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We consider QCD at temperatures T near Tc, where the theory deconfines. We distinguish between a

‘‘complete’’ quark-gluon plasma (QGP), where the vacuum expectation value of the renormalized

Polyakov loop is near unity, essentially constant with T, and the ‘‘semi’’-QGP, where the loop changes

strongly with T. Lattice simulations indicate that in QCD, there is a semi-QGP from below Tc to a few

times that. Using a semiclassical model, we compute the shear viscosity, �, to leading order in

perturbation theory. We find that near Tc, where the expectation value of the Polyakov loop is small,

that �=T3 is suppressed by two powers of the loop. For heavy ions, this suggests that during the initial

stages of the collision, hydrodynamic behavior at the LHC will be characterized by a shear viscosity

which is significantly larger than that at RHIC.
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The collisions of heavy ions at RHIC have demonstrated
clear signals for a novel regime. Much interest has focused
on collective properties, especially elliptical flow, which
appear to be well described by a system in which the
(dimensionless) ratio of the shear viscosity, �, to the
entropy, s, is small [1–10]. These results do not agree
with the expectations of a weakly coupled plasma, and
have been described as a ‘‘strong’’ quark-gluon plasma
(QGP) [3,10].

It is reasonable to expect that the running coupling in
QCD,�sðTÞ ¼ g2ðTÞ=ð4�Þ, might be large near the critical
temperature, Tc. Typically, one expects the coupling to be
in a nonperturbative regime for momenta less than
�1 GeV. Since the transition temperature is �200 MeV
[11–15], the coupling could well be large at several (and
maybe many) times Tc.

Indeed, perhaps the coupling is so large that the relevant
limit is of infinite coupling. It is possible to compute in a
N ¼ 4 supersymmetric SUðNcÞ theory when the number
of colors, Nc, and �sNc, are both infinite [16–18]. The
N ¼ 4 supersymmetric theory is conformally invariant,
so �=s is independent of temperature, and is small, ¼
1=4� [16,17]. If QCD is analogous to the N ¼ 4 theory
[18], then for some region above Tc, �=s should remain
small, and not change markedly with temperature.

To have a coupling which is relatively moderate in
strength at Tc would be exceptional. At least for the
pressure, this might occur because of the ubiquitous factors
of 2� which accompany the temperature T in the imagi-
nary time formalism [19]. Using an effective theory in
three dimensions [20], a two loop computation shows
that this does, in fact, occur: at Tc, the effective coupling
is only �eff

s � 0:3 [21].
The challenge is then to understand how the confining

transition, with a large decrease in pressure, occurs for
moderate coupling [22]. We find it useful to view decon-
finement as the ionization of color charge. Without dy-
namical quarks, in the confined phase there is no ionization

of color. Conversely, far into the deconfined phase, color is
completely ionized, either with or without quarks. In a non-
Abelian gauge theory, the expectation value of the (renor-
malized) Polyakov loop characterizes the degree to which
color charge is ionized. Lattice simulations [11] find that
the Polyakov loop is small near Tc, and near one at a few
times Tc [12–14]. This regime, which we view as one of
partial ionization, coincides with the drop in the pressure
(relative to the ideal gas term). For want of a better term,
we refer to this as the ‘‘semi’’-QGP. Above a few times Tc,
there is a ‘‘complete’’ QGP, where both the renormalized
Polyakov loop, and the pressure=T4, are essentially
constant.
In this paper we consider how the shear viscosity

changes in the semi-QGP. We make numerous drastic
assumptions. If the coupling is moderate even down to
Tc, perhaps we can treat the semi-QGP by means of a
semiclassical approximation. Our ansatz is extremely sim-
ple, just a background field with constant A0, Eq. (1). We
then compute to leading order in �s and logð1=�sÞ [23,24],
for an infinite number of colors and flavors [25]. We ignore
the change of � with �s, to concentrate on how it changes
as the expectation value of the Polyakov loop decreases.
We find that when the loop is small, that the shear viscosity
is suppressed by two powers of the Polyakov loop. This
implies that �=T3 decreases significantly in the semi-QGP
as the theory cools, from a few times Tc down to Tc. Since
�� 1=�2

s at small �s, Eq. (3), including the running of the
QCD coupling could reinforce this trend. Such a large
decrease near Tc is very different from the strong QGP,
where �=s changes little [3,10], if at all [18], with
temperature.
There are numerous examples of nonrelativistic systems

which exhibit a minimum in the shear viscosity near Tc

[8,16]. The present analysis suggests how this might arise
dynamically in QCD; see, e.g. [3]. Our result is also
reminiscent of the anomalous viscosity in a turbulent
plasma [5].
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The Polyakov loop represents the propagator of an
infinitely massive test quark, which we assume is in the
fundamental representation [12–14,22,26–30]. Its magni-
tude can be viewed as the probability for the test quark to
propagate. This is near one at asymptotically high tem-
perature, where the plasma is completely ionized.

In a SUðNcÞ gauge theory without dynamical quarks, in
the confined phase the propagator for a test quark vanishes
identically. This is because the Polyakov loop carries
ZðNcÞ charge, and the confined phase is ZðNcÞ symmetric.
Thus without dynamical quarks, there is absolutely no
ionization of ZðNcÞ charge below Tc, only above.

The expectation value of the renormalized Polyakov
loop, h‘i, is extracted from that of the bare loop after a
type of mass renormalization [12–14,30]. For a SUð3Þ
gauge theory without quarks, we rely upon the data of
Ref. [13]. From their Fig. 1, h‘i ¼ 0 below Tc, and jumps
to �0:5 at Tþ

c ; it rises rapidly, with h‘i � 0:9 by 2:0Tc. It
then rises slowly, and reaches �1:1 by �4Tc. Its value is
then constant from �4Tc up to the highest temperature
measured, �12Tc. (In perturbation theory, h‘i exceeds
unity.) Thus in a SUð3Þ gauge theory without quarks, there
is a confined phase below Tc, a semi-QGP from exactly Tþ

c

to somewhere between �2–4Tc, and a complete QGP
above that. As a phase with partial ionization, by its nature
it is not possible to precisely define the boundary between
the semi-QGP and the complete QGP.

In QCD the Polyakov loop is no longer a strict order
parameter, since dynamical quarks also carry ZðNcÞ
charge. Thus even below Tc, the ZðNcÞ charge of a test
quark is shielded by the thermal ionization of dynamical
quark antiquark pairs. With sufficiently many flavors of
quarks, this could happen even at a rather low temperature.

At present, however, numerical simulations indicate
only a modest ionization of color below Tc, at least for
three colors and 2þ 1 flavors of dynamical quarks. From
Fig. 11 of Ref. [14], the expectation value of the Polyakov
loop is very small below 0:8Tc; it then rises to �0:3 at Tc,
and is near one at�2Tc. We take this to show that in QCD
that there is a semi-QGP between �0:8Tc to perhaps
�2–3Tc. Thus with dynamical quarks, there is a semi-
QGP in both the hadronic phase, from �0:8Tc to Tc, and
in the deconfined phase, from Tc to�2–3Tc; again, there is
a complete QGP above that.

We characterize the semi-QGP by the following ap-
proximation [12,22,26–29]. The Polyakov loop is the trace
of a straight Wilson line in imaginary time. An expectation
value for the Polyakov loop which is not near one implies a
nontrivial distribution for the eigenvalues of this Wilson
line. We thus expand about a constant, background field for
the timelike component of the vector potential,

Acl
0 ¼ Q

T

g
; (1)

where g is the coupling constant for an SUðNcÞ gauge
theory. The matrix Q is diagonal in color space, with

components Qa, a ¼ 1 . . .Nc. The Wilson line is L ¼
expðiQ=TÞ, and the bare Polyakov loop is the first moment,
‘ ¼ trL=Nc. This and higher moments, trLj=Nc for j ¼
2 . . . ðNc � 1Þ, are all gauge invariant. Although we expand
about a given Q, only integrals over the complete Q
distribution are physically relevant. Expansion about Q �
0 is familiar from semiclassical calculations of the ’t Hooft
loop in weak coupling [26].
When the spatial volume is a sphere so small that the

coupling g2 runs nearly to zero, at Nc ¼ 1 deconfinement
is characterized precisely by the changes in the Q distri-
bution [27]. We conjecture that this remains true in the
infinite volume limit, for any Nc [12,22,28,29]. At present,
the detailed form of the Q distribution in infinite volume is
unknown; notably, this would determine the pressure in
terms of the Q’s. (Determining the Q distribution from
numerical simulations of effective theories appears prom-
ising [29].) In lieu of this, at a given temperature we take
both the entropy and the expectation value of the (renor-
malized) Polyakov loop from numerical simulations on the
lattice [12–14]. For higher moments of the Wilson line, we
choose two different forms for the Q distribution.
Unexpectedly, we find the shear viscosity is most insensi-
tive to which distribution we take.
To compute the shear viscosity, we use a Boltzmann

equation [23,24] in the presence of a background field;
Q � 0 acts like an imaginary chemical potential for the
color charge, in the subspace of diagonal generators [26].
We find it useful to use the double line notation of ’t Hooft,
taking both Nc and Nf to be infinite [25,27] (although this

is not essential [31]). How the Q’s enter depends upon the
representation of the gauge group [26]. Quarks in the
fundamental representation have one color line, so the
propagator in a background Q field has a momenta with
one color index, Pa

� ¼ ðp0 þQa;pÞ. (We also define

P�a
0 ¼p0�Qa.) Adjoint gluons have two color lines, so

the propagator in a background Q field has two color
indices, Pab

� ¼ðp0þQab;pÞ, where Qab¼Qa�Qb. In

the imaginary time formalism, the Euclidean energies p0

are even (odd) multiples of �T for bosons (fermions),
while each component Qa is typically a nonintegral mul-
tiple of 2�T [26,27].
To compute amplitudes in real time, one takes the back-

ground field to be nonzero only for the part of the contour
in imaginary time, and not in real time [32]. The energies
p0 þQa ! �i!, where the mass shells remain on the

light cone, ! ¼ �E, E ¼ ffiffiffiffiffiffi
p2

p
.

For quarks, what typically enters are distribution func-
tions ~nðE� iQaÞ, where ~nðEÞ is the usual Fermi-Dirac
statistical distribution function. To compute, expand this
as [27]

1

eðE�iQaÞ=T þ 1
¼ X1

j¼1

ð�Þjþ1e�jðE�iQaÞ=T: (2)

The first term, � expð�E=TÞ, represents the Boltzmann
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approximation to the quantum distribution function, and is
accompanied by expðiQa=TÞ. Expansion to jth order
brings in a factor of � expð�jE=TÞ, and is accompanied
by expðijQa=TÞ. For a given process, the moments of the
Wilson line which enter depend upon the detailed routing
of the color indices and the like. As an example, consider
the trace of the quark propagator: then the first, Boltzmann
term involves the trace of expðiQa=TÞ, which is the
Polyakov loop, ‘; terms to jth order involve the jth mo-
ment of the Wilson line, trLj.

Gluons are similar, except that distribution functions
nðE� iQabÞ enter, where nðEÞ is the Bose-Einstein statis-
tical distribution function. Again, as an example consider
summing over the indices of the gluon propagator. To avoid
taking the trace, which is part of the correction in 1=Nc,
one sums separately over a and b. The first, Boltzmann
term involves the traces of expðiQab=TÞ, which becomes
jtrLj2; terms to jth order become jtrLjj2.

In computing perturbatively about a trivial vacuum, one
naturally divides the momenta into hard momenta, whose
components are �T, or soft momenta, where both the
energy ! and spatial momenta p are �gT [23]. This
remains valid at Q � 0 for the energies !; the Q’s them-
selves are �T, and so hard.

We have computed the hard thermal loops (HTLs) in the
quark and gluon self-energies forQ � 0 [31]. HTLs are the
dominant contributions when the external momenta are
soft. To leading order, �g2, the dominant term involves
an integral over hard momenta, times an angular integral
over soft momenta [23]. The dependence on the Q’s only
affect the integral over the hard momenta, through the
change in the statistical distribution functions; the angular
integral is unchanged.

For the quark self-energy, the only change in the HTL is
the change in the Debye mass, which now depends upon
the direction in color space. For the gluon self-energy,
there is the usual HTL, again modified by the change in
the Debye mass. Besides the HTL, which is �g2T2, there
are also terms �g2T3Q=!. These new terms are directly
proportional to tadpole terms, and arise because Q � 0
induces a net color charge. These terms are physical for a ’t
Hooft loop [26], and are corrections to the color electric
field of a ZðNcÞ interface [31]. In vacuum, however, there is
not net color charge, and sowe assume that the only change
in the soft gluon propagator is the change of the Debye
mass.

We now outline the calculation of the shear viscosity
[31]. To leading order, both in g2 and in logð1=gÞ, we find
that the result can be written as [23,24,31]

�

T3 ¼ c�

g4 logð1=gÞRðLÞ: (3)

The constant c� depends upon the number of colors, Nc,

and flavors, Nf [24]. As noted before, for calculational

reasons we compute for Nc ¼ 1, with Nf=Nc fixed, im-

plicitly assuming that RðLÞ is relatively insensitive to Nc.

At this order, the viscosity is determined by the scatter-
ing of 2 ! 2 particles, where all particles have hard mo-
menta. They interact through the exchange of a single, soft
field in the t channel. For the soft field, we use the HTL
approximation. The Debye mass changes when L � 1, but
this does not enter at leading logarithmic order.
For the pure glue theory at infiniteNc, to leading order in

g2 and logð1=gÞ [23,24], two scattering processes contrib-
ute to the collision term: Pab

1 þ Pbc
3 ! Pad

2 þ Pdc
4 and

Pab
1 þ Pcd

3 ! Pad
2 þ Pcb

4 . This is nearly forward scattering,

with the spatial momenta p1 � p2, and p3 � p4. The
momenta of the exchanged gluon, p1 � p2 ¼ p4 � p3,
must be soft to give logð1=gÞ.
Under these approximations, the dependence upon the

background field Q only enters through the integrals over
the statistical distribution functions for the hard fields, p1

and p3. While the statistical distribution functions are
complex when Q � 0, after summing over both emission
and absorption processes, all contributions to the stress
energy tensor are real. For the shear viscosity, the integrals
which enter are

Z 1

0
dpp4nðp� iQabÞ;

Z 1

0
dppjnðp� iQabÞð1þ nðp� iQadÞÞ;

(4)

where j ¼ 2 and 4. One then expands the distribution
functions as in Eq. (2), to obtain a power series in moments
of the Wilson line. With quarks, there are more diagrams,
as the distribution functions between quarks and gluons
mix [24]. The integrals are similar, but also involve ~nðE�
iQaÞ. [We also take �, the function which parametrizes the
deviation from equilibrium, as �ðpÞ � p2 [24]: this is valid
to <1:0% for Q ¼ 0, and is exact at small ‘, where
Boltzmann statistics applies.]
As written in Eq. (3), the result is a function of the

Wilson line, RðLÞ, times the usual perturbative result;
thus R ¼ 1 when L ¼ 1. This simple form is not valid
beyond leading logarithmic order. If ‘ ¼ trL=Nc is small,
and dominates higher moments, we find the result vanishes
like the square of the loop:

R ðLÞ � a2ð�Þ
�
‘þ 4�

‘þ �

�
‘2; ‘ � 1; (5)

where � ¼ Nf=Nc: a2ð0Þ � 3:31, a2ð1Þ � 1:01.

The behavior at small ‘ can be understood as follows. In
the pure glue theory, when gluons with momenta Pab

1 and
Pbc
3 scatter, the Qb charges cancel, so summation over a

and c gives a collision term �g4‘2 [times logð1=gÞ, which
we suppress for brevity]. There is no such cancellation for
the scattering of gluons with momenta Pab

1 and Pcd
3 , which

is only�g4‘4. The source term [24] is like the trace of the
gluon propagator, �‘2, and so without quarks, at small ‘
the gluon contribution to the shear viscosity is �gluon �
ð‘2Þ2=ðg4‘2Þ � ‘2=g4.
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With quarks, the collision term is dominated by a quark
scattering off of an antiquark, Pa

1þP�a
3 !Pc

2þP�c
4 . The

Qa charges cancel, so this is �g4‘0 at small ‘. If a quark
scatters off of a quark, Pa

1þPb
3 !Pb

2þPa
4 , the Q charges

do not cancel, and the scattering is �g4‘2. Gluons also
scatter off of quarks, by exchanging a gluon: Pab

1 þPb
3 !

Pac
2 þPc

4; the Qb charges cancel, so this is �g4‘. The
mixing of the gluon and quark distribution functions [24]
can be neglected at small ‘: quark antiquark annihilation,

Pa
1þP�b

3 !Pac
2 þPcð�bÞ

4 , is �g4‘2, while Compton scat-

tering, Pa
1þPbc

3 !Pab
2 þPc

4, is �g4‘3. For the source

term, the quark contribution is like summing over the quark
propagator,�‘, so the quarks contribute to the viscosity as
�quark�ð‘Þ2=ðg4‘0Þ�‘2=g4. In the presence of quarks,

gluons contribute to the viscosity as �gluon�ð‘2Þ2=ðg4‘Þ�
‘3=g4, down by �‘ to the quark contribution.

To obtain results valid for all values of ‘, some assump-
tion about higher moments must be made. We used two
forms. The first is to take a simple step function, of width
�, about the origin, so that trLn=Nc ¼ sinðn�Þ=ðn�Þ. The
other is to take a Q distribution as in the Gross-Witten
matrix model [12,27,28]. By the methods described above,
it is straightforward to obtain results, although their ana-
lytic form is unwieldy. These forms can be easily evaluated
numerically, though, as shown in Fig. 1. We find thatRðLÞ
is insensitive to the assumption about higher moments,
changing by at most a few percent over the entire range
of ‘. We find that with both eigenvalue distributions, that
the collision term generates a cusp inRðLÞ near ‘ ¼ 1. We
expect that this nonanalytic behavior will be washed out by
corrections to higher order, which enter for Q� gT.

We conclude with some general comments. The
Polyakov loop is proportional to the propagator of an
infinitely massive test quark, and as such, has no direct
relation to the propagation of dynamical fields. In our

ansatz, however, the quasiparticles are fluctuations about
the background field in Eq. (1). When the expectation value
of the Polyakov loop is small, this background field uni-
versally suppresses the propagation of any colored field.
For heavy fields, this is reasonable, but for light fields, it is
nontrivial. If the light fields have hard momenta p � T,
then suppression by the Polyakov loop is the dominant
effect, with other corrections down by powers of g. At soft
momenta, p� gT, light fields are not only suppressed by a
(small) Polyakov loop, but altered by the change in their
hard thermal loops.
In general, the shear viscosity is proportional to the ratio

of a source and a collision term [23,24]. In the absence of a
background field, the source term is of order one, and so
the shear viscosity can only be small if the coupling
constant, and so the collision term, is large. This is the
central idea which motivates the strong QGP [3,10]. In
contrast, in our analysis of the semi-QGP, the quasipar-
ticles are weakly coupled, but are fluctuations about a
nontrivial background field. It is this background field
which suppresses both the source and collision terms, to
give �=T3 � ‘2 at small ‘.
We suggest that this is not an artifact of our approxima-

tions. If deconfinement truly represents the ionization of
color charge, then it is reasonable to expect that the propa-
gation of all colored fields are suppressed at small ‘. In
particular, while we have computed only to leading order
in g2 and 1= logð1=gÞ, one can show that within our ansatz,
that �=T3 � ‘2 as ‘ ! 0, order by order in perturbation
theory at Nc ¼ 1 [31].
Taking the result for �=T3 to leading logarithmic order,

Eq. (3) gives suppression near Tc. Whether high order
corrections in perturbation theory modify this can only
be answered within a detailed program of resummation.
If �=T3 is suppressed near Tc, it can be verified through
numerical simulations on the lattice [15].
If color is only partially ionized in the semi-QGP, then

some color singlet states persist for a range of temperatures
above Tc, before they eventually disassociate into colored
constituents. Similarly, with dynamical quarks colored
fields contribute below Tc, in the hadronic part of the
semi-QGP. Including both effects is clearly challenging;
here we just speculate about the complete result. Although
hydrodynamics depends upon �=s, without a complete
theory we can only discuss the behavior of �=T3.
Working up from low temperatures in the hadronic phase,
�=T3 appears to decrease with increasing T, as in a liquid
[3,9,10]. Working down from high temperatures, to leading
logarithmic order we find a suppression in the semi-QGP
near Tc. Combining these two effects gives a minimum for
�=T3 near Tc, as in nonrelativistic systems [8,16]. It seems
implausible that the minimum is precisely at Tc; certainly
in QCD, where there is no true phase transition [11,14].
It is natural to suspect that heavy ion collisions at RHIC

have probed some region in the semi-QGP. Since one needs

FIG. 1 (color online). The function RðLÞ of Eq. (3), versus ‘.
‘‘Step’’ and ‘‘GW’’ denote Q distributions with a simple step
function and that in the Gross-Witten matrix model [12,27,28],
respectively.
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a small value of the shear viscosity to fit the experimental
data [1–10], perhaps one is near Tc. Heavy ion collisions at
the LHC may probe temperatures which are significantly
higher, possibly well into the complete QGP. If so, then at
small times collisions at the LHC create a system with
large shear viscosity; as the system cools through Tc, the
shear viscosity then drops. Thus the semi-QGP predicts
that at short times, the hydrodynamic behavior of heavy ion
collisions at the LHC is qualitatively different from that at
RHIC [31].

In contrast, models of a strong QGP predict that hydro-
dynamics at the LHC will be similar to that at RHIC,
characterized by a small value of �=s [3,7,10]. In particu-
lar, while in N ¼ 4 supersymmetry the pressure=T4 is

constant [17], several models have been proposed to fit the
QCD pressure right down to Tc [18]. Even so, in all of
these models �=s is independent of temperature, and so
remains small, ¼ 1=4� [18].
We eagerly await the experimental results for heavy ions

from the LHC, which may be as unexpected and exciting as
those from RHIC first were.
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