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The spacetime physics of bulk closed string tachyon condensation is studied at the level of a two-

derivative effective action. We derive the unique perturbative tachyon potential consistent with a full class

of linearized tachyonic deformations of supercritical string theory. The solutions of interest deform a

general linear dilaton background by the insertion of purely exponential tachyon vertex operators. In

spacetime, the evolution of the tachyon drives an accelerated contraction of the universe and, absent

higher-order corrections, the theory collapses to a cosmological singularity in finite time, at arbitrarily

weak string coupling. When the tachyon exhibits a null symmetry, the worldsheet dynamics is known to be

exact and well defined at tree level. We prove that if the two-derivative effective action is free of

nongravitational singularities, higher-order corrections always resolve the spacetime curvature singularity

of the null tachyon. The resulting theory provides an explicit mechanism by which tachyon condensation

can generate or terminate the flow of cosmological time in string theory. Additional particular solutions

can resolve an initial singularity with a tachyonic phase at weak coupling, or yield solitonic configurations

that localize the universe along spatial directions.
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I. INTRODUCTION

The study of tachyon condensation in open string theory
has led to a number of important insights into the nature of
instabilities in quantum gravity. Direct calculations in open
string field theory have provided detailed evidence in sup-
port of Sen’s conjecture (for useful reviews of this subject,
see, e.g., [1–4], and [5] for recent developments). Namely,
the open string tachyon represents an unstable mode of a
space-filling D-brane. The process of tachyon condensa-
tion drives the decay of the D-brane, and the endpoint is an
excited state of the closed string vacuum that carries the
energy of the original D-brane. Solitonic configurations
can also arise, represented as D-branes filling a lower
number of spatial dimensions.

Attempts to understand closed string tachyon condensa-
tion initially focused on localized tachyons (see, e.g., [6–
14]). A well-known example is the theory of winding
tachyons localized on the conical orbifold C=ZN [6].
Studies using brane probes, renormalization group flow,
and string field theory have provided evidence that tachyon
condensation in these systems drives a reduction in the
orbifold rank N, and a resolution of the conical singularity.

Similar to the open string tachyon of a space-filling D-
brane, the bulk closed string tachyon fills spacetime com-
pletely, and presents a tantalizing analogy. Adopting the
lessons of the open string problem, it is natural to guess that
the bosonic bulk closed string tachyon signals an instability
of spacetime itself, and the transition to a stable endpoint
of tachyon condensation represents the decay of spacetime
altogether. According to this analogy, solitons of the
tachyon condensate appear as lower-dimensional space-
time, allowing for a dynamical transition between physical
theories with different numbers of spatial dimensions. A

number of recent studies have provided indirect evidence
in support of this picture in bosonic supercritical string
theory [15–17].1

Overall, the problem of understanding bulk closed string
tachyon condensation in detail has been approached in
roughly three regimes: (1) At the level of string field
theory, (2) from the perspective of the worldsheet confor-
mal field theory (CFT), and (3) within the framework of
spacetime effective theories.
String field theory.—Relative to the corresponding prob-

lem in open string theory, attempts to study closed string
tachyon condensation using field theoretic techniques are
hindered by the relative intractability of closed string field
theory [19–24]. The action itself is nonpolynomial, and
closed string tachyons couple to the dilaton and the metric,
making it necessary to carefully account for the backreac-
tion of the tachyon condensate on the background.
Progress has been made in computing the bulk closed
string tachyon potential perturbatively in the strength of
the tachyon [25–30] (see also [14,31] for analogous work
on localized tachyons), and some evidence has emerged
that a critical point of the potential may exist [32,33].
Worldsheet CFT.—A number of results have demon-

strated that substantial progress can be made in under-
standing bulk closed string tachyon condensation directly
as renormalization group flow in the worldsheet CFT (e.g.,
[15–18,34–38]). Concrete conclusions can be reached by
focusing on a class of exact solutions of the string theory in
which quantum corrections are tightly constrained and
calculable to all orders in perturbation theory. The simplest

1Corresponding systems in superstring theory exhibit a more
baroque landscape of stable and semistable endpoints of tachyon
condensation [18].
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examples arise in bosonic string theory when the tachyon
condenses with a purely exponential profile varying in a
null direction:

T � expð�XþÞ; (1.1)

where � is constant. These theories are particularly
straightforward, since the tachyon vertex operator is non-
singular in the vicinity of itself, and the diagrammatic
structure of the CFT indicates that the theory is exact at
tree level [16,17].

To linearized order in the deformation, the tachyon
couples to the 2D CFT as a potential, and the onset of
null tachyon condensation can be modeled on the world-
sheet as the nucleation of a bubblelike region of a nonzero
tachyon. Inside this region, string states see a potential wall
that rapidly increases into the future, and at late times the
bubble itself expands outward from the nucleation point at
the speed of light [16]. The resulting picture is an expand-
ing region of the tachyon condensate from which all string
states are expelled. Since no physical degrees of freedom
persist inside the bubble at late times, this configuration
has been called the ‘‘bubble of nothing,’’ similar in spirit to
the Witten instanton solution described in [39]. The expec-
tation is that dynamical spacetime ceases to exist deep
inside the bubble.

A related process was found to drive dynamical dimen-
sional reduction (or ‘‘dimension quenching’’), wherein
high potential walls from the tachyon condensate localize
one or more (but not greater than D� 2, where D is the
dimension of spacetime) spatial coordinates on the world-
sheet [15,17]. By again adopting a null tachyon profile,
quantum corrections can be computed exactly at finite loop
order in perturbation theory. In essence, the worldsheet
fields that feel the potential become infinitely massive
and decouple from the theory. Classically, this amounts
to a deficit in central charge contribution from the world-
sheet degrees of freedom. This discrepancy is resolved at
the quantum level by the simultaneous one-loop renormal-
ization of the dilaton gradient and the string-frame metric.

Stated succinctly, both of these processes confirm quali-
tatively the expectation that a natural consequence of
bosonic closed string tachyon condensation is the sponta-
neous decay of spacetime. On the worldsheet this is man-
ifested as the creation of regions of ‘‘nothing,’’ where
exponentially growing potential walls prevent the presence
of string states, and several examples of this process are
now well understood in the language of worldsheet con-
formal field theory.

Effective actions.—If the intuition coming from the
worldsheet CFT is correct, the two-dimensional theory
should give rise to very interesting phenomena in space-
time (see, e.g., [40,41]). However, the spacetime dynamics
in the presence of the tachyon configurations discussed
above are not well understood. Such solutions fall into a
class of exponential tachyon profiles evolving in the back-

ground of a linear dilaton, and it is unclear whether the
spacetime effective actions typically studied in the litera-
ture consistently support these systems.
In this paper we aim to examine bulk closed string

tachyon condensation directly as a dynamical cosmologi-
cal process in spacetime. While this question is most easily
and directly studied at the level of an effective action, it is
difficult to assess the reliability of this approach without
having a unique expression for the potential in which the
fields of interest evolve. Furthermore, even if a potential is
known, it is still unclear whether a low-derivative trunca-
tion, for example, is sufficient to capture the worldsheet
physics of tachyonic fields.
To address these questions, we adopt a simple strategy.

Since it seems unlikely that a single two-derivative effec-
tive action will consistently support all known tachyonic
solutions of bosonic string theory, we aim to focus on a
specific but nontrivial class of solutions that contains con-
trollable models of bulk tachyon condensation. Namely,
the theories of interest are linearized deformations of the
exact supercritical (D> 26) linear dilaton background of
bosonic string theory, characterized by the insertion of
purely exponential tachyon vertex operators. We use these
solutions to guide the formulation of a consistent two-
derivative effective action, including a specific form for
the tachyon potential.
The tachyon perturbations of interest are formulated at

linearized order in conformal perturbation theory. In other
words, the tachyon profiles under consideration obey a
linearized equation of motion. In general, the solutions
capture the dominant behavior of the string theory when
the system is perturbative in the strength of the tachyon.
However, we show that one can rely on exact solutions of
the worldsheet CFT to study the effects of higher-order
corrections on the spacetime dynamics outside this pertur-
bative regime. For the null tachyon system in particular,
higher-order contributions to the action can be captured in
the spacetime solution in a single undetermined function of
the tachyon. We demonstrate that when this function is
chosen such that nongravitational singularities are forbid-
den to appear in the action, and the gravity sector is con-
strained to be unitary, all possible curvature singularities
are either removed or placed at T ¼ 1.
In the next section we review the tachyonic solutions of

interest, and demonstrate that a unique two-derivative ef-
fective action can be computed that supports the aforemen-
tioned class of solutions perturbatively in the strength of
the tachyon. In Sec. III we study the process of tachyon
condensation as cosmological evolution in a Friedmann
Robertson Walker (FRW) target space. Focusing on a
timelike tachyon profile [T � expð��0X0Þ], we show
that, modulo higher-order corrections, the evolution of
the tachyon is realized in spacetime as a big crunch occur-
ring in finite time, at arbitrarily weak string coupling.
(Numerical integration of the spacetime equations of mo-
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tion for the dilaton, tachyon, and FRW scale factor verifies
that the effective action reproduces the timelike tachyon
solution quantitatively in the region of classical validity.)
We also analyze the exact null tachyon solution in the
background of a timelike linear dilaton rolling to weak
coupling. In this case, the worldsheet bubble of nothing is
realized in spacetime as a logarithmically expanding re-
gion in which the scale factor collapses to a singularity. In
Sec. IV, we consider the null tachyon solution on general
grounds, and demonstrate that the naive gravitational sin-
gularity can be resolved classically. The resulting system
provides a very simple mechanism by which the flow of
cosmological time is either initiated or halted by string
theory. This suggests a class of toy models of the big bang,
which can be studied at weak coupling. We extend this
analysis in Sec. V to study solitonic configurations that
localize the universe along a spatial direction.

II. THE EFFECTIVE ACTION

Our initial goal is to derive an effective action that
perturbatively supports a full class of tachyonic solutions
of bosonic string theory. The solutions of interest are
linearized tachyonic deformations of the linear dilaton
CFT, characterized by the insertion of purely exponential
tachyon vertex operators. The linear dilaton background is
taken to be that of supercritical bosonic string theory
defined in D> 26 spacetime embedding dimensions,
labeled by X�, � 2 0; 1; . . . ; D� 1.

In obtaining a consistent effective action, we will allow
nontrivial functions of the matter fields to appear multi-
plying the Einstein-Hilbert term. It will therefore be useful
to introduce the following nomenclature when referring to
different reference frames of the effective action:

(i) In the sigma-model frame, the metric G�
�� is that

which appears naturally in the 2D worldsheet CFT.
In all of the solutions of interest, the sigma-model
metric will be that of flat,D-dimensional Minkowski
space. In this frame, the Einstein-Hilbert term does
not appear canonically, though the dilaton depen-
dence of the effective action appears as an overall
factor of expð�2�Þ.

(ii) The string framewill refer to the frame in which the
Einstein-Hilbert term in the effective action appears
with just a factor of expð�2�Þ [while the collective
dilaton dependence of the action remains as an
overall factor of expð�2�Þ].

(iii) In the Einstein frame, the Einstein-Hilbert term
appears canonically, and the prefactor expð�2�Þ
is removed by Weyl transformation.

When possible ambiguity arises, the frame will be speci-
fied by the subscript or superscript labels �, S, and E. At
the classical level, none of these frames is preferred, in
principle, over the others (since there is no equivalence
principle). To analyze the cosmological aspects of the

solutions at hand, however, it is easiest and most intuitive
to work either in the string frame or Einstein frame.
When the sigma-model metric is flat (G�

�� ¼ ���), the

linear dilaton background alone comprises an exact solu-
tion with a vanishing B field, in which the worldsheet path
integral is precisely Gaussian, and the (constant) dilaton
gradient v� � @�� satisfies

v � v ¼ �D� 26

6�0 : (2.1)

In other words, the worldsheet beta functions for this
background vanish to all orders in �0:

�G� ¼ �� ¼ �B ¼ 0: (2.2)

The 2D energy-momentum tensor, in worldsheet light-
cone coordinates �� ¼ ��0 � �1, is

T þþ ¼ � 1

�0 :@�þX�@�þX�:þ @2
�þðv�X

�Þ;

T �� ¼ � 1

�0 :@��X�@��X�:þ @2��ðv�X
�Þ:

(2.3)

We now wish to introduce bulk tachyonic deformations
of the linear dilaton CFT. To linear order in the field
strength, the deformation is implemented by the insertion
of a single tachyon vertex operator into all correlation
functions. The perturbation is marginal as long as the
matter part of the vertex operator is constrained to appear
as a conformal primary of weight (1, 1). (In other words,
the tachyon vertex operator can be made Weyl invariant,
with the above energy-momentum tensor.) This is achieved
at linear order by satisfying the on-shell condition

@2TðXÞ � 2v�@�TðXÞ þ 4

�0 TðXÞ ¼ 0: (2.4)

The strategy is to focus on the general class of solutions
to this equation given by

TðXÞ ¼ � expð��X
�Þ; v� ¼ const;

G�
�� ¼ ���;

(2.5)

where � is a free, real parameter (not to be confused with
the spacetime index), and both v� and �� are constant,

D-dimensional vectors. In general, the solutions in this
class are neither exact in the �0 expansion, nor in confor-
mal perturbation theory. Even in the �0 ! 0 limit, we
expect that the all-orders dynamics of the effective theory
can become strongly corrected relative to the linearized
approximation when the tachyon is of order 1.

A. Particular solutions

Two particular solutions in the class described above
will play an important role in the analysis that follows. The
timelike tachyon is defined by the profile

TðX0Þ ¼ � expð��0X0Þ: (2.6)
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We will study this solution in the background of a timelike
dilaton

� ¼ �v0X0 � �qX0: (2.7)

Since the timelike dilaton profile appears in several places,
it is convenient to assign v0 � q. The dilaton component
of the worldsheet beta function equations demands that

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 26

6�0

s
: (2.8)

By choosing the branch of this equation that renders q
positive definite in D> 26, the string coupling decreases
toward the future. In turn, the tachyon marginality condi-
tion requires

�0 ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�0 þ q2

s
: (2.9)

Arranging the tachyon to increase toward the future (i.e.
requiring �0 to be negative definite), and substituting the
solution for q from above, one obtains

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 26

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p
6�0 : (2.10)

The parameter � amounts to a shift of X0, so we can study
the condensation of the timelike tachyon at arbitrarily
weak string coupling by taking � � 1.

The second solution that will be examined below is the
null tachyon, characterized by the profile

TðXþÞ ¼ � expð�þXþÞ ¼ � exp

�
�þffiffiffi
2

p ðX0 þ XjÞ
�
;

(2.11)

where Xj is an arbitrary spatial direction (j 2
1; 2; . . . ; D� 1). In the presence of the timelike linear
dilaton background, the tachyon equation of motion is
satisfied when

�þ ¼ 2
ffiffiffi
2

p
q�0 : (2.12)

Once again we can choose the strength of the tachyon to
increase into the future, in the direction of weak string
coupling, which amounts to selecting the q > 0 branch of
Eq. (2.8). In this case, however, the tachyon is constant
along light fronts for which Xþ ¼ const. We can think of
this solution as an approximate description of a bubble of
the tachyon condensate, which nucleates on the worldsheet
and expands outward at the speed of light (see Fig. 1).
Since the tachyon vertex operator couples as a potential in
the worldsheet sigma model, the growth of the tachyon is
manifested as the appearance of a diagonal Liouville wall.
String states are prevented from passing deep into the
potential wall, so at late times the theory exhibits an
expanding region that is completely devoid of physical
degrees of freedom.

B. Higher-order corrections

Since the goal of this study is to analyze closed string
tachyon condensation in regimes where the classical de-
scription is reliable, it is useful to briefly review the various
sources of higher-order corrections that can arise in the
effective theory. First, higher genus corrections become
strong when the string coupling gS is of order 1. The
effective string coupling is defined by gS ¼ expð�Þ, so
the classical limit corresponds to a dilaton expectation
value of � ¼ �1. All of the solutions of interest exhibit
a tachyon profile that increases in the direction of decreas-
ing string coupling, and the entire region of noninfinitesi-
mal tachyon can be placed at arbitrarily small gS. For the
purposes of the present analysis, therefore, we will focus
strictly on the weakly coupled regime.
Working to linearized order in conformal perturbation

theory, the exact linear dilaton CFT is deformed by the
insertion of a single tachyon vertex operator into all corre-
lation functions. To this order, the conformal invariance of
the tachyon deformation is encoded by the tachyon equa-
tion of motion (2.4). In general, the insertion of multiple
vertex operators will lead to singularities, and conformal
invariance at higher order will be restored by corrections to
the linearized equation of motion. At the level of the
effective theory, conformal perturbation theory corre-
sponds to an expansion of the action in nonlinearities of
fields.
Finally, the contribution of higher-dimension operators

to the worldsheet beta equations translates in spacetime to

Null tachyon
solution

Tachyon Condensate

Bubble nucleation

Time

Xj

FIG. 1. Schematic diagram of the worldsheet bubble of noth-
ing. The null tachyon solution can be thought of as focusing on a
region to the left of the origin of the Xj coordinate. Physical
degrees of freedom do not persist deep inside the tachyon
condensate.
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the appearance of higher-dimension operators in the effec-
tive action. These operators are suppressed by correspond-
ing powers of �0, and the classical limit is reached by
taking �0 ! 0, which is the limit of infinite string tension.

With respect to the above corrections, the null tachyon
solution turns out to be remarkably simple at the level of
the worldsheet CFT. Consider the 2D worldsheet theory
with general tachyon profiles of the form TðXÞ ¼
� expð��X

�Þ. For a general constant ��, the insertion of

two tachyon vertex operators will lead to singularities
when the positions of the operators become coincident.
To be precise, singularities of normal-ordered operators
arise in a free theory when propagators contract free fields
in one operator with those of a second operator. In the case
of the tachyon vertex operators considered here, operators
depend only on ��X

�, so all field contractions, and all

higher-order corrections to the linearized tachyon equation
of motion, will be proportional to ���

�. For the null

tachyon, however, ���
� vanishes identically.

Furthermore, when the null tachyon solution is ex-
pressed in light-cone coordinates, it is straightforward to
demonstrate [16,17] that (1) the propagator for the fields
X� is oriented, directed from Xþ to X�, and (2) all inter-
action vertices in the theory depend only on Xþ. As such,
there are no Feynman diagrams beyond tree level, and
hence no quantum loop corrections whatsoever.2 Taken
together, the above facts indicate that the linearized tree-
level solution (2.11) is exactly conformally invariant. We
will rely on this fact below to study the general spacetime
dynamics of the null tachyon.

It turns out that, in large spacetime dimensions, the
timelike tachyon solution exhibits properties similar to
the null tachyon. From Eq. (2.10), one obtains

���
� ¼ � 4

�02D
þOð1=D2Þ ðtimelike tachyonÞ;

(2.13)

which vanishes in the D ! 1 limit. Furthermore, it is
straightforward to show that worldsheet loops are also
suppressed at large D (see, e.g., [15]). Near D ¼ 1 and
gS � 1, therefore, higher-order corrections to the timelike
tachyon solution (2.7) are strongly suppressed.

C. String-frame effective action

The basic approach to constructing a spacetime effective
action of the worldsheet CFT of string theory is to find an
action whose equations of motion encode the condition
that all Weyl anomalies in the 2D theory vanish. Here we
will restrict the analysis to an action containing terms with
at most two spacetime derivatives; higher-dimension terms
are suppressed by higher powers of �0. Since our initial

goal is to study the spacetime physics of the tachyonic
solutions in Eq. (2.5), which are tree-level solutions of the
worldsheet beta function equations, the hope is to capture
the classical physical content of these solutions within the
framework of a two-derivative effective action.
The simple class of tachyonic solutions described above

(2.5) is not directly supported by the form of the spacetime
effective action most often studied in the literature. The
essential additional ingredient is that the Einstein-Hilbert
term must appear with a nontrivial tachyon-dependent
prefactor if the theory is to simultaneously support the
solutions of interest and admit a nonvanishing tachyon
potential. Without the latter, there would of course be no
hope of reproducing tachyon scattering amplitudes, for
example, at the level of the effective action.
Our starting point will therefore be the most general

two-derivative effective action for the dilaton, metric, and
tachyon [16]. We begin in the sigma-model frame with the
following generic form:

S ¼ 1

2�2

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG�
p ½F 1R

� �F 2ðr�Þ2

�F 3ðrTÞ2 �F 4 �F 5rT � r��: (2.14)

The coupling � is related to the Newton constant by GN ¼
�2=8�. Tree-level string amplitudes are defined such that
the dilaton dependence of the tree-level action appears as
an overall factor of expð�2�Þ, and we have absorbed this
prefactor into each of the functions F i. Apart from this
factor, the F i are understood to be completely arbitrary
functions of the tachyon. For convenience, and to align
conventions with the literature, we encode the explicit
tachyon dependence of these functions via the following
definitions:

F 1 � e�2�f1ðTÞ; F 2 � �4e�2�f2ðTÞ;
F 3 � e�2�f3ðTÞ; F 4 � 2e�2�V�ðTÞ;

F 5 � e�2�f5ðTÞ:
(2.15)

The functions fiðTÞ on the right-hand side of Eq. (2.15)
depend only on the tachyon, including the potential V�ðTÞ.
In terms of these functions, the Einstein equation ap-

pears as

0 ¼ ðr�r� �G
��
� r2 þ 1

2G
��
� G

	�
� R	� � R��ÞF 1

� 1
2G

��
� F 4 þF 2@

��@��� 1
2G

��
� F 2ð@�Þ2

þF 3@
�T@�T � 1

2G
��
� F 3ð@TÞ2 � 1

2F 5G
��
� @	T@

	�

þ 1
2F 5@

�T@��þ 1
2F 5@

�T@��; (2.16)

wherer� is the usual covariant derivative. The dilaton and
tachyon equations of motion read, respectively,

0 ¼ �2Rf1 þ 8f2ð@�Þ2 � 8f02@T � @�� 8f2r2�

þ ð2f3 þ f05Þð@TÞ2 þ f5r2T þ 4V�; (2.17)
2This is possible because the theory is not unitary prior to

enforcing conformal gauge constraints.
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0 ¼ f01Rþ ð4f02 � 2f5Þð@�Þ2 þ f03ð@TÞ2 � 4f3@� � @T
� 2V0

� þ f5r2�þ 2f3r2T; (2.18)

where f0iðTÞ � @TfiðTÞ.
We now require that the effective action in Eq. (2.14)

support the class of tachyonic solutions of interest, given in
Eq. (2.5) above. (See, e.g., [42] for a similar technique,
employed in open string theory.) Projecting onto these
solutions, the Einstein equation (2.16) stipulates the fol-
lowing constraint:

0 ¼ ���½2V� þ 4ð2f1 � f2Þv � v
þ T½f5v � �þ 2f01ð� � �� 4v � �Þ
þ ð2f001 þ f3Þ� � �T�� þ 8ðf2 � f1Þv�v�

þ T½ðv��� þ ��v�Þð4f01 � f5Þ
� 2����ðf01 þ ðf001 þ f3ÞTÞ�: (2.19)

The tachyon equation of motion becomes

0 ¼ ð2f02 � f5Þv � v� @TV� � 2f3Tv � �
þ � � �Tðf3 þ 1

2f
0
3TÞ; (2.20)

while the dilaton equation of motion gives

0 ¼ 8f2v � vþ 4V� � 8f02Tv � �þ f5T� � �
þ ð2f3 þ f05ÞT2� � �: (2.21)

The above equations (2.19), (2.20), and (2.21) are uniquely
satisfied in terms of the lone function f1ðTÞ by the follow-
ing solution:

f2ðTÞ ¼ f1ðTÞ;

f3ðTÞ ¼ �f001 ðTÞ �
f01ðTÞ
T

;

f5ðTÞ ¼ 4f01ðTÞ;
V�ðTÞ ¼ � 1

2
ð4f1ðTÞv � vþ Tf01ðTÞð� � �� 4v � �Þ

þ T2f001 ðTÞ� � �Þ: (2.22)

From the solution for f3ðTÞ, we see that for the tachyon
kinetic term to be finite at T ¼ 0, we must have that

f01ðTÞjT¼0 ¼ 0: (2.23)

In addition, we also require the conformal invariance of the
exponential tachyon perturbation to linearized order in
conformal perturbation theory [i.e., that it satisfies the
on-shell condition in Eq. (2.4) above]:

� � �� 2v � �þ 4

�0 ¼ 0: (2.24)

Imposing this, along with the condition that the dilaton
component of the beta function equations vanish (2.1), we
can eliminate v� from the potential (2.22). One recovers
the following form:

V�ðTÞ ¼ 1

2

�
4f1ðTÞ

�
D� 26

6�0

�
þ Tf01ðTÞ

�
� � �þ 8

�0

�

� T2f001 ðTÞ� � �
�
: (2.25)

At this stage, we could demand that the action be inde-
pendent of the form of any particular solution. The condi-
tion that the potential be completely independent of ��

translates to a condition on the function f1ðTÞ of the form
@��VðTÞ ¼ ��ðTf01ðTÞ � T2f001 ðTÞÞ � 0: (2.26)

So for nonzero tachyon and nonzero ��, we recover the

following form for the function f1ðTÞ:
f1ðTÞ ¼ c0 þ c1T

2; (2.27)

where c1 and c2 are free constant parameters.
There is another route to this result. In general, we

should impose that any solution to the equations of motion
must preserve conformal invariance to leading order in
perturbation theory. For a general background, this means
that the system should satisfy

r2T � 2@��@�T þ 4

�0 T ¼ 0: (2.28)

In other words, for solutions of the effective theory, the
conditions of conformal invariance imposed by the 2D
worldsheet theory should emerge as a prediction, rather
than an input, of the effective action. In essence, we
demand that the spacetime effective action correctly re-
produce the known worldsheet tachyon scattering ampli-
tudes to leading order in conformal perturbation theory and
�0. To be sure, higher-order corrections can become im-
portant for completely general backgrounds. For the pur-
poses of this calculation we can consider imposing (2.28)
in the presence of small deviations from solutions that are
known to exist in a perturbative regime.
For general T and �, the dilaton and tachyon equations

of motion take the form [dropping the explicit T depen-
dence of f1ðTÞ]

0 ¼ f01r2T � 2f01@� � @T þ f001
2
@T � @T

� f1
2
ð4r2�� 4@� � @�þ RÞ � f01

2T
@T � @T

þ V�ðTÞ;
0 ¼ ½f01 � Tðf001 þ f0001 TÞ�@T � @T

þ T½f01Tð4r2�� 4@� � @�þ RÞ
þ 2ðf01 þ f001TÞð2@� � @T �r2TÞ � 2T@TV�ðTÞ�:

(2.29)

Note that the Einstein equation simplifies significantly
when the dilaton equation is enforced (specifically, terms
proportional to G�

�� drop out entirely):
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2f1r�r��� f01r�r�T þ f01
T
@�T@�T þ f1R�� ¼ 0:

(2.30)

Using the trace of this equation, the dilaton equation of
motion also simplifies,

4f1@� � @�� 4f01@� � @T þ f1Rþ
�
f001 þ

f01
T

�
@T � @T

þ 2V� ¼ 0: (2.31)

Employing the dilaton equation of motion (2.29) to
eliminate r2�, and imposing the condition (2.28), the
tachyon equation of motion yields the following condition
on f1ðTÞ:

T2f1f
000
1 � ðf1 � Tf01Þðf01 � Tf001 Þ ¼ 0: (2.32)

At the level of the effective theory, conformal perturbation
theory corresponds to an expansion in the strength of the
tachyon field. Since the condition is that conformal invari-
ance is imposed at leading order, we can solve this equa-
tion perturbatively in T:

f1ðTÞ ¼
X1
n¼0

cnT
n: (2.33)

The function f1ðTÞ appears as a coefficient of the Einstein-
Hilbert term in the effective action

SEH �
Z

dDXe�2�f1ðTÞR�; (2.34)

so we require c0 ¼ 1 for the theory to properly reduce to
the unperturbed linear dilaton background when the
tachyon vanishes. Furthermore, the leading-order contri-
bution from (2.32) establishes that c1 ¼ 0. It is then clear,
working order by order, that Eq. (2.32) is satisfied pertur-
batively to all orders in T for any c2, and

ck ¼ 0; 8 k > 2: (2.35)

Furthermore, for the tachyon potential to be tachyonic, the
constant c2 must be negative definite. It turns out that the
magnitude of c2 drops out of the entire action under a
constant rescaling of the tachyon. Setting c2 ¼ �1, we
recover the solution

f1ðTÞ ¼ 1� T2: (2.36)

We pause to emphasize an important aspect of this
result. As noted above, the solutions under consideration
(2.5) are, in general, not exact. For the tachyon perturbation
to remain conformally invariant to higher orders in con-
formal perturbation theory, the linearized tachyon equa-
tion (2.28) will inevitably acquire nonlinear corrections.
These corrections will ultimately alter the condition on the
function f1ðTÞ in Eq. (2.32). We should therefore not
regard the solution in Eq. (2.36) as exact to all orders in
the strength of the tachyon:

f1ðTÞ ¼ 1� T2 þOðT3Þ: (2.37)

The resulting tachyon potential in the sigma-model frame
takes the following form:

V�ðTÞ ¼ 1

3�0 ððD� 26Þ � ðD� 2ÞT2Þ þOðT3Þ: (2.38)

Happily, the potential is now completely independent of
the vector �� to the order of interest, rendering the effec-
tive theory independent of any particular solution.
For the moment, we wish to study the leading-order

dynamics of this theory in certain special cases, and we
will momentarily drop all reference to higher-order cor-
rections in the small-T expansion (though we will return to
this issue in Sec. IV). At this stage, the spacetime action
takes the form

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG�
p

e�2�

�
�
ð1� T2ÞR� þ 4ð1� T2Þ@��@��

þ 8T@�T@
��� 4@�T@

�T

þ 2

3�0 ð26�Dþ ðD� 2ÞT2Þ
�
: (2.39)

To canonicalize the gravity sector, we can invoke a
spacetime Weyl transformation

GS
�� ¼ e2!ðTÞG�

��; (2.40)

where GS
�� is the string-frame metric, and

!ðTÞ ¼ logð1� T2Þ
D� 2

: (2.41)

In the next section, however, we will move completely over
to the Einstein frame. We will therefore combine the above
field redefinition with an additional Weyl transformation
that renders the Einstein-frame action in canonical form.

III. SPACETIME COSMOLOGY

In this section we focus on the dynamics of the timelike
and null tachyon solutions, as encoded by the spacetime
effective action. As noted above, we expect the semiclas-
sical analysis to be reliable when the strength of the
tachyon is small compared to 1. The goal is to study the
general behavior of these solutions in regions of classical
validity, but we also wish to establish that, in the absence of
higher-order corrections, singularities eventually arise as a
consequence of tachyon condensation.

A. Translation to the Einstein frame

Because the Einstein-Hilbert term in the sigma-model
action appears with the prefactor f1ðTÞ, the Weyl rescaling
that renders this term canonical in the Einstein frame
depends on both the dilaton and the tachyon:
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GE
�� � e2!ð�;TÞG�

��: (3.1)

Under this field redefinition, the Ricci term in the Einstein
frame takes the form

SEH �
Z

dDX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGE

p
f1ðTÞ

� expðð2�DÞ!ð�; TÞ � 2�ÞRE: (3.2)

We therefore find the following expression for !ð�; TÞ:

!ð�; TÞ ¼ �2�þ logð1� T2Þ
D� 2

: (3.3)

At this stage, it is easy to see that as the tachyon magnitude
evolves from some small initial value at early times to T ¼
�1, the Einstein metric inevitably encounters a big crunch
in finite time. However, if the tachyon evolves slowly from
zero, the metric can reach this singularity deep within a
region where the string theory is weakly coupled. When T2

increases beyond unity, the Einstein term in the sigma-
model frame changes sign, and the conformal transforma-
tion (3.1) becomes imaginary. This can be interpreted as a
signal that the gravitational theory becomes nonunitary for
T2 > 1.

It is interesting that the theory encounters a singularity at
the point where we expect the dynamics to acquire strong
corrections relative to the linearized approximation (2.5).
Returning to this issue in Sec. IV, we will consider the
ability of higher-order corrections to resolve the singular-
ity. If such corrections contribute to higher-order terms in
f1ðTÞ (2.37), the tachyon dependence in the metric will
obviously change. For now, however, we aim to study the
action as it stands, leaving open the question of higher-
order corrections. Our goals in this section are (1) to
establish that this singular region in fact arises in the
classical analysis, and (2) to test whether the effective
action reliably reproduces the classical solutions of interest
(2.5) away from singular points.

It is straightforward to carry out the transformation in
Eq. (3.1) on the remaining terms in the action. To canon-
icalize the dilaton kinetic term, we perform an additional
rescaling:

� ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p

: (3.4)

We recover the following two-derivative effective action in
the Einstein frame:

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGE

p

�
�
RE � @�
@�
� 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 2
p T

ð1� T2Þ @�
@�T

� 4ðD� 2þ T2Þ
ðD� 2Þð1� T2Þ2 @�T@

�T

� 2

3�0 ð1� T2Þ�ðD=ðD�2ÞÞðD� 26� ðD� 2ÞT2Þ

� e2
=
ffiffiffiffiffiffiffiffi
D�2

p �
: (3.5)

One can see that the singularity in the metric at T ¼ �1 is
also translated to the kinetic terms.
We have thus found a specific form of the dilaton-

tachyon potential VEð�; TÞ in the Einstein frame:

VEð�; TÞ ¼ 1

3�0 ð1� T2Þ�ðD=ðD�2ÞÞðD� 26� ðD� 2ÞT2Þ
� e2
=

ffiffiffiffiffiffiffiffi
D�2

p
: (3.6)

The potential is depicted for D ¼ 30 in Fig. 2. From this
picture it is easy to understand the generic behavior of the
system evolving from a state with zero tachyon. At the
outset, the theory evolves toward weak coupling as the
dilaton rolls down its potential toward decreasing negative
values (to the right in Fig. 2). Small fluctuations of the
tachyon eventually cause it to roll toward positive or
negative magnitude, reaching T ¼ �1 asymptotically.
At zero tachyon, the potential increases exponentially in

the direction of increasing positive 
 (to the left in Fig. 2,
which is the direction of strong string coupling). There is a
critical magnitude of the tachyon,

FIG. 2 (color online). The dilaton-tachyon potential VEð
; TÞ
in the Einstein frame (depicted at D ¼ 30, �0 ¼ 1). When the
tachyon passes the critical value �T	, the potential decreases as
a function of 
 in the direction of strong coupling.
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T	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

2�D

s
; (3.7)

at which the potential vanishes identically. When the
tachyon is above this magnitude, the potential is negative
and decreases exponentially as a function of 
 in the
direction of strong coupling. At weak coupling the poten-
tial is essentially flat, falling off steeply at T ¼ �1.

B. Timelike tachyon

We now want to focus, in particular, on the timelike
tachyon:

T ¼ � expð��0t�Þ; � ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p

 ¼ �qt�;

G�
�� ¼ ���: (3.8)

We have labeled the sigma-model time coordinate as X0
� �

t�. Again, by choosing the dilaton gradient q to be positive
definite in D> 26, the string coupling decreases toward
the future.

To study the cosmology associated with these solutions
directly, we will proceed by moving to a coordinate system
in which the Einstein metric is of FRW form:

ds2E ¼ �dt2E þ aðtEÞ2d ~X2
E: (3.9)

We wish to study the timelike tachyon on shell, and the
conformal rescaling in Eq. (3.1) provides a precise trans-
lation between FRW coordinates X�

E and sigma-model

coordinates X
�
� :

dt2E ¼ e2!ð�;TÞdt2�; aðtEÞ2d ~X2
E ¼ e2!ð�;TÞd ~X2

�:

(3.10)

(For simplicity, we are keeping the time dependence of the
dilaton and tachyon implicit.)
We can keep the translation among spatial coordinates

trivial (i.e., Xi
E ¼ Xi

�, i 2 1; 2; . . . ; D� 1) by assigning

aðtEÞ ¼ expð!ð�; TÞÞ ¼ exp

��2�þ logð1� T2Þ
D� 2

�
:

(3.11)

This leaves the translation between timelike coordinates
explicit. When the tachyon is zero, we recover

tEðt�Þ ¼ D� 2

2q
exp

�
2q

D� 2
t�

�
þ const ðT ¼ 0Þ:

(3.12)

After the tachyon acquires a vacuum expectation value, the
translation for general dilaton and tachyon profiles takes
the form

tEðt�Þ ¼
Z t�

1
d�e�2�ð�Þ=ðD�2Þð1� Tð�Þ2Þ1=ðD�2Þ þ const:

(3.13)

For the solution at hand (3.8), we obtain

tEðt�Þ ¼ D� 2

2ðq� �0Þ exp
�
2qt�
D� 2

�
ð1��ðt�ÞÞ1=ð2�DÞð1��ðt�Þ�1Þ1=ðD�2Þ

2F1

�
1

2�D
;

q� �0

�0ðD� 2Þ ;
qþ �0ðD� 3Þ
�0ðD� 2Þ ;�ðt�Þ

�

þ const; (3.14)

where �ðt�Þ is defined by

�ðt�Þ � 1

�2
e2�

0t� : (3.15)

2F1ða; b; c; zÞ is the hypergeometric function, which exhibits a branch cut in the complex z plane along the real z axis from
z ¼ 1 to 1.

It turns out that we can reexpress the solution tEðt�Þ as

tEðt�Þ ¼ �2q=ð�0ðD�2ÞÞ e
�ði�=ðD�2ÞÞ

2�0
B�ðt�Þ

�
q� �0

�0ðD� 2Þ ;
D� 1

D� 2

�
þ const; (3.16)

where Bzða; bÞ is the incomplete Euler beta function
Bzða; bÞ ¼

R
z
0 d�ð1� �Þb�1�a�1. The beta function

Bzða; bÞ also exhibits a branch cut, though in this case it
runs along the negative real z axis from z ¼ �1 to z ¼ 0.
As it stands, tEðt�Þ (modulo the integration constant) con-
tributes a constant imaginary piece when t� lies in the
region prior to the final singularity. In the analysis that
follows it will be understood that this contribution is
subtracted by absorbing it into the integration constant.

The timelike tachyon solution can thus be expressed as a
function of the time coordinate in the Einstein frame by
inverting Eq. (3.16) to generate t� as a function of tE. There
is not a convenient closed-form expression for t�ðtEÞ,
however. Keeping this relationship implicit, one obtains

TðtEÞ ¼ �e��0t�ðtEÞ: (3.17)

Likewise, the dilaton evolves according to
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�ðtEÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p

 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 26

6�0

s
t�ðtEÞ: (3.18)

Substituting into the general form for the scale factor in
Eq. (3.11), we find

aðtEÞ ¼ exp

�
2qt�ðtEÞ þ logð1��2e�2�0t�ðtEÞÞ

D� 2

�
: (3.19)

By construction, this is an exact (albeit particular) classical
solution to the equations of motion of the spacetime effec-
tive action in the Einstein frame.

It is straightforward to plot the behavior of the scale
factor numerically. This is done in Fig. 3, along with the
corresponding evolution of the string coupling. (Here, and
in the analysis that follows, �0 can be set to any convenient
value without affecting the qualitative behavior of the
solutions.) When the tachyon is small, the scale factor
evolves linearly as a function of tE. As the tachyon evolves
away from zero, the universe enters a phase of accelerated
contraction. Eventually, as the tachyon strength ap-
proaches 1, the scale factor collapses to zero. The region
of a non-negligible tachyon condensate can exist entirely
within a region of weak string coupling gS 
 0.

In sigma-model coordinates, the tachyon magnitude
reaches 1 at

tcrunch� ¼ 1

�0
log� ¼ 6�0 log�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 26
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 2
p : (3.20)

In the Einstein frame, this translates to the statement that

the scale factor formally collapses to a singularity at the
time

tcrunchE ¼ �2q=ð�0ðD�2ÞÞ

2�0
cos

�
�

D� 2

�
B

�
q� �0

�0ðD� 2Þ ;
D� 1

D� 2

�
;

(3.21)

where the expression on the right-hand side is given in
terms of the complete Euler beta function

Bða; bÞ ¼ �ðaÞ�ðbÞ=�ðaþ bÞ: (3.22)

For fixed spacetime dimensions, we have a one-
parameter family of solutions of the timelike tachyon
system, parametrized by the constant �. In Fig. 4 we plot
four such solutions for� ¼ f0:38; 0:42; 0:46; 0:5g in a fixed
dimension. One can see explicitly that by decreasing�, the
tachyon reaches T 
 1 more gradually, placing the final
singularity of the scale factor farther out in the direction of
decreasing string coupling.
The relationship between � and tcrunchE is depicted for

various D in Fig. 5. From this plot we can also see that in
higher spacetime dimensions, the crunch is placed at
weaker coupling for fixed�. To this is added the additional
effect that, for a fixed time tE, increasing the dimension D
alone reduces the string coupling (at large D, the dilaton

gradient scales as q 
 � ffiffiffiffi
D

p
).

It is straightforward to compute the spacetime equations
of motion in the Einstein frame. If, for example, we are
interested in studying the behavior of the timelike tachyon
in the background of a timelike linear dilaton, we can

13.55 13.60 13.65 13.70

1.100

1.105

1.110

1.115

tE

a

(a) Scale factor

13.0 13.2 13.4 13.6

0

5. 10 12

1. 10 11

1.5 10 11

2. 10 11

2.5 10 11

3. 10 11

tE

gS

(b) String coupling

FIG. 3 (color online). The evolution of the timelike tachyon (� ¼ 1=2, D ¼ 1000). The scale factor [panel (a)] evolves linearly as a
function of time in the Einstein frame while the tachyon is small (i.e., it evolves at a critical equation of state). As the magnitude of the
tachyon increases, the scale factor enters a phase of accelerated contraction, and eventually reaches a singularity. The string coupling
[panel (b)] decreases throughout this process.
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proceed with the ansatz that both the tachyon and dilaton
fields depend only on the Einstein-frame time coordinate
tE. Furthermore, we can work in the coordinate system
given in Eq. (3.9), in which the metric GE

�� takes the form

of a spatially flat (k ¼ 0) FRW metric:

ds2E ¼ �dt2E þ aðtEÞ2d ~X2: (3.23)

With these assumptions, variation of the dilaton in the
action yields

0 ¼ €
þ ðD� 1ÞH _
þ @
Vð
; TÞ þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p 1

ð1� T2Þ
�

�
ðD� 1ÞHT _T þ T €T þ 1þ T2

1� T2
_T2

�
; (3.24)

where H is the Hubble parameter H � _a=a. Varying the
tachyon gives

0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p ð €
þ ðD� 1ÞH _
ÞT

þD� 2þ T2

ð1� T2Þ ð €T þ ðD� 1ÞH _TÞ

þ 2D� 3þ T2

ð1� T2Þ2 T _T2 þ 1

4
ðD� 2Þð1� T2Þ@TVð
; TÞ:

(3.25)

The pressure p and energy density 	 of the background
take the form
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0.0

0.2

0.4

0.6

0.8

1.0

tE

T

(b) Tachyon magnitude
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FIG. 4 (color online). The timelike tachyon system from � ¼ 0:38 (red-solid line) to � ¼ 0:5 (blue-dashed line), with D ¼ 1000.
The intermediate solid curves are generated at � ¼ 0:42 and � ¼ 0:46. The effect of decreasing � is to place the final curvature
singularity deeper in the direction of decreasing string coupling. For each value of � the scale factor [panel (a)] collapses in a big
crunch precisely when the tachyon [panel (b)] reaches 1. This process can occur throughout a region in which the string coupling
[panel (c)] is small.
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p ¼ 1

2�2

�
_
2 þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 2
p T

ð1� T2Þ
_
 _T

þ 4ðD� 2þ T2Þ
ðD� 2Þð1� T2Þ2

_T2 � 2Vð
; TÞ
�
;

	 ¼ pþ 2

�2
Vð
; TÞ: (3.26)

The Einstein equations then reduce to

€a

a
¼ ��2	

ðD� 3Þ þ ðD� 1Þw
ðD� 2ÞðD� 1Þ ; (3.27)

where w is the usual equation of state w � p=	. We note
that the critical equation of state, defining the boundary
between an accelerating and a decelerating cosmology, is
[16]

wcrit ¼ �D� 3

D� 1
: (3.28)

In other words, the scale factor accelerates as a function of
tE if the equation of state lies in the range�1 � w<wcrit.

At this point we can integrate Eqs. (3.24), (3.25), and
(3.27) numerically, given a set of initial conditions. As
noted above, solutions in the worldsheet theory fall into a
family parametrized by � (for fixed D and �0). While this
parameter is absent from the point of view of the effective
theory alone, the information contained in � can be trans-
lated to the effective dynamics in the form of integration
constants.

For the particular solutions under consideration, it is
instructive to plot the equation of state as the system
evolves toward the final singularity. This is displayed in
Fig. 6. It is easy to see that as the tachyon remains small,
each system evolves at the critical equation of state (3.28)
(marked by the green horizontal line). As the tachyon
evolves, each system acquires an equation of state lying

above the critical value, indicating a phase of decelerating
scale factor.

C. The null tachyon

We now turn to the null tachyon solution in the same
setting. Our goal for the moment is to characterize the
singular region exhibited by the null tachyon that arises
in the absence of higher-order corrections to the action.
(We will consider higher-order effects in the next section.)
In sigma-model coordinates, the null tachyon solution is
specified by

Tðt�; X1
�Þ ¼ � exp

�
�þffiffiffi
2

p ðt� þ X1
�Þ
�
� � expð�XþÞ;

�ðt�Þ ¼ �qt�; GS
�� ¼ ���; (3.29)

where X1
� is a transverse embedding coordinate in the

sigma-model frame. To keep the notation concise, we
have relabeled the constant light-cone vector as �þ � �.
Consistency of the string theory requires

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 26

6�0

s
; q� ¼ 2

ffiffiffi
2

p
�0 : (3.30)

Again, choosing the positive branch of the dilaton gradient
yields a system in which the dilaton rolls to weak coupling
in the future while the tachyon grows exponentially at fixed
X1
�.
In the Einstein frame, we will adopt a coordinate system

in which the metric is again of FRW form:

ds2E ¼ �dt2E þ aðtE; X1
EÞ2dXi

EdX
i
E;

i 2 1; 2; . . . ; D� 1: (3.31)

The scale factor aðtE; X1
EÞ now depends both on the time-
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FIG. 5 (color online). The time at which the universe reaches a
crunch in the Einstein frame is prolonged by decreasing �, or by
increasing D. The curves above are depicted with D ¼ 30
(dotted curve), D ¼ 50 (dashed curve), and D ¼ 100 (solid
curve).
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FIG. 6 (color online). The evolution of the equation of state for
the timelike tachyon solutions under consideration (at D ¼
1000). The individual curves correspond to values of � from
� ¼ 0:38 (red-solid line) to � ¼ 0:5 (blue-dashed line). The
intermediate solid curves are generated at � ¼ 0:42 and � ¼
0:46. The critical equation of state, given by wcrit ¼ �ðD�
3Þ=ðD� 1Þ, is depicted by the horizontal green line.
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like direction tE and the single spatial coordinate X1
E. As

before, we can choose the mapping between Einstein-
frame and sigma-model coordinates to be trivial for the
spatial directions Xi:

Xi
E ¼ Xi

� � Xi; i 2 1; 2; . . . ; D� 1: (3.32)

These relations imply the following dependence of the
scale factor on the dilaton and tachyon:

aðtE; X1Þ ¼ exp

��2�þ logð1� T2Þ
D� 2

�
; (3.33)

where T is now a function of both t� and X1 (3.29). The
relation

dt2E ¼ e2!ð�;TÞdt2� (3.34)

gives the following mapping for the Einstein coordinate tE:

tEðt�; X1Þ ¼ ���ð2 ffiffi
2

p
q=ð�ðD�2ÞÞÞffiffiffi
2

p
�

exp

�
i�þ 2qX1

2�D

�
B�ðt�;X1Þ

�
�
q

ffiffiffi
2

p þ �

�ð2�DÞ ;
D� 1

D� 2

�
þ const; (3.35)

where

�ðt�; X1Þ � 1

�2
expð� ffiffiffi

2
p

�ðt� þ X1ÞÞ: (3.36)

As with the timelike tachyon, we need to absorb a constant
imaginary contribution into the integration constant on the
right-hand side of Eq. (3.35).

At this point we can see that the theory reaches a
curvature singularity at

tcrunch� ¼ �X1 �
ffiffiffi
2

p
�

log�: (3.37)

In FRW coordinates, this equates to

tcrunchE ¼ ���ð2 ffiffi
2

p
q=ð�ðD�2ÞÞÞffiffiffi
2

p
�

exp

�
2qX1

2�D

�

� cos

�
�

2�D

�
B

�
q

ffiffiffi
2

p þ �

�ð2�DÞ ;
D� 1

D� 2

�
: (3.38)

To an observer at fixed negative X1, the singular region
appears to approach from the positive X1 direction at a
speed given by

vbubble ¼ ðD� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�0

2ðD� 26Þ

s
1

tE
: (3.39)

This picture is intuitively consistent with what we know
from the 2D CFT. On the worldsheet, the growth of the
tachyon appears as a potential wall that increases exponen-
tially with Xþ (in sigma-model coordinates), preventing
the presence of string states deep inside the region of the
tachyon condensate. To a rough approximation, we would
expect spacetime to become nondynamical in a region that

grows outward from the origin of the X1 coordinate. The
nontrivial translation between sigma-model and Einstein-
frame coordinates modifies the picture somewhat, but the
general outcome is as expected. In Fig. 7 we plot tcrunchE as a
function of X1 for various D. In spacetime, the bubble of
nothing indeed emerges as a surface of zero metric that
expands outward in the direction of negative X1.

IV. RESOLVED SINGULARITIES

The action under consideration thus far was derived
under the constraint that it support the complete class of
tachyonic solutions defined in Eq. (2.5). Terms in the
effective action suppressed by higher powers of �0 have
been systematically dropped, and the form of f1ðTÞ was
derived at linearized order (in conformal perturbation the-
ory). In this section, we wish to consider the possible
effects of higher-order corrections.

A. The null tachyon

By focusing strictly on the null tachyon solution in the
background of a timelike linear dilaton rolling to weak
coupling (3.29), we can study various higher-order correc-
tions in isolation. As noted above, the tree-level worldsheet
solution is well defined and exactly conformally invariant
to all orders in perturbation theory, and nonperturbatively
in �0. Furthermore, the effects of finite string coupling can
be made arbitrarily small by placing the strongly coupled
region deep in the past.
Since the null tachyon is exact in �0, including higher-

dimension operators in the effective action consistently
cannot lead to corrections to the spacetime equations of
motion that are not automatically satisfied by the tree-level
solution. Similarly, while corrections associated with con-
formal perturbation theory will inevitably alter the tachyon
marginality condition (2.4), such corrections should be
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FIG. 7 (color online). The time at which the universe reaches
the final crunch in the presence of the null tachyon, as a function
of X1. The curves shown above are depicted for � ¼ 0:5, D ¼
30 (dotted blue curve), D ¼ 50 (dashed green curve), D ¼ 150
(dot-dashed red curve), and D ¼ 350 (solid blue curve).
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satisfied trivially by the null tachyon solution. However,
the constraint equation (2.32) for f1ðTÞ was derived for the
nonexact tachyon profiles (plus fluctuations) appearing in
Eq. (2.5).3 Corrections to the marginality condition will
ultimately contribute nontrivial corrections to Eq. (2.32).
The conclusion is that the only higher-order effects that can
appear directly in the spacetime null tachyon system arise
as corrections to the function f1ðTÞ.4 This raises the pos-
sibility that the curvature singularity that naively appears in
the above analysis is resolved by higher-order effects.

B. Generalized constraints on f1ðTÞ
Without directly computing higher-order corrections to

the effective action (a problem that lies beyond the scope of
this study), we would like to understand on general
grounds the terms that can arise as corrections to f1ðTÞ,
subject to the condition that the theory always supports the
null tachyon as an exact solution.

Consider the effective action for general f1ðTÞ. As it
stands, this action is consistent with the condition that it
supports only the null tachyon as an exact solution.
Because of the null symmetry, the � dependence in the
potential [see, e.g., Eq. (2.25)] is automatically absent:

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGS

p
e�2�

�
�
RS � 4

D� 2

�
@��@��þ f01

f1
@��@�T

�

þ 1

f1

�
f001 þ f01

�
1

T
� ðD� 1Þ

ðD� 2Þ
f01
f1

��
@�T@

�T

� 1

3�0 f
�ðD=ðD�2ÞÞ
1 ð24Tf01 þ 2ðD� 26Þf1Þ

�
: (4.1)

Here the action appears in the string frame, with the
Einstein-Hilbert term expressed in canonical form. For
general f1ðTÞ, the string-frame metric is related to the
sigma-model metric by

GS
�� ¼ e2!ðTÞG�

��; !ðTÞ ¼ logf1ðTÞ
D� 2

: (4.2)

Of course, we can also move to the Einstein frame using
the Weyl transformation

GE
�� ¼ e2!ð�;TÞG�

��; !ð�; TÞ ¼ �2�þ logf1ðTÞ
D� 2

:

(4.3)

For the finite dilaton, singularities of the metric arise
whenever f1ðTÞ vanishes.5

We now want to study constraints on higher-order cor-
rections to f1ðTÞ under the following general conditions:
(1) The theory encodes the standard, nontachyonic lin-

ear dilaton background in the limit T ¼ 0.
(2) The gravity sector remains unitary for all values of

T.
(3) Nonmetric prefactors of the matter sector kinetic

terms remain finite for all values of T.
(4) Expanding in the strength of the tachyon, f1ðTÞ is

defined to quadratic order by f1ðTÞ 
 1� T2.

The last condition guarantees that the potential in a ca-
nonical gravity frame is tachyonic. If there is any hope that
the effective action can reliably reproduce the physics of
the null tachyon for all finite values of T, each of these
conditions must be met. For the moment, we leave open the
possibility that the metric encounters a singularity as a
consequence of tachyon condensation.
As noted in Sec. II, the first condition imposes

f1ð0Þ ¼ 1: (4.4)

Furthermore, the condition that the gravity sector remain
unitary can be satisfied by demanding that f1ðTÞ be non-
negative for all T. This is intuitive from the perspective of
the action in the sigma-model frame, where the Ricci term
appears multiplied by f1ðTÞ. In addition, we see that for the
tachyon kinetic term to remain finite at T ¼ 0,

f01ðTÞjT¼0 ¼ 0: (4.5)

This indicates that T ¼ 0 is a critical point of f1ðTÞ.
The tachyon kinetic term (as well as the @�T@

�� term)

can also become singular at points where f1ðTÞ vanishes.
The relevant factors are f001 ðTÞ=f1ðTÞ and f01ðTÞ=f1ðTÞ, so
we demand that f01ðTÞ and f001 ðTÞ vanish whenever f1ðTÞ ¼
0. This implies that points where f1ðTÞ vanishes must
either be inflection points or points where f1ðTÞ vanishes
identically over a finite region.6 Since f1ðTÞ is everywhere
nonnegative, however, there can be no inflection points
coinciding with points where f1ðTÞ vanishes. Further-
more, if f1ðTÞ vanishes identically over a finite region,
the entire action becomes identically zero in this region. If
we hope to reliably encode the dynamics of the complete
string theory for all values of the tachyon, we are forced to
reject this scenario. We conclude that, under the second
and third constraints above, f1ðTÞ can never vanish at finite
values of T. At finite T, therefore, the null tachyon avoids
all cosmological singularities.

C. A candidate effective action

We would now like to understand the relation between
the above constraints on f1ðTÞ and the perturbative form

3Recall that the null tachyon is supported as a classical
solution for any f1ðTÞ.

4To be sure, analogous statements do not hold for nonexact
solutions.

5In the sigma-model frame, this corresponds to a vanishing
Einstein term in the action.

6An example of a C1 function that is nontrivial in some region
but vanishing in another is f1ðTÞ ¼ expð�1=ða2 � x2ÞÞ�ða2 �
x2Þ, where �ðxÞ is the step function.
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that was computed in Sec. II. The constraint imposed there
was that the effective action should support all linearized
tachyonic perturbations to the linear dilaton CFT of the
form

T ¼ � expð��X
�Þ; (4.6)

subject to the condition that the tachyon profile satisfies the
(linearized) tachyon equation of motion in Eq. (2.4). For
solutions other than the null tachyon, and in the absence of
an additional regulator (like large D, for example), correc-
tions to the linearized marginality condition can generate
higher-order corrections to the general constraint equation
for f1ðTÞ, (2.32). As noted above, we should therefore
regard the solution for f1ðTÞ used in Sec. II as an approxi-
mation valid at small T:

f1ðTÞ 
 1� T2; T � 1: (4.7)

A natural additional constraint on the general function
f1ðTÞ is that it reproduce the perturbative expansion around
small T [i.e., condition (4) above]. This guarantees that the
effective action supports the full class of solutions in
Eq. (2.5) in regions where the solutions themselves are
not strongly corrected by higher-order effects. A simple
exact form for f1ðTÞ that meets all of the above criteria and
reproduces the known solution at small T is

f1ðTÞ ¼ expð�T2Þ ¼ 1� T2 þOðT4Þ: (4.8)

The resulting action in the string frame takes the form
(using the rescaled dilaton)

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGS

p
e�

ffiffiffiffiffiffiffiffi
D�2

p



�
RS � @�
@�


� 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p T@�
@�T � 4

D� 2
ðT2 þD� 2Þ@�T@�T

� 2

3�0 exp
�

2T2

D� 2

�
ðD� 26� 24T2Þ

�
: (4.9)

As desired, the potential

VSðTÞ ¼ 1

3�0 exp
�

2T2

D� 2

�
ðD� 26� 24T2Þ (4.10)

is tachyonic. In this case, however, it is well defined at T ¼
1. It can easily be verified that this potential agrees with the
tachyon potential computed above in Eq. (3.6), up to and
including cubic order in an expansion around small T.

Of course, there are other possible completions of f1ðTÞ
that meet all of the conditions described above. Another
example is

f1ðTÞ ¼ 1

coshð ffiffiffi
2

p
TÞ ¼ 1� T2 þOðT4Þ; (4.11)

which also resolves the curvature singularity in the null
tachyon solution at finite T. The string-frame action takes
the form

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGS

p
e�

ffiffiffiffiffiffiffiffi
D�2

p



�
RS � @�
@�


þ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p tanhð ffiffiffi
2

p
TÞ@�
@�T

�
�

2

D� 2
þ 2ðD� 3Þ

ðD� 2Þ sech2ð ffiffiffi
2

p
TÞ þ

ffiffiffi
2

p
T

tanhð ffiffiffi
2

p
TÞ
�

� @�T@
�T � 2

3�0 sech
�ð2=ðD�2ÞÞð ffiffiffi

2
p

TÞ

� ðD� 26� 12
ffiffiffi
2

p
T tanhð ffiffiffi

2
p

TÞÞ
�
: (4.12)

The qualitative properties of the null tachyon solution
are equivalent for both forms of f1ðTÞ given above. For the
purposes of the present study, therefore, wewill employ the
exponential form in Eq. (4.8) in the analysis that follows.
While it would be interesting to study a wider class of
solutions, we emphasize that the resolution of the crunch is
universal to all f1ðTÞ satisfying the above conditions.

D. Resolution of the singularity

On general grounds, we expect that the dynamics of the
effective action in Eq. (4.9) resolve the cosmological sin-
gularity that appears naively in the null tachyon solution.
We now examine in detail how the singularity is avoided.
The string-frame metric is given in Eq. (4.2) above. We

again choose the Weyl transformation to act trivially on the
transverse spatial coordinate X1

�, so it is convenient to drop
the subscript label. The string-frame time coordinate thus
evolves as a function of t� and X1 according to

tSðt�; X1Þ ¼ 1ffiffiffi
2

p
�

Ei

�
� �2

D� 2
e
ffiffi
2

p
�ðt�þX1Þ

�
þ const;

(4.13)

where EiðxÞ is the exponential integral function EiðxÞ ¼
�R1

�xðe��=�Þd� [EiðxÞ exhibits a branch cut in the com-
plex x plane running from x ¼ �1 to x ¼ 0, though for
real x we take the principal value of the integral]. For
convenience we set the constant term to zero.
The (string-frame) FRW scale factor now takes the form

aSðt�; X1Þ ¼ exp

�
logf1ðTÞ
D� 2

�
¼ exp

�
�Tðt�; X1Þ2

D� 2

�
:

(4.14)

For the null tachyon, this becomes

aSðt�; X1Þ ¼ exp

�
� �2

D� 2
e
ffiffi
2

p
�ðt�þX1Þ

�
: (4.15)

Expressed in terms of sigma-model coordinates, the out-
come is clear. For fixed X1, the evolution of t� drives an
accelerated contraction of the scale factor [in the positive
branch of (2.8), �> 0]. However, aSðt�; X1Þ can never
reach a true singularity in finite t�, as the singular point
has been moved to t� ¼ 1.
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Interestingly, the dependence on X1 drops out when the
scale factor is expressed as a function of string-frame
coordinates. To see this, first note that Eq. (4.13) can be
inverted to give the sigma-model time coordinate as a
function of tS and X1:

t�ðtS; X1Þ ¼ �X1 þ 1ffiffiffi
2

p
�

log

�
�D� 2

�2
Ei�1ð ffiffiffi

2
p

�tSÞ
�
:

(4.16)

In the string frame, the scale factor thus takes the explicit
form

aSðtSÞ ¼ expðEi�1ð ffiffiffi
2

p
�tSÞÞ: (4.17)

Naively, the system reaches a curvature singularity at tS ¼
0. Relative to the sigma-model frame, however, the physics
in the string frame is dramatically redshifted as the scale
factor collapses. We can see this directly by plotting the
string-frame time coordinate tS as a function of t� (see
Fig. 8). As the system collapses, the coordinate tS steadily
ceases to evolve with increasing t�, and reaches tS ¼ 0
only asymptotically at t� ¼ 1. So, from the point of view
of the string frame, the system avoids reaching the singu-
larity because the dynamics are severely redshifted; the
tachyon generates a smooth cutoff of cosmological time tS.
To be certain, there is a cosmological big crunch at finite
time, but from the point of view of the underlying funda-
mental string, the physics is completely smooth.

In the Einstein frame, the action takes the form

S ¼ 1

2�2

Z
dDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGE

p �
RE � @�
@�


� 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

p T@�
@�T � 4

D� 2
ðT2 þD� 2Þ@�T@�T

� 2

3�0 e
2
=

ffiffiffiffiffiffiffiffi
D�2

p
e2T

2=ðD�2ÞðD� 26� 24T2Þ
�
: (4.18)

Expressed in this frame, the scale factor acquires a depen-
dence on the dilaton gradient q ¼ �@t��:

aEðt�; X1Þ ¼ exp

�
� 1

D� 2
ð�2e

ffiffi
2

p
�ðt�þX1Þ � 2qt�Þ

�
:

(4.19)

The FRW time coordinate evolves with t� according to

tEðt�Þ ¼
Z t�

1
d� exp

�
� 1

D� 2
ð2q�� e

ffiffi
2

p
�ðX1þ�ÞÞ

�

þ const: (4.20)

Once again, this expression can be formally inverted to
express t� as a function of tE and X1. By construction, the
scale factor in Eq. (4.19) and the tachyon and dilaton
profiles in Eq. (3.29) are implicit particular solutions of
the equations of motion.
Figure 9 depicts the evolution of the scale factor in the

Einstein frame. When the tachyon is small, the universe
evolves approximately linearly in tE for all X1. This is just
a reflection of the fact that at zero tachyon the theory
exhibits an equation of state that is precisely critical [w ¼
�ðD� 3Þ=ðD� 1Þ]. As the tachyon increases in strength,
the scale factor collapses, approaching a singularity
asymptotically at t� ¼ 1. To an observer at some fixed
negative X1, the region of collapse appears to expand in the
negative X1 direction outward from the origin. As the scale
factor approaches zero, the cosmological time tE ceases to
evolve as a function of t�, and spacetime becomes frozen
in a near singularity.
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FIG. 8 (color online). The ‘‘flow of time’’ in the string frame,
as a function of t�. Deep inside the tachyon condensate, the
spacetime dynamics becomes infinitely redshifted relative to the
sigma model. (The plot depicted is generated at D ¼ 1000, � ¼
0:5, X1 ¼ 0.)

FIG. 9 (color online). The bubble of nothing in the Einstein
frame is a surface of an asymptotically vanishing metric. The
scale factor initially grows linearly as a function of tE, then
collapses to a near-singular region that expands outward in the
negative X1 direction (D ¼ 1000, � ¼ 0:5).
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E. Toy models of the big bang

As noted above, the beta function equations of the 2D
worldsheet CFT stipulate that the dilaton gradient q ¼
�@t�� satisfy

q2 ¼
�
D� 26

6�0

�
2
: (4.21)

We can also study the second branch of this solution, where
q is negative definite. In this case, the dilaton evolves from
weak coupling in the far past and rolls in the direction of
strong coupling toward the future. The linearized tachyon
equation of motion (2.4) is satisfied under the condition

� ¼ 2
ffiffi
2

p
q�0 , so � is also negative definite. Choosing this

branch is therefore equivalent to invoking an overall time
reversal on the previous solution. The strength of the
tachyon thus decreases with evolving time, reaching zero
in the infinite future. (This general setup of a tachyonic big
bang was studied in detail in [43], with a particular focus
on the importance of fluctuations.) Although this is essen-
tially an extremely fine-tuned solution, let us briefly con-
sider the picture that emerges in its own right.

Deep in the weakly coupled regime, the tachyon is large,
and the FRW scale factor is correspondingly small. As the
tachyon decreases in strength, the scale factor rapidly
accelerates from a near singularity. (In the Einstein frame,
the evolution of the dilaton eventually takes over, and the
scale factor contracts linearly as a function of tE for fixed
X1.) This situation presents an interesting toy model of the
big bang that can be studied at arbitrarily weak string
coupling. Figure 10 depicts the scale factor as a function
of tS. Deep in the past the scale factor is near zero and, as
the tachyon passes below a critical value, the universe
rapidly expands outward.

When viewed as a function of t�, the temporal coordi-
nate in the string frame is also frozen deep in the past. This

is depicted in Fig. 11, which displays a plot of tSðt�Þ. The
‘‘flow of time’’ in the string frame is thus generated as the
tachyon evolves toward zero.

V. SOLITONIC SOLUTIONS

Part of the benefit of having a specific effective action in
hand is the ability to study new solutions that are not used
as input in deriving the action itself. In this section we look
for static solutions of the effective action that localize the
universe in spatial, rather than temporal, directions.
The general problem of using closed string tachyon

condensation to localize or remove a spatial dimension
has been studied in detail in [15,17,33,40,44]. In [17], the
tractability of the null tachyon was used to derive exact
solutions that dynamically remove spatial dimensions from
the theory. The central charge deficit that arises in the
classical worldsheet CFT from the removal of these di-
mensions is made up of one-loop quantum corrections.
Because these solutions lie outside of the class of tachyon
perturbations considered here (2.5), and because they are
inherently quantum mechanical on the worldsheet, we will
not attempt to study them directly in the present context.
Instead, we adopt the strategy of [40], which studied this

problem directly at the level of effective actions. The
authors of [40] were able to find toy models that localize
spatial directions in the presence of general tachyon po-
tentials. We will follow this analysis in searching for
analogous solutions of the effective action computed
above.
A simple approach is to introduce as an ansatz a spatially

varying sigma-model metric of the form

ds2� ¼ ðdX1Þ2 þ ~aðX1Þ2��0�0dX�0
dX�0

;

�0; �0 2 0; 2; 3; . . . ; D� 1; (5.1)
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FIG. 10 (color online). A toy model of the big bang (D ¼
1000, � ¼ 0:5, X1 ¼ 0). The second branch of the null tachyon
solution causes the scale factor to emerge from a near singularity
and rapidly accelerate, reaching a constant value (in the string
frame) when the tachyon shrinks to zero size.
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FIG. 11 (color online). In a tachyonic big bang, cosmological
time in the string frame is frozen in the deep past, as a function
of sigma-model time t�. As the tachyon evolves toward zero,
time begins to flow monotonically in the positive direction (D ¼
1000, � ¼ 0:5).
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with a warp factor ~aðX1Þ that depends only on X1.
Following [40], we observe that, in general, the dilaton
will depend on all of the embedding coordinates X�,
though by the ðD� 1Þ-dimensional Lorentz invariance
we can move to a frame in which the dilaton depends
only on X1 and X2:

� ¼ �ðX1; X2Þ: (5.2)

The aim is to find codimension one solitons, in which the
tachyon depends solely on the spatial direction X1. The
nontrivial components of the Einstein equation (2.30) in
the sigma-model frame yield the conditions [for general
f1ðTÞ]

0 ¼ f1½ðD� 2Þð~a0Þ2 þ ~a~a00 � 2~a~a0@1�� þ f01T
0~a~a0;

(5.3)

0 ¼ f1

�
2@21�� ðD� 1Þ ~a

00

~a

�
þ f01

�
T02

T
� T00

�
; (5.4)

0 ¼ 2f1
~a

ð~a@1@2�� ~a0@2�Þ; (5.5)

0 ¼ �f1½ðD� 2Þð~a0Þ2 þ ~a~a00 � 2ð@22�þ ~a~a0@1�Þ�
� f01T

0~a~a0: (5.6)

Equations (5.3) and (5.6) combine to give the condition

f1@
2
2� ¼ 0: (5.7)

Equation (5.3) alone implies that @1� can only depend on
the X1 coordinate (f1 is a function of T only, which we
assume depends only on X1), so

@2@1� ¼ 0: (5.8)

With the general condition that f1ðTÞ is nonzero at finite T,
we obtain the following generic form for the dilaton:

�ðX1; X2Þ ¼ FðX1Þ þQX2; (5.9)

where FðX1Þ is some function of X1 only, and Q is a
constant. This same condition was derived for the codi-
mension one soliton configurations studied in [40].
Equation (5.5) then reduces to

Q~a0 ¼ 0; (5.10)

implying that either the sigma-model metric is precisely
flat, or the dilaton is independent of X2.

Let us first consider solutions with a flat sigma-model
metric:

ds2� � ���dX
�dX�: (5.11)

In this case, the remaining nontrivial component of the
Einstein equation appears as

2f1F
00 � f01T

00 þ f01
T
T02 ¼ 0: (5.12)

The dilaton and tachyon equations of motion take the form

0 ¼ f1ðF02 þQ2Þ � f01F
0T0 þ 1

4

�
f001 þ

f01
T

�
T02 þ 1

2
V�;

0 ¼
�
f01
T

� f001 � f0001 T
�
T02 þ 4f01TðF00 � F02 �Q2Þ

þ 2ðf01 þ f001TÞð2F0T0 � T00Þ � 2T@TV�: (5.13)

Employing the perturbative solution f1ðTÞ 
 1� T2 and
substituting the tachyon potential into these equations
yields the following conditions on the transverse compo-
nent of the dilaton:

F0 ¼ 1

2�0T0 ð4T þ �0T00Þ; F00 ¼ 1

ðT2 � 1Þ ðTT
00 � T02Þ:
(5.14)

We also recover an explicit expression for the longitudinal
dilaton gradient in terms of the tachyon,

Q2 ¼ � 1

6ðT2 � 1Þ
�
6T02 � 6TT00 þ 1

�0 ðT2 � 1ÞðD� 26Þ

þ 3

2�0T02 ðT2 � 1Þð4T þ �0T00Þ2
�
: (5.15)

The conditions on the transverse dilaton FðX1Þ in
Eq. (5.14) impose the following differential equation for
the tachyon profile:

1

ðT2 � 1Þ ðT
02 � TT00Þ

þ 1

2�0T02 ½4T02 � T00ð4T þ �0T00Þ þ �0T0T00� ¼ 0: (5.16)

This equation is satisfied exactly by the exponential profile

T ¼ � expð�1X
1Þ: (5.17)

With this solution, the transverse dilaton is linear in X1,
with a gradient given by

F0 ¼ 2

�0�1

þ �1

2
: (5.18)

The longitudinal dilaton gradient takes the form7

Q2 ¼ ��2
1

4
� 4

�02�2
1

�D� 14

6�0 : (5.19)

For real �1, Q
2 can only be nonnegative for D � 2. [In

fact, this conclusion can be reached using the full expo-

nential form f1ðTÞ ¼ expð�T2Þ, or the cosh form f1ðTÞ ¼
1= coshð ffiffiffi

2
p

TÞ, in the above equations.] If a timelike direc-
tion is present at all, the only consistent solution exists in
D ¼ 2, with Q ¼ 0. The resulting system is described by
an exponential tachyon profile with a spacelike linear

7One can check that the tachyon profile satisfies the margin-
ality condition, and Q2 þ F02 ¼ � D�26

6�0 .
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dilaton, both varying in the X1 direction. The dilaton
gradient and tachyon profile are determined by

F0 ¼ �1 ¼ � 2ffiffiffiffiffi
�0p : (5.20)

Therefore, the only static solution consistent with a single
exponential tachyon and an exactly flat sigma-model met-
ric lives strictly in D ¼ 2.

Of course, this restriction is lifted if the dilaton is
allowed to vary in the timelike direction (so the configu-
ration is no longer static). For example, consider the form

�ðX0; X1Þ ¼ FðX1Þ � qX0: (5.21)

In this case, with a tachyon profile of the form in Eq. (5.17),
the dilaton is again linear along the X1 direction, with
gradient given by Eq. (5.18). However, the gradient in the
timelike direction is given by (5.19), with an overall sign
change: q2 ¼ �Q2. This is positive definite for all D � 2.
The special case in which F0 ¼ q corresponds to spacelike
Liouville theory with a null linear dilaton in the critical
dimension D ¼ 26.

It is instructive to look for other static tachyon solutions.
One method is to solve (5.16) order by order in �0. To
Oð�03Þ, one obtains
TðX1Þ ¼ �e�1X

1 þ �0e�1X
1ðc1 þ c2X

1Þ
þ �02e�1X

1

�
c3 þ c4X

1 þ 1

2�
c22ðX1Þ2

�

þ �03e�1X
1

�
c5 þ c6X

1 þ 1

�

�
c2c4 � 1

2�
c1c

2
2

�

� ðX1Þ2 þ 1

6�2
c32ðX1Þ3

�
þOð�04Þ; (5.22)

where cn are free constants. It is easy to find a set of

constants cn such that the tachyon exhibits a ‘‘lump’’
configuration over some intermediate range in X1 (and
the square of the longitudinal dilaton gradient is positive
definite).
The exponential prefactor expð�1X

1Þ is present in the
solution (5.22) to all orders in �0, multiplying terms that
are universally polynomial in X1. The prefactor therefore
dominates in the asymptotic regions, and the tachyon is
forced to vanish at X1 ¼ �1, depending on the sign of �1.
An example lump profile is depicted in Fig. 12(a). In the
string frame, the metric exhibits a configuration that is
finite over a semi-infinite region, with a localized ‘‘pseu-
dosoliton’’ in some separate region. The resulting picture is
a semi-infinite universe in D dimensions, with an effec-
tively lower-dimensional neighboring parallel universe. In
the Einstein frame, the semi-infinite region of the finite
metric can be removed by arranging the transverse dilaton
to increase in the appropriate direction. This is displayed in
Fig. 12(b), with f1ðTÞ ¼ expð�T2Þ.
Of course, one should keep in mind that the effective

action itself is not an exact description of string theory, and
higher-order effects are likely to become important in the
absence of some special mechanism (as with the null
tachyon). Even so, the leading-order behavior of nonexact
solutions can often serve as a useful qualitative guide in
determining the types of solutions that are possible.
In addition, one should also consider solutions for which

the sigma-model metric is nonflat. In these cases, the
dilaton must have a vanishing longitudinal gradient.8 To
study the ability of a solitonic configuration to localize the
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T

(a) Tachyon
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X1

aE

(b) Einstein-frame warp factor

FIG. 12 (color online). A lump configuration of the spatially varying tachyon [panel (a)] with a flat sigma-model metric. The
asymptotic regions are dominated by an overall exponential prefactor in the solution that is present to all orders in �0. The Einstein-
frame metric [panel (b)] exhibits a solitonic configuration of localized spacetime.

8A recent paper [33] has provided evidence for the existence of
a codimension one soliton in closed string field theory. In that
analysis, the dilaton did not vary longitudinally along the soliton,
though the more general case was not considered directly.
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universe along a spatial direction, it is most natural to work
in the Einstein frame, and a straightforward approach is to
search for numerical solutions to the equations of motion
that exhibit the qualitative properties of interest. If the
dilaton and tachyon are arranged to increase in opposite
coordinate directions (like all of the examples studied
above), the warp factor in the Einstein frame ~aE will
naturally acquire local support in a region where both the
dilaton and tachyon are small.

One such set of numerical solutions is displayed for
various D in Fig. 13. In these solutions, the dilaton in-
creases in the negative X1 direction, while the tachyon

magnitude increases in the positive X1 direction. This is
depicted in Fig. 14. Along the negative X1 axis, the growth
of the dilaton drives the warp factor toward zero size, while
along the positive X1 direction the growth of the tachyon
drives ~aE toward zero as well. The scale factor can exist at
finite size in the region in between. Taken at face value, the
overall scale of the confined dimension is essentially a
function of initial conditions. For a given set of initial
conditions, the dilaton and tachyon solutions do not vary
considerably with shifting D (see Fig. 14). Of course, the
string theory can become strongly coupled deep in the
region of negative X1, so the solution is subject to correc-
tions there. Furthermore, �0 corrections can become im-
portant in regions that exhibit singular (or near-singular)
behavior. Again, these types of solutions should therefore
be viewed only as toy models.

VI. SUMMARYAND CONCLUSIONS

We have seen that there is a unique two-derivative
effective action that perturbatively supports the full class
of solutions in Eq. (2.5). Finding this effective action
amounts to finding a perturbative expansion for the func-
tion f1ðTÞ, defined as a prefactor of the Einstein-Hilbert
term in the sigma-model frame. Demanding that the gen-
eral action support the linearized solutions in Eq. (2.5)
allowed us to solve for f1ðTÞ to quadratic order.
Taken at face value, the solutions of interest generically

encounter singularities as the tachyon evolves to become of
order 1. This confirms the general expectations provided by
[41]. At T 
 1, however, we expect these solutions to
become subject to higher-order corrections. We saw that
the two-derivative effective action supports the null
tachyon for any f1ðTÞ, and possible modifications from
higher-order effects are restricted to affect the spacetime
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1.00
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FIG. 13 (color online). An example of a solitonic tachyon
configuration that localizes spacetime in a spatial direction, at
D ¼ 30 (dashed curve), D ¼ 100 (solid curve), and D ¼ 150
(dotted curve). Increasing D brings the scale factor closer to a
constant over the finite region of the solution. The overall scale
of the localized dimension is roughly constant for a given set of
boundary conditions.
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FIG. 14 (color online). Behavior of the dilaton and tachyon in a solitonic configuration (D ¼ 100). With a given set of boundary
conditions, the numerical solutions for the dilaton and tachyon do not vary visibly with varying dimension.
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solution only through higher-order constraints to the func-
tion f1ðTÞ.

Considering the effective action for completely general
f1ðTÞ, we showed that singularities in the string-frame
action arise either from singularities of the metric itself,
or from prefactors of the matter kinetic terms that arise
from the Weyl transformation in Eq. (3.1). If we demand
that the latter singularities are absent, and that the gravity
sector remains unitary for all T, then the curvature singu-
larities of the null tachyon system are resolved for all finite
values of the tachyon itself. The resolution of these singu-
larities suggests an interesting description of how cosmo-
logical time can be initiated or terminated in string theory.
We expect there to be many applications of this sort of
mechanism in more general cosmological models.

Of course, we should leave open the possibility that the
framework of the spacetime effective action is simply
insufficient to capture the physics of bulk tachyon con-
densation, and that a careful accounting of higher-order
corrections to the action will reveal unavoidable singular-
ities arising at finite values of the tachyon, even for exact
solutions. It would certainly be interesting to try to con-
strain possible higher-order corrections to the effective
action directly. The general expectation is that higher-order
effects in conformal perturbation theory will amount to

corrections to f1ðTÞ beyond quadratic order. There is not a
unique function that satisfies the conditions on f1ðTÞ given
in Sec. IV, but a test to determine whether corrections
beyond OðT2Þ can resolve cosmological singularities is to
see whether higher-order terms divert the function from
crossing zero at T ¼ 1. A promising hint of this would be
that the next term in the series is positive definite for all T.
In other words, one might expect general higher-order
effects to yield a correction to f1ðTÞ of the form

f1ðTÞ ¼ 1� T2 þ cTn þOðTnþ1Þ; (6.1)

where c is positive definite and n is an even integer. It
would clearly be valuable to test this prediction by direct
methods.
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