=�Þ � 1=ðŝ; t̂; ûÞ since the graphs have a
color factor of (roughly) 4CF�s=ð4�Þ. To keep the power

corrections below 1% requires
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ; jt̂j; jûjp

to be larger than
about 200 GeV for light-quark processes, where the largest
M is MZ, and larger than about 350 GeV for processes
involving the top-quark. Note that we have included all
power corrections that depend on ratios such as MZ=mt or
MZ=MH, and not expanded in these ratios. There are tree-
level power corrections due to gauge boson mass effects in
the propagators, e.g. the s-channel propagator ŝ�M2

Z is
approximated as ŝ. These trivial effects cancel in our
results, because we normalize all amplitudes to their tree-
level values.
The LHC cross-sections are given by using the coeffi-

cients computed earlier to compute the parton scattering
cross-sections, and then convoluting them with parton
distribution functions. For processes involving four-quark

FIG. 11. Operator contributing to gg! q �q in the EFT.
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operators, the effective interaction at the low-scale is a
linear combination of two color structures,

O ¼ C1ðTa 
 TaÞ þ C2ð1 
 1Þ: (147)

Color-averaging over initial particles and color summing
over final particles lead to a contribution to the cross-
section which is proportional to an effective coefficient
C, with

jCj2 ¼ 2

9
jC1j2 þ jC2j2: (148)

For q �q! q0 �q0, e.g. u �u! b �b, the parton scattering
cross-section is

d�̂

dt̂
¼ 1

16�ŝ2
½ðjCLLj2s;t þ jCRRj2s;tÞû2

þ ðjCLRj2s;t þ jCRLj2s;tÞt̂2� (149)

where CLL, etc. are the coefficients of the LL, etc. opera-
tors. The ^denote partonic variables. The subscript s, t is a
reminder that one uses the coefficients as computed in
Sec. VII with annihilation channel kinematics. From this,
one can compute hadronic cross-sections. For example, the
dijet invariant mass distribution from the partonic subpro-
cess u �u! d �d is given by

M2 d2�

dM2dET
¼ 2ET

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

ŝ� 4E2
T

s
d�̂

dt̂

��������ŝ¼�s
�
dLu �u
d�

(150)

where M2 is the dijet invariant mass, ET is the transverse
energy of the jet, � ¼ M2=s,

ffiffiffi
s

p ¼ 14 TeV is the LHC
center of mass energy, and the parton luminosity function
Lij is defined by

dLij
d�

¼ 1

1þ �ij

Z 1

�

dx

x
½fð1Þi ðxÞfð2Þj ð�=xÞ

þ fð1Þj ðxÞfð2Þi ð�=xÞ� (151)

where fð1;2Þi are the distribution functions for parton i in
beams 1 and 2.9 For the LHC, both are proton distribution
functions. The 1þ �ij is the symmetry factor for identical

partons in the initial state. For the case q ¼ q0, e.g. u �u!
u �u, Eq. (149) still holds, and the coefficients CLL;RR get

contributions from both the direct and crossed graphs.
For identical particles, e.g. u �u! u �u, the partonic cross-

section has the schematic form

d�̂

dt̂
¼ 1

16�ŝ2
½ðjCLL þ ~CLLj2s;t þ jCRR þ ~CLLj2s;tÞû2

þ ðjCLRj2s;t þ jCRLj2s;tÞt̂2 þ ðjCLRj2t;s þ jCRLj2t;sÞŝ2�:
(152)

There is the direct channel as well as the crossed-channel
with s$ t. For LL and RR, the crossed-channel ampli-
tudes have the same fermion chiralities as the direct chan-

nel, and are included as ~C, which includes both s$ t and
the crossing matrix. One has to add the amplitudes in the
two channels before squaring. For LR and RL, the crossed
diagrams do not interfere because the initial and final
chiralities do not match, and one adds the probabilities.
For qq0 scattering processes not involving identical par-

ticles the cross-section is

d�̂

dt̂
¼ 1

16�ŝ2
½ðjCLLj2t;u þ jCRRj2t;uÞŝ2

þ ðjCLRj2t;u þ jCRLj2t;uÞû2� (153)

and for q �q0 scattering

d�̂

dt̂
¼ 1

16�ŝ2
½ðjCLLj2t;s þ jCRRj2t;sÞû2

þ ðjCLRj2t;s þ jCRLj2t;sÞŝ2� (154)

The subscripts t, u, etc. are a reminder the one has to use
the amplitudes of Sec. VII with the replacements s! t,
t! u, etc.
For identical quark scattering, qq! qq, e.g. uu! uu,

the cross-section is

d�̂

dt̂
¼ 1

16�ŝ2

�
1

2
ðjCLL þ ~CLLj2t;u þ jCRR þ ~CLLj2t;uÞŝ2

þ 2jCLRj2t;uû2 þ 2jCLRj2u;tt̂2
�
: (155)

The 1=2 is from final state phase space for identical parti-
cles. The initial state 1=2 is included in the parton lumi-
nosity function.
There are 72 four-fermion amplitudes that have been

computed in Sec. VII in the s-channel, not including those
which are identical by flavor symmetry, and another 72
amplitudes in the t-channel, and we cannot plot them all
here. We will choose some representative examples to
illustrate the size of the radiative corrections in high energy
LHC processes. Rather than plot the hadronic cross-
sections, which involve convolutions over rapidly falling
parton luminosities, we have chosen to plot the ratio of the
partonic cross-sections d�̂=dt̂ to their tree-level values.
From Eq. (150), it follows that this also gives the ratio of
the hadronic cross-section to its tree-level value. We will
also neglect the CKM matrix in the plots, since the flavor
dependence of the electroweak corrections is small, and the
CKM factors enter as off-diagonal CKM matrix elements
multiplied by the difference of electroweak corrections
between d0 and s0, and d0 and b0.

92ET ¼ ffiffiffî
s

p
sin� and t̂ ¼ �ŝsin2�=2, where � is the center of

mass scattering angle. Thus in Eq. (150), a given ET values gets
contributions from two values of t̂, or equivalently, one should
symmetrize d�̂=dt̂ under t̂$ û. We will plot d�̂=dt̂ before
symmetrizing.
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Plots

Figure 12 show the ratio d�̂=dt̂ to its tree-level value for

u �u! �þ��, u �u, c �c, t�t and b �b as a function of
ffiffiffî
s

p
for 90�

scattering, t̂ ¼ �ŝ=2, including QCD and electroweak
corrections. The radiative corrections are enormous, and

reduce the cross-sections by 1.15–2 at
ffiffiffî
s

p ¼ 500 GeV to a

factor of 7–38 at
ffiffiffî
s

p ¼ 5 TeV compared to the tree-level
value, depending on the process.10 The bulk of the correc-
tion is due to QCD effects. Some of the QCD corrections
are included in parton shower Monte-Carlos, because
gluon radiation from tree-level branching is related to the
LL Sudakov series. However, the electroweak corrections,
and some of the QCD corrections are not included in the
shower algorithms, so the Monte-Carlo results can have
substantial (� 50%) corrections.

The u �u rate differs from c �c because of the crossed-
channel graph for identical particles. The difference be-
tween c �c and t�t, and between s�s (not shown) and b �b is due
to top-quark mass effects. The u �u! �þ�� rate has
smaller QCD corrections, since the final state is a color
singlet. The anomalous dimension ~� is proportional to
4Ls � 6. At large values of ŝ, the 4Ls term dominates,
and produces the large Sudakov (double-log) suppression.
At smaller values of ŝ, the �6 can compensate the 4Ls
term, leading to an enhancement of the cross-section. This
leads to a flattening of the curves at the smallest values of ŝ.
The cross-sections will decrease slightly if we continue the
plot to even smaller values of ŝ. This effect can also be seen
in the plots of Ref. [9]. Figure 13 show the radiative
corrections to the angular distribution for u �u! �þ��,

u �u, c �c, t�t and b �b at
ffiffiffî
s

p ¼ 1 TeV. There is about a factor of
2 variation in the radiative correction over the range
�0:8 � t̂=ŝ � �0:2.
Figures 14 and 15 show the ratios d�̂ðu �u!

t�tÞ=dt̂=d�̂ðu �u! c �cÞ=dt̂ and d�̂ðu �u! b �bÞ=dt̂=d�̂ðu �u!
s�sÞ=dt̂ as a function of

ffiffiffî
s

p
for different values of t̂ (i.e.

the scattering angle �), including QCD and electroweak
corrections. These ratios are unity in the absence of top-
quark mass effects. There is a�40% increase in the t�t rate
due to the top-quark mass. About �4% is from the Higgs
contribution, �2% from mass effects in the low-scale
electroweak matching, and the rest from mass effects in
the QCD matching at mt and running below mt. There is a

FIG. 13 (color online). Rates for u �u! �þ�� (dotted black),
u �u! u �u (solid cyan), u �u! c �c (long-dashed red), u �u! t�t
(short-dashed blue), u �u! d �d (dot-dashed green) and u �u! b �b
(double-dot-dashed magenta) as a function of t̂=ŝ for

ffiffiffî
s

p ¼
1 TeV, normalized to their tree-level values without any elec-
troweak corrections.

FIG. 12 (color online). Rates for u �u! �þ�� (dotted black),
u �u! u �u (solid cyan), u �u! c �c (long-dashed red), u �u! t�t
(short-dashed blue), u �u! d �d (dot-dashed green) and u �u! b �b
(double-dot-dashed magenta) as a function of

ffiffiffî
s

p
in GeV at � ¼

90�, normalized to their tree-level values without any electro-
weak corrections. Note the logarithmic scale.

FIG. 14 (color online). The ratio ðu �u! t�tÞ=ðu �u! c �cÞ at t̂ ¼
�0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼ �0:5ŝ
(solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta) and t̂ ¼
�0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

10Note that the parton luminosity is falling by about 4 orders of
magnitude over the same range.
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much smaller enhancement of d�̂ðu �u! b �bÞ=dt̂=d�̂ðu �u!
s�sÞ=dt̂ due to virtual top-quark effects in the b-sector.11

Figures 16 and 17 show the corresponding results for d �d!
t�t, b �b.
The plots discussed above include QCD and electroweak

corrections. To show the importance of electroweak cor-
rections, we show in Fig. 18, the same processes as in
Fig. 12, but instead of plotting the ratio of the partonic
cross-section to the tree-level value, we plot the ratio of the
cross-section to the value including only QCD corrections,
i.e. with �1;2 ! 0.12 This ratio shows the additional effect

of electroweak corrections beyond the QCD corrections,
which have been computed previously. The electroweak
corrections are significant, increasing from ð�4Þ–ð�22Þ%
at 1 TeV to ð�18Þ–ð�32Þ% at 5 TeV, depending on the
process. The electroweak corrections to the angular distri-
bution are shown in Fig. 19. There are 10–30% variations
in the corrections in the range �0:8 � t̂=ŝ � �0:2 forffiffiffi
s

p ¼ 1 TeV.
The electroweak corrections alone (defined as just dis-

cussed) for lepton pair production from u-quark and
d-quark annihilation are shown in Figs. 20 and 21 for

different values of t̂. At
ffiffiffî
s

p ¼ 1 TeV, the corrections range

from ð0:4Þ–ð�14Þ%, increasing to ð�13Þ–ð�32Þ% at
ffiffiffî
s

p ¼
5 TeV. The electroweak corrections also change the angu-
lar distribution of the lepton pairs. Figures 22 and 23 show

FIG. 15 (color online). The ratio ðu �u! b �bÞ=ðu �u! s�sÞ at t̂ ¼
�0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼ �0:5ŝ
(solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta) and t̂ ¼
�0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 16 (color online). The ratio ðd �d! t�tÞ=ðd �d! c �cÞ at t̂ ¼
�0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼ �0:5ŝ
(solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta) and t̂ ¼
�0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 17 (color online). The ratio of ðd �d! b �bÞ=ðd �d! s�sÞ at
t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼
�0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta)
and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 18 (color online). Electroweak corrections to u �u!
�þ�� (dotted black), u �u! u �u (solid cyan), u �u! c �c (long-
dashed red), u �u! t�t (short-dashed blue), u �u! d �d (dot-dashed
green) and u �u! b �b (double-dot-dashed magenta) as a function
of

ffiffiffî
s

p
in GeV at � ¼ 90�. The large corrections for u �u! d �d

arise from the t-channel W exchange graph.

11Even though our individual radiative corrections have cor-
rections under 1%, ratios such as d�̂ðu �u! b �bÞ=dt̂=d�̂ðu �u!
s�sÞ=dt̂ have much smaller errors, so that the deviation from unity
in Fig. 15 is a real effect.
12In q �q! �þ��, we include tree-level electroweak exchange,
and keep �s�1;2 terms in the one-loop matching, but drop order
�2
1;2 terms.
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the t̂ dependence of the cross-section for different values of
ŝ. The angular dependence is approximately independent
of ŝ. The reason is that the dominant t̂ dependence arises
from the soft anomalous dimension �S, which is a function
only of the dimensionless ratio t̂=ŝ. The angular depen-
dence of the electroweak corrections differ for u �u!
�þ�� and d �d! �þ��.

The electroweak corrections to heavy quark production
via u and d quark annihilation are shown in Figs. 24–27 for
t-quark production, and Figs. 28–31 for b-quark produc-
tion. Electroweak corrections to heavy quark production
have been computed previously [55–63]. We find the same
qualitative behavior—the electroweak corrections give a

FIG. 19 (color online). Electroweak corrections to u �u!
�þ�� (dotted black), u �u! u �u (solid cyan), u �u! c �c (long-
dashed red), u �u! t�t (short-dashed blue), u �u! d �d (dot-dashed
green) and u �u! b �b (double-dot-dashed magenta) as a function
of t̂=ŝ for

ffiffiffî
s

p ¼ 1 TeV. The large corrections for u �u! d �d arise
from the t-channel W exchange graph.

FIG. 20 (color online). Electroweak corrections to u �u!
�þ�� at t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed
red), t̂ ¼ �0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed
magenta) and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in

GeV.

FIG. 21 (color online). Electroweak corrections to d �d!
�þ�� at t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed
red), t̂ ¼ �0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed
magenta) and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in

GeV.

FIG. 23 (color online). Electroweak corrections to d �d!
�þ�� at

ffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-
dashed red) and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.

FIG. 22 (color online). Electroweak corrections to u �u!
�þ�� at

ffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-
dashed red) and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.
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FIG. 25 (color online). Electroweak corrections to d �d! t�t at
t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼
�0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta)
and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 24 (color online). Electroweak corrections to u �u! t�t at
t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼
�0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta)
and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 26 (color online). Electroweak corrections to u �u! t�t atffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-dashed red)
and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.

FIG. 27 (color online). Electroweak corrections to d �d! t�t atffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-dashed red)
and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.

FIG. 28 (color online). Electroweak corrections to u �u! b �b at
t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼
�0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta)
and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.

FIG. 29 (color online). Electroweak corrections to d �d! b �b at
t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-dashed red), t̂ ¼
�0:5ŝ (solid black), t̂ ¼ �0:65ŝ (double-dot-dashed magenta)
and t̂ ¼ �0:8ŝ (dot-dashed cyan) as a function of

ffiffiffî
s

p
in GeV.
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small (��6%) suppression, and the QCD corrections
give a large (� 50%) enhancement.
The above plots have been for s-channel processes.

There are also t-channel parton subprocesses that contrib-
ute to dijet production. Rather than go through these in
detail, we show two illustrative plots: Fig. 32 shows the
electroweak corrections to uu! uu, ud! ud, dd! dd
and u �d! u �d (which is equal to d �u! d �u) as a function offfiffiffî
s

p
for 90� scattering, and Fig. 33 shows the angular

dependence of the electroweak corrections at
ffiffiffi
s

p ¼ 1 TeV.
There are also scattering processes involving external

gluons. For gg! q �q, gq! gq, and g �q! g �q, we have
only computed the electroweak part of the correction,
which is equal to that for the Sudakov form-factor. For
the s-channel process gg! q �q, the electroweak correction

FIG. 30 (color online). Electroweak corrections to u �u! b �b atffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-dashed red)
and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.

FIG. 31 (color online). Electroweak corrections to d �d! b �b atffiffiffî
s

p ¼ 1 TeV, (dotted blue),
ffiffiffî
s

p ¼ 2:5 TeV (long-dashed red)
and

ffiffiffî
s

p ¼ 5 TeV (solid black) as a function of t̂=ŝ.

FIG. 32 (color online). Electroweak corrections to uu! uu
(dotted black), ud! ud (long-dashed red), dd! dd (solid
blue) and u �d! u �d, d �u! d �u (dot-dashed green) as a function
of

ffiffiffî
s

p
in GeV at � ¼ 90�.

FIG. 33 (color online). Electroweak corrections to uu! uu
(dotted black), ud! ud (long-dashed red), dd! dd (solid
blue) and u �d! u �d, d �u! d �u (dot-dashed green) as a function
t̂=ŝ at

ffiffiffî
s

p ¼ 1 TeV.

FIG. 34 (color online). Electroweak corrections to gg! u �u,
c �c (dotted black), gg! d �d, s �s (long-dashed red), gg! t�t (solid
blue) and gg! b �b (dot-dashed green) as a function of

ffiffiffî
s

p
in

GeV. The electroweak corrections are independent of t̂ to the
order we are working. The same plot also gives the electroweak

corrections to gq! gq and g �q! g �q, as a function of
ffiffiffiffiffiffi�t̂p

.
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only depends on
ffiffiffî
s

p
, and is shown in Fig. 34. The same plot

also gives the electroweak correction to the t-channel
scattering processes gq! gq and g �q! g �q as a function

of
ffiffiffiffiffiffi�t̂p

, by crossing symmetry. The imaginary parts from
the logarithmic branch cuts in the s-channel amplitude do
not change the absolute value of the amplitude.

Finally, we show the electroweak corrections for squark
production. As discussed earlier, we use the electroweak
correction for squark production in the toy theory, with the
gauge coupling constant set equal to �2 of the standard
model. This gives an indication of the size of electroweak
corrections to squark production in supersymmetric exten-
sions of the standard model. A more precise computation
depends on the specific scenario. The electroweak correc-
tion to squark production is shown in Fig. 35 for a squark
mass of 250 GeV. The radiative correction to the angular
distribution is shown in Fig 36. For discovering squarks,

the only correction which matters is that at threshold,
ffiffiffî
s

p ¼
2m~q since the parton luminosity falls steeply with ŝ. The

electroweak corrections give a small (5%) enhancement of
the rate for ŝ near threshold.

IX. CONCLUSIONS

This paper extends the analysis of two previous publi-
cations [1,2], and gives detailed numerical results for
radiative corrections to high energy scattering processes
in the standard model. The electroweak and QCD correc-
tions have been computed using EFT methods, and the
Sudakov logarithms have been summed using renormal-
ization group methods. The EFT also properly sums mixed
higher order logarithms that depend on both �s and �1;2, as

well as those that depend on the top-quark Yukawa cou-
pling. We have checked that our results agree with previous
results when expanded in powers of �.
The electroweak corrections can be important for LHC

processes, particularly in searches for new physics that
look for deviations from the standard model. The correc-
tions vary in size from about ð0:4Þ–ð�14Þ% at 1 TeV to
about ð�13Þ–ð�32Þ% at 5 TeV, and need to be included to
obtain LHC cross-sections with accuracies under 10%.
We have also shown that the radiative corrections to

four-quark operators are given in terms of those for two-
quark operators by summing over pairs of particles. The
relation between this and factorization, and with the two-
loop soft anomalous dimension of Aybat et al. [34] was
discussed in Sec. VI. Further work on this important topic
is in progress.
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APPENDIX A: MATCHING AT Q INCLUDING THE
CASE OF IDENTICAL PARTICLES

In this appendix, we summarize the matching computa-
tion at scaleQ, including the case of identical particles. We
start with the case of an SUðNÞ gauge theory with left-
handed fermions in the fundamental representation.
The tree-graph in Fig. 37 gives

AðsÞ ¼ 4��

s
½ �u4��Tav3�L½ �v2��Tau1�L (A1)

which is written as

AðsÞ ¼ 4��

s
ALLðTa 
 TaÞ

ALL ¼ ½ �u4��v3�L½ �v2��u1�L
(A2)

FIG. 35 (color online). Electroweak corrections to q �q! ~q~q�
in the toy theory at t̂ ¼ �0:2ŝ, (dotted blue), t̂ ¼ �0:35ŝ (long-
dashed red), t̂ ¼ �0:5ŝ (solid black) as a function of

ffiffiffî
s

p
in GeV.

The rate is symmetric under �! 180� � �.

FIG. 36 (color online). Electroweak corrections to q �q! ~q~q�
in the toy theory at

ffiffiffî
s

p ¼ 1 TeV as a function of �t̂=ŝ at ffiffiffî
s

p ¼
1 TeV (black),

ffiffiffî
s

p ¼ 2:5 TeV (long-dashed red) and
ffiffiffî
s

p ¼
5 TeV (dotted blue).
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factoring out the color structure from the spinor structure
of the graph. The left Ta is contracted with the color
indices of particles 4 and 3, and the right Ta with those
of particles 2 and 1.

If the initial and final particles are identical, there is also
the t-channel graph in Fig. 38 which gives

AðtÞ ¼ � 4��

t
½ �u4��Tau1�L½ �v2��Tav3�L

¼ � 4��

t
½ �u4��u1�L½ �v2��v3�LðTa 
 TaÞc (A3)

and the relative minus sign is from Wick’s theorem. The
subscript c indicates that the color structure is in the
crossed t-channel. The left Ta is contracted with the color
indices of particles 4 and 1, and the right Ta with those of
particles 2 and 3.

It is convenient to convert the t-channel graph to the
standard basis used in the paper. The t-channel color
structure can be converted to the s-channel using the
SUðNÞ color crossing matrix

ðTa 
 TaÞc ð1 
 1Þc
	 
 ¼ ðTa 
 TaÞ ð1 
 1Þ	 


MN:

(A4)

The color Fierz identity

ðTaÞijðTaÞkl ¼
1

2
�il�

k
j �

1

2N
�ij�

k
l (A5)

can be written as

ðTa 
 TaÞ ¼ 1

2
ð1 
 1Þc � 1

2N
ð1 
 1Þ: (A6)

Using this and the same equation with direct and crossed
channels exchanged, one finds

MN ¼ � 1
N 2

1
2 � 1

2N2
1
N

" #
(A7)

with M2
N ¼ 1. There is no color crossing matrix required

for a Uð1Þ gauge theory. For SUð2Þ and SUð3Þ,

M2 ¼ � 1
2 2

3
8

1
2

" #
; M3 ¼ � 1

3 2
4
9

1
3

" #
: (A8)

The spinor Fierz is

½ �u4��u1�L½ �v2��v3�L ¼ �½ �u4��v3�L½ �v2��u1�L (A9)

so Eq. (A3) is

A¼ 4��

t
ALL

�
� 1

N
Ta 
 Taþ

�
1

2
� 1

2N2

�
1
 1

�
: (A10)

Comparing with Eq. (25) in Sec. V, we see that the
s-channel contribution to the matching coefficient is

CðsÞ
1LLðs; tÞ ¼

4��

s
; CðsÞ

2LLðs; tÞ ¼ 0 (A11)

and the t-channel contribution is

CðtÞ
1LLðs; tÞ

CðtÞ
2LLðs; tÞ

" #
¼ MN

CðsÞ
1LLðt; sÞ

CðsÞ
2LLðt; sÞ

" #
: (A12)

The total contribution is

C1LL ¼ CðsÞ
1LLðs; tÞ þ CðtÞ

1LLðs; tÞ ¼
4��

s
� 4��

Nt

C2LL ¼ CðsÞ
2LLðs; tÞ þ CðtÞ

2LLðs; tÞ ¼
�
1

2
� 1

2N2

�
4��

t

(A13)

where the t-channel pieces should only be included for
identical particles.
This sets up the notation and procedure to be used for the

one-loop matching computation. The full theory diagrams
of Fig. 6 were computed in order to match the full gauge
theory onto SCET at � ¼ Q. Dimensional regularization
was used to regulate both the infrared and ultraviolet
divergences, which are distinguished by subscripts on
1=
. The diagrams are computed with all masses set to
zero. The logarithms are expressed using the short hand
notation

x ¼ log
�x
�2

; Lx=y ¼ log
x

y
(A14)

for x, y ¼ s, t, u.
The first two vertex graphs of Fig. 6 each give a con-

tribution of

Vv ¼ �2

s
ALL

�
CF � 1

2
CA

��
1


UV
� 2


2IR
� 4


IR
þ 2


IR
Ls

� L2s þ 3Ls � 8þ �2

6

�
: (A15)

1 2

34

FIG. 37. s-channel tree level diagram.

1 2

34

FIG. 38. t-channel tree level diagram.
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The next two vertex graphs in Fig. 6 each involve a triple
gauge boson coupling, and give

Vg ¼ �2

s
ALL

CA
2

�
3


UV
� 4


IR
� 2þ Ls

�
: (A16)

The s-channel box graph in Fig. 39 with all fermions
left-handed gives

Vb ¼ �2I2ðs; tÞALL
�
C11 
 1þ 1

4
ðCd þ CAÞTa 
 Ta

�

¼ �2I2ðs; tÞALL
�
N2 � 1

4N2
1 
 1þ N2 � 2

2N
Ta 
 Ta

�
(A17)

where

I2ðs; tÞ ¼ I1ðs; tÞ � 1

s
fðs; tÞ

I1ðs; tÞ ¼ 4

s

�
� 1


2IR
þ 1


IR
Lt � 1

2
L2t þ �2

12

�
þ 2

s
ðL2s=t þ �2Þ

fðs; tÞ ¼ sðsþ 2tÞ
ðsþ tÞ2 ðL2t=s þ �2Þ � 2s

sþ t
Lt=s (A18)

The s-channel crossed-box graph in Fig. 40 with all
fermions left-handed gives

Vc ¼ ��2I1ðs; uÞALL
�
C11 
 1þ 1

4
ðCd � CAÞTa 
 Ta

�

¼ ��2I1ðs; uÞALL
�
N2 � 1

4N2
1 
 1� 1

N
Ta 
 Ta

�
:

(A19)

The gauge boson self-energy graphs combine to give a
contribution of

Vs ¼ �2

s
ALL

�
CA

�
5

3
UV
þ 31

9
� 5

3
Ls

�
þ TFnF

�
� 4

3
UV

� 20

9
þ 4

3
Ls

�
þ TFnS

�
� 1

3
UV
� 8

9
þ 1

3
Ls

��
(A20)

and the wave function graph is

Vw ¼ �2

s
CFALL

�
� 1

2
UV
þ 1

2
IR

�
: (A21)

The sum of all of the diagrams of Fig. 6 including the
gauge boson self-energy graphs and the wave function
graphs is

Vtotal ¼ 2Vv þ 2Vg þ Vb þ Vc þ Vs þ 4Vw (A22)

and gives

A1LL¼�2

s

�
2CF

�
� 2


2IR
� 3


IR
þ 2


IR
Ls�L2sþ3Ls�8þ�

2

6

�

þCA
�
2


IR
Lu=sþ2L2s�2LuLs�11

3
Lsþ�2þ85

9

�

þTFnF
�
�20

9
þ4

3
Ls

�
þTFnS

�
�8

9
þ1

3
Ls

�

þ
�
4


IR
Lt=u�4LsLt=u�fðs;tÞ

�ðCdþCAÞ
4

�

A2LL¼�2

s

�
4


IR
Lt=u�4LsLt=u�fðs;tÞ

�
C1 (A23)

which are the coefficients of ALLðTa 
 TaÞ and ALLð1 
 1Þ,
respectively.
The counterterms of the full theory have been used to

cancel to the 1=
UV terms and the remaining poles are all
1=
IR infrared divergences. These infrared divergent terms
agree with the ultraviolet divergences in the effective the-
ory. The finite parts of Eq. (A23) give the high scale
matching condition at ��Q.
Equation (A23) gives the one-loop matching result for

fermions which are distinguishable. If the fermions are
identical, then there are also one-loop graphs in the crossed
channel, analogous to the crossed channel tree graph
Fig. 38. They are obtained by the crossing relation
Eq. (A12) used earlier for the tree-level graphs.
The one-loop matching conditions for initial and final

fermions of the same chirality (i.e. LL or RR) is Eq. (A23).
If the fermions have opposite chirality, then one can obtain
the matching coefficients using charge conjugation. The
right-handed field  R is replaced by the charge conjugate
field  cL. This reverses the sign of the fermion arrow on the
fermion line, and exchanges the box and crossed box

21

34

FIG. 39. Box diagram.

21

34

FIG. 40. Crossed-box diagram.

ELECTROWEAK CORRECTIONS USING EFFECTIVE FIELD . . . PHYSICAL REVIEW D 78, 073006 (2008)

073006-37



graphs. One can now use Eq. (A23) for the same-chirality
case, and then use charge conjugation on the final ampli-
tude to rewrite the  cL spinors in terms of the original  R
spinors. The result of this procedure is that the matching
Eq. (A23) for opposite chirality (i.e. LL or RR) is given by
Eq. (A23) with the replacement C1 ! �C1, Cd ! �Cd
and t$ u.

APPENDIX B: PARAMETER INTEGRALS

The parameter integrals tabulated below arise from ver-
tex and wave function graphs where the gauge boson has
mass M, the external particle has mass mext, and the
internal particle has mass m. They depend on the variables
w ¼ m2

ext=M
2 and z ¼ m2=M2. For any function fðw; zÞ

defined below, we define the corresponding function of a
single argument by fðzÞ 	 fðz; zÞ. In the standard model,
where the only fermion with mass comparable to the gauge
boson masses is the top quark, we need the integrals fðz; zÞ,
fðz; 0Þ and fð0; zÞ, with z ¼ m2

t =M
2
W , m

2
t =M

2
Z, m

2
t =M

2
H.

For 4z � 1, the fðz; zÞ results can be analytically con-

tinued using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p ! i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z� 1

p
and tanh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4z
p Þ!

itan�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
4z�1

p Þ. In each integral, the factors of i cancel,
and the function remains real. The fðw; 0Þ formulas are
given by using fðwþ i0þ; 0Þ for w � 1. They have an
imaginary part for large values of w.

1. Fermions

The gauge boson vertex graph leads to the integral

fFðw; zÞ ¼ 2
Z 1

0
dx

1� x

x
log

�
1� xþ zx� wxð1� xÞ

1� x

�
:

(B1)

fFðz; zÞ ¼ 2þ
�
1

z
� 2

�
logðzÞ þ 1

2
log2ðzÞ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
z

tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

� 2ðtanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ2: (B2)

The function fFðzÞ ¼ fFðz; zÞ was used in CGKM2.

fFð0; zÞ ¼ �2

3
þ 2z

1� z
logz� 2Li2ð1� zÞ (B3)

fFðw; 0Þ ¼ 2þ 2
1� w

w
logð1� wÞ � 2Li2ðwÞ (B4)

The inverse propagator including the gauge boson wave
function graph is

S�1 ¼ p6 ½1þ Aðp2Þ� �mext½1þ Bðp2Þ�: (B5)

The parameter integrals required are

aðp2=M2; m2=M2Þ ¼ Aðp2=M2; m2=M2Þ

bðp2=M2; m2=M2Þ ¼ p2 @B

@p2
ðp2=M2; m2=M2Þ

cðp2=M2; m2=M2Þ ¼ p2 @A

@p2
ðp2=M2; m2=M2Þ

(B6)

where m is the mass of the internal fermion, and the
integrals are evaluated on-shell, with p2 ¼ m2

ext, where
mext is the mass of the external fermion.

aðw; zÞ ¼ �2
Z 1

0
dxð1� xÞ log

�
1� xþ zx� wxð1� xÞ

1� x

�

bðw; zÞ ¼
Z 1

0
dx

4
ffiffiffiffiffiffi
wz

p
xð1� xÞ

1� xþ zx� wxð1� xÞ
cðw; zÞ ¼

Z 1

0
dx

2wxð1� xÞ2
1� xþ zx� wxð1� xÞ (B7)

aðz; zÞ ¼ 5

2
� 1

z
� ð1� 2zÞð1� 4zÞ

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

� 1� 4zþ 2z2

2z2
logz

að0; zÞ ¼ � z

ð1� zÞ �
z2

ð1� zÞ2 logz

aðw; 0Þ ¼ 3

2
� 1

w
� ð1� wÞ2

w2
logð1� wÞ

(B8)

bðz; zÞ ¼ �4þ 4ð3z� 1Þ
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

þ 2

�
1� 1

z

�
logz

bð0; zÞ ¼ 0

bðw; 0Þ ¼ 0

(B9)

cðz; zÞ ¼ 2

z
� 3þ 2ð1� 5zþ 5z2Þ

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

þ 1� 3zþ z2

z2
logz

cð0; zÞ ¼ 0

cðw; 0Þ ¼ 2

w
� 1þ 2ð1� wÞ

w2
logð1� wÞ

(B10)

The function

hFðzÞ ¼ aðz; zÞ � 2bðz; zÞ þ 2cðz; zÞ (B11)

was used in CGKM2 and is the wave function correction in
a vectorlike theory.
The corresponding functions for radiative corrections

due to a virtual scalar are
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~aðw; zÞ ¼ 1

2
aðw; zÞ

~bðw; zÞ ¼ � 1

4
bðw; zÞ

~cðw; zÞ ¼ 1

2
cðw; zÞ

(B12)

and

~h FðzÞ ¼ ~aðz; zÞ � 2~bðz; zÞ þ 2~cðz; zÞ (B13)

was used in CGKM2.

2. Scalars

The gauge boson vertex graph for scalar particles leads
to the integral

fSðw; zÞ ¼
Z 1

0
dx

ð2� xÞ
x

log
1� xþ zx� wxð1� xÞ

1� x
:

(B14)

fSðz; zÞ ¼ 1�
�
1� 1

2z

�
logðzÞ þ 1

2
log2z

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
z

tanh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ

� 2ðtanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ2

fSð0; zÞ ¼ �2

3
þ z

1� z
logz� 2Li2ð1� zÞ

fSðw; 0Þ ¼ 1þ 1� w

w
logð1� wÞ � 2Li2ðwÞ:

(B15)

Scalar wave function renormalization due to gauge bo-
son exchange gives the integral

hSðw; zÞ ¼
Z 1

0
dx

�
ð3x2 � 6xþ 4Þ

� log

�
1� xþ zx� wxð1� xÞ

1� x

�

� wxð1� xÞð2� xÞ2
1� xþ zx� wxð1� xÞ

�
(B16)

hSðz; zÞ ¼ 3

2
� 1

z
þ
�
3

2z
� 1

2z2

�
logðzÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p ð1� zÞ
z2

tanh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ

hSð0; zÞ ¼ zð1� 3zÞ
2ð1� zÞ2 �

zð2z2 � 2zþ 1Þ
ð1� zÞ3 logz

hSðw; 0Þ ¼ � 1

2
� 1

w
þ
�
2� 1

w2

�
logð1� wÞ

(B17)

Scalar wave function renormalization due to scalar ex-
change gives:

~h Sðw; zÞ ¼ �
Z 1

0
dx

zx3

1� xþ zx� wxð1� xÞ (B18)

~h Sðz; zÞ ¼ � 1

2
� 1

z
þ
�
1

2z
� 1

2z2

�
logðzÞ

þ 3z� 1

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p tanh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ

~hSð0; zÞ ¼ zð2z2 � 7zþ 11Þ
6ð1� zÞ3 þ z

ð1� zÞ4 logz

~hSðw; 0Þ ¼ 0:

(B19)

APPENDIX C: ERRATUM

The low-scale matching for the t-quark in CGKM2 is
incorrect. The corrected expressions are

½ ��ðQtÞ
n;p2

Wn���PL½Wy
�n �

ðQtÞ
�n;p1

�!a1 �tv2�
�PLtv1

þa2½ ��ðb
0Þ

n;p2
Wn���PL½Wy

�n �
ðb0Þ
�n;p1

�;
½ ��ðtÞn;p2

Wn���PR½Wy
�n �

ðtÞ
�n;p1

�!a3 �tv2�
�PRtv1 ; (C1)

where the matching coefficients a1�3 are given by

loga1ðmtÞ ¼ �em

4�sin2�Wcos
2�W

½g2LtFgðQ;MZ;mtÞ þ 2U1� þ �em

4�sin2�W

�
1

2

�
½FgðQ;MW;mtÞ þ 2W1�

þ
�
�s
4�

4

3
þ �em

4�

4

9

��
�2

6
þ 4

�
þ 2HðtLÞ;

loga2ðmtÞ ¼ �em

4�sin2�Wcos
2�W

g2LbFgðQ;MZ;mtÞ þ �em

4�sin2�W

�
1

2

�
½FgðQ;MW;mtÞ þ 2W2� þ 2Hðb0LÞ;

loga3ðmtÞ ¼ �em

4�sin2�Wcos
2�W

½g2RtFgðQ;MZ;mtÞ þ 2U2� þ �em

4�sin2�W

�
1

2

�
½�cðwt; 0Þ� þ

�
�s
4�

4

3
þ �em

4�

4

9

��
�2

6
þ 4

�
þ 2HðtRÞ; (C2)

and the required functions U1;2, X1;2, HðtLÞ, HðtRÞ, and Hðb0LÞ are given in Eqs. (117), (133), and (139).
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