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We calculate the area of a marginally trapped surface formed by a head-on collision of gravitational

shock waves in AdSD. We use this to obtain a lower bound on the entropy produced after the collision. A

comparison to entropy production in heavy-ion collisions is included. We also discuss an OðD� 2Þ
remnant of conformal symmetry, which is present in a class of gravitational shockwave collisions in AdSD
and which might be approximately realized (with D ¼ 5) in central heavy-ion collisions.
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I. INTRODUCTION AND SUMMARY

Relativistic heavy-ion collisions produce a lot of en-
tropy. Consider, for example, gold ions colliding withffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. A head-on collision (usually described

as ‘‘central’’) produces about 5000 charged tracks: see for
example [1]. The total entropy may be roughly estimated
as

S � 7:5Ncharged ¼ 38 000: (1)

In Sec. II, we explain where the factor of 7.5 comes from.
The main aim of this paper is to inquire how well one

can understand total entropy production in a heavy-ion
collision in terms of a dual black hole description.
Ideally, we would like to construct colliding nuclei in a
holographic dual to QCD. When the duals of the nuclei
collide in the bulk, a black hole should form, signifying the
formation of a quark-gluon-plasma. While a holographic
dual to QCD is unavailable, it was suggested early on [2,3]
that an analogy should exist between colliding heavy ions
and colliding gravitational shock waves in anti-de Sitter
space. Subsequent related work on collisions in AdS5
includes [4–6]. In the next few paragraphs, we will sum-
marize an entropy estimate based on colliding gravitational
shock waves, which gives a result surprisingly close to (1).

The line element for two identical head-on shock waves
propagating toward one another in AdS5 is

ds2 ¼ L2

z2
½�dudvþ ðdx1Þ2 þ ðdx2Þ2 þ dz2�

þ L

z
�ðx1; x2; zÞ½�ðuÞdu2 þ �ðvÞdv2�; (2)

where we have introduced the light-cone coordinates

u ¼ t� x3 v ¼ tþ x3; (3)

and have assumed that u < 0 or v < 0. A simple shock-
wave geometry in anti-de Sitter space can be obtained by

boosting a black hole solution. As we will explain in
Sec. III, for such a shock wave, the function �ðx1; x2; zÞ
in (2) is given by

�ðx1; x2; zÞ ¼ 2G5E

L

� 1þ 8qð1þ qÞ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ qÞp ð1þ 2qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qð1þ qÞp ;

(4)

where

q � ðx1Þ2 þ ðx2Þ2 þ ðz� LÞ2
4zL

; (5)

and E is the total energy of the shock wave. In the rest of
this introductory discussion we focus on shock waves of
the form (4). Extensions to more general shock waves in
various dimensions can be found in Secs. III B and III C.
The metric (2) has singularities at u ¼ q ¼ 0 and v ¼

q ¼ 0, where Einstein’s equations apply only in a distri-
butional sense. These singularities merely signal the pres-
ence of pointlike massless particles of energy E, remnants
of the boosted black hole. These singularities could be
smoothed out by replacing each massless particle by a
continuous cloud of massless particles with the same total
energy. In [7], pointlike sources for shocks propagating in a
flat-space background were replaced by wave packets. The
geometry (2) describes a head-on collision because the
massless particles are located at the same position in the
transverse space parameterized by x1, x2, and z.
The reason we must assume u < 0 or v < 0 in (2) is that

the two shocks collide at u ¼ v ¼ 0, and in the future light
volume of that event, little is known about the geometry
(see however [6].) Assuming a black hole is formed after
the collision, there is a standard method [8–11] for com-
puting a lower bound on the entropy S of the black hole

S � Strapped �
Atrapped

4G5

; (6)

where Atrapped is the area of the trapped surface: that is, a
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surface whose null normals all propagate inward. The
inequality (6) is based on the expectation that trapped
surfaces must lie behind an event horizon. To our knowl-
edge, (6) has not been rigorously demonstrated in anti-
de Sitter space. It is related to singularity theorems [12],
cosmic censorship (for a review see [13]) and the area
theorem, which is usually proven on the assumption that
spacetime is asymptotically flat; see however [14–17].
Instead of attempting to clarify the conditions under which
(6) must hold, we will make the working assumption that it
does hold for the collisions we discuss.

When they exist, trapped surfaces are highly nonunique.
But in the case of head-on collisions in flat space there is a
standard choice of such surfaces [8–11], which are easily
obtained due to the symmetries of the configuration: head-
on collisions preserve rotational symmetry around the axis
of motion of the massless particles, Oð2Þ in d ¼ 4. The
standard trapped surface preserves this symmetry too. In
the case we are considering, the metric (2) possesses an
Oð3Þ symmetry, which acts on x1, x2, and z but preserves q.
It is a remnant of the Oð4; 2Þ symmetry of AdS5. We
explain this symmetry more fully in Sec. III, and in
Sec. IV, we construct an Oð3Þ-symmetric trapped surface
(more precisely, a marginally trapped surface), which is an
obvious adaptation of the standard one in flat space. The
marginally trapped surface we find comprises two halves,
S1 and S2, which are matched along a codimension three
‘‘curve’’ C. This is depicted in Fig. 1. C lies in a three-
dimensional slice of AdS5 whose internal geometry is the
hyperbolic space H3. Because of the Oð3Þ symmetry, C
must be a two sphere located at some constant value qC of
the Oð3Þ-invariant variable q.

As we will see in Sec. IV, the area of the trapped surface
depends on the energy E of the configuration, and one can
obtain a relation between Strapped and E through qC. When

qC � 1, this relation takes the form

E � 4L2

G5

q3C Strapped � 4�L3

G5

q2C; (7)

from which we can immediately extract

Strapped � �

�
L3

G5

�
1=3ð2ELÞ2=3: (8)

To obtain a numerical value for Strapped, we must evidently

select values for the dimensionless quantities L3=G5 and
EL. To choose L3=G5, consider the translationally invari-
ant AdS5-Schwarzschild solution

ds2 ¼ L2

z2

��
1� z4

z4H

�
dt2 þ d~x2 þ dz2

1� z4

z4H

�
: (9)

According to [18], the energy density is

� ¼ 3�3

16

L3

G5

T4: (10)

On the other hand, lattice calculations1 show that

f� � �

T4
� 11 for 1:2Tc < T < 2Tc; (11)

and that f� rises slowly above this range. We choose

L3

G5

¼ 16

3�3
� 11 � 1:9 (12)

in order to make the black hole equation of state (10) match
(11). Since we have not specified a compact manifold, we
need not assume that the AdS5 background is dual to
SUðNÞ N ¼ 4 super-Yang-Mills. If we did, (12) would
imply that N � 2. Instead, we are assuming that the back-
ground is an approximate dual to real-world QCD above
the confinement transition, or to a theory that is sufficiently
close to real-world QCD to make numerical comparisons
meaningful. Alternatively, we are assuming that the dual of
the AdS5 background captures enough features of real-
world QCD (above the confinement transition) to make
this numerical comparison meaningful. In any case, loop
effects on the gravity side are suppressed only by powers of
G5=L

3, so according to (12) they are not very suppressed.
Also, �0 corrections could be significant. Thus, all our
calculations are to be understood as leading-order
estimates.
To choose a reasonable value of EL, we have to know a

little more about the holographic dual of a shock wave. As
we explain in Sec. III, the expectation value of the gauge
theory stress tensor for the right-moving shock is

FIG. 1 (color online). A projection of the marginally trapped
surface that we use onto a fixed time slice of the AdS5 geometry.
The size of the trapped surface is controlled by the energy of the
massless particles that generate the shock waves. These particles
are shown as dark blue dots.

1We took the value quoted in (11) from Fig. 1 of [19]. See e.g.
[20] for a more comprehensive account.
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hTuuð ~xÞi ¼ L2

4�G5

lim
z!0

1

z3
�ðx1; x2; zÞ�ðuÞ

¼ 2L4E

�ðL2 þ ðx1Þ2 þ ðx2Þ2Þ3 �ðuÞ; (13)

with all other components vanishing when one uses the
coordinate system ðu; v; x1; x2Þ. Evidently, E is the total
energy in the gauge theory. For gold-gold collisions,ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV means E ¼ Ebeam ¼ 19:7 TeV. L is

the rms radius of the transverse energy distribution in
(13). Because we are comparing the dual of the shock
wave to a boosted gold nucleus, an obvious approach is
to set L equal to the rms transverse radius of the nucleons.
Using a Woods-Saxon profile for the nuclear density (see
for example [21,22]), one obtains an rms transverse radius
L � 4:3 fm. So we estimate

EL � 4:3� 105: (14)

Putting (8), (12), and (14) together, we find

S � Strapped � 35000

� ffiffiffiffiffiffiffiffi
sNN

p
200 GeV

�
2=3
: (15)

In Fig. 2, we have plotted the dependence of the entropy
bound (15) on the energy, together with the data from
PHOBOS [23]. It is encouraging that the estimate (15)
for Strapped is just 10% below the phenomenological esti-

mate (1) at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. According to [24], once we

use �=s ¼ 1=4�, this is roughly the amount of entropy
required to fit a thermalization time of 1 fm/c. However,

the scaling Strapped / s1=3NN implied by (15) differs from the

observed scaling, which is closer to the dependence S /
s1=4NN . As observed in [25], the latter dependence, predicted
by the Landau model [26],2 seems to hold over a strikingly
large range of energies. Put differently, the inequality in
(15) is consistent with all heavy-ion collision data to date,
but for energies only slightly above those attained at the
Relativistic Heavy Ion Collider (RHIC), (15) predicts a
faster increase of entropy than is generally expected.

At the LHC,
ffiffiffiffiffiffiffiffi
sNN

p
will be 5.5 TeV for lead-lead colli-

sions. Inserting this value into (15), and making minor
corrections for the differences between lead and gold3

one finds

Strapped � 3:4� 105: (16)

S � Strapped corresponds to Ncharged � 45 000 if we con-

tinue to use (1). The lower bound on the entropy (16)
exceeds the prediction of the Landau model S �
2:1� 105 by a factor of about 1.6. Calculations based on
the Color Glass Condensate tend to predict lower multi-

plicities: for example, from Fig. 5 of [28], one may read off
the prediction Ncharged � 22 000, about a factor of 2 below

the estimate from (16); see also [29].
We see three main ways in which (15) could fail:
(1) Using the gauge-string duality to describe entropy

production may cause us to misrepresent perturba-
tive aspects of the early stages of the collision. This
is because our use of the gauge-string duality relies
on the supergravity approximation, which is the
leading-order description of a strong coupling ex-
pansion as well as a 1=N expansion. Our methods
appear to offer no access to perturbative physics.
Perturbative QCD is expected to characterize the
early stages of LHC collisions more cleanly than it
does RHIC collisions, and it may be that our meth-
ods are correspondingly less applicable at LHC than
at RHIC.

(2) As we will see in Sec. III D, there is a whole family
of AdS5 shock waves with the same hTuui, presum-
ably distinguished by higher point functions of Tuu.
The trapped surface depends on which of these
shock waves we pick. It is easy to lower Strapped by

spreading the shock wave out over the transverseH3

in AdS5. So although (15) at first looks highly
predictive, and easily falsifiable at energies signifi-
cantly higher than RHIC scales, it is in fact possible
to accommodate slower growth of total entropy with
beam energy. We discuss this further in Sec. V.

(3) The bound (6) could fail, even for standard Einstein
gravity in AdS5.

The rest of this paper is organized as follows. In Sec. II,
we review phenomenological estimates of the entropy
produced in a heavy-ion collision, with the aim of justify-
ing (1) and briefly summarizing the dependence on beam
energy. In Sec. III, we review the construction of shock
waves in AdSD, with particular attention to the OðD� 1Þ

100 200 300 400
SNN GeV

1000

2000

3000

4000

5000

6000

7000

Ncharged

AdS

Landau

FIG. 2 (color online). A plot of the total number of charged
particles vs energy. The data points were taken from Table II of
the PHOBOS results [23]. We show in red the region consistent
with the bound (15) obtained via the gauge-string duality, using
point-sourced shocks and estimates described in the text, and
assuming the bound (6). The blue curve corresponds to the
prediction of the Landau model [26].

2For an introduction to the Landau model, see Sec. II C; for a
review, see [27].

3A ¼ 208 for lead, so Ebeam ¼ 570 TeV; L ¼ 4:4 fm from the
rms radius of lead, resulting in EL � 1:3� 107.
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symmetry preserved by head-on collisions of the simplest
shockwave constructions. These symmetries might be ap-
proximately realized in central heavy-ion collisions even if
gauge-string methods fail to give a quantitatively accurate
account of entropy production. Aside from discussing
these symmetries, our purpose in Secs. II and III is mostly
to gather together well-known facts from the literature. Our
main calculations are in Sec. IV, where we compute the
shape of marginally trapped surfaces. We end with a dis-
cussion in Sec. V.

II. PHENOMENOLOGICAL ESTIMATES OF THE
ENTROPY

In order to evaluate the entropy S produced in a heavy-
ion collision, one needs a method to relate the entropy to a
quantity that can be measured: the number of charged
particles Ncharged. In Secs. II A and II B we review two

such methods. The first uses the framework of Bjorken
flow [30]. The other, described in Sec. II B, relies on phase
space estimates to evaluate the ratio S=Ncharged after ha-

dronization. Both of these sections largely follow [31].
While Secs. II A and II B allow an evaluation of the

entropy via the measured number of charged particles, in
Sec. II C we estimate the entropy from the size and shape
of the colliding nuclei—or, more precisely, the size and
shape of the parts of the nuclei that participate significantly
in the collision, and the beam energy per nucleon. This last
estimate is based on the Landau model [26].

Nonspecialists may appreciate the reminder that sNN is
the Mandelstam variable for a pair of nucleons, one from
each nucleus. When the beam energy is 100 GeV per
nucleon,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Because gold has 197 nucle-

ons, the total center of mass energy is 39.4 TeV. It is also
good to know that the rapidity of a particle emerging from
the collision is y ¼ tanh�1pz=E, whereas pseudorapidity is
� ¼ tanh�1pz=p ¼ tanh�1 cos�, where � is the angle
from the beamline.

A. Entropy estimate from Bjorken flow

In this section (as well as in parts of Sec. II B), we
estimate the total entropy produced in the collision by
assuming that the entropy per charged particle changes
only slightly with rapidity: thus,

S

Ncharged
� dS=dy

dNcharged=dy

��������mid-rapidity
: (17)

Both Ncharged and dNcharged=dy at midrapidity are directly

measured, so we only need to estimate dS=dy at midra-
pidity. To do this, we follow [31] and consider Bjorken’s
boost-invariant treatment of a collision.

One of the main relations emerging from Bjorken’s
treatment is

�formA�ð�formÞ ¼ dET
dy

; (18)

where � is the energy density, A is the cross-sectional area
of the participating nucleons, �form is the formation time,
and ET is the transverse energy of a particle, defined as
E sin�, where E is the total energy and � is the angle from
the beamline.4 The entropy may be expected to follow a
similar relation:

�formAsð�formÞ ¼ dS

dy
: (19)

If the quark-gluon plasma is a thermalized plasma at a time
�form (which may not be true but provides a rough esti-
mate), then assuming conformal invariance one has

s ¼ 4

3

�

T
: (20)

By solving (18) for �ð�formÞ and (19) for sð�formÞ, and then
plugging the resulting expressions into (20), one arrives at

dS

dy
¼ 4

3T

dET
dy

: (21)

The quantities in (21) are all to be evaluated at �form, but for
a rough estimate one may use

dETð�formÞ
dy

� dETðfinalÞ
d�

� 600 GeV (22)

for central gold-gold collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [19].5

To find the temperature, one may resort again to (18)
together with the approximation (11) of the lattice equation
of state. Choosing the nominal values �form ¼ 1 fm and
A ¼ 120 fm2 leads to T ¼ 240 MeV. Then (21) together
with (22) give

dSð�formÞ
dy

� 3300: (23)

The number of charged tracks per unit rapidity for a
central collision is

dNcharged

dy
� 660 (24)

near midrapidity (see for example [1]). Once again as a
rough estimate, let us use

dSðfinalÞ
dy

� dSð�formÞ
dy

: (25)

4Sometimes the definition of ET is varied across particle
species by adding some multiple of the rest mass: see for
example [32].

5 ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV means that a pair of nucleons, one from
each nucleus, together have Mandelstam s ¼ ð200 GeVÞ2. That
means the beam energy is 100 GeV per nucleon, and because
gold has 197 nucleons, the total center of mass energy is 39 TeV.
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Putting (23)–(25) together, we arrive at

dSð�formÞ
dy

� 5
dNcharged

dy
: (26)

Using (17) leads to

S � 5Ncharged � 25 000; (27)

where we recalled that Ncharged � 5000 in a central colli-

sion. It is important to bear in mind that many approxima-
tions were used in arriving at (17), so it should be regarded
only as a first attempt. Some refinements were outlined in
[31].

B. Entropy estimates from phase space density

Phase space estimates of entropy start from the expres-
sions

S ¼ X
i

Z d3xd3p

ð2�Þ3 ½�fi logfi þ sið1þ sifiÞ logð1þ sifiÞ�

N ¼ X
i

Z d3xd3p

ð2�Þ3 fi; (28)

where fi ¼ fiðx; pÞ is the phase space density for each spin
polarization of each hadronic species, and si ¼ 1 for bo-
sons, and �1 for fermions. The number of hadrons N is
roughly 3

2Ncharged. Using (28) means that one is ignoring

interactions among hadrons, so (28) should apply, in some
approximation, after hadronization. One line of thought
[33–35] is to use the equilibrium expressions

fi ¼ 1

e
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p
=T � si

; (29)

set T ¼ 170 MeV, and run the sums in (28) over all
established hadron resonances. The result is

S=N ¼ 5:15: (30)

Applying (30) to the total entropy in a heavy-ion collision
gives

S=Ncharged ¼ 7:7: (31)

The estimate (31) is at best approximate, because chemical
potentials for quarks become significant at forward rapid-
ities. Replacing S and Ncharged by dS=dy and dNcharged=dy

in (31) would improve the reliability of the estimate. But
(31) is also approximate because the system is not really an
equilibrated gas of nearly free hadrons at T ¼ 170 MeV;
rather, it is at roughly this temperature that the quark-gluon
plasma hadronizes.

A more data-driven approach was taken in [31]: instead
of assuming (29), experimental results for single-particle
yields and two-particle interferometry were used to esti-
mate the fi. For central collisions, and at midrapidity, one
finds from this approach the result

dS

dy
¼ 4451 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV: (32)

Combining (32) with

dNcharged

dy
� 620 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV (33)

(see for example [23]) gives the ratio6

dS=dy

dNcharged=dy
¼ 7:2: (34)

We arrived at the figure (1) simply by using S=Ncharged ¼
7:5, an average of (31) and (34).

C. Entropy estimates from immediate equilibration

The Landau model of particle production in high-energy
collisions [26] assumes that hydrodynamics is valid start-
ing from the moment that the colliding nuclei completely
overlap. It also assumes a conformal equation of state p ¼
�=3. The validity of hydrodynamics depends on local
thermodynamic equilibrium and a mean free path that is
short compared with the extent of the medium. Total over-
lap occurs about 0.13 fm after the nuclei first start to
interact in a central gold-gold collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV. It does not seem reasonable to assume that hydro
is valid at such an early time, so it is surprising how well
the model works in describing aspects of the bulk flow, in
particular the particle distribution in rapidity.
The entropy is easy to estimate at �overlap ¼ 0:13 fm. We

should ignore the nucleons that do not interact: this in-
cludes a good fraction of the ones in the outer skin, or
corona, of the gold nucleus. In a central collision (more
precisely, in the 5% of collisions that are the most central) a
typical number of participating nucleons is Npart ¼ 350, so

the total energy of participating nuclei is

Etot ¼
Npart

ffiffiffiffiffiffiffiffi
sNN

p
2

¼ 35 TeV: (35)

In the rest frame of one nucleus, its participants occupy a
roughly spherical region of radius 6.5 fm, which we will
assume to have uniform density. Let us denote the volume
of this sphere by V. In the lab frame, this sphere is Lorentz
flattened by a factor � ¼ ffiffiffiffiffiffiffiffi

sNN
p

=2mp, where mp ¼
0:938 GeV is the mass of a proton. Thus, the energy
density at the moment of overlap is

6The STAR collaboration has published a result corresponding
to dNcharged=dy � 580, which would result in a value 7.7 in (34).
An even higher value, 8.5, can be read off from estimates in [34];
however, there seems to be some possible confusion about
dNcharged=dy versus dNcharged=d�. We have used a common
midrapidity conversion factor dNcharged=dy � 1:1dNcharged=d�
to pass from results quoted in terms of pseudorapidity densities
to rapidity densities.
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� ¼ �Etot

V
¼ 3300 GeV=fm3: (36)

Using (11), the corresponding temperature is

T ¼ ð�=f�Þ1=4 ¼ 1200 MeV; (37)

and the entropy is

S ¼ 4

3

Etot

T
¼ 2

3
ð4f�mpVN

3
partsNNÞ1=4 � 38 000; (38)

which is fortuitously close to (1). If one started instead by
assuming that all the nucleons participate and that the
radius is 7 fm, the entropy estimate would increase to
44 000. The usual assumption in the Landau model is that
subsequent expansion is isentropic.

To arrive at the figure S � 2:1� 105 for entropy pro-
duction at the LHC, quoted below (16), we used (38) with
Npart ¼ 368 (scaled up from the number for gold in linear

proportion to the atomic number), R ¼ 6:6 fm (scaled up
from the number for gold in proportion to the cube root of
the atomic number), and the same value f� ¼ 11 as
before.7

III. SHOCK WAVES IN ANTI-DE SITTER SPACE

Gravitational shock waves are well studied, both in
RD�1;1 and AdSD: see for example [36–45]. The simplest
of them can be constructed in two equivalent ways. One is
to boost a black hole in AdSD to a velocity approaching the
speed of light, while at the same time decreasing the mass
of the black hole in such a way that the energy remains
fixed. We describe this construction in Sec. III A for the
special case D ¼ 5. Alternatively, one can start off with a
pointlike, massless particle traveling in AdSD and show
that it back reacts on the metric in such a way as to produce
a shockwave discontinuity. We describe this construction
for arbitraryD in Sec. III B. Other types of shocks obtained
by sourcing the metric with appropriate matter are given in
Sec. III C. Our goal is to relate collisions of shock waves to
collisions of heavy ions, and to this end it is useful to have
the energy density dual to the colliding shocks. We com-
pute this in Sec. III D.

A. Constructing the simplest shockwave geometry

Our starting point is the global AdS5-Schwarzschild
(GAdSBH) metric

ds2 ¼ �fd�2 þ d	2

f
þ 	2d�2

3 f � 1þ 	2

L2
� 	2

0

	2
;

(39)

where the parameter 	0 can be related to the Arnowitt-
Deser-Misner mass of the black hole by

M ¼ 3�

8G5

	2
0: (40)

Since we are working in global coordinates, the boundary
theory has topology S3 �R. Working in a coordinate
system that covers only the Poincaré wedge of AdS corre-
sponds to putting the boundary theory on R3;1.
To make this more precise, recall that AdS5 is the

universal cover of the five-dimensional hyperboloid

�ðX�1Þ2 �ðX0Þ2 þðX1Þ2 þðX2Þ2 þðX3Þ2 þðX4Þ2 ¼�L2

(41)

in R4;2. The metric of AdS5, which is given by (39) with
	0 ¼ 0, is also the metric induced on the hyperboloid from
the standard flat metric on R4;2. The XM coordinates are
related to the global coordinates ð�; 	;�iÞ in (39) as fol-
lows:

X�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ L2

q
cos

�

L
X0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ L2

q
sin
�

L

Xi ¼ 	�i;

(42)

where �i is a unit vector in R4, which is to say a point on
S3. But � runs from�1 to1 in AdS5, whereas � ¼ 0 and
� ¼ 2�L are identified on the hyperboloid. Thus, the
coordinates XM are more fit to describe the hyperboloid
of whichAdS5 is the covering space, while in the ð�; 	;�iÞ
coordinate system, AdS5 can be thought of as a cylinder
with boundary S3 �R if we conformally compactify in the
	 direction. A more detailed discussion can be found, for
example, in [46]. The Poincaré coordinates ðt; x1; x2; x3; zÞ
are related to the XM coordinates by

X�1 ¼ z

2

�
1þ L2 þ ~x2 � t2

z2

�
X0 ¼ L

t

z

Xi ¼ L
xi

z
X4 ¼ z

2

�
�1þ L2 � ~x2 þ t2

z2

�
:

(43)

The actual metric obtained when transforming (39) to the
Poincaré patch is somewhat complicated, and we shall not
write it explicitly here.
We wish to boost this black hole to the speed of light

while decreasing its mass and keeping its energy constant.
The method we use is similar to the one explained in [38].
Following [36] we expect that this boost will give us the
gravitational field around a massless particle moving in
AdS5. Thus, we choose a boost that will take a stationary
particle to one moving at a highly relativistic speed. A
massive test particle follows a closed trajectory that is
described, in terms of the XM coordinates, by the intersec-
tion of the hyperboloid (41) with the plane X3 ¼ 
X0 with
fixed X1, X2, and X4. A convenient choice is X1 ¼ X2 ¼
X4 ¼ 0. In Fig. 3, we have shown one such trajectory. Once
we take the mass of the particle to zero, the trajectory of the
test particle degenerates into two straight lines (straight
both in the sense of being geodesics on the hyperboloid and

7A fractionally higher value, say f� ¼ 12, might be closer to
lattice values, but it does not make a difference at the level of
accuracy we have quoted.
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in the sense of the flat metric ofR4;2). This is also depicted
in Fig. 3. In global coordinates, a massive particle starting
at 	 ¼ 0 with some nonzero velocity returns to 	 ¼ 0with
the opposite velocity after a time � ¼ �L, then continues
to oscillate through the AdS5 cylinder with period � ¼
2�L. When taking the lightlike limit of the trajectory,
the oscillating motion of the massive particle deforms
into a bouncing motion, going from one boundary to the
other. Each leg takes a finite global time �� ¼ �L and
corresponds to one line on the hyperboloid.

To carry out the boost explicitly we note that the isome-
try of the hyperboloid (41) is the Oð4; 2Þ group of linear
transformations preserving the quadratic form on the left-
hand side of (41). The boost that we will be interested in is
an element of the SOð1; 1Þ subgroup that preserves X�1,
X1, X2, X4, and the quadratic form �ðX0Þ2 þ ðX3Þ2

X0 ! ~X0 � X0 � 
X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p X3 ! ~X3 � �
X0 þ X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p :

(44)

Writing M ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
and taking 
! 1 with E held

fixed, the boosted GAdSBH metric (39) becomes

ds2 ¼ ds2AdS5 þ
8G5L

2E

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
� ½ð ~X0Þ2 � ðX�1Þ2�L2 þ ½ð ~X0Þ2 þ ðX�1Þ2�ðX�1Þ2

½ð ~X0Þ2 þ ðX�1Þ2�½�L2 þ ð ~X0Þ2 þ ðX�1Þ2�
� ðdX0 � dX3Þ2 þOð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

q
Þ: (45)

Using

lim

!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p f

�
X0 � 
X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p �
¼ �ðX0 � X3Þ

Z 1

�1
fðxÞdx;

(46)

which holds for any integrable function f, the 
! 1 limit
of (45) becomes

ds2 ¼ ds2AdS5

� 4G5E½L2 � 2ðX�1Þ2 þ 2X�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX�1Þ2 � L2

p �
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX�1Þ2 � L2
p

��ðX�1 � LÞ�ðX0 � X3ÞðdX0 � dX3Þ2; (47)

where

�ðxÞ �
�
1 if x � 0
0 if x < 0

: (48)

In Poincaré coordinates (43), the line element (47) reads

ds2 ¼ L2

z2
½�dudvþ ðdx1Þ2 þ ðdx2Þ2 þ dz2�

þ L

z
�ðx1; x2; zÞ�ðuÞdu2; (49)

where u, v, and� are defined as in (3) and (4). In checking
the equivalence of (47) and (49), it helps to note that

q ¼ X�1 � L

2L
: (50)

A subtlety in the derivation above is the emergence of
the factor of �ðX�1 � LÞ. As we have explained earlier,
the massless trajectory comprises two straight lines de-
scribing a massless particle that goes back and forth from
one boundary of the AdS cylinder to the other. We choose
to consider only one such leg, and this is what the factor
�ðX�1 � LÞ does. Including the return journey of the
particle would correspond to adding an additional term
to (47) identical to the one explicitly shown, but with
X�1 ! �X�1.
The metric (49) has an Oð3Þ symmetry, which is simpler

to understand in the XM coordinates: the boosted metric
(45) does not depend on X1, X2, or X4, except through the
constraint (41), which (after the boost) can be regarded as a
way to determine X�1 in terms of ~X0, ~X3, and ðX1Þ2 þ
ðX2Þ2 þ ðX4Þ2. The Oð3Þ symmetry is the one acting on the
coordinates X1, X2, and X4 transverse to the particle’s
trajectory. To see the transverse space more clearly, we
slice AdS5 at a definite value of X0 and impose X0 ¼ X3.
This gives a two-sheeted hyperboloid

� ðX�1Þ2 þ ðX1Þ2 þ ðX2Þ2 þ ðX4Þ2 ¼ �L2: (51)

The two disjoint sheets are related by X�1 ! �X�1. Each
is a copy of the Euclidean hyperbolic space H3. The
massless particle that we are interested in passes through
the ‘‘center’’ of the upper sheet at X�1 ¼ L and X1 ¼
X2 ¼ X4 ¼ 0. (We write ‘‘center’’ in quotes because H3

is a homogeneous space.) The isometries of H3 form
Oð3; 1Þ=Z2, and theOð3Þ of interest is the part of this group
that preserves the point that the massless particle passes
through. Note that the Oð3Þ symmetry we have found is
not equivalent to rotational symmetry in the ðx1; x2; x3Þ
plane of the Poincaré patch. Rather, because it acts non-

X 0

3

X −1

X

massle
ss

massive

FIG. 3 (color online). The hyperboloid whose covering space
is AdS5, with the transverse coordinates X1, X2, and X4 sup-
pressed. The closed green curve is the trajectory of a massive test
particle. When the particle is infinitely boosted, so that X0 ¼ X3,
the trajectory degenerates into the two blue lines.
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trivially on X4, its generators include special conformal
transformations.

B. Shockwave metrics in AdS5

The metric (49) can also be obtained by solving the
Einstein equations in the presence of a lightlike particle.
This alternative derivation is a little more efficient, and we
will take advantage of this to generalize to D dimensions.
Following [2,37,47], one starts with an ansatz

ds2 ¼ L2

z2

�
�dudvþ XD�3

i¼1

ðdxiÞ2 þ dz2 þ�ðxi; zÞ�ðuÞdu2
�
:

(52)

If � ¼ 0, this is the metric of AdS5 in Poincaré coordi-
nates. Because (52) is supposed to be the metric in the
presence of matter, it should satisfy the appropriate
Einstein equations

R� � 1

2
g�R� ðD� 1ÞðD� 2Þ

2L2
g� ¼ 8�GDJ�;

(53)

where J� is the bulk stress tensor, not to be confused with

the boundary stress tensor Tmn. For a massless particle with
energy E, the only nonzero component of J� is

Juu ¼ E�ðuÞ�ðz� LÞ YD�3

i¼1

�ðxiÞ: (54)

It is straightforward to plug (52) and (54) into the uu
component of (53) and explicitly derive�

hHD�2
�D� 2

L2

�
� ¼ �16�GDE�ðz� LÞ YD�3

i¼1

�ðxiÞ;

(55)

where

� ¼ L

z
� (56)

and

hHD�2
¼ zD�2

L2

@

@z
z4�D

@

@z
þ z2

L2

XD�3

i¼1

�
@

@xi

�
2

(57)

is the Laplacian on the Euclidean hyperbolic space HD�2,
whose line element is

ds2HD�2
¼ L2

z2

�XD�2

i¼1

ðdxiÞ2 þ dz2
�
: (58)

Evidently, HD�2 is the space transverse to the trajectory of
a massless particle. If we introduced global coordinates XM

on AdS5, it would have a description entirely analogous to
the one explained around (51). For our present purposes, it
is enough to introduce a subset of the global coordinates, as

follows:

Y0 ¼ z

2

�
1þ L2 þPD�3

i¼1 ðxiÞ2
z2

�

YD�2 ¼ z

2

�
�1þ L2 �P

D�3
i¼1 ðxiÞ2
z2

�

Yi ¼ L

z
xi for i ¼ 1 through D� 3:

(59)

HD�2 is the upper sheet of the two-sheeted hyperboloid

� ðY0Þ2 þ XD�2

i¼1

ðYiÞ2 ¼ �L2; (60)

which has isometry group OðD� 2; 1Þ=Z2.
8 In analogy to

(42) one may define

Y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

p
Yi ¼ r�i for i ¼ 1 through D� 2;

(61)

where�i is a point on a unit SD�3. The metric (58) can be
re-expressed as

ds2HD�2
¼ dr2

1þ r2=L2
þ r2d�2

D�3: (62)

We will be especially interested in the quantity

q �
P
D�3
i¼1 ðxiÞ2 þ ðz� LÞ2

4zL

¼ 1

4L2

�
�ðY0 � LÞ2 þ XD�2

i¼1

ðYiÞ2
�
; (63)

where the second equality can be checked using (43). The
last expression in (63) shows that, up to an overall prefac-
tor, q is the square of the chordal distance between the

point ðxi; zÞ onHD�2 and the special point ðxi�; z�Þ ¼ ð~0; LÞ
through which the massless particle passes. Chordal dis-
tance, by definition, is the distance in the embedding space
RD�2;1 parameterized by the coordinates ðY0; YiÞ. In the
coordinates introduced in (61), the special point is at r ¼ 0,
and

q ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=L2

p
2

r ¼ 2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ qÞ

q
: (64)

Thus one may re-express

ds2HD�2
¼ L2

�
dq2

qð1þ qÞ þ 4qð1þ qÞd�2
D�3

�
: (65)

The OðD� 2Þ-symmetric solutions to (55) can be effi-
ciently found by rewriting it in terms of q:

8The isometry group of the full two-sheeted hyperboloid is
OðD� 2; 1Þ. The Z2 that one must divide out when considering
a single sheet acts by sending Y0 ! �Y0.
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qð1þ qÞ�00 þ 1

2
ð1þ 2qÞðD� 2Þ�0 � ðD� 2Þ�

¼ � 27�D�GDE

LD�4ðVolSD�3Þ
�ðqÞ

½qð1þ qÞ�ðD�4Þ=2 ; (66)

where

Vol SD�3 ¼ ðD� 2Þ�ðD�2Þ=2

�ðD=2Þ : (67)

The solution to (66) with the boundary condition that
�ðqÞ ! 0 as q! 1 is

�ðqÞ ¼ 26�D�GDE

LD�4ðVolSD�3Þ
q2�D

D� 1 2F1ðD� 2;D=2;D;�1=qÞ:
(68)

It is easy to check that (4) is recovered by setting D ¼ 5.

C. Other sources as shock waves

Although gravitational shock waves are solutions of the
full nonlinear Einstein equations (in a distributional sense),
two shocks moving in the same direction can be super-
posed: that is, if one starts with

ds2 ¼ ds2AdSD þ
L

z
�1ðxi; zÞ�ðu� u1Þdu2 (69)

as the first shock and

ds2 ¼ ds2AdSD þ
L

z
�2ðxi; zÞ�ðu� u2Þdu2 (70)

as the second, then the superposed solution is

ds2 ¼ ds2AdSD þ
L

z
½�1ðxi; zÞ�ðu� u1Þ

þ�2ðxi; zÞ�ðu� u2Þ�du2: (71)

If (69) and (70) are sourced by massless point particles,
then (71) describes the backreaction of the two massless
particles together. More generally, we can consider a cloud
of massless particles, all moving in the same direction, and
then the metric is

ds2 ¼ ds2AdSD þ
L

z
Fðxi; z; uÞdu2: (72)

The only nontrivial component of the Einstein equations is

Ruu � 1

2
guuR� ðD� 1ÞðD� 2Þ

2L2
guu ¼ 8�GDJuu; (73)

and it is straightforward to show that it takes the form�
hHD�2

�D� 2

L2

�
F ¼ �16�GD

z

L
Juu: (74)

While it may be interesting to consider the case where F is
nonzero over a range of u (see in this connection the recent
work in [48]), let us restrict attention here to the case where

F ¼ �ðxi; zÞ�ðuÞ and Juu ¼ L

z
	ðxi; zÞ�ðuÞ: (75)

Then (74) becomes�
hHD�2

�D� 2

L2

�
� ¼ �16�GD	: (76)

Choosing 	 ¼ E�ðz� LÞQD�3
i¼1 �ðxiÞ would return us to

the point-sourced shock waves that we have focused on up
until now, as can be seen from comparing (76) with (55).
The most general OðD� 2Þ-symmetric shock localized at
u ¼ 0 corresponds to a source term 	 depending only on
the chordal distance variable q defined in (63): then (76)
becomes

qð1þ qÞ�00 þ 1

2
ð1þ 2qÞðD� 2Þ�0 � ðD� 2Þ�

¼ �16�GDL
2	: (77)

To solve (77), we follow the classic approach of first
solving the homogeneous equation and then using a
Green’s function to solve the general inhomogeneous
equation. The solutions to the homogeneous equation are

��ðqÞ ¼ 1þ 2q

�þðqÞ ¼ q2�D2F1ðD� 2; D=2;D;�1=qÞ: (78)

Note that��ðqÞ is the unique solution that remains finite at
q ¼ 0, and�þðqÞ is the unique solution that decays to zero
at infinity. The Green’s function Gðq; q0Þ satisfies�
qð1þ qÞ@2q � 1

2
ð1þ 2qÞðD� 2Þ@q � ðD� 2Þ

�
Gðq; q0Þ

¼ � 16�GDL
2

½qð1þ qÞ�ðD�4Þ=2 �ðq� q0Þ: (79)

Gðq; q0Þ is uniquely specified by the requirement that when
q0 > 0,Gðq; q0Þ should be finite at q ¼ 0 and should decay
to 0 as q! 1. Straightforward calculations lead to

Gðq; q0Þ ¼ 8�GDL
2

D� 1

�
�þðq0Þ��ðqÞ for q 	 q0
��ðq0Þ�þðqÞ for q � q0:

(80)

The solution to the original problem (77) is

�ðqÞ ¼
Z 1

0
dq0½q0ð1þ q0Þ�ðD�4Þ=2Gðq; q0Þ	ðq0Þ: (81)

Assuming that 	 has compact support, or else decays
quickly enough at infinity, the asymptotic behavior of �
near infinity is

�ðqÞ ! 26�D�GDE

LD�4ðD� 1ÞðVolSD�3Þ�þðqÞ as q! 1;
(82)

where we have defined
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E ¼ 2D�3LD�2ðVolSD�3Þ
Z 1

0
dq½qð1þ qÞ�ðD�4Þ=2

� ð1þ 2qÞ	ðqÞ
¼
Z
HD�2

dD�3xidz

�
L

z

�
D�2ð1þ 2qÞ	ðxi; zÞ: (83)

The power of L=z in the second line is from the measure on
HD�2 associated with the metric (58). The asymptotic
expression (82) for �ðqÞ coincides with the solution (68)
for a point-sourced shock wave. This amounts to a sort of
shell theorem: an OðD� 2Þ-symmetric cloud of massless
particles gives rise to the same gravitational field, outside
the cloud, as if the cloud were replaced by a single mass-
less particle at its center with energy E.

D. The gauge theory stress tensor of colliding shocks

Before proceeding to calculate the trapped surface asso-
ciated with the colliding shocks, we make an aside to
discuss their dual boundary theory stress-energy tensor.
The holographic image of a shock-wave geometry on
four-dimensional Minkowski space has a stress-energy
tensor that can be found from the small z asymptotics of
�. If

ds2 ¼ ds2AdS5 þ
L2

z2
�gmndx

mdxn; (84)

where �gmn 
Oðz4Þ for small z and has no nonzero com-
ponents with a z index, then [49]

hTmni ¼ L3

4�G5

lim
z!0

1

z4
�gmn: (85)

[This form of hTmni holds when the boundary metric is
chosen to be �dt2 þ d~x2. Conformal transformations on
the boundary require a modification of (85).] We have used
the notation �gmn to represent the deviation of the metric
from empty AdS5 even though this deviation is not neces-
sarily small. Applying the general rule (85) to the shock-
wave metric (49), one finds

hTuuð ~xÞi ¼ L2

4�G5

lim
z!0

1

z3
�ðx1; x2; zÞ�ðuÞ

¼ 2L4E

�ðL2 þ ðx1Þ2 þ ðx2Þ2Þ3 �ðuÞ; (86)

with all other components vanishing when one uses the
coordinate system ðu; v; x1; x2Þ. This same result may be
obtained (as it essentially was in [41]) by first computing
the stress tensor for the unboosted black hole and then
applying the boost (44) directly to hTmni.

ForD � 5 the analysis is similar: the energy momentum
tensor associated with the metric (52) may be evaluated
using (68) and

hTmni ¼ ðD� 1ÞLDþ1

16�GD

lim
z!0

1

zD�1
�gmn; (87)

the equivalent of (85) [49]. We find that

hTuui ¼
2D�2�ðD2Þ

�ðD=2Þþ1ðD� 2Þ
ELD�1

ðL2 þ 	2ÞD�2
�ðuÞ; (88)

where 	2 ¼ PD�3
i¼1 x

2
i . AlsoZ
dD�2xhT00i ¼ E: (89)

The profile of (87) respects the OðD� 2Þ symmetry dis-
cussed at the end of Sec. III B.
For the configurations discussed in Sec. III C, we learn

from comparing (68) with (82) that the dual expectation
value for the gauge theory stress tensor must coincide with
(88). This illustrates a large ambiguity in the gravity rep-
resentation of some given configuration of hTmni. Such an
ambiguity should not be surprising, since a state in the
gauge theory is by no means completely specified by the
one-point function of stress tensor. Knowledge of higher
point functions of the stress tensor, and possibly of other
gauge-invariant operators, would resolve such ambiguities.
Going back to D ¼ 5, we are eventually interested in

collisions of nuclei. So we would like to tune L and E in
(86) to resemble the energy density of a boosted nucleus as
closely as possible. For a gold nucleon at rest, the energy
density of the nucleus can be read off of the Woods-Saxon
number density nðx1; x2; x3Þ

�ðx1; x2; x3Þ � mpnðx1; x2; x3Þ / 1

1þ eðj ~xj�RÞ=a
; (90)

where typical values for gold are [21,22]

R ¼ 6:38 fm a ¼ 0:535 fm: (91)

To compare the energy density with (86) we need to boost
(90). Consider boosting stationary, pressureless dust: be-
fore the boost,

hT00ðt; x1; x2; x3Þi ¼ �ðx1; x2; x3Þ; (92)

with other components vanishing in the coordinate system
ðt; x1; x2; x3Þ. After the boost, the nonzero components are

hT00i hT03i
hT30i hT33i

 !
¼ 1

1� 
2

1 �1

�1 1

 !

� �ðx1; x2; ðx3 � 
tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

q
Þ

� 1=
 �1

�1 


 !
pRðx1; x2Þ�ðuÞ; (93)

where

pRðx1; x2Þ � 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p Z
dx3�ðx1; x2; x3Þ: (94)

If the limit 
! 1 is taken with pRðx1; x2Þ held fixed (i.e.

scaling � down by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
=
), then (93)

becomes simply
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hTuui ¼ pRðx1; x2Þ�ðuÞ: (95)

Applying (93) to (90), we can find an expression for the uu
component of the stress tensor of a nucleus.

The resulting dependence of hTuui on the transverse

position xT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1Þ2 þ ðx2Þ2p
is shown in Fig. 4, together

with the result (86) obtained from the simplest gravita-
tional shock wave. The value of L for the gravitational
shock wave was chosen so that the rms transverse radius
(weighted by pRðx1; x2Þ) matches the same quantity com-
puted using the boosted Woods-Saxon profile. Explicitly,
for the Woods-Saxon profile,

hx2Ti ¼
R
d3x½ðx1Þ2 þ ðx2Þ2�nðx1; x2; x3ÞR

d3xnðx1; x2; x3Þ

¼ 2

3

R
d3xj ~xj2=ð1þ eðj ~xj�RÞ=aÞR
d3x=ð1þ eðj ~xj�RÞ=aÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Li5ð�eR=aÞ
Li3ð�eR=aÞ

vuut ;

(96)

where Lin are polylogarithm functions. On the other hand,
hx2Ti ¼ L2 for the AdS profile pRðx1; x2Þ / ½L2 þ ðx1Þ2 þ
ðx2Þ2��3. By plugging (91) into (96) and setting the result
equal to L2, one obtains L � 4:3 fm, as quoted in Sec. I.

IV. A MARGINALLY TRAPPED SURFACE FOR A
HEAD-ON COLLISION

Once the two shocks collide, we can no longer superpose
the solutions for two single shocks. We assume that such a
head-on collision will result in the creation of a black hole.
A standard calculation in flat space [8–11] is to estimate
the area of the resulting black hole by constructing a
particular trapped surface that lies on the t < 0 parts of
the u ¼ 0 and v ¼ 0 hypersurfaces. Constructing this sur-
face boils down to solving an unusual boundary value
problem for the Laplacian on the transverse space (flat
R2 in the case of four-dimensional collisions). We will
follow a similar approach for shocks in anti-de Sitter space.

Heuristically, a marginally trapped surface S is the limit
of a trapped surface where one of the null normals prop-
agates inward and the other propagates in a direction that is
neither inward nor outward, but only forward. To give a
more precise and useful definition, consider a null basis
ð‘�; n�Þ for the normal plane to S at any given point. By
convention, ‘� is outward pointing and n� is inward
pointing. Both are required to point forward in time. S is
defined by the requirement that it is closed and spacelike
and that the expansion of ‘� should vanish:

� � h�r�‘ ¼ 0; (97)

where h� is the induced metric on S. Equation (97) is the
mathematical expression of the heuristic notion that the
outward pointing normal propagates neither outward
(which would lead to positive expansion) nor inward
(negative expansion).
Following [8–11], we look for a trapped surface S, made

up of the union of two pieces S ¼ S1 [ S2. The first piece
S1 lies in the null hypersurface u ¼ 0 with v 	 0, while
the second piece S2 has v ¼ 0 and u 	 0. The hyper-
surfaces Si will be found by looking for appropriate codi-
mension 2 surfaces with vanishing expansion (97),
supplemented by the boundary condition that the outward
pointing normal to S is continuous at the intersection C ¼
S1 \ S2. A cartoon of this construction is shown in Fig. 1,
but it is important that S does not exist at a fixed time t:
parts of it exist for all times t < 0.9

Working out the shape of S1 and S2 for colliding shock
waves in AdSD is facilitated by a change of coordinates

v! vþ�ðxi; zÞ�ðuÞ; (98)

where �ðxi; zÞ is the function appearing in (4) and (52),
�ðuÞ is the unit step function defined in (48). After this
change of coordinates, the components of the metric are
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Tuu
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xT fm
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1.0
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3.5
xT Tuu

FIG. 4 (color online). Left: The dependence of hTuui on transverse radius xT , both for an infinitely boosted black hole in AdS5 and
for an infinitely boosted Woods-Saxon profile. hTuui is proportional to �ðuÞ, and the quantities that we plot omit this singular factor.
The normalization of the Woods-Saxon profile was chosen so that its maximum is 1. The normalization and width of hTuui from the
gravitational shock wave was chosen so that the integral and rms transverse radius match to the values extracted from the Woods-Saxon
profile. Right: The area under the curves xThTuui obtained from Woods-Saxon and AdS profiles are the same, indicating that the total
energy is the same.

9It is strange indeed to think that entropy exists at times t < 0.
The right interpretation is that the trapped surface puts a lower
bound on the amount of entropy that must eventually be created.
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everywhere finite, but with jump discontinuities at
u ¼ 0.10 This means that geodesics have no coordinate
discontinuities. We define S1 as the surface

u ¼ 0 v ¼ � 1ðxi; zÞ (99)

for some function  1 defined on the transverse spaceHD�2.
More precisely, S1 is the region of the submanifold (99)
where  1 > 0, and its boundary C is the curve on HD�2 (at
u ¼ v ¼ 0), where  1 ¼ 0. The OðD� 2Þ symmetry of a
head-on collision means that C must be a ðD� 3Þ sphere,
q ¼ qC for some constant qC. An obvious basis for the
normal space to S1 in the cotangent bundle is ðdu; dvþ
d 1Þ. So one must be able to express the outward null
vector as

‘ð1Þ� dx� ¼ Aduþ Bðdvþ d 1Þ: (100)

Since ‘ð1Þ� is null (because ‘ð1Þ� ‘ð1Þ� ¼ 0), forward (because
‘t > 0) and outward (because ‘v < 0 and v ¼ 0 is inside
the surface), we find

A ¼ �ð@ 1Þ2 B ¼ � 4z2

L2
: (101)

Here, ð@ 1Þ2 may be equivalently computed using the
metric on HD�2 or the metric on AdSD.

By symmetry (assuming that the momenta of the shock
waves are equal and opposite), S2 must be the image of S1

under the interchange of u and v. Thus,

‘ð2Þ� dx� ¼ � 1

4
ð@ 2Þ2dv� z2

L2
ðduþ d 2Þ; (102)

and moreover  1 ¼  2, since the collision is head-on, so
let us denote them simply as  . Continuity of the outward

null normal across C means that ‘ð1Þ ¼ ‘ð2Þ when u ¼ v ¼
 ¼ 0. Thus, we require

ð@ Þ2 ¼ 4z2

L2
on C: (103)

The Poincaré coordinates ðu; v; xi; zÞ do not make the
OðD� 2Þ symmetry manifest. In place of u and v, it is
better to use Lu=z and Lv=z, because these combinations
are just X0 � XD�2 and X0 þ XD�2, and the global coor-
dinates XM make the OðD� 2Þ symmetry apparent.
Correspondingly, we define

� ¼ L

z
 : (104)

Evidently, (103) together with the vanishing of  on C are
equivalent to

�jC ¼ 0 ð@�Þ2jC ¼ 4: (105)

Plugging either (100) or (102) into (97) leads to the con-
dition �

hHD�2
�D� 2

L2

�
ð���Þ ¼ 0: (106)

The most general solution to (106) respecting the OðD�
2Þ symmetry is

� ¼ �þ C��; (107)

where C is an integration constant, � is given as in (68),
and��ðqÞ ¼ 1þ 2q as in (78). Note that�> 0 inside the
curve C because  is positive. So (105) becomes

�ðqCÞ ¼ 0 �0ðqCÞ ¼ � 2Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qCð1þ qCÞ

p : (108)

Combining (107) with (108) one obtains an equation for
qC:

�0ðqCÞ � 2

1þ 2qC
�ðqCÞ þ 2Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qCð1þ qCÞ
p ¼ 0: (109)

This can be conveniently rewritten as

W�ðqCÞ ¼ 2L��ðqCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qCð1þ qCÞ

p ; (110)

where

W�ðqÞ � �ðqÞ�0�ðqÞ ��0ðqÞ��ðqÞ (111)

is the Wronskian of � with ��. Starting from (77), it is
easily checked that the Wronskian satisfies the following
first order differential equation:�

qð1þ qÞ@q þD� 2

2
ð1þ 2qÞ

�
W�

¼ 16�GDL
2��ðqÞ	ðqÞ: (112)

The solution to (112) is11

W�ðqÞ ¼ �GD

2D�7LD�4ðVolSD�3Þ ½qð1þ qÞ�ð2�DÞ=2EðqÞ;
(113)

where

EðqÞ � 2D�3LD�2ðVolSD�3Þ
Z q

0
dq0½q0ð1þ q0Þ�ðD�4Þ=2

� ð1þ 2q0Þ	ðq0Þ: (114)

Comparing (114) with (83), one sees that EðqÞ can be
interpreted as the energy of the massless particles inside
a radius q in the transverse space HD�2. Putting (110)
together with (113), we arrive at a simple relation between

10One can also use a more sophisticated shift, similar in spirit to
the one used in [50], where xi and z are shifted and the resultant
metric becomes continuous at u ¼ 0. See for example [6]. This
leads to the same results.

11There is a more general solution, obtained by adding a
multiple of ½qð1þ qÞ�ð2�DÞ=2 to (113). But this solution is
singular at q ¼ 0, and it corresponds to adding an additional,
finite-energy massless particle at q ¼ 0.
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qC and the energy EC � EðqCÞ of massless particles inside
a radius qC:

ECGD

LD�3
¼ 2D�6ðVolSD�3Þ

�
ð1þ 2qCÞ½qCð1þ qCÞ�ðD�3Þ=2:

(115)

Table I includes values of EC for 3 	 D 	 7.
Once qC is known, it is straightforward to calculate the

area of the marginally trapped surface S. Because S1 is
embedded in the null hyperplane u ¼ 0, whose transverse
part isHD�2 and whose lightlike direction is parameterized
by v, the induced metric on S1 is identical to the one on
HD�2 inside a radius qC.

12 Thus, the area of S1 is just the
volume of the ball q 	 qC in HD�2, namely

AS1
¼ LD�2ðVolSD�3Þ

Z xC

0
dx

xD�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : (116)

In (116) we have introduced a new radial coordinate

x ¼ r=L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ qÞ

q
; (117)

where r is the radial variable appearing in (61), and q is the
usual chordal distance variable, appearing, for example, in
(63). The area of S2 is of course the same as of S1. So the
entropy bound is

S � Strapped � 1

4GD

2AS1
: (118)

The integral (116) can be expressed in terms of incomplete
beta functions, but the explicit form is unenlightening.
Table I includes values of Strapped for 3 	 D 	 7.

In principle, qC and xC can be eliminated from the
relations (115)–(118) to obtain an explicit dependence of
Strapped on EC. In practice, this is difficult to carry out

explicitly forD> 3. However, when qC � 1, it is straight-
forward to extract the leading power law dependence:
again for D> 3,

Strapped � CD

�
LD�2

GD

�
1=D�2ðECLÞD�3=D�2 (119)

with

CD ¼ ð22D�7�D�3VolSD�3Þ1=D�2

D� 3
: (120)

When the shock wave is point sourced, EC ¼ E, the total
energy. The specialD ¼ 5 case of (119), with EC ¼ E, was
quoted in (8). When calculating Strapped in shockwave

collisions intended for comparison with heavy-ion colli-
sions, it suffices to use the leading power law dependence
indicated in (119). The value of Strapped obtained by using

the exact parametric relations given in Table I are only
about 0.1% different when qC � 38, which is the value
corresponding to EL � 4:3� 105. The correction is so

small because it is parametrically OðlogqC
q2C

Þ for D ¼ 5.13

The case D ¼ 3 is evidently special. The leading-order
expansions (119) and (120) do not work, but instead we can
eliminate qC and xC altogether from the expressions in
Table I and find

Strapped
G3

L
¼ cosh�14�G3EC; (121)

where we must have 4�G3EC � 1 to form a trapped sur-
face at all. Let us focus on point-sourced shocks, so that
EC ¼ E, the total energy of one shock wave. Remarkably,
the result (121) coincides with a well-known exact result
[51] on lightlike particles in AdS3. The quantities denoted
p0 and � in [51] (see, for example, (2.9) and (3.1) of that
paper) should be identified as

p0 ¼ tan� ¼ 4�G3E: (122)

Using (4.3) and (4.6) of [51] and noting that in this paper L
is set to 1, one finds

TABLE I. Values of EC and Strapped for 3 	 D 	 7, in terms of the chordal distance variable qC and xC ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qCð1þ qCÞ

p
.

D ECGD=L
D�3 StrappedGD=L

D�2

3 1þ2qC
4� sinh�1xC

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qCð1þ qCÞ

p
1þ2qC

2 �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2C

q
� 1Þ

5 2qCð1þ qCÞð1þ 2qCÞ �ðxC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2C

q
� sinh�1xCÞ

6 2�q3=2C ð1þ qCÞ3=2ð1þ 2qCÞ �2

3 ½ðx2C � 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2C

q
þ 2�

7 16�
3 q2Cð1þ qCÞ2ð1þ 2qCÞ �2

6 ½ð2x2C � 3ÞxC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2C

q
þ 3sinh�1xC�

12Explicitly, the induced metric on S1 is

ds2S1
¼ L2

z2

�
� @u

@��
@v

@�

þ @x1

@��
@x1

@�

þ @x2

@��
@x2

@�


þ @z

@��
@z

@�


�
d��d�
;

where �� ¼ ð�1; �2; �3Þ are any choice of coordinates on S1.
The first term drops out because u ¼ 0 identically. Choosing
�� ¼ ðx1; x2; zÞ, we immediately recover the metric of H3.

13The parametric dependence of the leading correction to (119)
depends on D: it is Oð1=qCÞ for D ¼ 4 and Oð1=q2CÞ for D ¼ 6
and D ¼ 7.
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S ¼ ‘

4G3

¼ L

G3

cosh�1p0; (123)

which indeed agrees with (121). Also, it was shown in [51]
that for p0 < 1, no horizon would form in the collision of
the lightlike particles; instead, they would merge to form a
massive particle with no horizon around it. This matches
with the observation that one needs 4�G3E � 1 to form a
trapped surface.

As noted in [51], black hole circumference cannot in-
crease except by sudden events like its formation, because
gravity is nondynamical inAdS3. So it makes sense that the
bound S � Strapped should be saturated. A partial trans-

lation of this statement to the dual field theory is that no
entropy increase is possible after formation of a thermal
state because there is no viscosity. Bulk viscosity is for-
bidden by conformal invariance, and there is no shear in
1þ 1 dimensions. Similar observations have recently been
made in [48,52].

So S ¼ Strapped in AdS3, at least for point-sourced

shocks. As pleasing as this result appears, we remain
puzzled on a conceptual level: the field theory dual proba-
bly enjoys some form of integrability and/or holomorphic
factorization, which permits only forward scattering. If one
tries to collide pairs of shock waves in the dual field,
forward scattering says that they should pass right through
each other. It would be nice to imagine that after the
collision, the shocks ‘‘bleed’’ detritus from their leading
edge, and this detritus comes to rest (on average) as a fully
formed thermal medium. But we could not see how to
describe such a process hydrodynamically without violat-
ing local momentum conservation. It should probably be
kept in mind that the exact results of [51] rely on the
assumption that colliding particles merge.14 This is cer-
tainly a minimal assumption, but it does not seem
inescapable.

V. DISCUSSION

The scaling Strapped / E2=3 is the most distinctive feature

of point-sourced shocks in AdS5 and, as we have already

remarked, it will conflict with data if the S / E1=2 behavior
observed in heavy-ion data to date extends significantly
above the scale of RHIC collisions, or if the slower in-
crease of S with E predicted by color glass condensate
calculations is realized. Let us consider how we might
modify the colliding shocks so as to be consistent with a

slower increase of S with E. Instead of asking how we
could suppress entropy production while keeping energy
fixed, it is intuitively easier to consider collisions with
fixed Strapped and ask how we could add energy to them.

An obvious approach is to use a halo effect: diffuse energy
density can be added outside of where the trapped surface
forms, and because it is so diffuse, it does not cause
significant entropy production during the collision. But
instead of spreading out the energy density in R3;1, we
are going to spread it out in AdS5 in such a way that hTmni
in the gauge theory does not change. As noted in Sec. III C,
there is a large freedom in how to do this: any gravitational
source in AdS5 that has the Oð3Þ symmetry preserved by a
massless point particle and which is localized at u ¼ 0
(or v ¼ 0) will give the same hTmni (but, presumably,
with different higher point functions of Tmn and other
operators). We will consider a particular class of
Oð3Þ-symmetric sources that make it easy to obtain explicit
formulas using results already established. Namely, let the
gravitational stress tensor be of the form (75), where

	ðqÞ ¼ aE

8�L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ qÞp ð1þ 2qÞ�2�a (124)

for some positive constant a. The overall normalization
was chosen so that E is defined as in (83). To simplify
notation, let us introduce scaled forms of the energy and
entropy:

Ê ¼ 2G5E

L2
Ŝ ¼ G5Strapped

�L3
: (125)

It is helpful to keep in mind that Ê and Ŝ are numerically
large: with G5 and L chosen as indicated in Sec I, E ¼
19:7 TeV and S ¼ 35 000 translates into Ê � 4:5� 105

and Ŝ � 5900.
From the third entry in Table I for Strapped one can show

that

Ŝ � 4q2C; (126)

where the approximate equality becomes more accurate at

large Ŝ. Using (114) and (115) together with (126), one
arrives at

Ê � Ŝ3=2

1� ð1þ
ffiffiffî
S

p
Þ�a

; (127)

where again the approximate equality becomes more ac-

curate at large Ŝ. Taking a! 1 for fixed Ŝ, one recovers

from (127) the leading-order result Ê � Ŝ3=2, which is
equivalent to (119) for D ¼ 5. This is because in the large
a limit, the distribution of energy (124) becomes pointlike
in AdS5.

By allowing a to be a function of Ŝ, one can evidently
persuade the result (127) to conform to a desired scaling

relation, at least for large Ŝ: for example, to get Ê � KŜ2

14The additional dynamical claim of [51] is that the holonomy
of the end state particle is the product of the holonomies of the
initial state particles. This product rule explains how the differ-
ence between p0 < 1 and p0 > 1 arises: in the former case, the
product of holonomies of initial state particles is a rotation,
meaning that its fixed set is timelike, corresponding to a massive
particle; while in the latter case, the product is a boost, corre-
sponding to a spacelike geodesic interpreted as the future singu-
larity inside the black hole.
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for some constant K, one would choose

a ¼ 2=Kffiffiffî
S

p
logŜ

�
1þ 1

2K
ffiffiffî
S

p þ . . .

�
(128)

at large Ŝ. Small a means that the cloud of matter in AdS5
is very diffuse, so that most of the energy is in the halo
where little entropy production occurs.

The strategy outlined here for obtaining a scaling

Strapped / E1=2 seems to us ad hoc. Why would we disperse

the matter in AdS5 as we increase the boost factor? Some
guidance from other physical principles—perhaps satura-
tion physics—is needed to specify more precisely what
initial state we should choose in the holographic dual.

Another possibility to explain a deviation from the E2=3

scaling is that even slight broadening of the matter distri-
bution in the longitudinal direction would lead to a sub-
stantial reduction in the production of entropy. This
possibility is hard to assess without a more careful analysis
of trapped surfaces in geometries with longitudinal
smoothing. We leave such an investigation for future
work. Of course, we should not entirely neglect the possi-
bility that future heavy-ion data will show a markedly
faster increase in total multiplicity with energy than the
Landau model predicts. If (16) turns out to be about right,
we would see it as evidence that the trapped surface
computation captures an important aspect of the overall
dynamics of the collision.

Although entropy estimates have been our main focus,
the Oð3Þ symmetry that we noted in head-on collisions of
point-sourced shocks has independent interest. In this con-
text, it is interesting to note the proposal of [53], according
to which the saturation scale Qs should vary across the
transverse plane in a fashion similar to (86):

Qsðx1; x2Þ ¼ L2

L2 þ ðx1Þ2 þ ðx2Þ2Q
max
s ; (129)

where L is taken to be the transverse size of the hadron
under consideration.15 The form (129) was proposed in
order to economically accommodate the known power law
behavior Qs 
 1=½ðx1Þ2 þ ðx2Þ2� at large transverse x to-
gether with a finite maximum at x1 ¼ x2 ¼ 0. It is assumed
to arise from feeding an initial state (the hadron at rest),
which explicitly breaks conformal symmetry into evolu-
tion equations (Balisky-Fadin-Kuraev-Lipatov and gener-
alizations), which are conformally invariant, at least in the
leading-log approximation.

The form (129) is tantalizingly similar to (86), hinting
that the initial state and early dynamics of the collision
might be closer to respecting the Oð3Þ symmetry we have
found than one would expect from comparing the shapes of
theWoods-Saxon and AdS profiles shown in Fig. 4. Indeed,
the profile (86) can be recognized as special even without
recourse to the gauge-string duality: it is uniquely speci-
fied, up to the choice of E and L, by invariance under the
Oð3Þ remnant of the conformal group that we mentioned in
Sec. I and identified explicitly at the end of Sec. III A. We
speculate that this Oð3Þ may be approximately realized in
central heavy-ion collisions. If it were realized exactly in
the initial state, it would be preserved during the collision
to the extent that the relevant dynamics—perturbative or
strongly coupled—respects conformal symmetry.
TheOð3Þ symmetry has a particularly simple realization

on the S3 �R boundary of global AdS5. To make it
explicit, let us introduce explicit polar coordinates in
AdS5 as follows:

X�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ L2

q
cos

�

L
X0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ L2

q
sin
�

L

X1 ¼ 	 sin sin# cos� X2 ¼ 	 sin sin# sin�

X3 ¼ 	 cos X4 ¼ 	 sin cos#: (130)

The angle� is the usual azimuthal angle around the beam-
line, but the other angles do not have such a familiar
interpretation: in particular, # is not the angle relative to
the beam. The boundary metric is

ds2 ¼ �d�2 þ L2ðd 2 þ sin2 d#2 þ sin2 sin2#d�2Þ:
(131)

As we saw in the discussion at the end of Sec. III A, it takes
a massless particle a global time �� ¼ �L to traverse
AdS5. Let us say that a right-moving particle starts on
the boundary at  ¼ � at global time � ¼ ��L=2, and a
left-moving particle starts at the same time at  ¼ 0. The
propagation of these particles toward one another is dual to
an expansion of lightlike, spherically symmetric shock
waves from the insertion points at  ¼ � and 0. At times
��L=2< �< 0, the stress tensor on S3 �R is

h ~T��i ¼ 1

L2
h ~T  i ¼ E

4�L3sin2 

�
�

�
 þ �

L
� �

2

�

þ �

�
 � �

L
� �

2

��

h ~T� i ¼ h ~T �i ¼ E

4�L2sin2 

�
��

�
 þ �

L
� �

2

�

þ �

�
 � �

L
� �

2

��
;

(132)

with other components vanishing. The first term in square
brackets of each of the explicit expressions in (132) is due
to the right-moving shock, and the second term to the left-
moving shock. The notation ~Tab for the stress tensor on

15The saturation scale is the typical transverse momentum of
color field configurations in a highly boosted nucleus. It arises
when perturbative splitting causes the phase space density of
gluons to become of order 1=�s, at which point recombination of
gluons cannot be neglected. For gold-gold collisions at RHIC, an
approximate value for Qs is 1 GeV. See for example [54] for an
introductory account of the saturation scale and related ideas.
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S3 �R reminds us not only that there is a nontrivial
conformal mapping between this form and (86), but also
that the stress tensor picks up an anomalous vacuum con-
tribution, proportional to the metric, in the course of this
mapping, which we have excluded from ~Tab.

It would be interesting to start from (132), or some
alteration of it where the delta functions are softened into
sharply peaked but smooth functions, and evolve it forward
with hydrodynamics, or with some combination of a heu-
ristic treatment of thermalization for 0< �< �therm fol-
lowed by hydrodynamics. Although such evolution would
be a purely one-dimensional problem, it would incorporate
a combination of radial and longitudinal flow in the origi-
nal Minkowski-space conformal frame.

It is worth noting that an Oð2Þ remnant of the conformal
group is preserved even when the collision is not head-on.
[IfD> 5, then this would be anOðD� 3Þ symmetry.] This
is easiest for us to see by considering test particles inAdS5.
In Poincaré coordinates, the right-moving particle travels
on a trajectory with

x3 ¼ t x1 ¼ x2 ¼ 0 z ¼ L; (133)

and the left-moving particle’s trajectory is

x3 ¼ �t x1 ¼ 0 x2 ¼ b z ¼ L; (134)

where b is the impact parameter. In global coordinates,
these trajectories take the form

right-moving:

�
X3 ¼ X0

X1 ¼ X2 ¼ X4 ¼ 0
X�1 ¼ L

left-moving:

�X3 ¼ �X0 X1 ¼ 0 X2 ¼ b

X4 ¼ � b2

2L X�1 ¼ Lþ b2

2L :
(135)

The total configuration (135) is invariant under the full
Oð3Þ subgroup if b ¼ 0, but for b � 0 it is still invariant
under the Oð2Þ subgroup that preserves the vector
ðX1; X2; X4Þ ¼ ð0; b;�b2=2LÞ. Because the dynamics re-

spects the full conformal symmetry, the final state should
be invariant under Oð3Þ or Oð2Þ, accordingly as b ¼ 0 or
b � 0.
Clearly, estimating total entropy production is only one

facet of describing colliding shocks in anti-de Sitter space.
Ideally, one would like to understand the process of ther-
malization and the subsequent hydrodynamical flow. In the
case of central collisions, imposing the Oð3Þ symmetry
means that the gravity calculations are effectively 2þ 1
dimensional. An optimistic view is that a fairly full account
could be made by somehow matching a marginally trapped
surface computation to a late-time description that fuses a
linearized treatment of nonhydrodynamical quasinormal
modes, as described in [55,56], with a nonlinear treatment
of hydrodynamical modes, as described in [57]. In such an
account, the local thermalization time might be expected to
be several times the relaxation time of the nonhydrody-
namical modes: in total, roughly 0:3 fm=c for conditions
comparable to central RHIC collisions, according to the
estimate of [56]. An alternative approach to describing
thermalization following a collision of two shocks in
AdS5 has been suggested in [6].
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