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This paper continues the investigation of the modified Sakai-Sugimoto model proposed previously [J.

High Energy Phys. 01 (2008) 055]. Here we discuss in detail numerical solutions to the classical equations

for the brane profile and the tachyon condensate. An ultraviolet cutoff turns out to be essential because the

numerical solutions tend to rapidly diverge from the desired asymptotic solutions, beyond a sufficiently

large value of the holographic coordinate. The required cutoff is determined by the non-normalizable part

of the tachyon and is parametrically far smaller than that dictated by consistency of a description in terms

of ten-dimensional bulk gravity. We had argued [J. High Energy Phys. 01 (2008) 055] that the solution in

which the tachyon field goes to infinity at the point where the brane and antibrane meet has only one free

parameter, which may be taken to be the asymptotic brane-antibrane separation. Here we present

numerical evidence in favor of this observation. We also present evidence that the non-normalizable

part of the asymptotic tachyon solution, which is identified with quark mass in the QCD-like boundary

theory, is determined by this parameter. We show that the normalizable part of the asymptotic tachyon

solution determines the quark condensate, but this requires holographic renormalization of the on-shell

boundary brane action because of the presence of infinite cutoff-dependent terms. Our renormalization

scheme gives an exponential dependence on the cutoff to the quark mass. We also discuss meson spectra in

detail and show that the pion mass is nonzero and satisfies the Gell-Mann-Oakes-Renner relation when a

small quark mass is switched on.
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I. INTRODUCTION

The model of Sakai and Sugimoto (SS) [1] has been very
successful in reproducing many of the qualitative features
of non-Abelian chiral symmetry breaking in QCD. In this
model, the ‘‘color’’ Yang-Mills fields are provided by the
massless open string fluctuations of a stack of a large
number Nc of D4-branes, which are extended along the
four space-time directions and in addition wrap a circle [2].
In the strong coupling limit, this stack of D4-branes has a
dual description in terms of a classical gravity theory.
Flavor degrees of freedom are introduced in the probe
approximation as fermionic open string fluctuations be-
tween the color branes and an additional set of ‘‘flavor’’
branes [3–8], which are provided by pairs of D8- and

D8-branes. In this setting, chiral symmetry breaking has
a nice geometrical picture. In the ultraviolet, chiral sym-

metry arises on flavorD8-branes andD8-branes, which are
located at well-separated points on the circle, while they
are extended along the remaining eight spatial directions,
including the holographic radial direction. Chiral symme-
try breaking in the infrared is signaled by a smooth joining
of the flavor branes and antibranes at some point in the
bulk.

Despite its many qualitative and some quantitative suc-
cesses [1,9–17], the SS model has some deficiencies: (i) It
does not have parameters associated with quark mass and
the chiral condensate. On the other hand, there is a pa-
rameter, the asymptotic separation between the flavor
branes and antibranes, which, within the SS scenario, finds

no counterpart in QCD. (ii) The SS model also ignores the
open string tachyon between flavor D8-branes and

D8-branes, which may be reasonable in the ultraviolet,
where the branes and antibranes are well-separated, but is
not so at the place in the bulk where the branes join. It is
often argued that in the curved background of the wrapped
D4-branes the geometry forces flavor branes to join in the
interior. While this is true of flavor branes and antibranes
that are well-separated asymptotically (separation of the
order of the antipodal distance), it cannot be the reason
when the separation is small and the branes and antibranes
meet far away from the central region. For small separa-
tion, the effective radius of the direction on which the
D4-branes are wrapped is very large, and so one would
expect tachyon condensation to be the primary reason for
branes and antibranes meeting, as in the extremalD4-brane
metric. Since the tachyon field takes an infinitely large
value in the true ground state,1 the perturbative stability
argument given in [1], valid for small fluctuations of the
tachyon field near the local minimum at the origin, does
not apply.
It has recently been suggested in [19–21] that tachyon

condensation on a brane-antibrane system describes the
physics of chiral symmetry breaking in a better and more
complete way. If the brane and antibrane are well-
separated [20,21], then one also retains the nice geometric
picture of the SS model for non-Abelian chiral symmetry

1For a recent review of this subject, see [18].
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breaking. The purpose of the present work is to complete
the investigations started in [21]. Here we give detailed
numerical solutions to the classical equations for the brane
profile and the tachyon. We show that the solution in which
the tachyon diverges at the point in the bulk where the
brane and antibrane meet has only one free parameter,
which may be taken to be the asymptotic separation be-
tween the flavor brane and the antibrane. We present
numerical evidence that the non-normalizable part of the
asymptotic tachyon solution is determined by this parame-
ter. Thus, by the usual dictionary of anti–de Sitter/confor-
mal field theory (AdS/CFT) [22–25], this parameter
determines quark mass in the boundary theory [16,26].
The parameter for the asymptotic brane-antibrane separa-
tion is present in the SS model also, but in that setting it
cannot be explained as a parameter in QCD. Thus this
parameter, which seems mysterious in the SS setting, finds
a natural explanation in our model. The presence of a non-
normalizable part in the tachyon solution necessitates in-
troduction of an ultraviolet cutoff. This is because in this
case the numerical solutions tend to rapidly diverge from
the desired asymptotic solutions, beyond a sufficiently
large value of the radial coordinate, determined by the
magnitude of the non-normalizable part. This cutoff is

parametrically far smaller than the cutoff of order N4=3

expected because of the breakdown of description in terms
of a ten-dimensional gravity theory. Removing the cutoff,
therefore, necessarily involves tuning the non-
normalizable part to zero. We discuss how this should be
done appropriately. We also discuss the chiral condensate
and its determination by the normalizable part of the
asymptotic tachyon solution. This determination is subtle
for two reasons. One is the fact that the space-time-
independent classical solutions are described by a single
parameter and hence the non-normalizable part of the
tachyon cannot be varied independently of the other pa-
rameters. The resolution of this issue requires us to con-
sider more general solutions by incorporating space-time
dependence. But for this one has to go beyond the expan-
sion in small space-time-dependent fluctuations around
space-time-independent solutions, basically because this
expansion is singular for the tachyon solution in the infra-
red. An exact space-time-dependent action is needed,
which we derive. The other subtlety has to do with the
necessity of an ultraviolet cutoff. To extract cutoff-
independent physics, we add counterterms to the
D8-brane action to remove terms in the boundary action
which are divergent as the cutoff is formally allowed to go
to infinity. With an appropriate choice of the counterterms
we get a finite value for the chiral condensate. Finally, we
discuss meson spectra in detail and show that the pion mass
is nonzero in the presence of a non-normalizable part of the
tachyon and that it satisfies the Gell-Mann-Oakes-Renner
(GOR) relation when the quark mass is small.

The organization of this paper is as follows. In the next
section we will briefly review the essential features of the

modified SS model with the tachyon present. This section
also includes a more detailed discussion of the cutoff and
its implications than given in [21]. In Sec. III we describe
in detail the numerical solutions for the brane profile and
the tachyon. This section also contains a discussion of the
parameters of the solutions and their determination in
terms of a single parameter, namely, the asymptotic
brane-antibrane separation. In Sec. IV we discuss the
subtleties involved in deriving an expression for the chiral
condensate in terms of the parameters of the solutions. We
derive the exact five-dimensional action in which the
tachyon and brane-antibrane separation fields have depen-
dence on space-time as well as the holographic coordinate
and discuss solutions to the equations derived from this
action. We also discuss the counterterms required to make
the chiral condensate finite as the cutoff is formally re-
moved to infinity. In Sec. V we analyze small fluctuations
around the classical solution for the meson spectra. We
show that the existence of a massless pion is guaranteed if
the non-normalizable part of the tachyon solution vanishes.
For a nonvanishing non-normalizable part of the tachyon
solution, we obtain an expression for the pion mass and
derive the GOR relation for it. We end with a summary and
discussion in Sec. VI. Appendixes A, B, and C contain
details of some calculations.
As this work was nearing completion, the works in

[27,28] appeared which have discussed the problem of
quark mass in the SS model using different methods.

II. MODIFIED SAKAI-SUGIMOTO MODELWITH
TACHYON

The Yang-Mills part of the SS model is provided by the
near horizon limit of a set of Nc overlapping D4-branes,
filling the (3þ 1)-dimensional space-time directions x�

(� ¼ 1, 2, 3 and 0) and wrapping a circle in the x4

direction of radius Rk. An antiperiodic boundary condition
for fermions on this circle gives masses to all fermions at
the tree level (and scalars at the one-loop level) and breaks
all supersymmetries. At low energies compared to l�1

s , the
theory on theD4-branes is (4þ 1)-dimensional pure Yang-
Mills with ’t Hooft coupling �5 ¼ ð2�Þ2gslsNc, of length
dimension. At energies lower than the Kaluza-Klein mass
scale R�1

k , this reduces to pure Yang-Mills in (3þ 1)
dimensions. This is true in the weak coupling regime �5 �
Rk, in which the dimensionally transmuted scale developed
in the effective Yang-Mills theory in (3þ 1) dimensions is
much smaller than the Kaluza-Klein mass scale, which is
the high energy cutoff for the effective theory. In the strong
coupling regime �5 � Rk, in which the dual gravity de-
scription is reliable, these two scales are similar. Therefore
in this regime there is no separation between the masses of
glueballs and Kaluza-Klein states. This is one of the rea-
sons why the gravity regime does not describe real QCD,
but the belief is that qualitative features of QCD-like
confinement and chiral symmetry breaking, which are
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easy to study in the strong coupling regime using dual
geometry, survive tuning of the dimensionless parameter
�5=Rk to low values.

Flavors are introduced in this setting by placing a stack
of Nf overlapping D8-branes at the point x4L and Nf

D8-branes at the point x4R on the thermal circle. Massless
open strings between D4-branes and D8-branes, which are
confined to the (3þ 1)-dimensional space-time intersec-
tion of the branes, provide Nf left-handed flavors.

Similarly, massless open strings between D4-branes and

D8-branes provide an equal number of right-handed fla-
vors, leading to a local UðNfÞL �UðNfÞR chiral gauge

symmetry on the flavor D8- and D8-branes. This chiral
gauge symmetry is seen in the boundary theory as a global
chiral symmetry.

In the largeNc and strong coupling limit, the appropriate
description of the wrapped D4-branes is given by the dual
background geometry. This background solution can be
obtained from the Euclidean type IIA supergravity solution
for nonextremalD4-branes by a wick rotation of one of the
four noncompact directions which the D4-branes fill, in
addition to wrapping the compact (temperature) direction.
In the near horizon limit, it is given by [2,29]

ds2 ¼
�
U

R

�
3=2ð���dx

�dx� þ fðUÞðdx4Þ2Þ

þ
�
R

U

�
3=2

�
dU2

fðUÞ þU2d�2
4

�
;

e� ¼ gs

�
U

R

�
3=4

;

F4 ¼ 2�Nc

V4

�4;

fðUÞ ¼ 1�U3
k

U3
;

(1)

where ��� ¼ diagð�1;þ1;þ1;þ1Þ and Uk is a constant

parameter of the solution.2 R is related to the 5D Yang-
Mills coupling �5, which is kept fixed in the decoupling

limit, by R3 ¼ �5�
0

4� . Also, d�4, �4 and V4 ¼ 8�2=3 are,

respectively, the line element, the volume form and the
volume of a unit S4.

The above metric has a conical singularity at U ¼ Uk in
the U� x4 subspace which can be avoided only if x4 has a
specific periodicity. This condition relates the radius of the
circle in the x4 direction to the parameters of the back-
ground by

Rk ¼ 2

3

�
R3

Uk

�
1=2

: (2)

For �5 � Rk the curvature is small everywhere, and so the
approximation to a classical gravity background is reliable.
As discussed in [29], at very large values of U, the string
coupling becomes large, and one has to lift the background
over to the eleven-dimensional M-theory description.

A. Brane-antibrane pair with tachyon

The effective field theory describing the dynamics of a
brane-antibrane pair in a background geometry3 with the
tachyon included has been discussed in [31,32]. The sim-
plest case occurs when the brane and antibrane are on top
of each other since in this case all of the transverse scalars
are set to zero. This is the situation considered in [19].
However, in this configuration one loses the nice geomet-
rical picture of chiral symmetry breaking of the SS model.
The geometrical picture is retained in the case considered
in [20,21] where the brane and antibrane are separated in
the compact x4 direction. This requires construction of an
effective tachyon action on a brane-antibrane pair, taking
into account the transverse scalars. Such an effective action
with the brane and antibrane separated along a noncompact
direction has been proposed in [31,32].4 A generalization
of this action to the case when the brane and antibrane are
separated along a periodic direction is not known.
However, for small separation lðUÞ compared to the radius
Rk of the circle, the action in [32] should provide a rea-
sonable approximation to the compact case. In the follow-
ing we will assume this to be so. Then, the effective low-

energy tachyon action for a D8- and D8-brane pair for
lðUÞ � Rk is given, in the above background, by5

2Note that U has dimension of length and is related to the
energy scale ~U, which is kept fixed in the decoupling limit, by
U ¼ ~U�0.

3For simplicity, we will discuss the case of a single flavor,
namely, one brane-antibrane pair. Generalization to the multi-
flavor case can be done using the symmmetrized trace prescrip-
tion of [30].

4Also see [33].
5There are two important caveats for the validity of this action.

One is that this action was derived in [32] under the condition
that the brane and antibrane are separated along a noncompact
direction. Therefore, strictly speaking, it can be used only for the
case when Rk ! 1, i.e. for fðUÞ ¼ 1. However, as we shall see
later, in the classical solutions for small asymptotic brane-
antibrane separation, the brane and antibrane meet far away
from the U ¼ Uk region. For such configurations, fðUÞ ¼ 1 to
a good approximation. Thus this error can be minimized by
restricting to configurations with small asymptotic brane-
antibrane separation. The other caveat, as discussed in [16], is
that even with fðUÞ ¼ 1 the background geometry is such that
the lowest energy configuration for a fundamental string
stretched between the flavor brane and the antibrane has a
much smaller length than the naive straight string, which is
what the expansion of this action for small T gives. A correction
for this in the action is likely to make the tachyon even ‘‘more
tachyonic’’ in the region where the brane and antibrane meet,
making our argument about tachyon condensation in this region
even better. Thus, no qualitative change in the physics discussed
in this paper is expected from this correction.
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S ¼ �
Z

d9	VðT; lÞe��ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detAL

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detAR

p Þ;

ðAiÞab ¼
�
gMN � T2l2

2��0Q
gM4g4N

�
@ax

M
i @bx

N
i þ 2��0Fi

ab

þ 1

2Q
ð2��0ðDa
ðDb
Þ� þ ðDa
Þ�Db
Þ

þ ilðga4 þ @ax
4
i g44Þð
ðDb
Þ� � 
�Db
Þ

þ ilð
ðDa
Þ� � 
�Da
Þðg4b � @bx
4
i g44ÞÞ; (3)

where

Q ¼ 1þ T2l2

2��0 g44;

Da
 ¼ @a
� iðAL;a � AR;aÞ
;
VðT; lÞ ¼ gsVðTÞ

ffiffiffiffi
Q

p
:

(4)

T ¼ j
j, i ¼ L; R and we have used the fact that the
background does not depend on x4. The complete action
also includes terms involving Chern-Simons (CS) cou-
plings of the gauge fields and the tachyon to the
Ramond-Ramond background sourced by the D4-branes.
These will not be needed in the following analysis and
hence have not been included here.

The potential Vð
Þ depends only on the modulus T of the
complex tachyon 
. It is believed that Vð
Þ satisfies the
following general properties [18]:

(i) VðTÞ has a maximum at T ¼ 0 and a minimum at
T ¼ 1 where it vanishes.

(ii) The normalization of VðTÞ is fixed by the require-
ment that the vortex solution on the brane-antibrane
system should produce the correct relation between
Dp and Dðp� 2Þ-brane tensions. In the present
case this means Vð0Þ ¼ T 8 ¼ 1=ð2�Þ8l9sgs, the
D8-brane tension.

(iii) In flat space, the expansion of VðTÞ around T ¼ 0
up to terms quadratic in T gives rise to a tachyon
with mass squared equal to �1=2�0.

There are several proposals for VðTÞ which satisfy these
requirements [18], although no rigorous derivation exists.
Examples are (i) the potential used in [34–36] for calcu-
lation of decay of unstable D-branes in two-dimensional
string theory

VðTÞ ¼ T 8sech
ffiffiffiffi
�

p
T (5)

and (ii) the potential obtained using boundary string field
theory computation [37–40]

VðTÞ ¼ T 8e
�ð�=2ÞT2

: (6)

Both of these potentials satisfy the properties listed above.
Note that the asymptotic form of the potential in (5) for

large T is�e�
ffiffiffi
�

p
T . The linear growth of the exponent with

T should be contrasted with the quadratic growth for the
potential in (6). This difference will turn out to be impor-

tant for the background tachyon solutions, which are dis-
cussed next.
We end this subsection with the following observation. It

can be easily seen that in the decoupling limit all factors of
�0 scale out of the entire action, without requiring any
scaling of the transverse scalar l or the tachyon 
. In fact,
the entire action can be rewritten in terms of �5 and ~U,
quantities that are kept fixed in the scaling limit.
Henceforth, we will use the convention 2��0 ¼ 1.

B. Classical equations for brane profile and tachyon

Wewill now look for an appropriate classical solution of
the brane-antibrane-tachyon system. Let us set the gauge
fields and all but the derivatives with respect to U of T and
x4i to zero. Moreover, we choose x4L ¼ l=2 and x4R ¼ �l=2
so that the separation between the brane and antibrane is l.
In this case, in the static gauge the action (3) simplifies to6

S ¼ �V4

Z
d4x

Z
dUVðTÞ

�
U

R

��3=4
U4ð ffiffiffiffiffiffiffiffiffiffi

DL;T

p þ ffiffiffiffiffiffiffiffiffiffi
DR;T

p Þ;
(7)

where DL;T ¼ DR;T � DT and

DT ¼ fðUÞ�1

�
U

R

��3=2 þ fðUÞ
�
U

R

�
3=2 l0ðUÞ2

4
þ T0ðUÞ2

þ TðUÞ2lðUÞ2: (8)

It is convenient to remove the dependence on R (except for
an overall factor in the action) through a redefinition of
variables:

U ¼ u=R3; lðUÞ ¼ R3hðuÞ; Uk ¼ uk=R
3: (9)

In terms of the new variables, we get

S ¼ �V4R
�9

Z
d4x

Z
duu13=4VðTÞð

ffiffiffiffiffiffiffiffiffi
dL;T

q
þ

ffiffiffiffiffiffiffiffiffi
dR;T

q
Þ;
(10)

where

dL;T ¼ dR;T � dT

¼ fðuÞ�1u�3=2 þ fðuÞu3=2 h
0ðuÞ2
4

þ T0ðuÞ2

þ TðuÞ2hðuÞ2; (11)

with fðuÞ ¼ ð1� u3k=u
3Þ.

The effective potential for the tachyon can be obtained
from this action by setting T0 ¼ h0 ¼ 0. It is

VeffðT; lÞ � sech
ffiffiffiffi
�

p
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3=2T2h2

p
: (12)

In Fig. 1 we have plotted Veff as a function of T for various
values of u. We see that a perturbatively stable minimum at

6The CS term in the action does not contribute for such
configurations.
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T ¼ 0 for large values of u turns into an unstable maxi-
mum at a sufficiently small value of u. This is true for any
fixed, nonzero value of h. Moreover, the value of u at
which there is an unstable maximum at T ¼ 0 increases
as h decreases. Similar potentials were considered earlier
in [41] in flat space in the context of dynamical decay of a
brane-antibrane pair with a finite separation.

The equations of motion obtained from the action (10)
are�
u13=4ffiffiffiffiffiffi
dT

p T0ðuÞ
�0 ¼ u13=4ffiffiffiffiffiffi

dT
p

�
TðuÞhðuÞ2 þ V 0ðTÞ

VðTÞ ðdT � T0ðuÞ2Þ
�
;

(13)

�
u13=4ffiffiffiffiffiffi
dT

p fðuÞ
4

u3=2h0ðuÞ
�0 ¼ u13=4ffiffiffiffiffiffi

dT
p

�
TðuÞ2hðuÞ � V 0ðTÞ

VðTÞ
� fðuÞ

4
u3=2h0ðuÞT0ðuÞ

�
:

(14)

Note that the ‘‘prime’’ on VðTÞ denotes a derivative with
respect to its argument T and not a derivative with respect
to u.

This is a complicated set of coupled nonlinear differen-
tial equations which can be solved completely only nu-
merically. To get some insight into the kind of solutions
that are possible, however, we had analyzed these equa-
tions in [21] for large u and for u near the brane-antibrane
joining point in the bulk. For these values of u the equa-
tions simplify and can be treated analytically. For the sake
of completeness, we will summarize the results of this
analysis here before proceeding to describe numerical
solutions to these equations. As in the case without the
tachyon, we are looking for solutions in which the brane
and antibrane have a given asymptotic separation h0, i.e.
hðuÞ ! h0 as u ! 1, and they join at some interior point
in the bulk, i.e. hðuÞ ! 0 at u ¼ u0 � uk.

7 Moreover, we

want the tachyon (i) to vanish as u ! 1 so that the chiral
symmetry is intact in the ultraviolet region and (ii) to go to
infinity as u approaches u0 so that the QCD chiral anoma-
lies are reproduced correctly [19].

C. Solution for large u

Here we seek a solution in which hðuÞ approaches a
constant h0 and T becomes small as u ! 1. For small T
one can approximate V0=V ���T.8 If T and h0 go to zero
sufficiently fast as u ! 1 such that to the leading order

one might approximate dT � u�3=2, then (13) can be ap-
proximated to

ðu4T0ðuÞÞ0 ¼ h20u
4T: (15)

The general solution of this equation is

TðuÞ ¼ 1

u2
ðTþe�h0u þ T�eh0uÞ: (16)

In writing this solution we have ignored a higher order term
in 1=u for consistency with other terms in Eq. (13) that we
have neglected at large u. We will discuss consistency of
this solution below. Let us first discuss the solution for
hðuÞ.
The fact that the tachyon takes small values for large u

makes it irrelevant for the leading asymptotic behavior of
h, which can be extracted from (14) by setting the right-
hand side to zero. The resulting equation is

ðu11=2h0ðuÞÞ0 ¼ 0; (17)

which has the solution

hðuÞ ¼ h0 � h1u
�9=2: (18)

Here h1 is restricted to positive values so that the branes
come together in the bulk. For a SS model without the

tachyon, h1 ¼ 4
9 u

4
0f

1=2
0 , where f0 ¼ fðu0Þ, u0 being the

value of u where the branes meet in the bulk.
It is easy to convince oneself that the only solution to

Eqs. (13) and (14) in which T vanishes asymptotically and
h goes to a constant is (16) with T� ¼ 0. In particular, for
example, these equations have no solutions in which T
vanishes asymptotically as a power law.

D. Quark mass and the ultraviolet cutoff

In the tachyon solution (16), the exponentially falling
part satisfies the approximations under which (15) was
derived for any large value of u. The exponentially rising
part will, however, eventually become large and cannot be
self-consistently used. This is because for sufficiently large
u, there is no consistent solution for T which grows ex-
ponentially or even as a power law to the original Eqs. (13)
and (14), if we impose the restriction that hðuÞ should go to

Veff

T

u=5

u=20

u=50

u =70

1 2 3 4

0.5

1.0

1.5

FIG. 1 (color online). The effective potential Veff as a function
of T for different values of u for a fixed nonzero value of h.

7The inequality results from the lower bound on u.

8This follows from the general properties of the potential
discussed in Sec. II A.
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a constant asymptotically. This puts a restriction on the
value of u beyond which the generic solution (16) cannot
be used. The most restrictive condition comes from the

approximation dT � u�3=2. This requires the maximum
value umax to satisfy the condition

T2þe�2h0umax þ T2�e2h0umax � u5=2max

2h20
: (19)

For generic values of jT	j and h0, this inequality deter-
mines a range of values of umax for which the solution (16)
can be trusted. The value T� ¼ 0 is special since in this
case there is no upper limit on umax, except the cutoff that
comes from the fact that the ten-dimensional description of
the background geometry breaks down beyond some very

large value (� N4=3
c ) of u. However, as is clear from (19),

for nonzero jT�j one needs to choose a much smaller value
of umax. Numerical calculations reported in the next section
bear out this expectation.

It is important to emphasize that the ultraviolet cutoff we
are talking about here does not merely play the usual role
of a cutoff needed in any example of AdS/CFTwith a non-
normalizable part present in a solution to the bulk equa-
tions. The point is that there is no growing solution to the
tachyon equation in the ultraviolet which is consistent with
a brane profile that goes to a finite asymptotic brane-
antibrane separation. This constraint limits the value of u
up to which the asymptotic solutions (16) and (18) can be
trusted.

One way to think about the inequality (19) is the follow-
ing. Suppose for given values of jT	j we have chosen the
largest value of umax consistent with (19). Increasing umax

further would then be possible only if jT�j is decreased
appropriately, while jTþj can be kept fixed, as umax is
increased. To be concrete, let us keep jTþj and
jT�jeh0umax fixed as umax is increased. The process of ‘‘re-
moving the cutoff’’ can then be understood as increasing
umax and simultaneously decreasing jT�j while keeping
jTþj and the combination jT�jeh0umax fixed. In this process,
at some point jTþje�h0umax would become much smaller
than jT�jeh0umax . As we shall see in the next section, how-
ever, limitations due to numerical accuracy prevent us from
tuning jT�j to very small values or equivalently tuning
umax to be very large. Thus we are numerically restricted to
rather small values of umax. For values of u larger than
umax, the inequality (19) breaks down and consequently the
asymptotic solution (16) is not applicable. Clear evidence
for this breakdown is seen in the numerical calculations
reported in the next section.

It is natural to associate T� with the quark mass since
this parameter comes with the growing solution. Evidence
for this will be given in Sec. V where we will show that for
a small nonzero value of this parameter the pion mass is
nonzero and proportional to it. It is also natural to associate
Tþ with the chiral condensate because it comes with the
normalizable solution. It turns out that this association too

is consistent, though this part of the story is somewhat
more complicated, as we shall see in Sec. IV.
It is interesting to mention here that keeping the combi-

nation jT�jeh0umax ¼ � fixed as the cutoff becomes large
implies an exponential dependence of jT�j on the umax, i.e.
jT�j ¼ �e�h0umax . A similar dependence of the quark mass
on the cutoff has been observed in [27,28], though the
methods used for computing quark mass in these works
are quite different from ours. In [28] the cutoff arises from
the location of aD6-brane, which is additionally present in
that model, thereby giving a physical meaning to the
cutoff.

E. Solution for u� u0

Here we are looking for a solution in which h ! 0 and
T ! 1 as u ! u0. Let us assume a power-law ansatz,
namely,

hðuÞ � ðu� u0Þ�; TðuÞ � ðu� u0Þ��: (20)

For a smooth joining of the brane and antibrane at u0, the
derivative of h must diverge at this point, which is ensured
if �< 1. Since for this ansatz T02 is the largest quantity for
u ! u0, we can approximate dT � T0ðuÞ2. We will also
need the asymptotic form of the potential VðTÞ for large T,
which depends on the specific potential being used. From
the asymptotic form of the potential in (5), we get
V0ðTÞ=VðTÞ � � ffiffiffiffi

�
p

, while for the potential in (6), we
get V0ðTÞ=VðTÞ � ��T. Putting all of this in (13) and
(14), it is easy to verify that these equations cannot be
satisfied by the ansatz (20) for the potential (6). They are,
however, satisfied for the potential in (5).9 In fact, in this
case the powers as well as the coefficients all get fixed10:

hðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26

�u0f0

s
u�3=4
0 ðu� u0Þ1=2 þ 
 
 
 ; (21)

TðuÞ ¼
ffiffiffiffi
�

p
4

f0u
3=2
0 ðu� u0Þ�2 þ 
 
 
 : (22)

An important feature of the above solution is that it
depends only on a single parameter, namely, the value of
u0. We have checked that this feature persists in the next
few higher orders in a power series expansion in (u� u0).
This is in sharp contrast to the asymptotic solution (16) and

9A direct comparison with the potential in (6), obtained in
boundary string field theory calculations, may, however, not be
quite appropriate since the corresponding actions could be
related by a complicated field redefinition, which would also
change the kinetic (and higher derivative) terms.
10In [20] the power of (u� u0) with which the brane-antibrane
separation falls off in the bulk has been left undetermined. This
power is actually determined by (13) and (14), as can be easily
checked by consistently expanding these equations on both sides
and going beyond the leading order in powers of (u� u0). We
have also verified this power by numerical calculations reported
in the next section.
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(18) which depends on all four expected parameters: Tþ,
T�, h0, and h1. This reduction in the number of parameters
is similar to what happens in the SS model where the
solution for u� u0 depends only on one parameter,
although the asymptotic solution depends on two parame-
ters. In the present case the reduction in the number of
parameters is even more severe; the solution for u� u0
matches with only a one-parameter subspace of the four-
parameter space of asymptotic solutions. As we will dis-
cuss later, this one-parameter freedom of the classical
solution turns out to be analogous to the freedom to add
a bare quark mass in QCD.

For completeness, we note that there exists another
solution in which T does not diverge but goes to a nonzero

constant as u ! u0. In this case we can approximate dT �
fðuÞu3=2h0ðuÞ2=4. Substituting in (13) we see that the left-
hand side diverges as ðu� u0Þ��. The first term on the
right-hand side vanishes as a positive power, but the second
term diverges as ðu� u0Þ��1, since�< 1. For consistency
we must have � ¼ 1=2. The resulting solution

hðuÞ ¼ 4

u0
ðf0ð5f0 þ 3ÞÞ�1=2ðu� u0Þ1=2 þ 
 
 
 ; (23)

TðuÞ ¼ t0 þ 2u�1=2
0

ð5f0 þ 3Þ
V 0ðu0Þ
Vðu0Þ ðu� u0Þ þ 
 
 
 (24)

also satisfies (14). Note that no special condition was
required for the tachyon potential to get this solution;
this solution exists for any potential.

III. NUMERICAL SOLUTIONS

Equations (13) and (14) cannot be solved analytically.
One needs to use numerical tools to get a solution. We have
made use of MATHEMATICA for this. Also, for numerical
calculations we have chosen the potential (5), since there is
no diverging solution for TðuÞ for u� u0 for the potential
(6), as discussed above.

The numerical calculations are easier to do if we start
from the u ¼ u0 end and evolve towards the large u end.

This avoids the fine-tuning one would have to do if one
were to start from large values of u, where the general
solution has four parameters, and end on a one-parameter
subspace for u� u0. We must also satisfy the requirement
of working in the parameter region of the background
geometry corresponding to the strong coupling. In addi-
tion, we need to ensure that the asymptotic separation
between flavor branes and antibranes is small compared
to the radius of the x4 circle. Mathematically, these require-
ments are �5 ¼ 8�2R3 � 2�Rk and l0 � �Rk. Using (2)
and (9), one gets R3 ¼ 3

2Rk
ffiffiffiffiffi
uk

p
. Then, these requirements

become 1
36�2 � uk � 4�2

9h2
0

. Throughout our numerical cal-

culations wewill work with uk ¼ 1, which satisfies the first
condition easily, while it requires from the second that
h0 � 2�

3 . This condition is also easily satisfied by choos-

ing u0 � uk ¼ 1.11 For such values of u0, fðuÞ � 1 for all
u � u0.
The boundary conditions are imposed using (21) and

(22) at a point u ¼ u1 which we choose as close to u0 as
allowed by numerics. Generally we were able to reduce
(u1 � u0) down to about 0.1% of the value of u0. Starting
from the values of Tðu1Þ, T0ðu1Þ, hðu1Þ and h0ðu1Þ obtained
from (21) and (22) at u ¼ u1, the system was allowed to
evolve to larger values of u. Figure 2 shows an example for
u0 ¼ 12:7. Solutions for both hðuÞ and TðuÞ are shown.

A. Verification of the UV and IR analytic solutions

From the numerical solutions one can verify that hðuÞ
and TðuÞ are given by the forms (21) and (22), for u� u0.
Figure 3 shows the impressive fits between the numerical
data and the analytical expectations for the powers of (u�
u0) for hðuÞ and TðuÞ. We have plotted hðuÞ=h0ðuÞ and
TðuÞ=T0ðuÞ, calculated from the numerical solutions, as
functions of u. The numerical data are plotted in dashed
lines, while the theoretical solutions are plotted in solid
lines. As one can see, these graphs are linear at the IR end,
and their slopes turn out to be close to the expected values
0.5 and �2, respectively. In fact, the numerical and the
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T(u)

FIG. 2 (color online). The brane profile and the tachyon solution for u0 ¼ 12:7.

11As we shall see below, the asymptotic separation decreases
with an increasing value of u0, as is the case for the SS model.
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theoretical curves entirely overlap in the IR region of u, as
shown in Fig. 3. At the other end also, namely, for large u,
one can verify that the numerical solutions have the ana-
lytic forms (16) and (18). The goodness of the fits of these
analytic forms to numerical data is shown in Fig. 4 where
again the two curves overlap in the asymptotic region of u.
The fits yield values of the four parameters: h0 ¼ 0:224,
h1 ¼ �16068, Tþ ¼ 29 194:5, and T� ¼ �1:25� 10�4

for u0 ¼ 13:1.

B. Behavior of the non-normalizable part

For T� � 0, extending numerical calculations much
beyond the values of u shown in Fig. 2 meets with a
difficulty. It turns out that, for small u0, T� is positive.
Since T� is the coefficient of the rising exponential in TðuÞ,
for a sufficiently large value of u this term dominates, and
so TðuÞ begins to rise.12 Eventually, T becomes so large
that the conditions under which the asymptotic solutions
(16) and (18) were obtained no longer apply. Figure 5
illustrates this; it shows the solutions for u0 ¼ 12:7 for
two different large values of u. In Fig. 5(a), after falling
very fast, T rises and then falls again. Almost simultaneous
with this is a rapid rise of h from one nearly constant value

to a higher constant value. Evidently, this behavior con-
tinues indefinitely with u, as can be seen in Fig. 5(b).13

The value of T� decreases with increasing u0. This can
be easily deduced from the fact that the maximum value of
u up to which the asymptotic solutions (16) and (18) apply,
namely, before the oscillations begin, increases with in-
creasing u0. Figure 6 illustrates this by showing the solu-
tions for increasing values of u0, close to where T� is
small. As one can see, increasing the value of u0 by a
very small amount, from u0 ¼ 13 to u0 ¼ 13:0878, dra-
matically increases the threshold for oscillatory behavior
of T from u� 50 to u� 120. As u0 increases further, T�
decreases, becomes zero14 and eventually is negative.
Since we want to interpret T� as the bare quark mass
parameter, negative values for it are allowed. However, a
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h u
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T u

T u

FIG. 3 (color online). Numerical verification of exponents in the IR behavior of the brane profile and the tachyon. The fits give the
two exponents, respectively, to be 0.50 and �2:07 for u0 ¼ 13:1.
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FIG. 4 (color online). Numerical verification of the asymptotic form of the brane profile and the tachyon.

12We would like to thank Matt Headrick for a discussion on this
point and some other aspects of our numerical calculations.

13In [20], the authors claim that this effect is due to sensitivity
of the solutions to the boundary conditions at the infrared end at
u ¼ u1, which must necessarily be chosen slightly away from
the actual value u0. We have not found any evidence for this
sensitivity. On the other hand, it is clear that the approximation
made in deriving the asymptotic solution (16) and (18) must
break down for sufficiently large u, for any nonzero value of T�.
We see convincing numerical evidence for this. Further evidence
of this follows.
14We have found that T� ¼ 1:92� 10�9 at u0 � 13:087 778 1.
Fine-tuning u0 such that T� is precisely zero is hard. This
requires numerical methods which are beyond the scope of those
used here. However, the trend is clear from Figs. 6 and 7.
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large value for jT�j will eventually again make T large in
magnitude for large enough u. So once again we expect
that, at some sufficiently large u, T will become so large
that the conditions under which the asymptotic solutions
(16) and (18) were obtained no longer apply. So, as before,
one should find oscillations in TðuÞ, which now start at
smaller and smaller u as u0 grows. This is indeed seen to be
the case, as is evident in Fig. 7. This happens because jT�j
grows with u0, beyond the value at which it becomes zero.
Figure 8 shows the change of T� with u0. We see that T�
vanishes at u0 � 13:0878 and jT�j grows on both sides
away from this value. It is hard to understand what is
special about this value of u0. One might have thought
that the role of zero mass would be played by the antipodal
configuration, which has u0 ¼ uk and is beyond our ap-
proximation. It is possible that this is an artifact of using
the approximate action (3), valid for a noncompact x4

coordinate, although the value u0 � 13:0878 is fairly large
and seems to be within the validity of our approximation.
We also note that, for negative T�, negative TðuÞ can be
avoided by imposing a suitable cutoff on u. As we have

already discussed, the cutoff is in any case required to fulfil
the condition (19) so that the asymptotic solutions (16) and
(18) may apply.

C. Behavior of the asymptotic brane-antibrane
separation

Another interesting quantity is the asymptotic brane-
antibrane separation h0 as a function of u0. This quantity
has been plotted in Fig. 9. We see that h0 steadily decreases
through the special value u0 � 13:0878. Although we do
not have an analytical formula for the dependence of h0 on
u0 for large values of the latter, the trend in Fig. 9 seems to
indicate that it decreases to zero as u0 becomes large.
Presumably the brane-antibrane pair overlap and disappear
as u0 goes to infinity. This is consistent with the trend of
increasing bare quark mass for increasing values of u0 (far
beyond u0 � 13:0878) which we have seen in Fig. 8.
Therefore, unlike in the Sakai-Sugimoto model, the dis-
appearance of the brane-antibrane pair for u0 ¼ 1 can be
understood in the present setup as the infinite bare quark
mass limit.
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FIG. 5 (color online). Solutions for two different large values of u.

20 40 60 80 100 120 140
u

0.5

1.0

1.5

2.0

h u
T u

u0 13

20 40 60 80 100 120 140
u0.0

0.5

1.0

1.5

2.0

h u

T u
u0 13.0878

FIG. 6 (color online). Numerical solutions for increasing values of u0 for positive T�.
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FIG. 7 (color online). Numerical solutions for increasing values of u0 for negative T�.

TACHYON CONDENSATION AND QUARK MASS IN THE . . . PHYSICAL REVIEW D 78, 066021 (2008)

066021-9



It should be clear from the above discussion that the
limit h0 ! 0 does not reduce to the case of overlapping

D8-branes andD8-branes considered in [19]. For this case,
one must begin afresh with x4i ¼ 0, l ¼ 0 in the action (3).
However, the classical equation for T can be obtained from
Eq. (13) by setting h ¼ 0 in it. As above, we find that
solutions which are divergent in the IR depend on only one
free parameter. For further details about the tachyon solu-
tions in this case, we refer the interested reader to
Appendix A.

D. Comparison with the Sakai-Sugimoto solution

Finally, we must ensure that the solution with the
tachyon has lower energy compared to the SS model.
The energy density in the modified model is given by

ET ¼ 2V4R
9Vð0Þ

Z umax

u0

duETðuÞ;

ETðuÞ ¼ u13=4
VðTÞ
Vð0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�3=2 þ 1

4
u3=2h0ðuÞ2 þ T0ðuÞ2 þ TðuÞ2hðuÞ2

s
;

(25)

while for the SS model it is given by

ESS ¼ 2V4R
9Vð0Þ

Z umax

u0

duESSðuÞ;

ESSðuÞ ¼ u13=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�3=2 þ 1

4
u3=2h0SSðuÞ2

s
:

(26)

To get these expressions for energy density, we have set
fðuÞ to unity, which is a good approximation for large u0.

15

Also, in the SS model one must use the solution of the

tachyon free equation h0SSðuÞ ¼ 2u40u
�3=2ðu8 � u80Þ�1=2.

Close to u0, in the IR, the exponentially vanishing
tachyon potential suppresses contribution to ET compared
to ESS. Since the UV solutions for the two models are
almost identical,16 one might argue that the energy for the
modified model must be lower than that for the SS model.
However, for u * u0 there is a competition between the
exponentially vanishing tachyon potential and the power-
law increase of the square-root factor coming from jT0j in
the integrand ETðuÞ in (25). This results in a local maxi-
mum in ETðuÞ at some value of u, which can be easily
estimated analytically. The relevant quantity

e�ð�=4Þu3=2
0

ðu�u0Þ�2ðu� u0Þ�3

has a maximum at u ¼ u0 þ ð�6Þ1=2u3=40 . For small u0, the

position of the maximum is close to u0, so in this case the
argument about the IR behavior of the integrand in (25) is
not very clean, except in the very deep IR. But since the

position of the maximum grows with increasing u0 as u
3=4
0 ,

our argument should hold for large values of u0, which is
precisely where the action for the modified model can be
trusted. However, the expression used for estimating the
position of the local maximum breaks down if it is too far
away from u0. So, in practice we need to do a numerical
calculation to see what the real story is. As we will see in
the numerical plots given below, what really happens is
that for relatively large values of u0 the integrand ETðuÞ
increases rapidly at first, then slows down almost to a
constant and finally settles into an asymptotic power-law
increase similar to that of the integrand ESSðuÞ for the SS
model. Moreover, the place where the rapid increase begins
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FIG. 9 (color online). h0 as a function of u0.
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FIG. 8 (color online). T� as a function of u0.

15As in the previous calculations, we have set uk ¼ 1 for the
calculation done here. Then, for u � 10 we get 0:999 � fðuÞ �
1. We have checked that in this region the small deviation of fðuÞ
from unity does not make any appreciable change in the calcu-
lated values of h0 and T	.

16There is a caveat here. Strictly speaking this is true only when
the coefficient of the non-normalizable term T� in the asymp-
totic tachyon solution (16) vanishes. As we have discussed, when
T� is nonzero, one must introduce a cutoff umax, chosen care-
fully such that the asymptotic solution is satisfied. In particular,
one must ensure T is positive in the region below umax. In the
calculations reported here and earlier in this section, this is what
we have done.

AVINASH DHAR AND PARTHA NAG PHYSICAL REVIEW D 78, 066021 (2008)

066021-10



shifts to larger values of u as u0 increases, in accordance
with the above expectation.

We have numerically evaluated the integrals in (25) and
(26). Because the relation between u0 and the asymptotic
brane-antibrane separation is different in the two models, a
given value of u0 corresponds to two different values of the
latter and vice versa. We have chosen to do the comparison
for the same value of the asymptotic brane-antibrane sepa-
ration in the two models, but similar conclusions are ex-
pected with the other choice as well. In Fig. 10 we have
plotted numerical solutions for hðuÞ and TðuÞ for u0 ¼ 17.
For comparison with the SS model, we have also plotted
hSS after adjusting the value of u0 for it to produce the same
value of the asymptotic brane-antibrane separation. The
required value turns out to be u0 ¼ 16:4. The correspond-
ing energy density integrands ETðuÞ and ESSðuÞ have been
plotted in Fig. 11. We can clearly see the rapid rise of EðuÞ
in the IR, the subsequent flattening out and finally the
power-law rise in the asymptotic region. Using
umax ¼ 35:316,17 numerical evaluation of the integrals

gives ðET � ESSÞ=2V4R
9Vð0Þ ¼ �521:3. Similar behavior

is seen18 for values of u0 > 13:5. For u0 < 13:5, however,
the energy difference becomes very small and is sensitive
to the choice of u1, the value of u where the IR boundary
conditions are imposed on the numerical solutions, the UV
cutoff umax and the deviation of fðuÞ from unity. In this
regime one may have to worry about the caveats discussed
in footnote 5. For this reason we prefer to restrict ourselves
to the region u0 > 13:5.
We conclude that there is strong numerical evidence that

the solution with the tachyon taken into account corre-
sponds to a lower energy state.

IV. THE CHIRAL CONDENSATE

By the standard dictionary of AdS/CFT [22–25], once
we have identified T� with the quark mass parameter, we
should identify Tþ with the chiral condensate. However, it
is not clear that the standard rules apply to the present case
of a boundary theory which is not a CFT and has a scale.
Moreover, the fact that there is no known lift of D8-brane
to 11 dimensions forces an essential cutoff in the theory
with flavors. In fact, for a nonzero value of T�, the real
cutoff is much lower, as we have seen from numerical
computations in the last section. Despite these difficulties,
we will assume that the identification of sources in the
boundary theory with boundary values of bulk fields holds
in the theory with a cutoff.
There is an additional difficulty in the present case. As

we have seen above, the desired solutions have only one
independent parameter, which we take to be T�. The other
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FIG. 10 (color online). hðuÞ and TðuÞ profiles for u0 ¼ 17. For comparison, the hSS profile has also been plotted after adjusting the
value of u0 to 16.4 for it since this value of u0 produces the same asymptotic brane-antibrane separation.
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FIG. 11 (color online). The energy density integrands ESSðuÞ
and ETðuÞ. The rapid rise of the latter in the IR is clearly seen.
The divergence between the two curves in the asymptotic region
u * umax is due to a nonzero T�.

17This is the value at which TðuÞ vanishes. The asymptotic form
(16) fits the numerically computed TðuÞ in the range 33 � u �
umax to better than a percent with the parameter values h0 ¼
0:175, Tþ ¼ 28 911:3, and T� ¼ �0:0937.

18For accurate numerical calculations, it is crucial to impose the
IR boundary conditions on hSSðuÞ at a value u ¼ u1 which is as
close to u0 as possible. This is because ESSðuÞ is large at the IR
end, as can be seen in Fig. 11, and so the value of ESS increases
considerably as the difference (u1 � u0) decreases. On the other
hand, the value of ET is insensitive to the precise value of u1
because ETðuÞ vanishes at the IR end. Happily, it turns out that
the IR boundary conditions on the numerical solution for hSSðuÞ
can be imposed at a value of u1 which is much closer to u0 than
is allowed by the numerics in the case with the tachyon present.
Typically in our calculations we are able to take (u1 � u0) of
order 10�8 in the SS model but only of order 0.01 when the
tachyon is present.
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three parameters Tþ, h0 and h1 should then be considered
to be functions of T�. Thus, the chiral condensate cannot
be computed naively by varying the on-shell flavor brane
action with respect to T�, since this would also include
contributions from the variation of the other three parame-
ters with T�. The one-parameter solutions that we have
found constitute the most general class of space-time-
independent solutions with the specified boundary condi-
tions.19 Therefore, if we want only to make a variation of
T� only, we must go out of the present one-parameter
class of solutions to more general solutions, which are
space-time-dependent, in addition to being dependent on
u, and have enough parameters. These solutions to
ðu; xÞ-dependent equations should have the same singular-
ities at u ¼ u0 as the solutions in (21) and (22). Moreover,
the asymptotic solutions should have the form of (16) and
(18) with x-dependent coefficients. If solutions satisfying
these conditions exist and have enough parameters, then
we can make the required variation of T� only and identify
Tþ as the condensate in a coherent state formed from
fluctuations of T and h (scalar mesons) around the ground
state with broken chiral symmetry. Specializing to the
x-independent case, after varying the on-shell action,
then, gives us the condensate in the vacuum state. What
we, therefore, need to do is to analyze the x-dependent case
to see if the required solutions exist. This is what wewill do
next.

A. Action for ðu; xÞ-dependent T and h

The full ðu; xÞ-dependent action for tachyon and brane-
antibrane separation is given by

S ¼ � 2V4

R9

Z
d4x

Z
duu13=4VðTÞ ffiffiffiffiffiffi

dT
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð1þ KÞ
p

; (27)

where K is the matrix with the elements

K�
� ¼ f

4Q
@�h@�hþ u�3=2

Q
@�T@�T;

K�
u ¼ f

4Q
h0@�hþ u�3=2

Q
T0@�T;

Ku
� ¼ fu3=2

4dT
h0@�hþ 1

dT
T0@�T; Ku

u ¼ 0:

(28)

To look for a generalization of the x-independent solutions
for equations of motion derived from this action, the most
obvious thing to do is to generalize the earlier solutions by
making all parameters functions of x. In particular, this
means making u0, the place where the flavor brane and
antibrane meet, a function of x. For u� u0, expansion of
this solution around a constant u0 is singular, since it

involves arbitrary higher powers of 1=ðu� u0Þ. There-
fore, we do not expect analysis of (27) by expanding in
small fluctuations around the x-independent solution to
work for u close to u0. This is confirmed by explicit
fluctuation calculations in Appendix B. We need to go
beyond small fluctuations analysis of (27), and this re-
quires us to get an exact expression for the determinant
in terms of space-time derivatives of T and h.
A direct calculation of detð1þ KÞ is tedious, but the

calculation can be simplified using a trick which has been
described in Appendix C, where a rather simple expression
for the determinant has been obtained. The complete five-
dimensional action then reads

S ¼ � 2V4

R9

Z
d4x

Z
duu13=4VðTÞ ffiffiffiffiffiffiffi

�T

p
; (29)

where �T ¼ dT� and we have defined

� � 1þ �1ð@TÞ2 þ �2ð@hÞ2 þ 2�3ð@h:@TÞ
þ �4½ð@TÞ2ð@hÞ2 � ð@h:@TÞ2�: (30)

The �’s are given by

�1 ¼ u�3=2

Q

�
1� T02

dT

�
; �2 ¼ f

4Q

�
1� fu3=2h02

4dT

�
;

�3 ¼ � fh0T0

4QdT
; �4 ¼ �1�2 � �2

3: (31)

As a check on the action (29), we note that it reduces to the
action (10) if T and h are x-independent. Also, it correctly
reproduces the action (B1) which retains only terms that
are quadratic in space-time derivatives of T and h. This
latter action was derived independently by expanding
detð1þ KÞ in powers of K and retaining only the first
nontrivial correction.
The equations of motion that follow from the action (29)

are rather complicated and have been derived in
Appendix C, (C13) and (C14). As we did in the
x-independent case, we will solve these equations in the
two limiting cases of large u and u� u0.
u ! umax: In this limit, hðu; xÞ goes to a fixed value

h0ðxÞ, which is assumed to be a slowly varying function of
x. We will also assume that T and all its derivatives are
small in this limit. Then Eqs. (C13) and (C14) can be
approximated as

� ðu4T0ðu; xÞÞ0 þ ðh0ðxÞÞ2u4Tðu; xÞ ¼ 0; (32)

ðu11=2h0ðu; xÞÞ0 ¼ 0: (33)

The space-time derivatives are comparatively suppressed
by powers of 1=u and hence have been ignored. These
equations are identical to (15) and (17) and so have solu-
tions similar to (16) and (18), but now with parameters that
are functions of x:

19These boundary conditions are (i) vanishing tachyon and
fixed brane-antibrane separation asymptotically and
(ii) divergent tachyon and vanishing brane-antibrane separation
at some point in the bulk.
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Tðu; xÞ ¼ 1

u2
ðTþðxÞe�h0ðxÞu þ T�ðxÞeh0ðxÞuÞ;

hðu; xÞ ¼ h0ðxÞ � h1ðxÞu�9=2:

(34)

u ! u0: The analysis in this limit is somewhat more
involved. We assume an ansatz similar to the solutions (21)
and (22), but now with x-dependent u0 and coefficients:

hðu;xÞ ¼ �0ðxÞðu�u0ðxÞÞ1=2 þ�1ðxÞðu�u0ðxÞÞ3=2 þ

 
 ;
Tðu;xÞ ¼	0ðxÞðu�u0ðxÞÞ�2 þ	1ðxÞðu�u0ðxÞÞ�1 þ

 
 :

(35)

As consequence of this ansatz, one can show that

@�h ¼ �h0
�
@�u0 �

2@��0

�0

ðu� u0Þ þ 
 
 

�
; (36)

@�T ¼ �T0
�
@�u0 þ

@�	0

2	0

ðu� u0Þ þ 
 
 

�
: (37)

These relations are correct to the order shown. Putting all
of this in the equation of motion for T, (C13), we see that
this equation is satisfied to the leading order provided the
following condition holds:

13

4u0
�

ffiffiffiffi
�

p
2

	0�
2
0 ¼ u�3=2

0 @�ðu�3=2
0 @�u0Þ

� 1

2
u�3
0 @�u0

@�ðu�3
0 ð@u0Þ2Þ

1þ u�3
0 ð@u0Þ2

: (38)

In obtaining this we have set f0 ¼ 1. Similarly, from (C14)
one gets the condition

	0 ¼
ffiffiffiffi
�

p
4

ðu3=20 þ u�3=2
0 ð@u0Þ2Þ: (39)

If u0 is a constant independent of x, then from Eqs. (38)
and (39) one gets

	0 ¼
ffiffiffiffi
�

p
4

u3=20 ; �0 ¼
ffiffiffiffiffiffiffiffiffi
26

�u0

s
u�3=4
0 : (40)

These reproduce the x-independent solutions in (21) and
(22), remembering that we have set f0 ¼ 1. Let us now
consider a small fluctuation around this constant solution.
Linearizing Eqs. (38) and (39) in fluctuations, we get

	0ðxÞ ¼ 3
ffiffiffiffi
�

p
8

u1=20 u0ðxÞ;

�0ðxÞ ¼ � 4u�13=4
0ffiffiffiffiffiffiffiffiffi
26�

p
�
@2 þ 65

8
u0

�
u0:

(41)

Now, clearly we could choose the fluctuation u0ðxÞ to be
such that �0ðxÞ vanishes. Under such an infinitesimal
change of u0, 	0 would change, but not �0. It is this kind
of greater freedom in independently varying the parame-
ters of the solution that we have wanted. Presumably in

higher orders the situation gets better because there are
more terms in the ansatz (35), and for each coefficient there
is some freedom because of the space-time dependence. It
would be nice to analyze the higher order terms, but that is
beyond the scope of this work. Here we will assume that
the introduction of space-time dependence as above can
give us the required freedom to do the calculation of the
condensate as follows.
Finally, let us compare the solution (40) and (41) with

the solution obtained by the singular perturbation expan-
sion in Appendix B, (B31). Expanding (20) around the
constant u0 solution to the lowest nontrivial order in � �
ðu� u0Þ and comparing with (B28), we get the relations

’0ðxÞ ¼ 2u0ðxÞ;
’1ðxÞ ¼ 1

	0

ð	0ðxÞ þ 	1u0ðxÞÞ;

#0ðxÞ ¼ � 1

2
u0ðxÞ;

#1ðxÞ ¼ 1

�0

�
�0ðxÞ � 3

2
�1u0ðxÞ

�
:

(42)

These relations involve not only the leading order parame-
ters (40) of the constant solution but also the nonleading
parameters 	1 and �1, which are given by

	1 ¼ 	0

6u0
; �1 ¼ � 5�0

8u0
: (43)

Using (40)–(43), one can show that the equations in (B31)
are satisfied. This equivalence is, however, only formal. As
we have argued above, the method given in this section is
the correct one to use since it does not involve a singular
expansion in arbitrarily high powers of 1=ðu� u0Þ.

B. Condensate in terms of the tachyon solution

To derive an expression for the condensate, we calculate
the variation of the action in (29) under a general variation
of T and use the equation of motion (C13) to reduce it to a
boundary term:

S ¼ � 2V4

R9

Z
d4x

VðTÞu13=4ffiffiffiffiffiffi
dT

p T0ðu; xÞTðu; xÞju¼umax
:

(44)

We have ignored terms with space-time derivatives be-
cause from now on we will be specializing to the
x-independent case, except in the variation T, so these
terms will drop out. Only the UV boundary contributes to
the on-shell action; there is no IR contribution because the
tachyon potential vanishes exponentially for the diverging
tachyon in the IR. We are interested only in retaining the
variation T�ðxÞ, so we set TþðxÞ to zero. Doing this and
using (34) in (44), we get the leading contribution for large
umax:
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S  2h0V4Vð0Þ
R9

ðTþ � T�e2h0umaxÞ
Z

d4xT�ðxÞ: (45)

On-shell brane actions have UV divergences which need
to be removed by the holographic renormalization proce-
dure20 to get finite answers for physical quantities. One
adds boundary counterterms to the brane action to remove
the divergences, following a procedure described in [44].
Our on-shell action (45) diverges as the cutoff is removed.
This is because, as discussed in Sec. II D, we are keeping
Tþ and T�eh0umax fixed as the cutoff is removed and the last
term in (45) diverges as eh0umax in this limit. The holo-
graphic renormalization procedure has been developed for
examples with CFT boundary theories. Since, with the
D8-branes present, there is no eleven-dimensional descrip-
tion available to us, it is not clear that the procedure
described in [44] is applicable to the present case. We
will proceed on the assumption that this is the case.
Therefore, to subtract the UV divergent term in (45), we
will add the following counterterm to the boundary action:

Sct ¼ V4Vð0Þ
R9

Z
d4x

ffiffiffiffiffiffiffiffi��
p

hðu; xÞT2ðu; xÞjumax
; (46)

where � ¼ �u8max is the determinant of the metric on the
eight-dimensional boundary orthogonal to the slice at u ¼
umax. Note that the counterterms must be even in powers of
the tachyon because of gauge symmetry. Using the solution
(34) and retaining only the parameter T�ðxÞ, we find that
the variation of the counterterm action is

Sct ¼ 2h0V4Vð0Þ
R9

ðTþ þ T�e2h0umaxÞ
Z

d4xT�ðxÞ: (47)

Adding to (45), the divergent term drops out, and we get
the variation of the renormalized action

Srenorm  4h0V4Vð0Þ
R9

Tþ
Z

d4xT�ðxÞ: (48)

Note that the variation of the renormalized action is twice
as large as it would have been if we had simply dropped the
divergent term21 in (45).

We are now ready to calculate an expression for the
chiral condensate in terms of the parameters of the tachyon
solution. The parameters T	 are dimensionless. To
construct a parameter of dimension mass from T�, we
introduce a scale � and define mq ¼ �jT�j. Then,

identifying the chiral condensate � � h �qLqRi, with

Srenorm=�T�ðxÞ, we get

�  4h0V4Vð0Þ
�R9

Tþ: (49)

We see that the parameter Tþ determines the condensate.
Figure 12 shows a plot of Tþ as a function of T� for T� �
0. Tþ seems to attain a maximum value at T� ¼ 0 and
drops off rapidly, at least for small values of jT�j.

V. THE MESON SPECTRA

In this section we will discuss the spectra for various low
spin mesons which are described by the fluctuations of the
flavor branes around the classical solution.22 The action for
the fluctuations of the gauge fields can be computed from
(3). Parametrizing the complex tachyon 
 in terms of its
magnitude and phase 
 ¼ Tei�, we get the following ac-
tion, correct to second order in the fluctuations:

�Sgauge ¼ �
Z

d4xdu½aðuÞA2
u þ bðuÞA2

�

þ cðuÞððFV
��Þ2 þ ðFA

��Þ2Þ þ eðuÞFA
�uA

�

þ dðuÞððFV
�uÞ2 þ ðFA

�uÞ2Þ�; (50)

aðuÞ ¼ R�15V4VðTÞu13=4 T2ffiffiffiffiffiffi
dT

p ; (51)

bðuÞ ¼ R�3V4VðTÞu7=4
ffiffiffiffiffiffi
dT

p T2

Q

�
1þ f2T2h2h02

4dT
u3
�
;

(52)

cðuÞ ¼ R3

8
V4VðTÞu1=4

ffiffiffiffiffiffi
dT

p
; (53)
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FIG. 12 (color online). Tþ as a function of T�.

20For reviews, see [42,43].
21In (45), it is inconsistent to drop the term proportional to T�
in the limit of a large cutoff, holding Tþ and T�eh0umax fixed. In
fact, it is the T� term that dominates in the action (45) in this
limit. Taking a different limit that allows one to simply drop this
term creates difficulties in the calculation of the pion mass; see
Sec. VC. Consistency with the chiral condensate calculation
then demands that the term proportional to TþT� be dropped in
the pion mass calculation since it is smaller than the T2þ term.

22For a general review of mesons in gauge/gravity duals, see
[45].
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dðuÞ ¼ R�9V4VðTÞu7=4 Q

4
ffiffiffiffiffiffi
dT

p ; (54)

eðuÞ ¼ R�6V4VðTÞu13=4 fT
2hh0

2
ffiffiffiffiffiffi
dT

p : (55)

Here FV
�� is the usual field strength for the vector gauge

field V ¼ ðA1 þ A2Þ, and FA
�� is the field strength for the

gauge-invariant combination of the axial-vector field and
the phase of the tachyon A ¼ ðA1 � A2 � @�Þ. However,

FV
�u ¼ �FV

u� ¼ @�Vu � R3@uV�;

FA
�u ¼ �FA

u� ¼ @�Au � R3@uA�:
(56)

The relative factor of R3 simply reflects the change of
variables (9).

The gauge field V�ðx; uÞ gives rise to a tower of vector

mesons while the fields A�ðx; uÞ and Auðx; uÞ, which are

gauge-invariant, give rise to towers of axial and pseudo-
scalar mesons. Notice that the coefficients aðuÞ, bðuÞ and
eðuÞ vanish if the tachyon is set to zero. In the absence of
the tachyon, the vector and axial-vector mesons acquire
masses because of a nonzero dðuÞ, but there is always a
massless ‘‘pion.’’23 The presence of the tachyon is thus
essential to give a mass to the pion. Also note that with the
tachyon present, the masses of the vector and axial-vector
mesons are in principle different.

A. Vector mesons

We will be using the gauge Vu ¼ 0. Expanding in
modes, we have

V�ðx; uÞ ¼
X
m

VðmÞ
� ðxÞWmðuÞ; (57)

where fWmðuÞg form a complete set of basis functions.
These satisfy orthonormality conditions which will be

determined presently. The fields fVðmÞ
� ðxÞg form a tower

of vector mesons in the physical (3þ 1)-dimensional
space-time. In terms of these fields, the vector part of the
action (50) takes the form

�SVgauge ¼ �
Z

d4x
X
m;n

½QV
mnF

VðmÞ
�� FVðnÞ�� þ LV

mnV
ðmÞ
� VðnÞ��;

(58)

where FVðmÞ
�� are the usual (3þ 1)-dimensional

Uð1Þ-invariant field strengths for the vector potentials

fVðmÞ
� g. Also, we have defined

QV
mn ¼

Z
ducðuÞWmðuÞWnðuÞ;

LV
mn ¼ R6

Z
dudðuÞW 0

mðuÞW 0
nðuÞ:

(59)

In addition, we choose the basis functions fWmðuÞg to
satisfy the eigenvalue equations

� R6ðdðuÞW 0
mðuÞÞ0 ¼ 2�V

mcðuÞWm: (60)

Using these we see that

LV
mn ¼ 1

2½R6ðdðuÞW 0
mðuÞWnðuÞÞ@u þ 2�V

mQ
V
mn� þm $ n;

(61)

where, as in the previous section, @u refers to boundaries in
the u direction.
Note that a potential zero mode in the vector sector24 can

be gauged away using the residual symmetry of making
u-independent gauge transformations, which is still avail-
able after fixing the gauge Vu ¼ 0. This is because a zero
mode in this sector can have only a single scalar degree of
freedom. This follows from the requirement of finiteness of
the action (58), which cannot be satisfied since the coeffi-
cient of the field strength term blows up for a zero mode.
Hence its field strength must vanish, leaving behind only a
longitudinal degree of freedom.
For the nonzero modes we may, without loss of general-

ity, choose

QV
mn ¼ 1

4mn; (62)

which, on using (61), gives

LV
mn ¼ 1

2�
V
mmn: (63)

Using (62) and (63) in (58), we get

�SVgauge ¼ �
Z

d4x
X
m

�
1

4
FVðmÞ
�� FVðmÞ�� þ 1

2
�V
mV

ðmÞ
� VðmÞ�

�
:

(64)

B. Axial-vector and pseudoscalar mesons

As we have already noted, A� and Au are gauge-

invariant. Expanding in modes, we have

A�ðx; uÞ ¼
X
m

AðmÞ
� ðxÞPmðuÞ;

Auðx; uÞ ¼
X
m

�ðmÞðxÞSmðuÞ;
(65)

where fPmðuÞg and fSmðuÞg form complete sets of basis
functions. These satisfy orthonormality conditions which

will be determined presently. The fields fAðmÞ
� ðxÞg and

f�ðmÞðxÞg form towers of axial-vector and pseudoscalar

23Strictly speaking, for the Uð1Þ case under discussion, this
pseudoscalar is the �0. It is massless here because of the Nc ! 1
limit in which we are working.

24A zero mode is defined as a mode which has zero eigenvalue
and goes to a constant at infinity.
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mesons in the physical (3þ 1)-dimensional space-time. In
terms of these fields, the axial-vector and pseudoscalar part
of the action (50) takes the form

�SAgauge ¼ �
Z

d4x
X
m;n

�
1

2
mn�

�
m�ðmÞ�ðnÞ

þQA
mnF

AðmÞ
�� FAðnÞ�� þ LA

mnA
ðmÞ
� AðnÞ�

þ Kmn@��
ðmÞ@��ðnÞ þ JmnA

ðmÞ�@��ðnÞ
�
;

(66)

where FAðmÞ
�� are the usual (3þ 1)-dimensional

Uð1Þ-invariant field strengths for the axial-vector poten-

tials fAðmÞ
� g. Also, we have defined

QA
mn ¼

Z
ducðuÞPmðuÞPnðuÞ;

LA
mn ¼

Z
du

�
R6dðuÞP0

mðuÞP0
nðuÞ

þ
�
bðuÞ þ 1

2
R3e0ðuÞ

�
PmðuÞPnðuÞ

�
;

Jmn ¼
Z

duðeðuÞPmðuÞ � 2R3dðuÞP0
mðuÞÞSnðuÞ;

Kmn ¼
Z

dudðuÞSmðuÞSnðuÞ

(67)

and used the orthonormality condition in the pseudoscalar
sector

Z
duaðuÞSmðuÞSnðuÞ ¼ 1

2
��
mmn: (68)

In addition, we choose the basis functions fPmðuÞg to
satisfy the eigenvalue equations

� R6ðdðuÞP0
mðuÞÞ0 þ

�
bðuÞ þ 1

2
R3e0ðuÞ

�
PmðuÞ

¼ 2�A
mcðuÞPmðuÞ: (69)

Using these we see that

LA
mn ¼ 1

2½R6ðdðuÞP0
mðuÞPnðuÞÞ@u þ 2�A

mQ
A
mn� þm $ n;

(70)

where, as before, @u refers to boundaries in the u direction.
We note that because of the last term in (66) the longi-

tudinal component of AðmÞ
� and �ðmÞ mix. So we need to

define new field variables in terms of which the action (66)
is diagonal. Before we do that, let us first note that the
axial-vector potential A�ðx; uÞ has a possible zero mode

provided the corresponding (3þ 1)-dimensional field
strength vanishes, for reasons explained in the previous
subsection. Hence the zero mode, which we shall denote by

Að0Þ
� , can have only a longitudinal component. The zero

mode is gauge-invariant and, because of its mixing with the

pseudoscalars, plays a special role. Let us see this in some
detail.

The zero mode Að0Þ
� is conjugate to the eigenfunction

P0ðuÞ which satisfies the equation

� R6ðdðuÞP0
0ðuÞÞ0 þ

�
bðuÞ þ 1

2
R3e0ðuÞ

�
P0ðuÞ ¼ 0: (71)

If there is no solution to this equation, then the zero mode
does not exist, and we should proceed directly to diago-
nalize the action (66). If, however, a solution P0ðuÞ to this
equation exists and is such that it goes to a constant at

infinity, then the zero mode Að0Þ
� exists. Since it is purely

longitudinal, for a reason identical to that discussed in the
vector case, we make this explicit by writing it in terms of a

pseudoscalar field: Að0Þ
� ¼ @��

ð0ÞðxÞ. The terms in the

action (66) which contain �ð0ÞðxÞ can be separated out.
These terms are

LA
00@��

ð0Þ@��ð0Þ þX
m

J0m@��
ðmÞ@��ð0Þ:

The sums over the indices m and n no longer include the
zero mode. Also, we have used LA

m0 ¼ LA
0m ¼ 0 form � 0,

which follows from (70) using the fact that �A
0 ¼ 0 and the

boundary terms vanish because PmðuÞ vanishes sufficiently
fast at infinity. Without loss of generality, we may choose
LA
00 ¼ 1=2 (to get the normalization of the kinetic term of

�ð0Þ right). Then, we can rewrite the above as

1

2
@��@

��� 1

2

X
m;n

J0mJ0n@��
ðmÞ@��ðnÞ; (72)

where � � ð�ð0Þ þP
mJ0m�

ðmÞÞ.
With the zero modes explicitly separated out in this way,

for the nonzero modes we may, without loss of generality,
choose

QA
mn ¼ 1

4mn; (73)

which, on using (70), gives

LA
mn ¼ 1

2�
A
mmn: (74)

Putting (72)–(74) in the action (66), we get

�SAgauge ¼ �
Z

d4x

�X
m

�
1

2
��
m�ðmÞ�ðmÞ þ 1

4
FAðmÞ
�� FAðmÞ��

þ 1

2
�A
mA

ðmÞ
� AðmÞ�

�
þ 1

2
@��@

��

þX
m;n

ð ~Kmn@��
ðmÞ@��ðnÞ þ JmnA

ðmÞ�@��ðnÞÞ
�
;

(75)

where ~Kmn ¼ ðKmn � 1
2 J0mJ0nÞ. The above action de-

scribes a massless particle �, besides other massive parti-
cles. The existence of this massless particle depends on the
existence of a solution to Eq. (71), satisfying the normal-
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ization condition

R6ðdðuÞP0ðuÞP0
0ðuÞÞ@u ¼ 1

2: (76)

Later we will see that the existence of the desired solution
P0ðuÞ depends on the absence of a non-normalizable part in
TðuÞ.

To diagonalize the action (75) for the massive modes, we
define the new variables

AðmÞ
� ¼ ~AðmÞ

� �X
n

ð�A
mÞ�1Jmn@��

ðnÞ: (77)

Putting in (75), we get

�SAgauge ¼ �
Z

d4x

�X
m

�
1

2
��
m�ðmÞ�ðmÞ þ 1

4
FAðmÞ
�� FAðmÞ��

þ 1

2
�A
m
~AðmÞ
�

~AðmÞ�
�
þ 1

2
@��@

��

þX
m;n

K0
mn@��

ðmÞ@��ðnÞ
�
; (78)

where K0
mn ¼ ð ~Kmn � 1

2

P
pð�A

pÞ�1JpmJpnÞ. The modes

have now been decoupled. To get the standard action for
massive pseudoscalars we may, without loss of generality,
set

K0
mn ¼ 1

2
mn ¼ Kmn � 1

2
J0mJ0n � 1

2

X
p

ð�A
pÞ�1JpmJpn:

(79)

This condition can be rewritten in a more conventional
form as follows. We define

c mðuÞ �
X
n

ð�A
n Þ�1PnðuÞJnm þ P0ðuÞJ0m (80)

and using (69) note that it satisfies the equation

� R6ðdðuÞc 0
mðuÞÞ0 þ ðbðuÞ þ 1

2R
3e0ðuÞÞc mðuÞ

¼ 1
2eðuÞSmðuÞ þ R3ðdðuÞSmðuÞÞ0: (81)

Using (80) in (79), we get

mn ¼
Z

du

�
dðuÞSmðuÞðSnðuÞ þ R3c 0

nðuÞÞ

� 1

2
eðuÞSmðuÞc nðuÞ

�
þm $ n: (82)

In terms of new variables defined by

SmðuÞ � R3�0
mðuÞ; �mðuÞ � c mðuÞ þ �mðuÞ; (83)

(82) can be written asZ
du�0

mðuÞ
�
R6dðuÞ�0nðuÞ � 1

2
R3eðuÞð�nðuÞ � �nðuÞÞ

�
þm $ n ¼ mn: (84)

Moreover, in terms of these variables the differential equa-
tion (81) reads

�R6ðdðuÞ�0mðuÞÞ0 þ ðbðuÞ þ 1
2R

3e0ðuÞÞð�mðuÞ � �mðuÞÞ
� 1

2R
3eðuÞ�0

mðuÞ ¼ 0: (85)

From these two equations one can obtain the orthonormal-
ity condition

Z
du

�
R6dðuÞ�0mðuÞ�0nðuÞ þ

�
bðuÞ þ 1

2
R3e0ðuÞ

�
� ð�mðuÞ � �mðuÞÞð�nðuÞ � �nðuÞÞ
� 1

2
R3eðuÞ�0

mðuÞð�nðuÞ � �nðuÞÞ

� 1

2
R3eðuÞ�0

nðuÞð�mðuÞ � �mðuÞÞ
�
¼ 1

2
mn: (86)

Also, rewriting (68) in terms of the new variables, we have

R6
Z

duaðuÞ�0
mðuÞ�0

nðuÞ ¼ 1

2
��
mmn: (87)

Finally, (84) and (87) give

R6aðuÞ�0
nðuÞ ¼ ��

n ðR6dðuÞ�0nðuÞ
� 1

2R
3eðuÞð�nðuÞ � �nðuÞÞÞ: (88)

Equations (85) and (88) are the final form of the eigenvalue
equations, and (86) and (87) are the orthonormality con-
ditions in the pseudoscalar sector.
It is interesting to note from (85) that if � is constant,

then the variable (�� �) satisfies a differential equation
that is identical to Eq. (71) satisfied by the zero mode P0.
Also, using (85) and (86) one can show that, for constant�,
(�� �) satisfies the normalization condition (76). From
(88) it follows that, if � is constant, the eigenvalue ��

vanishes. Thus, the presence of a massless pseudoscalar
can be naturally considered to be identical to the question
of the existence of a solution to Eqs. (85)–(88) with zero
eigenvalue, and so it becomes a part of the spectrum in the
pseudoscalar tower of states. Hence, the action in this
sector can be written in the form

�SAgauge ¼ �
Z

d4x
X
m

�
1

4
FAðmÞ
�� FAðmÞ�� þ 1

2
�A
m
~AðmÞ
�

~AðmÞ�

þ 1

2
@��

ðmÞ@��ðmÞ þ 1

2
��
m�ðmÞ�ðmÞ

�
: (89)

Note that we have dropped the field �ðxÞ but extended the
sum over m to cover a possible zero mode as well. If there

is a solution to Eqs. (85)–(88) with constant �0 and ��
0 ¼

0, then a massless pion field will reappear as the zero mode

�ð0Þ in the pseudoscalar tower. Otherwise, the lowest mode
in this sector will be massive, whose mass can be computed
as in the following subsection.
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C. Relation between pion mass and non-normalizable
part of tachyon

In this subsection we will derive a relation between the
pion mass and the non-normalizable part of the tachyon
parametrized by T�. This will give us further evidence for
identifying the parameters Tþ and T� with the chiral
condensate and quark mass, respectively. We first note

that, for TðuÞ ¼ 0, aðuÞ vanishes and hence ��
m also van-

ishes by (88). However, as we will see from the following
calculations, TðuÞ ¼ 0 is a sufficient condition but not
necessary to guarantee the presence of a massless pion.
The necessary condition is that the non-normalizable piece
in TðuÞ should be absent, i.e. T� ¼ 0.

Let us assume that TðuÞ � 0 so that aðuÞ � 0. Then,
(88) can be used to solve for �mðuÞ in terms of c mðuÞ,
which is related to �mðuÞ and �mðuÞ by (83). We get

�0
mðuÞ ¼ ��

m

aðuÞ � ��
mdðuÞ

�
dðuÞc 0

mðuÞ � eðuÞ
2R3

c mðuÞ
�
:

(90)

Let us now denote by ��
0 the lowest mass eigenvalue. The

corresponding eigenfunctions are c 0ðuÞ and �0ðuÞ.
Assuming ��

0 � aðuÞ=dðuÞ,25 we can approximate the

above equation for �0ðuÞ:

�0
0ðuÞ 

��
0

aðuÞ
�
dðuÞc 0

0ðuÞ �
eðuÞ
2R3

c 0ðuÞ
�
: (91)

If we know c 0ðuÞ, then using the above in (87) we can
compute the mass. Now, c 0ðuÞ satisfies the following
differential equation, which can be obtained from (85)

using (91) and the approximation ��
0 � aðuÞ=dðuÞ:

� R6ðdðuÞc 0
0ðuÞÞ0 þ ðbðuÞ þ 1

2R
3e0ðuÞÞc 0ðuÞ  0: (92)

Also, using (92) and the approximation under which it was
obtained, the normalization condition on c 0ðuÞ given by
(86) can be approximated as

R6dðuÞc 0
0ðuÞc 0ðuÞju¼umax

 1
2: (93)

These equations cannot be solved analytically in gen-
eral. However, analytic solutions can be obtained in the IR
and UV regimes. In the UV regime, for u & umax, we use
(16) and (18) to approximate the coefficients in (92); we
get

bðuÞ  V4Vð0Þ
R3

uT2ðuÞ; dðuÞ  V4Vð0Þ
4R9

u5=2;

eðuÞ  9V4Vð0Þ
4R6

h0h1u
�3=2T2ðuÞ:

(94)

In writing these, we have used fðuÞ  1, which is a good
approximation for large u. We see that we can clearly
neglect eðuÞ compared to bðuÞ in (92), while bðuÞ is itself
negligible compared to dðuÞ. Using these approximations
in (92) and (93) then gives

�ðu5=2c 0
0ðuÞÞ0  0;

V4Vð0Þ
4R3

u5=2c 0
0ðuÞc 0ðuÞju¼umax

 1

2
;

(95)

which are solved by

c 0ðuÞ  c0 � 1

3c0

4R3

V4Vð0Þu
�3=2: (96)

Here c0 is a parameter which is related to the pion decay
constant. This can be argued by analyzing the 4D axial
current correlator and using AdS/CFT along the lines of
[46,47]. Using the AdS/CFT dictionary, one can compute
the axial current correlator from the action (66), evaluated
on shell, by differentiating twice with respect to the trans-
verse part of the axial-vector field on the UV boundary.
This is the source which couples to the axial current on the
boundary. The source arises from the same zero mode
solution P0ðuÞ which we discussed in connection with a
possible zero mode (the pion) in the longitudinal compo-
nent of the axial gauge field. P0ðuÞ satisfies Eq. (71), which
is identical to that satisfied by c 0ðuÞ, (92). However, the
boundary condition now is different; it is the boundary
condition for a source P0ðumaxÞ ¼ 1. In addition, one im-
poses the condition

R6dðuÞP0
0ðuÞP0ðuÞju¼umax

 f2�
2
; (97)

which is required to reproduce the correct zero momentum
axial current correlator [46,47]. This follows from the
action (66). Now, P0ðuÞ satisfies (71) and the condition
(97) if we set P0ðuÞ ¼ f�c 0ðuÞ. Then, requiring
P0ðumaxÞ ¼ 1 gives c0 ¼ 1=f�.
In the IR regime u * u0, we use (21) and (22) to

approximate the coefficients in (92); we get

bðuÞ  �3=2V4u
17=4
0

26R3

VðTÞ
ðu� u0Þ4

;

dðuÞ  13V4u
9=4
0

32
ffiffiffiffi
�

p
R9

VðTÞ; eðuÞ  13V4u
9=4
0

16
ffiffiffiffi
�

p
R6

VðTÞ
ðu� u0Þ :

(98)

In writing these, we have used fðu0Þ  1, which is a good
approximation for large u0. Using dVðTÞ=du ¼
T0ðuÞV0ðTÞ, we see that bðuÞ and R3e0ðuÞ both go as ðu�
u0Þ�4 in this regime. However, the coefficient of the latter

is suppressed by a relative factor of u�1=2
0 , so for large u0

we may neglect it compared to bðuÞ. But, unlike in the UV
regime, bðuÞ cannot be neglected compared to dðuÞ. In fact,
this term is crucial for getting a nontrivial solution. In this

25This approximation can be justified a posteriori by the
solution because the eigenvalue ��

0 turns out to be parametrically
much smaller by a factor of 1=R3 [see (105)] compared to the
ratio aðuÞ=dðuÞ.
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regime, then, the leading terms in Eq. (92) give

c 0
0ðuÞ 

32�R6u1=20

169

c 0ðuÞ
ðu� u0Þ ; (99)

which has the solution

c 0ðuÞ  ~c0ðu� u0Þð32�R6u1=2
0

Þ=169; (100)

where ~c0 is an integration constant. Note that the normal-
ization condition remains unchanged and cannot be used
here because it receives a contribution only from the UV
end due to the exponentially vanishing tachyon potential
for large TðuÞ at the IR end.

Let us now consider the formula (87), for the lowest

mode, using which one can compute the eigenvalue ��
0 :

R6
Z umax

u0

duaðuÞð�0
0ðuÞÞ2 ¼

1

2
��
0 : (101)

Using aðuÞ 
ffiffiffi
�

p
V4u

19=4
0

8R15
VðTÞ

ðu�u0Þ in the IR and (100) in (91), we

see that �0
0ðuÞ / c 0ðuÞ vanishes very rapidly as u ! u0,

with a power which grows as u1=20 for large u0. Moreover,

since VðTÞ vanishes exponentially for large T, the IR
region makes a negligible contribution to the integral.
Therefore, it is reasonable to calculate the integral by
substituting the UV estimate of the integrand in it. In the

UV region, aðuÞ  V4Vð0Þ
R15 u4T2ðuÞ. Moreover, in this region

the second term on the right-hand side of (91) can be
neglected. So, we get

1

2
��
0 ¼ R6

Z umax

u0

duaðuÞð�0
0ðuÞÞ2

 R6ð��
0 Þ2

Z umax

~u0

du
d2ðuÞ
aðuÞ ðc

0
0ðuÞÞ2

 ð��
0 Þ2�

Z umax

~u0

h0du

ðTþe�h0u þ T�eh0uÞ2
;

where ~u0 > u0 avoids the IR region in the integral and we
have defined

� � f2�R
9

4h0V4Vð0Þ : (102)

The integral is easily done, giving

��
0  1

�

ðTþe�h0 ~u0 þ T�eh0 ~u0ÞðTþe�h0umax þ T�eh0umaxÞ
eh0ðumax�~u0Þ � e�h0ðumax�~u0Þ :

(103)

From our numerical solutions we see that it is possible to
choose ~u0 to be relatively large and also satisfy the con-

ditions jTþje�h0 ~u0 � jT�jeh0 ~u0 and eh0ðumax�~u0Þ �
e�h0ðumax�~u0Þ. For such values of the parameters, then, to a
good approximation (103) gives

��
0  1

�
ðTþT� þ T2þe�2h0umaxÞ: (104)

Now, let us tune umax to large values. We will do this in a
manner consistent with the inequality (19). As explained in
Sec. II D, one way of maintaining this inequality is to keep
jTþj and jT�jeh0umax fixed as umax becomes large. In that
case, the second term on the right-hand side of (104)
becomes exponentially smaller than the first term as the
cutoff is increased beyond some value. We may then
neglect this term compared with the first term. This gives

��
0  1

�
TþT�: (105)

Finally, using ��
0 ¼ m2

� and (49) in this relation, we get

m2
�  mq�

f2�
: (106)

This is the well-known Gell-Mann-Oakes-Renner formula,
up to a factor of 2.

VI. SUMMARYAND DISCUSSION

This paper further explores our proposal [21] of a modi-
fied SS model, which includes the degree of freedom
associated with the open string tachyon between the flavor
branes and antibranes. Here we have extended the analytic
treatment of various aspects of the problem and supple-
mented it with extensive numerical calculations. We have
argued that taking the tachyon into account is essential for
the consistency of the setup and shown numerically that the
solution which includes the tachyon is energetically fa-
vored. Our modification preserves the nice geometric pic-
ture of chiral symmetry breaking of the SSmodel and at the
same time relates chiral symmetry breaking to tachyon
condensation; the tachyon becomes infinitely large in the
infrared region where the joining of the flavor branes
signals chiral symmetry breaking.
We have identified a parameter in the non-normalizable

part of the tachyon field profile with the quark mass. It is
important to stress that this is the only tunable parameter in
the modified SS model. It can be traded for the asymptotic
brane-antibrane separation or the location of the point in
the bulk where the brane and antibrane join. This provides
a natural explanation for the latter parameter, which is also
present in the SS model, but in that model it does not find
any counterpart in the QCD-like theory at the boundary. In
this paper we have presented numerical evidence to show
that the point where the brane and antibrane meet is
monotonically shifted towards ultraviolet as we tune the
mass parameter to larger values. It would seem, therefore,
that in our model a brane-antibrane pair disappears from
the bulk consistently with a quark flavor becoming infi-
nitely massive.
The presence of a non-normalizable part in the tachyon

solution requires us to introduce an ultraviolet cutoff. The
cutoff is needed not only because this part grows as one
moves towards the ultraviolet region, as in any standard
AdS/CFT example that includes a non-normalizable solu-

TACHYON CONDENSATION AND QUARK MASS IN THE . . . PHYSICAL REVIEW D 78, 066021 (2008)

066021-19



tion, but also because the asymptotic form of the solution is
derived from an approximate equation which is valid only
for small values of the tachyon. Therefore, the asymptotic
solution itself is not valid beyond a certain maximum value
of the holographic coordinate. We have presented suffi-
cient numerical evidence of this phenomenon. Removing
the ultraviolet cutoff, then, requires tuning the mass pa-
rameter to zero. We have explained one scheme by which
this can be done. This scheme gives an exponential depen-
dence on the cutoff to the mass parameter, similar to that
discussed recently in [28]. The quark mass arises from an
apparently very different mechanism in this work, and the
cutoff is related to the location of aD6-brane that is present
in this model. It would be interesting to see if there is any
connection between this model and our model.

Once we have identified the quark mass as a parameter
in the non-normalizable part of the tachyon, it is natural to
expect, by the usual AdS/CFT rules, the normalizable part
of the tachyon solution to give rise to the chiral condensate.
To derive an expression for it, however, we need to go
beyond the space-time-independent solutions of Sec. II. As
we have seen, this requires an exact expression for the five-
dimensional action for tachyon and brane-antibrane sepa-
ration fields which are now taken to depend on space-time
as well as the holographic coordinate. We have derived this
action in this paper. Using the generalized solutions to the
equations for this action, then, one can compute the chiral
condensate. However, one also needs to add counterterms
to the boundary brane action to remove from it contribu-
tions that diverge when the cutoff is removed.

We have studied in detail the fluctuations of flavor gauge
fields on the brane-antibrane system. These give rise to
vector, axial-vector and pseudoscalar towers of mesons,
which become massive through a kind of Higgs mecha-
nism, except for the pions. These arise from a gauge-
invariant combination of the tachyon phase and the longi-
tudinal zero mode of the axial-vector field. We have shown
that the pions remain massless, unless a quark mass (non-
normalizable part of the tachyon solution) is switched on.
For a small quark mass, we have derived an expression for
the mass of the lowest pseudoscalar meson in terms of the
chiral condensate and shown that it satisfies the Gell-
Mann-Oakes-Renner relation. The vector and axial-vector
spectra are expected to be nondegenerate because they
arise from eigenvalue equations with different tachyon
contributions. We have not computed these spectra, but it
would be interesting to see whether they have the Regge
behavior for large masses.

A nonzero quark mass is essential to correctly reproduce
phenomenology in the low-energy sector of QCD.
Therefore, our modified SS model can be the starting point
of a more quantitative version of the phenomenology ini-
tiated in [1]. For this purpose, our treatment needs to be
extended to the non-Abelian case, which should be a
straightforward exercise. The correct tachyon brane-

antibrane action for curved directions transverse to the
branes is not known. It is important to have such an action
since this would extend the applicability of the present
treatment to such interesting cases as e.g. the antipodal
configuration of the flavor brane system and its connection
with massless quarks. Another direction in which the
present ideas can be extended is to discuss this model at
finite temperature and describe the chiral symmetry resto-
ration transition and study the phase diagram in some
detail. The connection of chiral symmetry breaking with
tachyon condensation seems fascinating, and a deeper
understanding would be useful. Finally, baryons have
been discussed in the SS model. It turns out that they
have a very small size. This may change in the presence
of the tachyon. This is because in the presence of the
tachyon, the flavor energy momentum tensor is concen-
trated away from the infrared region where the branes
meet. In other words, there is a new scale provided by
the quark mass. It would be very interesting to investigate
whether this effect makes any difference to the baryon size.
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APPENDIX A: OVERLAPPING D8-D8-BRANE
SYSTEM

In this case the appropriate Dirac-Born-Infeld action is

S ¼ �
Z

d9	gsVðTÞe��ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detAL

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detAR

p Þ;
ðAiÞab ¼ gMN@ax

M
i @bx

N
i þ Fi

ab

þ 1
2ððDa
ðDb
Þ� þ ðDa
Þ�Db
ÞÞ; (A1)

where Da
 ¼ @a
� iðAL;a � AR;aÞ
. The classical equa-

tion for the profile of the magnitude T of the tachyon 
 can
be obtained from (13) by substituting h ¼ 0 in it every-
where. We get

�
u13=4ffiffiffiffiffiffi
dT

p T0ðuÞ
�0 ¼ u7=4fðuÞ�1ffiffiffiffiffiffi

dT
p V 0ðTÞ

VðTÞ ; (A2)

where now dT ¼ fðuÞ�1u�3=2 þ T0ðuÞ2. In the UV region,
assuming T is small for large u, we can approximate this
equation as

ðu4T0ðuÞÞ0 ¼ ��u5=2TðuÞ; (A3)

where we have used the universal small T expansion
VðTÞ ¼ T 8ð1� �

2 T
2 þ 
 
 
Þ. The general solution26 to

this equation is

26Equation (A3) can be solved exactly in terms of the Bessel
functions Hð1Þ and Hð2Þ. Here we give only the leading term.
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TðuÞ ¼ u�13=8ðc1 cosð4
ffiffiffiffi
�

p
u1=4Þ þ c2 sinð4

ffiffiffiffi
�

p
u1=4ÞÞ þ 
 
 
 ;

(A4)

where c1 and c2 are arbitrary constants. Both of the inde-
pendent solutions in this case are normalizable, so the
interpretation of one of the parameters corresponding to a
source for the quark mass term is not clear. In view of this,
it is not clear how to apply the general treatment of [19] to
this case.

In the IR region, a singular tachyon solution is obtained
only for u� uk. In this region fðuÞ�1 blows up as ðu�
ukÞ�1, and this drives a singularity in the tachyon. Both of
the potentials in (5) and (6) exhibit singular solutions,
although the solutions and the nature of the singularity
are different. For the potential (5) we find the solution

TðuÞ ¼
�
�þ 39

2
ffiffiffiffiffi
uk

p
��1=2

ln
1

ðu� ukÞ þ b1 þ 
 
 
 ; (A5)

while for (6) we get

TðuÞ ¼ b2ðu� ukÞ�� þ 
 
 
 ; (A6)

where b1 and b2 are arbitrary constants and � ¼ 4�
ffiffiffiffi
uk

p
39 . As

in the case with nonzero brane-antibrane separation, the IR
solution for which the tachyon blows up exhibits a smaller
number of independent parameters than the UV solution,
one in the IR as opposed to two in the UV in the present
case. A solution with two independent parameters in the IR
exists (for any potential), but this solution is finite:

TðuÞ ¼ T0 þ T1ðu� ukÞ1=2 þ
�

2

3
ffiffiffiffiffi
uk

p þ T2
1

2

�

� V0ðT0Þ
VðT0Þ ðu� ukÞ þ 
 
 
 : (A7)

Here T0 and T1 are the two arbitrary parameters.

APPENDIX B: SCALAR FLUCTUATIONS

Here we will assume that Tðu; xÞ and hðu; xÞ are weakly
dependent on x� and expand detð1þ KÞ in (27) in powers
of space-time derivatives. The action correct to quadratic
terms in the derivatives is

S ¼ � 2V4

R9

Z
d4x

Z
duu13=4VðTÞ ffiffiffiffiffiffi

dT
p �

1þ u�3=2

2Q

�
��
1� T02

dT

�
ð@TÞ2 þ

�
1�

1
4 fu

3=2h02

dT

�
1

4
fu3=2ð@hÞ2

� fu3=2h0T0

2dT
ð@hÞ:ð@TÞ

��
; (B1)

where dT is given by (11), with TðuÞ replaced by Tðu; xÞ
and hðuÞ by hðu; xÞ. Also, the notation ð@TÞ2 stands for
���@�Tðu; xÞ@�Tðu; xÞ; similar expressions hold for ð@hÞ2
and ð@hÞ:ð@TÞ. For the expansion in derivatives to be valid,
we must require the following conditions to be satisfied:
(i) For large values of u, near the cutoff umax, we must have

j@Tj � u3=4max and j@hj � 1; (ii) for u� u0, we must have

j@Tj � jT0j � ðu� u0Þ�3 and j@hj � jhTj � ðu�
u0Þ�3=2.
Let us now consider small fluctuations around the

x-independent solutions. We write Tðu; xÞ ¼ TcðuÞ þ
Tqðu; xÞ and hðu; xÞ ¼ hcðuÞ þ hqðu; xÞ, where TcðuÞ and
hcðuÞ are the x-independent solutions of the classical equa-
tions (13) and (14). We now expand the above action and
retain only terms up to second order in the fluctuations
Tqðu; xÞ and hqðu; xÞ. We get

S ¼ � 2V4

R9

Z
d4x

Z 1

u0

duA
ffiffiffiffiffi
dc

p �
1þ

�
V 0
c

Vc

Tq þ 1

dc

�
1

4
fu3=2h0ch0q þ T0

cT
0
q þ hcT

2
chq þ h2cTcTq

��

þ
�
V 00
c

2Vc

T2
q þ V0

c

Vcdc

�
1

4
fu3=2h0ch0qTq þ T0

cT
0
qTq þ hcT

2
chqTq þ h2cTcT

2
q

�

þ 1

2dc

�
1

4
fu3=2h02q þ T02

q þ T2
ch

2
q þ h2cT

2
q þ 4hcTchqTq

�
� 1

2d2c

�
1

4
fu3=2h0ch0q þ T0

cT
0
q þ hcT

2
chq þ h2cTcTq

�
2

þ u�3=2

2Q0

��
1� T02

c

dc

�
ð@TqÞ2 � fu3=2

2dc
h0cT0

cð@hqÞ:ð@TqÞ þ
�
1�

1
4 fu

3=2h02c
dc

�
1

4
fu3=2ð@hqÞ2

��
þ 
 
 


�
; (B2)

where we have used the notation Vc ¼ VðTcÞ, dc ¼ dTc
, and A ¼ u13=4Vc. As before, a prime denotes derivative with

respect to u, except on Vc, for which it denotes a derivative with respect to its argument. The part of this action linear in
fluctuations S1, which arises from the term in the first curly brackets above, is given by

S1 ¼ � 2V4

R9

Z
d4x

Z 1

u0

duA

�
V 0
c

Vc

ffiffiffiffiffi
dc

p
Tq þ 1ffiffiffiffiffi

dc
p

�
1

4
fu3=2h0ch0q þ T0

cT
0
q þ hcT

2
chq þ h2cTcTq

��
: (B3)

It is easy to verify that S1 leads to the background equations (13) and (14). This part of the action, therefore, vanishes,
except for a boundary term. It is this boundary term that gives rise to the chiral condensate.

TACHYON CONDENSATION AND QUARK MASS IN THE . . . PHYSICAL REVIEW D 78, 066021 (2008)

066021-21



The term in the second curly brackets becomes S2, the action quadratic in fluctuations, after some manipulations. First,
we open the square in the coefficient of 1=2d2c term and combine it with the term just before it. That is, we have

1

2dc

�
1

4
fu3=2h02q þ T02

q þ T2
ch

2
q þ h2cT

2
q þ 4hcTchqTq

�
� 1

2d2c

�
1

4
fu3=2h0ch0q þ T0

cT
0
q þ hcT

2
chq þ h2cTcTq

�
2

¼ 1

2dc

��
1�

1
4 fu

3=2h02c
dc

�
1

4
fu3=2h02q þ

�
1� T02

c

dc

�
T02
q þ

�
1� h2cT

2
c

dc

�
ðh2cT2

q þ T2
ch

2
qÞ þ 2

�
2� h2cT

2
c

dc

�
hcTchqTq

�

� 1

d2c

�
1

4
fu3=2h0cðT0

ch
0
qT

0
q þ T2

chchqh
0
q þ h2cTch

0
qTqÞ þ T0

chcTcðTcT
0
qhq þ hcT

0
qTqÞ

�
: (B4)

Furthermore, we can rewrite

A
V0
c

Vc

ffiffiffiffiffi
dc

p T0
cTqT

0
q � V0

c

�
u13=4T0

cffiffiffiffiffi
dc

p
��
T2
q

2

�0 ! �A
ffiffiffiffiffi
dc

p �
V00
c

Vc

T02
c

dc
þ V 0

c

Vc

�
h2cTc

dc
þ V0

c

Vc

�
1� T02

c

dc

���
T2
q

2
; (B5)

where in the last step we have done an integration by parts over u, used the equation of motion (13) for Tc, hc and ignored a
possible boundary term since it is quadratic in fluctuations and so will not contribute to the calculation of the condensate. A
similar manipulation gives

� A

dc
ffiffiffiffiffi
dc

p T0
ch

2
cTcTqT

0
q ��Vc

�
u13=4T0

cffiffiffiffiffi
dc

p
��
h2cTc

dc

��
T2
q

2

�0 ! A
ffiffiffiffiffi
dc

p ��
V0
c

Vc

þ h2cTc

dc

�
h2cTc

dc
þ T0

c

dc

�
h2cTc

dc

�0�T2
q

2
: (B6)

Combining the above with the other three T2
q=2 terms, we find its net coefficient to be

A

��
V 00
c

Vc

�
�
V 0
c

Vc

�
2
��
1� T02

c

dc

� ffiffiffiffiffi
dc

p þ 2
V 0
c

Vc

h2cTcffiffiffiffiffi
dc

p þ h2cffiffiffiffiffi
dc

p þ T0
cffiffiffiffiffi
dc

p
�
h2cTc

dc

�0�
: (B7)

Similarly, a partial integration using the equation of motion (14) allows us to combine the two h2q=2 terms, giving its net
coefficient to be

A

��
hcT

2
c

dc

�0 1
4 fu

3=2h0cffiffiffiffiffi
dc

p þ T2
cffiffiffiffiffi
dc

p
�
: (B8)

Collecting all of this together, we get the action quadratic in fluctuations:

S2 ¼ � 2V4

R9

Z
d4x

Z 1

u0

duA

�
1

2
c1T

2
q þ 1

2
c2h

2
q þ 1

2
c3h

02
q þ 1

2
c4T

02
q þ c5hqTq þ c6h

0
qT

0
q þ c7h

0
qTq þ c8hqT

0
q

þ c9
8u3Qc

ð@TqÞ2 þ c10
4u3Qc

ð@hqÞ:ð@TqÞ þ c11
8u3Qc

ð@hqÞ2
�
; (B9)

where the coefficients fcig are given by

c1 ¼
�
V 0
c

Vc

�0�
1� T02

c

dc

� ffiffiffiffiffi
dc

p þ 2
V 0
c

Vc

Tch
2
cffiffiffiffiffi

dc
p þ h2cffiffiffiffiffi

dc
p

þ T0
cffiffiffiffiffi
dc

p
�
h2cTc

dc

�0
; (B10)

c2 ¼
�
hcT

2
c

dc

�0 1
4 fu

3=2h0cffiffiffiffiffi
dc

p þ T2
cffiffiffiffiffi
dc

p ; (B11)

c3 ¼ 1ffiffiffiffiffi
dc

p
�
1�

1
4 fu

3=2h02c
dc

�
1

4
fu3=2; (B12)

c4 ¼ 1ffiffiffiffiffi
dc

p
�
1� T02

c

dc

�
; (B13)

c5 ¼ V 0
c

Vc

hcT
2
cffiffiffiffiffi

dc
p þ

�
2� h2cT

2
c

dc

�
hcTcffiffiffiffiffi
dc

p ; (B14)

c6 ¼ � T0
c

dc
ffiffiffiffiffi
dc

p 1

4
fu3=2h0c; (B15)

c7 ¼ 1ffiffiffiffiffi
dc

p
�
V0
c

Vc

� h2cTc

dc

�
1

4
fu3=2h0c; (B16)

c8 ¼ � hcT
2
cT

0
c

dc
ffiffiffiffiffi
dc

p ; (B17)

c9 ¼ 4u3=2
ffiffiffiffiffi
dc

p �
1� T02

c

dc

�
; (B18)
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c10 ¼ �u3
fffiffiffiffiffi
dc

p h0cT0
c; (B19)

c11 ¼ u3f
ffiffiffiffiffi
dc

p �
1�

1
4 fu

3=2h02c
dc

�
; (B20)

with Qc ¼ ð1þ fu3=2h2cT
2
c Þ. For later convenience, we

have explicitly written out a factor of 1=4u3Qc in the
coefficients in the last three terms in (B9).

This action mixes Tq and hq, and the equations of

motion derived from it reflect this mixing. After some
manipulations, the equations can be cast in the form

@2Tq ¼ a1Tq þ a2T
0
q þ a3T

00
q þ a4hq þ a5h

0
q; (B21)

@2hq ¼ b1hq þ b2h
0
q þ b3h

00
q þ b4Tq þ b5T

0
q; (B22)

where the coefficients faig and fbig are given by

a1 ¼ c10ð �c7 � c5Þ þ c11c1;

a2 ¼ c10ð �c6 þ c7 � c8Þ � c11 �c4;

a3 ¼ c10c6 � c11c4;

a4 ¼ �c10c2 þ c11ðc5 � �c8Þ;
a5 ¼ c10 �c3 � c11ð �c6 � c7 þ c8Þ;

(B23)

and

b1 ¼ c10ð �c8 � c5Þ þ c9c2;

b2 ¼ c10ð �c6 � c7 þ c8Þ � c9 �c3;

b3 ¼ c10c6 � c9c3;

b4 ¼ �c10c1 þ c9ðc5 � �c7Þ;
b5 ¼ c10 �c4 � c9ð �c6 þ c7 � c8Þ:

(B24)

Here we have used the notation �ci ¼ ðAciÞ0=A. As usual, a
prime denotes a derivative with respect to u. Moreover,
@2 ¼ ð�@2t þ @2~xÞ is the flat space-time Laplacian. A pos-

sible term proportional to h00q is not present in (B21) be-

cause its coefficient (c10c3 � c11c6) vanishes. Similarly, in
(B22) the term proportional to T00

q is absent because its

coefficient (c10c4 � c9c6) vanishes.
The equations of motion derived from (B9) are quite

complicated in general, but they simplify in the two
asymptotic regimes of u.

u ! umax: In this limit, many of the ci are small because
they have at least one factor of Tc or its derivatives in them.

The exceptions are c1 � h20u
3=4, c3 � u9=4=4, c4 � u3=4,

c9 � 4u3=4 and c11 � u9=4. Retaining only the dominant
terms in the equations, we get

� ðu4T0
qðu; xÞÞ0 þ h20u

4Tqðu; xÞ ¼ 0; (B25)

ðu11=2h0qðu; xÞÞ0 ¼ 0: (B26)

The term involving the space-time Laplacian on the fluc-

tuations can be consistently neglected at the leading order
since it is nonleading in powers of u, as can be verified
a posteriori. These equations are identical to (15) and (17)
and so have solutions similar to (16) and (18), but now with
parameters that are functions of x:

Tqðu; xÞ ¼ 1

u2
ðTqþðxÞe�h0u þ Tq�ðxÞeh0uÞ;

hqðu; xÞ ¼ hq0ðxÞ � hq1ðxÞu�9=2:

(B27)

u ! u0: This limit is more involved, requiring a more
detailed analysis. One expands Tq and hq in powers of � �
ðu� u0Þ with arbitrary x-dependent coefficients:

Tqðu; xÞ ¼
ffiffiffiffi
�

p
4

u3=20 �!ð’0ðxÞ þ �’1ðxÞ þ 
 
 
Þ;

hqðu; xÞ ¼
ffiffiffiffiffiffiffiffiffi
26

�u0

s
u�3=4
0 �
ð#0ðxÞ þ �#1ðxÞ þ 
 
 
Þ:

(B28)

Here, and in the following, we have set f0 ¼ 1. One also
needs to expand the ai’s and bi’s in powers of �. Retaining
up to the first nonleading power in �, we get

a1 ¼ 8���1

�
1þ 23�

12u0

�
;

a2 ¼ 2�

�
1þ 2�

u0

�
;

a3 ¼ 4u�3=2
0

�
��3

�
1þ 23�

12u0

�
;

a4 ¼ 2�u11=40ffiffiffiffiffiffi
26

p ���7=2

�
1þ 65�

24u0

�
;

a5 ¼ 4u5=40ffiffiffiffiffiffi
26

p ���1=2

�
1þ 21�

8u0

�
;

(B29)

and

b1 ¼ �3���1

�
1þ 3�

4u0

�
;

b2 ¼ 2�

�
1þ 2�

u0

�
;

b3 ¼ 4u�3=2
0

�
��3

�
1þ 23�

12u0

�
;

b4 ¼ 16
ffiffiffiffiffiffi
26

p
u�11=4
0

�
��3=2

�
�1þ �

24u0

�
;

b5 ¼ � 4
ffiffiffiffiffiffi
26

p
u�11=4
0

�
��5=2

�
1þ �

24u0

�
;

(B30)

where � ¼ �13u20=8. Substituting these expansions in

Eqs. (B21) and (B22) and comparing different orders of
�, we see that a consistent solution exists only for ! ¼ �3
and 
 ¼ �1=2, and then we get
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#0ðxÞ ¼ � 1

4
’0ðxÞ; ’1ðxÞ ¼ 5

6u0
’0ðxÞ;

#1ðxÞ ¼ 1

8�

�
@2 þ 65u0

32

�
’0ðxÞ:

(B31)

The first of these relations is precisely what is needed to
think of the leading terms in (B28) as coming from ex-
panding ðu� u0ðxÞÞ�1 around a constant u0. The last
relation shows that when x dependence is allowed, not all
coefficients get uniquely determined. In fact, the part of
’0ðxÞ annihilated by the operator on the right-hand side
does not show up in #1ðxÞ.

The above analysis shows that perturbation expansion in
‘‘small’’ fluctuations around a constant u0 is singular,
although we have obtained a solution by a formal
expansion.

APPENDIX C: CALCULATION OF THE EXACT
ðu; xÞ-DEPENDENT ACTION

This involves calculating the determinant of the matrix
(1þ K), whose elements are given in (28). We will sim-
plify this calculation by making use of the following trick.
Consider the family of determinants Dð�Þ � detð1þ �KÞ,
where � is an arbitrary parameter. We actually need only to
calculate Dð1Þ, but this calculation can be reduced essen-
tially to the calculation of the inverse of the matrix (1þ
�K), which turns out to be much easier than a direct
computation of the determinant. Consider the following:

d

d�
Dð�Þ ¼ Dð�Þ tr½ð1þ �KÞ�1K�: (C1)

We can obtain � by integrating this equation, using the
boundary condition Dð0Þ ¼ 1:

lnDð1Þ ¼
Z 1

0
d�Dð�Þ�1 d

d�
Dð�Þ

¼
Z 1

0
d� tr½ð1þ �KÞ�1K�: (C2)

This reduces the required calculation to finding the inverse
matrix Mð�Þ ¼ ð1þ �KÞ�1, which may be done as fol-
lows. Using the defining equation ð1þ �KÞMð�Þ ¼ 1, one
can express all components of M in terms of M�

�:

Mu
� ¼ ��Ku

�M
�
�; Mu

u ¼ 1� �2Ku
�K

�
uM

�
�;

M�
u ¼ ��M�

�K
�
u: (C3)

Moreover, one can show that M�
� satisfies

P�
	M

	
� ¼ �

�;

P�
	 � ð�

	 þ �K�
	 � �2K�

uK
u
	Þ:

(C4)

Thus, to find Mð�Þ we need to find the inverse of the
P�

	ð�Þ matrix. First note that using (28) we can write

P�
	ð�Þ ¼ �

� þ �1ð�Þ@�T@�T þ �2ð�Þ@�h@�h
þ �3ð�Þð@�T@�hþ @�h@�TÞ; (C5)

where

�1ð�Þ ¼ �u�3=2

Q

�
1� �

T02

dT

�
;

�2ð�Þ ¼ �f

4Q

�
1� �

fu3=2h02

4dT

�
;

�3ð�Þ ¼ ��2fh0T0

4QdT
;

�4ð�Þ ¼ �1ð�Þ�2ð�Þ � ð�3ð�ÞÞ2:

(C6)

For � ¼ 1 these reduce to the �’s in (31). Now, from the
general structure of the P�

� matrix, we can parametrize the
M�

� matrix as

M�
�ð�Þ ¼ �

� þ �1ð�Þ@�T@�T þ �2ð�Þ@�h@�h
þ �3ð�Þð@�T@�hþ @�h@�TÞ: (C7)

We have calculated the �’s. They work out to be

�1ð�Þ ¼ � 1

�ð�Þ ½�1ð�Þ þ �4ð�Þð@hÞ2�;

�2ð�Þ ¼ � 1

�ð�Þ ½�2ð�Þ þ �4ð�Þð@TÞ2�;

�3ð�Þ ¼ � 1

�ð�Þ ½�3ð�Þ � �4ð�Þ@h:@T�:

(C8)

Here �ð�Þ is a generalization of � defined in (30). It has
the same form but with the above �-dependent �’s replac-
ing those in (30). By definition, �ð1Þ ¼ �.
Armed with the inverse matrix Mð�Þ, we can now com-

pute the trace on the right-hand side of (C2). Using and
(28) and (C3), we first note that

tr ½ð1þ �KÞ�1K� ¼ M�
	ð�Þ d

d�
P	
�ð�Þ: (C9)

Given Eqs. (C5)–(C8), it is straightforward, though tedi-
ous, to compute the right-hand side of the above equation.
One gets the simple result

M�
	ð�Þ d

d�
P	

�ð�Þ ¼ �ð�Þ�1 d

d�
�ð�Þ: (C10)

It follows from this and (C2) that Dð1Þ ¼ �ð1Þ ¼ �.
Hence the complete five-dimensional action is that given
in (29).
To compute the equations of motion for Tðu; xÞ and

hðu; xÞ that follow from this action, we will need the
following, which can be easily calculated from the relation
�T ¼ dT� and the definition of � given in (30):
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1

2

@�T

@T0 ¼ T0 þ fT0

4Q
ð@hÞ2 � fh0

4Q
@T:@h;

1

2

@�T

@ð@�TÞ ¼ dT�1@
�T þ dT�3@

�h

þ u�3

4Q
ð@�Tð@hÞ2 � @�hð@h:@TÞÞ;

1

2

@�T

@T
¼ Th2

�
1� f2u3=2

4Q2
ðh02ð@TÞ2 þ T02ð@hÞ2

� 2T0h0ð@T:@hÞ
þ f�1u�3ðð@TÞ2ð@hÞ2 � ð@T:@hÞ2ÞÞ

�
;

1

2

@�T

@h0
¼ fu3=2

4
h0 þ fh0

4Q
ð@TÞ2 � fT0

4Q
@T:@h;

1

2

@�T

@ð@�hÞ ¼ dT�2@
�hþ dT�3@

�T

þ u�3

4Q
ð@�hð@TÞ2 � @�Tð@h:@TÞÞ;

1

2

@�T

@h
¼ T2h

�
1� f2u3=2

4Q2
ðh02ð@TÞ2 þ T02ð@hÞ2

� 2T0h0ð@T:@hÞ
þ f�1u�3ðð@TÞ2ð@hÞ2 � ð@T:@hÞ2ÞÞ

�
: (C11)

Using these one can show that

�T � T0 1
2

@�T

@T0 � @�T
1

2

@�T

@ð@�TÞ ¼ dT � T02

þ u�3=2

4
ð@hÞ2;

T0 1
2

@�T

@h0
þ @�T

1

2

@�T

@ð@�hÞ ¼
fu3=2

4
T0h0

þ u�3=2

4
ð@T:@hÞ:

(C12)

We can now give the equations of motion obtained from
the action (29):

u13=4ffiffiffiffiffiffiffi
�T

p �
1

2

@�T

@T
þ V0

V

�
dT � T02 þ u�3=2

4
ð@hÞ2

��

¼
�
u13=4ffiffiffiffiffiffiffi
�T

p 1

2

@�T

@T0

�0 þ @�

�
u13=4ffiffiffiffiffiffiffi
�T

p 1

2

@�T

@ð@�TÞ
�
; (C13)

u13=4ffiffiffiffiffiffiffi
�T

p �
1

2

@�T

@h
� V0

V

�
fu3=2

4
T0h0 þ u�3=2

4
ð@T:@hÞ

��

¼
�
u13=4ffiffiffiffiffiffiffi
�T

p 1

2

@�T

@h0

�0 þ @�

�
u13=4ffiffiffiffiffiffiffi
�T

p 1

2

@�T

@ð@�hÞ
�
: (C14)

These can be further simplified using the expressions given
in (C11), but we will not do so here since we will be
interested only in a leading solution to these equations in
the limit u� u0. As a check, we note that these equations
reduce to Eqs. (13) and (14) if T and h are x-independent.
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