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We propose a generalization of the Bagger-Lambert-Gustavsson action as a candidate for the

description of an arbitrary number of M2-branes. The action is formulated in terms ofN ¼ 2 superfields

in three dimensions and corresponds to an extension of the usual superfield formulation of Chern-Simons

matter theories. Demanding gauge invariance of the resulting theory does not imply the total antisym-

metry of the underlying 3-Lie algebra structure constants. We relax this condition and propose a class of

examples for these generalized 3-Lie algebras. We also discuss various associated ordinary Lie algebras.
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I. INTRODUCTION

Inspired by the results of [1], Bagger and Lambert [2–4]
and Gustavsson [5,6] constructed a theory which they
conjectured to describe stacks of M2-branes, analogously
to maximally supersymmetric Yang-Mills (SYM) theory
describing the low-energy effective theory of multiple D-
branes. The theory is an N ¼ 8 supersymmetric Chern-
Simons matter theory living on a three-dimensional
Minkowski space. The no-go theorem for the construction
of such theories [7] is circumvented by replacing the gauge
algebra structure by a so-called 3-Lie algebra. Later on, it
has been shown [8] that there exists a procedure1 which can
be interpreted as compactifying a transverse direction on a
circle and which reduces the Bagger-Lambert-Gustavsson
(BLG) theory to the corresponding action on multiple D2-
branes plus corrections in 1

gYM
; this confirmed the original

interpretation of BLG.
Since its construction, this model has received a great

deal of attention. A serious shortcoming was however
encountered soon: the only 3-Lie algebra with positive
definite metric which reduces to super Yang-Mills theory
with gauge group UðNÞ is—in the classification of [11]—
A4, as was shown in [12]; see also [13–16]. The BLG
theory with this 3-Lie algebra describes two M2-branes
according to the interpretation of [8]. Thus, it seems that
the structure of a 3-Lie algebra has to be generalized to
accommodate stacks of more than two M2-branes. Various
generalizations have been proposed in the literature and we
discuss them in section II C. The most prominent modifi-
cation introduces ghosts into the theory and after removing
them, one is left with the ordinaryN ¼ 8 SYM theory on
R1;2 [17], which is not the M2-brane theory one would
expect.

In this paper, we try to formulate a BLG-like theory
using the N ¼ 2 superspace extension of R1;2; for pre-
vious work in a similar direction see [18] and also [19]. Our
goal is to write down a fully supersymmetric theory which

makes use of a triple bracket ½�; �; ��: A�A�A ! A
on a vector spaceA. In contrast to the BLG theory, we do
not demand this bracket to be totally antisymmetric.
However, we demand that the kinetic term for the gauge
potential be of the same Chern-Simons form as in the BLG
theory. We then impose the minimal constraints on the
triple bracket to achieve gauge invariance of our theory.
The result is indeed a generalization of the concept of a
metric 3-Lie algebra.
We briefly review 3-Lie algebras and the BLG theory in

section II before we write down a new superfield action in
section III. In this section, we also derive the component
action and its equations of motion, and discuss some of the
model’s properties. Section IV deals with generalized 3-
Lie algebras: After giving the definition, we present a class
of examples and discuss possible reduction mechanisms to
ordinary Lie algebras. We conclude with section V.

II. THE BLG THEORY

First, we will briefly recall the definition of metric n-Lie
algebras as introduced by Filippov in [11], of which ordi-
nary Lie algebras (n ¼ 2) and the 3-Lie algebras appearing
in the BLG theory are special cases. We then review the
Bagger-Lambert-Gustavsson (BLG) theory, which was es-
sentially developed in the papers [2–6]. Also, we summa-
rize some drawbacks of the conventional formulations of
the theory. These motivate us to introduce a generalized 3-
Lie algebra and a gauge theory Lagrangian based on it.

A. Reminder: n-Lie algebras

Definition. Given a C-module A, define a (complex)
n-Lie algebra [11] as an algebra with an n-ary map
½�; . . . ; ��: An ! A such that:
(a) ½�; . . . ; �� is totally antisymmetric, i.e.

½�1; . . . ; �n� ¼ ð�1Þj�j½��ð1Þ; . . . ; ��ðnÞ�;
�i 2 A

(2.1)

(b) any ðn� 1Þ-plet acts via ½�; . . . ; �� as a derivation,
i.e. the bracket satisfies the fundamental identity for
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1See also [9,10] for an interpretation of this mechanism.
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all �i, �i 2 A

½�1; . . . ; �n�1; ½�1; . . . ;�n��

¼Xn
i¼1

½�1; . . . ;�i�1; ½�1; . . . ; �n�1;�i�; �iþ1; . . . ;�n�:

(2.2)

Simple examples are given by the n-Lie algebras [11]
Anþ1, n 2 N: Consider an nþ 1-dimensional complex
vector space V with an orthonormal basis ðe�Þ and define

the n-ary product ½x1; . . . ; xn�, x� 2 V as the determinant

of the matrix ðx1 . . . xneÞ. In particular, the algebra A4 has
attracted much attention recently in the following form:
Let A be spanned by the four-dimensional �-matrices2

ð��Þ and let �5 ¼ �1 . . .�4. One can define a triple product
[5]

½a; b; c� :¼ ½½a; b��5; c�; a; b; c 2 A; (2.3)

which makes A into a 3-Lie algebra isomorphic to A4, as
one readily checks.

For simplicity, let us now restrict to the case of 3-Lie
algebras, although most of the notions readily generalize to
arbitrary n-Lie algebras. A submodule I � A is called an
ideal, if for all i 2 I , a, b 2 A, the product ½i; a; b� is
again in I . A 3-Lie algebra A is called simple, if A � 0
andA contains no ideals except for 0 andA. It is easy to
see that the 3-Lie algebra A4 is simple.

Let us now add more structure to the 3-Lie algebra. IfA
as a vector space is spanned by the basis ð�aÞ, then the
triple product is completely encoded in the structure con-
stants fabcd defined via

½�a; �b; �c� ¼: fabcd�
d; (2.4)

and they are antisymmetric in the first three indices by
definition, cf. (2.1). Defining a Hermitian structure via the
pairing ð�; �Þ: A2 ! C, we have a Hermitian matrix hab

from

ð�a; �bÞ ¼: hab: (2.5)

We can use this tensor to lift indices: fabce ¼ hedfabcd. If
we require that the pairing is invariant under the trans-
formations generated by the 3-bracket, i.e.

ð½�c; �d; �a�; �bÞ þ ð�a; ½�c; �d; �b�Þ ¼ 0 (2.6)

for all �a, �a 2 A, then fabcd is totally antisymmetric, see
e.g. [15]. In terms of the structure constants, the funda-
mental identity (2.2) reads

fefgdf
abc

g ¼ fefagf
gbc

d þ fefbgf
agc

d þ fefcgf
abg

d

(2.7)

and is related to contracted Plücker equations [13,15]. Note

that the structure constants of A4 are given by fabcd ¼
4"abcd.
The representations of the n-Lie algebras An have been

studied in [20]; further remarks on representation theory of
3-Lie algebras are found in [21].

B. The Bagger-Lambert-Gustavsson theory

Consider a real 3-Lie algebra A of dimension k with
generators �a, a ¼ 1; . . . ; k, structure constants fabcd and a
symmetric bilinear pairing ð�; �Þ: A�A ! R satisfying
(2.6) and giving rise to a positive definite metric hab ¼
ð�a; �bÞ. The field content of the BLG theory is given by
eight scalar fields XIa, I ¼ 1; . . . ; 8, transforming in the
vector representation of SOð8Þ and world-volume
Majorana spinors �a having (suppressed) spinor indices
ofSOð1; 2Þ and SOð8Þ. Both take values in a 3-Lie algebra,
as indicated by the index a. We work with the 32�
32-dimensional, anticommuting gamma matrices
ð��;�IÞ, where we split the 11-dimensional index into
ð�; IÞ according to the branching SOð1; 10Þ � SOð1; 2Þ �
SOð8Þ. The spinors are the Goldstinos of this symmetry
breaking and thus satisfy �012 

a ¼ � a. From the
Majorana property, we obtain � a ¼ ð aÞTC, where C is
the charge conjugation operator as described e.g. in
appendix B of [22]. In addition, there is a gauge potential
A�ab ¼ �A�ba, yielding a covariant derivative

ðr�XÞa ¼ @�Xa � Xb ~A
b
a; ~A�

b
a :¼ A�cdf

cdb
a:

(2.8)

For future use, we associate a field strength ~F��
a
b to this

potential:

~F ��
a
b ¼ @� ~A�

a
b � @� ~A�

a
b þ ~A�

a
c
~A�

c
b � ~A�

a
c
~A�

c
b:

(2.9)

The Lagrangian of the BLG theory takes the form [3]

L BLG ¼ � 1

2
ðr�X

Iar�XIaÞ þ i

2
��a��r��a

þ fabcd
i

4
��b�IJX

I
cX

J
d�a

� 1

12
fabcdfefgdX

I
aX

J
bX

K
c X

I
eX

J
fX

K
g

þ 1

2
"���

�
fabcdA�ab@�A�cd

þ 2

3
fcdagf

efgbA�abA�cdA�ef

�
: (2.10)

We chose to give the Lagrangian in terms of the structure
constants rather than the 3-bracket as in this way, we avoid
any ambiguities in the treatment of the fermionic fields.
The equations of motion to (2.10), which had been inde-
pendently derived in [5], are given by [3]2See the appendix for more details on our conventions.
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r�r�XKa � i

2
��c�

K
IX

I
d�bf

bcd
a

þ 1

2
fbcdgf

efg
aX

I
eX

J
fX

I
bX

J
cX

K
d ¼ 0;

��r��a þ 1

2
fcdba�IJX

I
cX

J
d�b ¼ 0;

~F��
b
a þ "���

�
XJcr�XJd þ

i

2
��c�

��d

�
fcdba ¼ 0: (2.11)

The action arising from the Lagrangian (2.10) is invari-
ant under the supersymmetries generated by

�XIa ¼ i �"�I�a;

��a ¼ r�X
I
a�

��I"� 1

6
XIbX

J
cX

K
d f

bcd
a�

IJK";

� ~A�
b
a ¼ i �"���IX

I
c�df

cdb
a;

(2.12)

up to equations of motion; the corresponding supersym-
metry algebra closes only on shell and requiring closure of
this algebra is how the equations of motion were found in
the first place. Here," is a Majorana spinor corresponding
to the 16 unbroken supersymmetries under the branching
SOð1; 2Þ � SOð8Þ � SOð1; 10Þ and thus satisfies �012" ¼
".

The action is simultaneously invariant under the gauge
transformations of the form

�Xd ¼ ~	cdXc; �X ¼ 	ab½�a; �b; X�;
��d ¼ ~	cd�c; �� ¼ 	ab½�a; �b;��;

�A�ab ¼ @�	ab þ ~	caA�cb þ ~	cbA�ac;

� ~A�
a
b ¼ r�

~	ab ¼: @� ~	
a
b þ ~A�

a
c
~	cb � ~	ac ~A�

c
b;

� ~F��
a
b ¼ �~	ac ~F��

c
b þ ~F��

a
c
~	cb; (2.13)

where tilded objects are defined as before, i.e. for example
~	cd ¼ fabcd	ab. As one easily verifies, the gauge algebra

closes. Note that in [3], the field ~A�
a
b was considered

physical, and only the gauge transformations for this field
were given. The transformation law we gave here for the

field A�ab is compatible with that of ~A�
a
b and the resulting

gauge algebra closes again.

Since we also have �ðr�XÞa ¼ ~	caðr�XÞc, gauge in-

variance of all terms except for the Chern-Simons term is
evident. The latter is found to transform according to

�LCS ¼ "���ð�A�abÞ ~F��ahhbh: (2.14)

This is the usual transformation law for Chern-Simons
theory, and the gauge transformations produce a term con-
taining a total derivative and a winding number term.

C. Shortcomings of the theory

Fixing one of the indices in the structure constants of a
3-Lie algebraA, one obtains the structure constants of the

associated 2-Lie algebra ~Aða0Þ [11]:

~f bcd ¼ fa0bcd: (2.15)

Because of the fundamental identity (2.7), the Jacobi iden-
tity

~f ijk ~f
kl
m þ ~flik ~f

kj
m þ ~fjlk ~f

ki
m ¼ 0 (2.16)

is automatically satisfied. This reduction can be imple-
mented by a Higgsing procedure [8] which effectively
reduces the BLG theory to a deformed version of the
Yang-Mills theory describing the low energy effective
action on multiple D2 branes, cf. section IVC. It has
been shown in [12] and later in [13,14] that essentially
the only 3-Lie algebra admitting uðNÞ as its associated 2-
Lie algebra is isomorphic3 to A4. In this case, the Lie

algebra obtained is suð2Þ, as ~fabc ¼ 4"abc. This implies
that—supposing the Higgsing procedure of [8]—the BLG
theory can only describe a stack of two M2-branes.
To extend to a description of more than two M2-branes,

there are essentially two strategies: giving up total anti-
symmetry of the structure constants or giving up a positive
definite metric. The first approach has been followed in
[23], where the BLG theory has been discussed in this
more general setting on the level of equations of motion.
The latter approach has been followed in [24–29], see also
[30], and introduces ghosts into the theory. A detailed
analysis of this situation can be found in [31]. The results
of [17] seem to indicate, however, that after removing the
ghosts, one arrives at maximally supersymmetric Yang-
Mills theory in three dimensions and thus at exactly the
low energy description of a stack of D2-branes. The ab-
sence of corrections shows that this is not the M2-brane
theory one would hope for.
A third, more recently proposed variant is a reformula-

tion of the BLG theory [32] as a UðNÞ � UðNÞ gauge
theory. The latter seems particularly attractive, as it has
been shown [33] that this theory is integrable.

III. SUPERFIELD FORMULATION

In this section, we develop a superfield formulation of
BLG-like actions. This formulation automatically gives us
a manifestly N ¼ 2 supersymmetric theory. The con-
straints we have to impose on the structure constants of
the generalized 3-Lie algebra come from imposing gauge
symmetry. We find that the structure constants do not have
to be totally antisymmetric. Let us also stress that even
with totally antisymmetric structure constants, our theory
will differ from the BLG model.

3Evidently, a similar reduction process from a nþ 1-algebra
to a n-algebra can be defined. For the series An, this reduction
always ends up with A4, as the structure constants are the
n-dimensional epsilon-tensors.
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A. Conventions

We follow closely the conventions of Wess and Bagger
[34]. Three-dimensional N ¼ 2 superspace can be ob-
tained by the usual Kaluza-Klein dimensional reduction
of ordinary, four-dimensional N ¼ 1 superspace in the
x2-direction, i.e.

��̂
 _
 !
�
�ð0;1;2Þ

 _
 ¼ �ð0̂;1̂;3̂Þ

ð
 _
Þ ; �̂ � 2;
i"
 _
; �̂ ¼ 2:

(3.1)

We work with signature ð�;þ;þÞ and our "-conventions
read

"21 ¼ "12 ¼ �"12 ¼ �"21 ¼ 1: (3.2)

The superspace R3j4 has coordinates ðx�; �
; �� _
Þ with the
usual reality condition that �� _
 ¼ ��
. Also we use as a
raising and lowering convention for spinor indices  
 ¼
"
� � and  
 ¼ "
� 

� as well as the shorthand notations

�4 :¼ �2 ��2, ð�	Þ :¼ �
	
 and ð �� �	Þ :¼ �� _

�	 _
. There is no

longer a distinction between dotted and undotted indices in
three dimensions, as all fermion fields are spinors of
SLð2;RÞ and thus real; for convenience, we nevertheless
use them in our formulas. Note, however, that we defined
different conventions for the contraction of either barred or
unbarred spinors.

The coordinates on the chiral and antichiral superspaces
are defined as

y� :¼ x� þ i�
�
�

 _


�� _
; �y� :¼ x� � i�
�
�

 _


�� _
:

(3.3)

We use the superfield expansions with the gauge super-
field inWess-Zumino gauge as given in [34]. Note that bars
are used instead of daggers to simplify notation:

�iðyÞ ¼
iðyÞ þ ffiffiffi
2

p ð� iðyÞÞþ �2FiðyÞ; i¼ 1; . . . ;4;

��ið �yÞ ¼ �
ið �yÞ þ ffiffiffi
2

p ð �� � ið �yÞÞ� ��2 �Fið �yÞ;
VWZðxÞ ¼ ��
 �� _
ð��
 _
A�ðxÞ þ i"
 _
�ðxÞÞ þ i�2ð �� �	ðxÞÞ

� i ��2ð�	ðxÞÞþ 1

2
�2 ��2DðxÞ: (3.4)

As far as the 3-algebra structure is concerned, we as-
sume that we have a real vector space A endowed with a
triple bracket ½�; �; ��: A�A�A ! A and a symmet-
ric, bilinear, positive definite pairing ð�; �Þ: A�A ! R.
We assume that A is finite dimensional and can be
spanned by the basis ð�aÞ, which defines the structure
constants and the metric tensor as before:

½�a; �b; �c� ¼ fabcd�
d; hab ¼ ð�a; �bÞ;

fabcd ¼ fabceh
ed ¼ ð½�a; �b; �c�; �dÞ: (3.5)

No further constraints are imposed on the 3-algebra a
priori.

B. The superfield action

Note that already in the paper [2], the authors gave the
following superspace Lagrangian for the ungauged theory:

L ¼ c1
Z

d4�ð ��i;�iÞ þ c2
Z

d2�"ijklð�i; ½�j;�k;�l�Þ

þ c2
Z

d2 ��"ijklð ��i; ½ ��j; ��k; ��l�Þ; (3.6)

where c1, c2 are (real) constants. The body 
i of the
superfield �i is identified with the linear combination
XI þ iXIþ1, where I ¼ 2i� 1. In the following, we extend
this superspace Lagrangian to incorporate a gauge theory.
The N ¼ 2 superfield Lagrangian for Chern-Simons

theory is well-known [35,36]. This Lagrangian uses a
formal parameter t, which is integrated over, and we fix
the simplest possible t-dependence. For a discussion of
more general choices, see [36]. Our action S ¼ R

d3xL is

given by the Lagrangian L ¼ LCS þLCS0 þLM whose
individual parts are

LCS ¼ �

2

Z 1

0
dt
Z

d4�V � ð"
 _
 �D _
ðexpð2it ~VÞ
�D
ðexpð�2it ~VÞÞÞÞ;

LCS0 ¼ �

2

Z 1

0
dt
Z

d4�12V � "
 _
ð�ð2it ~VÞ �D _
D
ð�2it ~VÞ
þ �D _
D
ð2it ~VÞð�2it ~VÞÞ;

LM ¼
Z

d4�ð ��;�expð2i ~VÞÞ þ
Z

d2�W ð�Þ

þ
Z

d2 ��W ð ��Þ; (3.7)

where the various products are defined as

A� ~B :¼ Aab ~B
a
ch

cb;

ð ~A ~BÞab :¼ ~Aac ~B
c
b and ð�~AÞa :¼ �b

~Aba:
(3.8)

The superpotential W ð�Þ is a polynomial in � with
indices fully contracted and constructed from the triple
bracket and the metric. The term LCS0 is responsible for
cancelling couplings between the gauge and matter fields
which go beyond the minimal possible coupling. This is a
new feature of the gauge theory using the triple bracket. It
is trivial to see that this term would vanish if the gauge
algebra were an ordinary Lie algebra.4 The Lagrangian is
trivially supersymmetric, as all the summands are super-
fields and the full integral over the superspace has to
transform into spacetime derivatives under supersymmetry
transformations. We can thus focus on discussing the gauge
invariance. In fact, not surprisingly, all the restrictions on
the structure constants of the generalized 3-Lie algebra
come from imposing gauge symmetry.

4In this case, there was no distinction between V and ~V and a
trace would enclose all terms.
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First of all, we want the covariant derivative to read as

ðr�
Þa ¼ @�
a �
c
~Aca; (3.9)

and this is the reason for putting the exponential factor
containing the vector superfield in the D-term on the right
hand side of the scalar superfield in LM. To reproduce the
appropriate kinetic terms for scalars and fermions, we have
to impose the condition

hbc ~Aac ¼: ~Aab ¼ � ~Aba , fabcd ¼ �fabdc: (3.10)

This condition amounts to metric compatibility, cf. (2.6),
and we will come back to this point. Note that this cova-
riant derivative can be partially integrated:

ðr�
;  Þ ¼ �ð
;r� Þ: (3.11)

We can now summarize the contributions of the various
parts of the Lagrangian to the total action in terms of the
component fields:

LCS ¼ �

�
"���

�
A� � ð@� ~A�Þ þ 2

3
A� � ð ~A� ~A�Þ

�
� i �	
 � ~	
 � i	
 � ~�	


 �D� ~�� �� ~D

� 2

3
iA� � ð~� ~A�Þ þ 2

3
iA� � ð ~A� ~�Þ

�
;

LCS0 ¼ �

�
2

3
iA� � ð~� ~A�Þ � 2

3
iA� � ð ~A� ~�Þ

�
;

LM ¼ ð �Fi; FiÞ � ðr�
�
i;r�
iÞ � ið � i; ��r� 

iÞ þ ið �
i;
i ~DÞ � ffiffiffi
2

p ð �
i; ð i ~	ÞÞ þ ffiffiffi
2

p ðð � i~�	Þ; 
iÞ
þ ð �
i;
i ~� ~�Þ � " _

ð � i_
;  i
 ~�Þ þ

Z
d2�W ð�Þ þ

Z
d2 ��W ð ��Þ: (3.12)

C. Constraints on the structure constants and gauge
invariance

There are two constraints which we have to impose on
the structure constants right away: First, we demand that
under the gauge symmetries X � X þ ½a; b; X� generated
by the 3-bracket, a 3-bracket of scalars should transform as
a scalar. This amounts to the fundamental identity (2.7).
Second, the scalar product ð�; �Þ should be invariant under
these symmetries, cf. (2.6). This implies that the structure
constants are antisymmetric in their last two indices, the
condition we stated above in Eq. (3.10) for arriving at the
desired kinetic terms for the matter fields.

One further constraint comes from gauge invariance.
Consider the following gauge transformations:

expð2i ~V0Þ ¼ expð�i ~�Þ expð2i ~VÞ expði ~��Þ;
�0 ¼ �expði ~�Þ; ��0 ¼ expð�i ~��Þ ��;

(3.13)

where � and �� are chiral and antichiral superfields, re-
spectively. Restricting supergauge transformations to those

preserving the Wess-Zumino gauge, we obtain ~� ¼ i	.
Note that we work with the convention �	 ¼ �	. We
have then:

�
i
d ¼ ~	cd


i
c; �
i ¼ 	ab½�a; �b;
i�;

� id ¼ ~	cd 
i
c; � i ¼ 	ab½�a; �b;  i�;

�A�ab ¼ @�	ab þ ~	caA�cb þ ~	cbA�ac;

� ~A�
a
b ¼ r�

~	ab ¼: @� ~	
a
b þ ~A�

a
c
~	cb � ~	ac ~A�

c
b;

ð�DÞab ¼ ~	caDcb þ ~	cbDac; ��¼ ~	ca�cb þ ~	cb�ac:

(3.14)

Closure of the gauge algebra is again immediate and does
not require any constraints on the structure constants.
Gauge invariance of the action implies that the Chern-
Simons term should transform according to

�

�
"���

�
A� � ð@� ~A�Þ þ 2

3
A� � ð ~A� ~A�Þ

��
¼ "���ð�A�Þ � ~F��; (3.15)

cf. (2.14). Here, the field strength ~F�� is defined in (2.9).
For the transformation law (3.15), we needed the property
fabcd ¼ fcdab of the structure constants. Altogether, the
total symmetry properties of the structure constants are

fabcd ¼ �fbacd ¼ �fabdc ¼ fcdab: (3.16)

Using these relations and the fundamental identity, we can
easily check the gauge invariance of the action, e.g.

�ðD� ~�Þ ¼ ð�DÞ � ~�þD� ð�~�Þ
¼ Deb	gh�cdðfabcdfghea þ feacdfghba

þ febadfghca þ febcafghdaÞ ¼ 0; (3.17)

The terms arising from the superpotential are gauge invari-
ant, as long as all expressions are constructed from the
pairing ð�; �Þ and the three-bracket ½�; �; ��:
One should stress that the symmetry properties given

above in (3.16) guarantee supersymmetry as well as gauge
invariance of our action (3.7). These symmetry properties,
however, are not sufficient to render the original BLG
theory supersymmetric, while its gauge invariance is guar-
anteed by the fundamental identity and the metric com-
patibility condition.
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D. Component action and equations of motion

Having fixed the symmetry properties of the structure
constants fabcd to (3.16), we can integrate out the auxiliary
fieldsD,�,Fi and 	
 to arrive at the component action and
determine the equations of motion. The Lagrangian then
reads

L ¼ �"���
�
A� � ð@� ~A�Þ þ 2

3
A� � ð ~A� ~A�Þ

�
� ðr�

�
i;r�
iÞ � ið � i; ��r� 
iÞ

þ 1

4�2
ð½ �
i;
i; 
j�; ½ �
k;
k; �
j�Þ

� i

2�
ð½ �
i;
i; � j
�;  j
Þ þ i

�
ð½ � j
;
j; �
i�;  i
Þ

þ
Z

d2�W ð�Þ þ
Z

d2 ��W ð ��Þ: (3.18)

Note that one has to fix a convention for how to treat
fermionic fields and their interchange in a triple bracket.
The bracket we use is independent of parity in the follow-
ing sense:

ð½A; B;C�; DÞ :¼ AaBbCcDdð½�a; �b; �c�; �dÞ
¼ AaBbCcDdf

abcd: (3.19)

Putting the superpotential terms to zero, we obtain the
corresponding equations of motion:

2 ~F��
a
b þ "���ði � ie�� if � �
i

eðr�
iÞf
þðr� �
iÞe
i

fÞfefab ¼ 0;

ð��r� 
iÞ _
 � 1

2�
½ �
j;
j;  i_
� �

1

�
½ �
j;  j_
;


i� ¼ 0;

r�r�
i � 1

2�2
½
j; ½ �
k;
k; �
j�; 
i�

þ 1

4�2
½ �
k;
k; ½ �
j;
j; 
i��

� i

2�
½ � j
;  j
;
i� þ i

�
½ � j
;
j;  i
� ¼ 0:

(3.20)

Examples of the superpotential terms involving one triple
bracket and yielding nontrivial contributions are

W 
ð�Þ ¼ 
"ijklð½�i;�j;�k�;�lÞ and

W �ð�Þ ¼ �ð½�i;�j;�i�;�jÞ: (3.21)

The first term reproduces the potential terms of the BLG
theory; the second term evidently vanishes if the triple
bracket is given by that of a 3-Lie algebra.

E. Reduced R-symmetry and generalizations

Rewriting the component action (3.18) using real scalar
fields XI, one notices that the symmetry group SOð8Þ
mixing the eight real scalar fields (as well as their fermi-

onic superpartners) of the free action is broken by the
matter field potential down to Uð4Þ. This is reminiscent
of the case of N ¼ 4 super Yang-Mills theory in four
dimensions written in terms of N ¼ 1 superfields, where
the full R-symmetry group was only obtained since the
couplings of the superpotential terms are tuned to a specific
value. Let us therefore look more carefully at the super-
potential terms at hand (3.21). The first term W 
ð�Þ
breaks Uð4Þ down to SUð4Þ � Z2 and produces the BLG
interaction terms which we know to be invariant under
SOð8Þ. (All the indices I, J, K appearing after replacing

i ! XI þ iXIþ1 with I ¼ 2i� 1 are contracted with
�IJ.) The second term W �ð�Þ, however, would break

the R-symmetry group even more severely than the poten-
tial terms arising from integrating out the auxiliary fieldsD
and �: the (manifest) resulting subgroup would be SOð4Þ.
One easily verifies that adding arbitrary combinations of
these superpotential terms to the action cannot restore the
SOð8Þ invariance. Without the potential terms, the
Lagrangian (3.18) is Uð4Þ invariant. Whether the proposed
Lagrangian has enhanced supersymmetry and what part of
this Uð4Þ symmetry is an R-symmetry and what part is just
the flavour symmetry remains to be seen.
An unlikely solution to the problem of restoring the full

R-symmetry group might be a deformation of the D-term
in the action, which corresponds to assuming that the target
space of the M2-branes is not flat space but has a nontrivial
Kähler potential. It is perceivable that a suitable deforma-
tion yields an enlarged R-symmetry group.
We should stress that after restricting to an ordinary 3-

Lie algebra, our theory does not quite reproduce the BLG
theory, but comes with additional terms in the potential,
and thus the theories are necessarily different.
We have, however, quite an amount of freedom in de-

forming our theory. In particular, one could add a super-
symmetric Yang-Mills-Higgs term. A theory containing
both a topological term and a Yang-Mills terms usually
has interesting duality properties and therefore one should
certainly examine this deformation in more detail.

IV. GENERALIZED 3-LIE ALGEBRAS

In this section, we formalize our findings from the
previous section and introduce the notion of a generalized
3-Lie algebra. We also give a class of examples for this
structure and discuss various reduction mechanisms, which
allow for obtaining ordinary Lie algebras from the gener-
alized 3-Lie algebras.

A. Definition

Our generalization of the notion of an n-Lie algebra
essentially amounts to relaxing total antisymmetry of the
structure constants:
Definition. Given an R-module A, we define a real

generalized 3-Lie algebra with pairing as an algebra A
with a ternary map ½�; �; ��: A3 ! A and a symmetric,
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bilinear, positive definite pairing ð�; �Þ: A2 ! R satisfying
the following properties:

(1) fundamental identity:

½x; y; ½a; b; c�� ¼ ½½x; y; a�; b; c� þ ½a; ½x; y; b�; c�
þ ½a; b; ½x; y; c�� (4.1)

(2) invariance of the pairing or metric compatibility
condition:

ð½x; y; a�; bÞ þ ða; ½x; y; b�Þ ¼ 0 (4.2)

(3) the additional symmetry property:

ð½x; y; a�; bÞ ¼ ð½a; b; x�; yÞ (4.3)

for all x, y, a, b, c 2 A.
The first condition guarantees that a 3-bracket of scalars

transforms as a scalar. The second property guarantees the
invariance of the pairing ð�; �Þ. The third property seems to
be crucial in defining gauge invariant, supersymmetric
actions as demonstrated above.

The pairing allows us to introduce a metric correspond-
ing to a basis ð�aÞ by

hab ¼ ð�a; �bÞ; (4.4)

and, since the pairing is positive definite, we can raise and
lower indices using this metric. Structure constants
fabcd 2 R are introduced as for 3-Lie algebras:

½�a; �b; �c� ¼ fabcd�
d and fabcd ¼ fabceh

de: (4.5)

The conditions we imposed above on our generalized 3-Lie
algebra with pairing can be reformulated using the struc-
ture constants. The fundamental identity reads as

fefgdf
abc

g ¼ fefagf
gbc

d þ fefbgf
agc

d þ fefcgf
abg

d;

(4.6)

and the remaining conditions are captured by the symmetry
properties

fabcd ¼ �fbacd ¼ �fabdc ¼ fcdab: (4.7)

A submodule I � A is called a left ideal, if for all i 2
I , a, b 2 A, we have ½a; b; i� 2 I ; it is called a right
ideal, if for all i 2 I , a, b 2 A, we have ½i; a; b� 2 A
instead. A generalized 3-Lie algebra is called simple, if the
only ideals it contains are the trivial ones.

B. The generalized 3-Lie algebras C2d
Let us now present a class of examples of generalized 3-

Lie algebras which are motivated by the original 3-bracket
in [5]. Consider the vector space V of Hermitian matrices
of dimension 2d� 2d and define �ch ¼ diagð1n;�1nÞ 2
V. Note that the vector space V splits into the direct sum
V ¼ V0 � V1 with

�cha0 ¼ þa0�ch; a0 2 V0;

�cha1 ¼ �a1�ch; a1 2 V1:
(4.8)

We take A ¼ V1 and, using the commutator ½a; b� :¼
ab� ba, define the ternary operation ½�; �; ��: A3 ! A as

½a1; a2; a3� � ½½a1; a2��ch; a3�; a1; a2; a3 2 A:

(4.9)

A slightly tedious calculation shows that the fundamental
identity (4.1) is satisfied.
As the bracket is not totally antisymmetric in general,

A satisfies only the requirements for being a generalized
3-Lie algebra. If we antisymmetrized the bracket (4.9),
however, we would loose the fundamental identity.
We can evidently define a symmetric positive definite

pairing on A by

ða; bÞ :¼ trðabÞ; a; b;2 A; (4.10)

which satisfies the compatibility condition (4.2):

tr ð½t1; t2; a�bÞ þ trða½t1; t2; b�Þ ¼ 0; (4.11)

as one readily verifies by a direct computation. We denote
this generalized 3-Lie algebra A with the 3-bracket (4.9)
and the pairing (4.10) ðA; ½�; �; ��; ð�; �ÞÞ by C2d.
Note that in the case of C4, we can restrict V1 to the four-

dimensional vector subspace spanned by the gamma ma-
trices in four dimensions, upon which it turns into the 3-Lie
algebra A4.
As a (real) basis for A, we can use products of odd

numbers of gamma matrices

�i; i�ijk; �ijklm; . . . : (4.12)

In this basis, the pairing in A reduces to the ordinary
scalar product:

ð�A; �BÞ :¼ trð�A�BÞ ¼ 2d�AB; (4.13)

where A, B are ordered multi-indices. The expression �AB

vanishes, unless the indices contained in A are the same as
the ones in B. Note that this Killing metric is positive
definite.
We can now define the structure constants

fABCD ¼ trð½½�A; �B��ch; �
C��DÞ; (4.14)

where A, B, C, D are multi-indices. The symmetry prop-
erties of the structure constants are summarized in

fABCD ¼ �fBACD; fABCD ¼ �fABDC;
fABCD ¼ fCDAB:

(4.15)

Note that with the basis (4.12), it is not difficult to see
that C2d is simple: Given two elements �A and �B of the
basis of A, where A and B are multi-indices, it is always
possible to find basis elements �C and �D such that
½�A; �C; �D� ¼ �B.
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C. Comments on the Higgs mechanism

To pass from a stack of M2-branes to a stack of D2-
branes, it is necessary to compactify the target space of the
theory along a transverse direction. In the paper [8], a
procedure for performing this reduction has been proposed.
It is based on compactifying a transverse direction on a
circle with radius R, which in turn is interpreted as fixing
the value of the corresponding scalar field. By
SOð8Þ-invariance, one can choose to fix

hX8i ¼ R

‘3=2p

¼
ffiffiffiffiffi
gs
‘s

s
¼ gYM; (4.16)

where R is the compactification radius, ‘p the Planck

length, gs and ‘s the string coupling constant and the string
length, respectively, and gYM the Yang-Mills coupling
constant in the effective field theory on the D2-brane.
This procedure, when applied to the BLG theory with a
3-Lie algebra given by the structure constants fabcd ¼
"abcd, results—according to [8]—in a theory which is a
deformation of N ¼ 8 SYM theory with gauge group
SUð2Þ in three dimensions with the deformation parameter
1
gYM

. That is, in the strong coupling limit, both theories

agree. The gauge algebra arises here by fixing one index of
the 3-Lie algebra structure constant: "abc ¼ "abc4.

If the generalized 3-Lie algebra is a 3-Lie algebra, i.e.
the structure constants are totally antisymmetric, this pro-
cedure applies also to our case with the Lagrangian (3.7).
However, it should yield a different deformation.

D. Associated Lie subalgebras

Let us now study a similar procedure in the case of C4 in
more detail. We choose again the basis (4.12) and select
�H ¼ �4 as the element with respect to which we want to
reduce. Explicitly, our basis reads as

�A ¼ ð�1; . . . ; �4; i�5�
1; . . . ; i�5�

4Þ: (4.17)

We have the pairing ð�A; �BÞ ¼ 4�AB and the nonvanishing
structure constants of the form fij41 read5

f1243 ¼ �f1342 ¼ f2341 ¼ �4;

f5643 ¼ �f5742 ¼ f6741 ¼ �4:
(4.18)

Then the set of generators f�1; �2; �3; i�5�
4g spans a Lie

subalgebra with respect to the bracket

½�A; �B� :¼ ½�A; �B; �4�: (4.19)

Another way of identifying a labeled Lie subalgebra for
a given element (the label) s in a generalized 3-Lie algebra
is to find a maximal set of elements Ls such that

½s; a; b� ¼ ½a; b; s� for all a; b 2 Ls: (4.20)

In this case, the fundamental identity guarantees that the
Jacobi identity is satisfied for all elements a, b 2 Ls with
the Lie bracket ½a; b� :¼ ½a; b; s�.

E. The associated Lie algebra by combination

Let us now associate a Lie algebra to a (generalized) 3-
Lie algebra in a different way. Elements ofA�A define
a map 
: A � A


ða1;a2ÞðbÞ :¼ ½a1; a2; b�; a1; a2; b 2 A: (4.21)

Note that 
ða1;a2Þ ¼ �
ða2;a1Þ and 
ða1;a1Þ ¼ 0. We denote

the set of all pairs in A modulo equivalence and triviality
by BA. The commutator of two elements in BA is again
in BA:

½ða1;a2Þ; ðb1; b2Þ�xv
:¼ 
ða1;a2Þð
ðb1;b2ÞðvÞÞ �
ðb1;b2Þð
ða1;a2ÞðvÞÞ
¼ ½a1; a2; ½b1; b2; v�� � ½b1; b2; ½a1; a2; v��
¼ ½½a1; a2; b1�; b2; v� þ ½b1; ½a1; a2; b2�; v�
¼ ð
ð½a1;a2;b1�;b2Þ þ
ðb1;½a1;a2;b2�ÞÞðvÞ
¼ �½½b1; b2; a1�; a2; v� � ½a1; ½b1; b2; a2�; v�; (4.22)

where a1, a2, b1, b2, v 2 A and we used the fundamental
identity in the third line. This expression is clearly con-
tained in BA. Furthermore, the Jacobi identity for the
commutator ½ð�; �Þ; ð�; �Þ� is satisfied, and
ðBA; ½ð�; �Þ; ð�; �Þ�Þ forms a Lie algebra.
Let us briefly recall the example of the 3-Lie algebra A4

and examine the associated Lie algebra arising by combi-
nation. Recall that the algebra A4 is spanned by �-matrices
in four dimensions (see the appendix) and endowed with
the triple product

½A; B; C� :¼ ½½A; B��5; C�: (4.23)

The associated Lie algebra BA4
is spanned by pairs of

�-matrices and its bracket is easily computed:

½ð�i; �jÞ; ð�k; �lÞ�xv ¼ ½�ij; �kl�v: (4.24)

Thus, BA4
is isomorphic to the Lie algebra spinð4Þ ffi

soð4Þ.
The fact that the family of generalized 3-Lie algebras

C2d is simple, implies that one can construct an associated
Lie algebra by combination also in this case. Being simple
translates here into two ‘‘fundamental actions’’ closing
into a third one. That is, for any a1, b1, a2, b2, x 2 A
there are constants 	AB such that,


ða1;b1Þð
ða2;b2ÞðxÞÞ ¼ ½a1; b1; ½a2; b2; x��
¼ 	AB½�A; �B; x�: (4.25)

Let us study the case C4 in more detail. The basis we use is
again the one given in (4.12). We associate a map
: A �
A to pairs of elements ð�A; �BÞ 2 A2 via

5We list only nonvanishing components up to obvious
symmetries.
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ð�A;�BÞðvÞ :¼ ½�A; �B; v�: (4.26)

By definition, we have 
ð�A;�AÞðvÞ ¼ 0 and 
ð�A;�BÞðvÞ ¼
�
ð�B;�AÞðvÞ, v 2 A. Further identities are


ð�A;�BÞðvÞ ¼ �
ð�5�
A;�5�

BÞðvÞ (4.27)

and


ð�i;�5�
jÞðvÞ ¼ 0: (4.28)

Thus, the nontrivial generators for the Lie algebra are

ð�½i; �j�Þ ¼ �ð�5�
½i; �5�

j�Þ and taking the sum and the
difference of these generators, we learn that the Lie algebra
is soð4Þ plus 6 generators acting trivially in the represen-
tation given by the triple bracket. We can therefore asso-
ciate them with additional uð1Þ-charges.

F. Remarks on further structures involving 3-brackets

In [23], it was observed that the necessary condition for
the closure of the supersymmetry (SUSY) algebra in the
Bagger-Lambert theory is not the fundamental identity, but
the weaker condition

f½abcgfd�gef ¼ 0; (4.29)

which defines a weak 3-Lie algebra. This condition is
equivalent to the fundamental identity for totally antisym-
metric structure constants. In other cases, it allows for a
trivial lift of a Lie algebra with some structure constants
~fijk to a 3-Lie algebra by defining

f
ijk ¼ ~fijk: (4.30)

Such structure constants, however, cause problems in the
Lagrangian formulation of the Baggert-Lambert theory
and one has to work at the level of equations of motion
[23].

Note that a weak 3-Lie algebra does not always allow for
an associated Lie algebra by combination. As an example,
consider the algebra A generated by 5 elements �a, the
metric hab ¼ �ab and the nonvanishing (and not totally
antisymmetric) structure constants

f1245 ¼ 1; f1354 ¼ 1: (4.31)

The weak fundamental identity (4.29) is trivially satisfied.
However,


ð�1;�3Þð
ð�1;�2Þð�4ÞÞ �
ð�1;�2Þð
ð�1;�3Þð�4ÞÞ ¼ �4 (4.32)

and there are no 	ab such that 	ab
ð�a;�bÞð�4Þ ¼ �4. In

other words, the commutator of the actions of ð�1; �3Þ
and ð�1; �2Þ cannot be represented by another pair action.

Similarly, since the structure constants are not totally
antisymmetric, it is clear that a Lie algebra by the usual
reduction procedure can be constructed only for a small set
of weak 3-Lie algebras.

A different class of ternary algebras is formed by the so-
called Lie triple systems [37]. The 3-bracket ½�; �; �� in such

a system A satisfies (amongst others) the equation

½x; y; z� þ ½y; z; x� þ ½z; x; y� ¼ 0; x; y; z 2 A;

(4.33)

Furthermore, the map ½x; y; ��: A ! A with x, y 2 A
acts again as a derivation, i.e. it satisfies the fundamental
identity. It is evident that a 3-Lie algebra with a totally
antisymmetric 3-bracket satisfying (4.33) is trivial.
Contrary to an ordinary 3-Lie algebra, a generalized 3-
Lie algebra can in fact also be a Lie triple system, as the
total antisymmetry yielding triviality is no longer present.
The classification of such Lie triple systems relies on

embedding them into a Z2-graded algebra [37,38]; for
more recent work see e.g. [39].

V. DISCUSSION AND OUTLOOK

In this paper, we presented a Lagrangian of a new super-
symmetric gauge theory which might be relevant to the
description of a stack of multiple M2-branes. The theory
was formulated using superfields and it has the same
Lagrangian as the BLG theory up to additional potential
terms for the matter fields. Demanding gauge invariance of
the action imposed certain conditions on the involved
structure constants fabcd, which led us to the concept of
a generalized 3-Lie algebra. We gave a class of examples
for such a generalized 3-Lie algebra and identified associ-
ated ordinary Lie algebras.
If we do not include the superpotential terms, the inter-

action terms for the matter fields (which differ from the
BLG theory) still break the R-symmetry group from the
original SOð8Þ of the BLG theory down to a subgroup.
This fact might only be curable, however unlikely, by
changing the Kähler potential of the target space, which
is a rather drastic step. Although this feature is clearly a
disadvantage of our theory compared to the BLG model,
studying the action proposed in this paper might never-
theless tell us much about the uniqueness of supersymmet-
ric 3-Lie algebra gauge theories.
Needless to say that from our discussion, several direc-

tions of further research arise. The first one concerns a
detailed study of the extended supersymmetry and confor-
mal invariance of the theory. The second direction is to
examine the various deformations of our theory (as e.g.
adding a Yang-Mills-Higgs term and choosing a nontrivial
Kähler potential). A third point is to develop a general
classification of generalized 3-Lie algebras, as it has been
done for ordinary 3-Lie algebras and Lie triple systems, as
well as to study the associated Lie algebra structures. The
question of reduction and the Higgs mechanism is inti-
mately related to this point. The fourth direction is cer-
tainly to study the quantum properties of our theory, as e.g.
done in [40] for the BLG theory. This should be facilitated
by having a superfield formulation at hand. In particular, it
would be interesting to extract the restrictions on the
choice of superpotentialW imposed by demanding renor-
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malizability. Eventually, there is also the very important
question of integrability of the theory. Recall that the
UðNÞ � UðNÞ gauge theory recently proposed in [32] has
been shown to come with a dilatation operator linked to
integrable spin chains [33]. A similar result for our theory
would certainly be most desirable.
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APPENDIX: �-MATRICES AND CLIFFORD
ALGEBRAS

We use the following conventions for the gamma matri-
ces generating the Clifford algebras in various dimensions
with Euclidean signature:

f��; ��g ¼ 2���; ð��Þy ¼ ��: (A1)

In four dimensions, we work with the following explicit
set:

�� :¼ 0 ��

��� 0

� �
; �5 :¼ �1�2�3�4 ¼ 1 0

0 �1

� �
;

(A2)

where �� :¼ ð�i ~�;1Þ, ��� :¼ ði ~�;1Þ. Note that we use
these conventions only in the definition of the generalized
3-Lie algebras C2d, while on three-dimensional superspace

R3j8, we followed the convention of Wess and Bagger [34].
With our conventions in four dimensions, we have

ð��Þy ¼ �� and the following useful formulas:

f�5; �
�g ¼ 0;

½�5; �
��� ¼ 0;

��� ¼ � 1

2
"�����5���;

½�5; �
�� ¼ � 1

3
"���	�����	;

f��; ���g ¼ 2"�������5;

½���; ��� ¼ 2ð����� � �����Þ;
f���; ���g ¼ 2"�����5 � 2ð������ � ������Þ1:

(A3)

An explicit embedding of SUð2Þ is given by

½�i; �j� ¼ 2"ijk�5�
4�k; i; j; k ¼ 1; 2; 3: (A4)

The full Lorentz algebra reads as usual:

½���; ���� ¼ 2ð������ þ ������ � ������

� ������Þ: (A5)

In arbitrary even dimensions, note that we have for multi-
indices A, B:

½�A; �B� ¼ 0; ðf�A; �Bg ¼ 0; Þ (A6)

if A and B have an odd (even) number of common indices.
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