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In the stringy cosmology, we investigate singularities in geodesic surface congruences for the timelike

and null strings to yield the Raychaudhuri type equations possessing correction terms associated with the

novel features owing to the strings. Assuming the stringy strong energy condition, we have a Hawking-

Penrose type inequality equation. If the initial expansion is negative so that the congruence is converging,

we show that the expansion must pass through the singularity within a proper time. We observe that the

stringy strong energy conditions of both the timelike and null string congruences produce the same

inequality equation.

DOI: 10.1103/PhysRevD.78.067301 PACS numbers: 98.80.Cq, 04.60.Cf, 11.25.Mj

The recent experimental data of the accelerating expan-
sion of the universe has suggested a small, positive vacuum
expectation value of the cosmological constant [1]. Vacua
of string theory was constructed to yield a positive cosmo-
logical constant by introducing supersymmetry breaking
quantum corrections [2]. A supersymmetric partition
function for a four-dimensional Bogomolny-Prasad-
Sommerfield black hole in a Calabi-Yau manifold [3,4]
compactification of superstring was conjectured to be re-
lated to a second quantized topological string partition
function associated with the black hole charges [5]. The
string theory [6,7] has given us a better understanding of
the universe and the black holes in cosmology and may
provide an analytical tool for studying the nature of the
Hawking-Penrose big bang singularity theory [8].

Recently, we studied the variation of the surface spanned
by strings in a spacetime manifold [9]. Using the Nambu-
Goto string action [10,11], we produced the geodesic
surface equation and the geodesic surface deviation equa-
tion which yields a Jacobi field. Exploiting symplectic cut-
and-gluing formulas of the relative Gromov-Witten invar-
iants, one of us obtained a recursive formula for the
Hurwitz number of triple ramified geodesic surface cover-
ings of a Riemann surface by a Riemann surface [12].

We consider a fibration �: M ! N over a spacetime
four manifold N with a D-dimensional total manifold M
associated with the metric gab and a Calabi-Yau manifold
F as a fiber space. In analogy of the relativistic action of a
point particle in N, the action for a string is proportional to
the area of the surface spanned in the total manifold M by
the evolution along the time direction of the string in F. We
first introduce a smooth congruence of timelike geodesic

surfaces inM. We parametrize the surface generated by the
evolution of a timelike string by two world sheet coordi-
nates � and �, and then we have the corresponding vector
fields �a ¼ ð@=@�Þa and �a ¼ ð@=@�Þa. Since we have
gauge degrees of freedom, we can choose the orthonormal
gauge [6,7,13] � � � ¼ 0 and � � �þ � � � ¼ 0. In the
orthonormal gauge, we introduce tensor fields Bab and
�Bab defined as

Bab ¼ rb�a; �Bab ¼ rb�a; (1)

which satisfy the identities Bab�
a ¼ �Bab�

a ¼ 0 and
�Bab�

b þ �Bab�
b ¼ 0. Here we have used the geodesic

surface equation ��ara�
b þ �ara�

b ¼ 0 [9,13]. If the
timelike curves of the geodesic surfaces are geodesic, then
the string curves are also geodesic.
We introduce the deviation vector field �a ¼ ð@=@�Þa

which represents the displacement to an infinitesimally
nearby world sheet, and we consider the three-dimensional
submanifold spanned by the world sheets. We then may
choose �, �, and � as coordinates of the submanifold to
yield the commutator relations "��

a ¼ "��
a ¼ "��

a ¼ 0.
Using the above relations, we obtain �ara�

b �
�ara�

b ¼ ðBb
a � �Bb

aÞ�a. Next we define the metrics
hab and �hab:

hab ¼ gab þ �a�b; �hab ¼ gab � �a�b: (2)

Here one notes that hab and �hab are the metrics on the
hypersurfaces orthogonal to �a and �a, respectively. We
split Bab into three pieces

Bab ¼ 1

D� 1
�hab þ �ab þ!ab; (3)

where the expansion, shear, and twist [8,14,15] of the
stringy congruence along the time direction are defined
as � ¼ Babhab, �ab ¼ BðabÞ � 1

D�1�hab and !ab ¼ B½ab�.
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Similarly, as Bab in (3) we can decompose �Bab into three
parts; the expansion, shear, and twist of the stringy con-
gruence along the string coordinate �-direction which are
defined as �� ¼ �Bab �hab, ��ab ¼ �BðabÞ � 1

D�1
�� �hab and

�!ab ¼ �B½ab�, respectively.
Taking an ansatz that the expansion �� is constant along

the �-direction, one obtains a Raychaudhuri type equation,
namely, an evolution equation for the expansion

d�

d�
¼ � 1

D� 1
ð�2 � ��2Þ � �ab�

ab þ ��ab ��
ab

þ!ab!
ab � �!ab �!

ab � Rabð�a�b � �a�bÞ: (4)

We now assume !ab ¼ �!ab, �ab�
ab � ��ab ��

ab and a
stringy strong energy condition Rabð�a�b � �a�bÞ � 0
where

Rabð�a�b � �a�bÞ ¼ 8�

�
Tabð�a�b � �a�bÞ þ 2

D� 2
T

�
;

(5)

and Tab and T are the energy-momentum tensor and its
trace, respectively. The Raychaudhuri type equation (4)
then has a solution of the form

1

�
� 1

�0
þ 1

D� 1

�
��

Z �

0
d�

� ��
�

�
2
�
; (6)

where �0 is the initial value of � at � ¼ 0. We assume that
�0 is negative so that the congruence is initially converging
as in the point particle case shown below. The inequality
(6) implies that � must pass through the singularity within
a proper time

� � D� 1

j�0j þ
Z �

0
d�

� ��
�

�
2
: (7)

For a perfect fluid, the energy-momentum tensor given by
Tab ¼ 	uaua þ Pðgab þ uaubÞ where 	 and P are the
mass-energy density and pressure of the fluid as measured
in its rest frame, respectively, and ua is the timelike
D-velocity in its rest frame [14,16], the stringy strong
energy condition (5) yields only one inequality equation

D� 4

D� 2
	þ D

D� 2
P � 0: (8)

Here one notes that, if the fiber space F in our fibration
�: M ! N is a point, then the total spaceM is the same as
the base spacetime four manifold N. In this case, the
geodesic surfaces are geodesic in N, the congruence of
timelike geodesic surfaces is a congruence of timelike
geodesics, and so �Bab ¼ �� ¼ ��ab ¼ �!ab ¼ 0. If the con-
gruence is hypersurface orthogonal, then we have !ab ¼
0. Suppose that the strong energy condition Rab�

a�b � 0
is satisfied to yield two inequalities [8,14,15]

	þ 3P � 0; 	þ P � 0: (9)

We then have the differential inequality equation d�
d� þ

1
3�

2 � 0, which has a solution in the following form: 1
� �

1
�0
þ 1

3 �. If we assume that �0 is negative, the expansion �

must go to the negative infinity along that geodesic within a
proper time � � 3

j�0j . This consequence coincides with the

one of Hawking and Penrose [8].
Next, we investigate the congruence of the null strings,

where the tangent vector of a null curve is normal to itself.
See Refs. [17–19] for the proper definition and propagation
of the classical null strings. We consider the evolution of
vectors in a ðD� 2Þ-dimensional subspace of spatial vec-
tors normal to the null tangent vector field ka ¼ ð@=@
Þa,
where 
 is the affine parameter, and to an auxiliary null
vector la which points in the opposite spatial direction to
ka, normalized by laka ¼ �1 [15] and is parallel trans-
ported, namely, karal

b ¼ 0. The spatial vectors in the
ðD� 2Þ-dimensional subspace are then orthogonal to
both ka and la.
We now introduce the metrics nab defined below and �hab

defined in (2),

nab ¼ gab þ kalb þ lakb: (10)

Similar to the timelike case, we introduce tensor fields
Bab ¼ rbka and �Bab in (1) satisfying the identities
Babk

a ¼ �Bab�
a ¼ 0 and �Babk

b þ �Bab�
b ¼ 0. We also

define the deviation vector �a ¼ ð@=@�Þa representing
the displacement to an infinitesimally nearby world sheet
so that we can choose 
, �, and � as coordinates of the
three-dimensional submanifold spanned by the world
sheets. We then have the commutator relations "k�

a ¼
"��

a ¼ "k�
a ¼ 0 and kara�

b � �ara�
b ¼ ðBb

a �
�Bb

aÞ�a.
We decompose Bab into three pieces

Bab ¼ 1

D� 2
�nab þ �ab þ!ab; (11)

where the expansion, shear, and twist of the stringy con-
gruence along the affine direction are defined as � ¼
Babnab, �ab ¼ BðabÞ � 1

D�2�nab and !ab ¼ B½ab�. It is

noteworthy that even though we have the same notations
for Bab, �, �ab, and !ab in (3) and (11), the differences of
these notations among the timelike sting cases and null
string cases are understood in the context. Similarly, we
decompose �Bab into three parts as in the timelike case.
Taking the ansatz that the expansion �� is constant along the
�-direction as in the timelike case, we have another
Raychaudhuri type equation

d�

d

¼ � 1

D� 2
�2 þ 1

D� 1
��2 � �ab�

ab þ ��ab ��
ab

þ!ab!
ab � �!ab �!

ab � Rabðkakb � �a�bÞ: (12)

Assuming !ab ¼ �!ab, �ab�
ab � ��ab ��

ab and a stringy
strong energy condition for null case Rabðkakb � �a�bÞ �
0 and exploiting the energy-momentum tensor of the per-
fect fluid, we reproduce the inequality (8) in the timelike
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congruence of strings. The Raychaudhuri type equa-
tion (12) for the null strings then has a solution in the
following form:

1

�
� 1

�0
þ 1

D� 2

�

�D� 2

D� 1

Z 


0
d


� ��
�

�
2
�
; (13)

where �0 is the initial value of � at 
 ¼ 0. We assume
again that �0 is negative. The inequality (13) then implies
that � must pass through the singularity within an affine
length


 � D� 2

j�0j þD� 2

D� 1

Z 


0
d


� ��
�

�
2
: (14)

In the point particle limit with �Bab ¼ �� ¼ ��ab ¼ �!ab ¼
0 and!ab ¼ 0, we assume that the strong energy condition
Rabk

akb � 0 is satisfied to yield the second inequality of
(9) [8,14,15]. If we assume that the initial value is negative,
the expansion � must go to the negative infinity along that
geodesic within a finite affine length [8].

We now have several comments to address. In (6), (7),
(13), and (14), one notes that the correction terms associ-
ated with ð ��=�Þ2 are the novel features of the stringy
congruence. Moreover, taking the ansatz ��2 � �2, which
indicates that the internal expansion �� along the
�-direction is negligibly small compared to the expansion
� along the time (or affine) direction, the results (6) and
(13) reduce into the point particle results in the D ¼ 4
limit, respectively. This observation does not contradict the
fact that the internal size of the string remains much less
than the Planck length lP ¼ 1:61� 10�33 cm, as believed
in the string theory [6,7].

Moreover, the D ¼ 4 limit of the stringy strong energy
condition (8) for both the timelike and null cases does not
reduce to the well-known strong energy conditions in (9)
for the D ¼ 4 point particle cases since the stringy strong
energy conditions have the additional contributions
Rabð��a�bÞ originating from the stringy degrees of free-
dom. It is also remarkable to see that the stringy strong
energy conditions of both the timelike and null string
congruences produce for the perfect fluid the same result
in (8), in contrast to the fact that the corresponding strong
energy conditions of the point particle congruences have
different forms, as shown in (9). We, thus, conclude that, in

the higher D-dimensional stringy congruence cosmology,
both the massless gauge particles, such as photons and
gravitons, and the massive particles can be created in the
same cosmological environment described by the stringy
strong energy condition in (8). In the point particle stan-
dard cosmology in four-dimensions, it is well known that
the radiation-to-matter transition exists and the radiation-
dominated phase precedes the matter-dominated one.
However, if one follows the above conclusion originating
from the D-dimensional stringy congruence theory, this
stringy cosmology could not demand such radiation-to-
matter transition, and, thus, the radiation and the matter
can coexist in the same epoch along the evolution of the
universe after the big bang without any preference of the
dominated phases.
It is also interesting to see that, in the limit ofD ¼ 6, the

stringy strong energy condition (8) becomes the first one in
(9) as for the massive pointlike particle. This result from
the extra 2-dimensional cosmology could be an accidental
phenomenon without any physical reminiscence. However,
it is an open problem whether this extra 2-dimensional
model could be a relevant new physical one which seems
to be related to the point particle physics.
In the higher D-dimensional stringy congruence theory,

one can have the condition !ab ¼ �!ab associated with the
additional �!ab. First, in the case of !ab ¼ �!ab ¼ 0, we
can have the Hawking and Penrose limit with !ab ¼ 0 in
the D ¼ 4 point particle congruence cosmology [8].
Second, we can additionally have the !ab ¼ �!ab � 0. In
this case, one can have the nonvanishing !ab initiate the
desirable rotational degrees of freedom encountered in the
universe such as the rotational motions of galaxies, stars,
and planets. Moreover, the nonvanishing �!ab could explain
the rotational degrees of freedom of the strings themselves
[6,7,13].
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