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We investigate the properties of the Sakai-Sugimoto model at finite magnetic field and baryon chemical

potentials. We show that in a finite magnetic field, there exists a spatially homogeneous configuration

carrying a finite-baryon number density. At a low magnetic field and baryon chemical potential, the

equation of state of the matter coincides with that obtained from the chiral perturbation theory Lagrangian

with an anomalous term. We discuss the behavior of the system at larger magnetic fields.
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I. INTRODUCTION

Recently, gauge/gravity duality [1–3] has been used
extensively to investigate properties of strongly coupled
gauge theories at finite temperature and/or density. The
popularity of this method is due to its ability to calculate in
the strong coupling regime. The main disadvantage is that
the models that can be solved, for example, the N ¼ 4
super Yang-Mills (SYM) theory, do not coincide with
QCD, typically containing additional degrees of freedoms
like adjoint fermions or scalars.

While finite-temperature N ¼ 4 SYM plasma has
many features reminiscent of QCD plasma at temperatures
not too large compared to the deconfinement temperature,
it is more difficult to construct a holographic model of cold
nuclear or quark matter. One problem is that at large Nc,
nuclear matter is a crystal instead of a liquid. This fact finds
reflection in the Sakai-Sugimoto model [4], where baryons
are 5D instanton particles and nuclear matter is a crystal
of such instantons [5], which is necessarily inhomogeneous
[6].

In this paper, we investigate the possible gravity dual of
magnetized nuclear matter. In a recent study [7], it was
found that in the chiral limit of massless quarks, at any
magnetic field the ground state of finite-density matter is
not a crystal, but a spatially homogeneous phase. At low
density such a phase is characterized by a finite gradient of
the �0 field, r�0 � 0 [in the parametrization where the
chiral condensate is proportional to expði�0�3=f�Þ]. At
finite quark masses this state becomes a stack of�0 domain
walls. The �0 domain wall is locally stable in magnetic
fields stronger than B0, and is energetically more favorable
than nuclear matter above a magnetic field B1, where both
B0 and B1 vanish in the chiral limit.

The treatment of Ref. [7] relies on the use of chiral
perturbation theory, including the appropriate Wess-
Zumino-Witten (WZW) term in the presence of an elec-
tromagnetic field and a baryon number chemical potential.

It is valid only for sufficiently small magnetic field and
baryon chemical potential.
In this paper, we search for a similar solution in the

Sakai-Sugimoto model of holographic QCD [4]. The
Sakai-Sugimoto model is an application of the AdS/CFT

conjecture involving a system of Nf D8–D8 probe brane

pairs in a D4 brane background of type IIA string theory.
The model exhibits chiral symmetry breaking and thereby
reproduces much of the low-energy physics of massless
QCD, such as the octet of pseudoscalar Nambu-Goldstone
bosons. Including the Chern-Simons (CS) term of the
probe brane action is equivalent to including the effects
of the axial anomaly on the field theory side. While the
model has been used to investigate properties of the vac-
uum and the thermal state (with zero chemical potentials)
in an external magnetic field [8,9], the case when both the
magnetic field and the baryon chemical potentials are non-
zero has not been considered.
Because the Sakai-Sugimoto model incorporates the

axial anomaly into a theory of massless pions, one would
expect to find, at least at small magnetic fields and baryon
chemical potentials, a solution similar to the one found in
[7]. The purpose of this paper is to demonstrate that
solution.
We found, as expected, that at low B the results of

Ref. [7] are reproduced. At larger values of the magnetic
field, the quadratic approximation to the Dirac-Born-Infeld
(DBI) action of the probe branes can no longer be trusted.
However, we can still consider the quadratic action at large
B as a bottom-up AdS/QCD theory [10–12]. In this sense,
we unexpectedly discovered that in the opposite limit of
large B the zero-temperature thermodynamics of matter
with finite-baryon density is identical to the thermodya-
namics of free quarks, which fill energy levels in the lowest
Landau level. It is rather surprising given that the super-
gravity limit corresponds to the strong coupling regime in
field theory.
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In Sec. II, the necessary facets of the Sakai-Sugimoto
model are reviewed. In Sec. III, the domain wall solution is
presented. We give interpretations of the result in Sec. IV.
Section V provides a concluding discussion.

II. REVIEW OF THE SAKAI-SUGIMOTO MODEL

In [13], a way to holographically model nonsupersym-
metric pure Yang-Mills theory was presented. Although
the initial motivation of the model involved the M-theory
duality on AdS7 � S4, Witten argued that it could equiv-
alently be described as the background of a stack of Nc D4
branes in type IIA supergravity, where one of the directions
parallel to the D4 branes is compactified into a circle.
Antiperiodic boundary conditions around the circle are
imposed on the fermionic fields, giving the fermions a
mass and breaking the supersymmetry. The scalar fields
also acquire a mass at the one-loop level, leaving the
SUðNcÞ vector field as the only massless field in the theory,
and thus reproducing nonsupersymmetric pure Yang-Mills
theory at energies small compared to the Kaluza-Klein
scale MKK.

Sakai and Sugimoto added massless flavor to the theory

by considering the addition of Nf D8–D8 probe branes to

the background [4], where the probe branes are transverse
to the circle of compactification. The essential idea of
adding flavor to holographic systems via probe branes
[14] is that if Nf � Nc, the backreaction of the probe

branes on the geometry can be neglected, and the probe
brane action consists simply of the Dirac-Born-Infeld ac-
tion in the original background, plus the relevant Chern-
Simons (CS) terms.

There is aUðNfÞ � UðNfÞ gauge symmetry living on the

probe brane pairs, which provides a global chiral symmetry
on the field theory side. The geometry of the D4 branes is
cigar-shaped, and one finds from analysis of the DBI action

that the D8–D8 branes merge at some value of the radial
coordinate. Thus, the UðNfÞ � UðNfÞ symmetry is broken

to a single UðNfÞ; this is a holographic manifestation of

chiral symmetry breaking. It was shown in Refs. [4,15] that
the DBI action of the probe branes reproduces much of
the low-energy physics of QCD, including the chiral
Lagrangian and qualitative features of the meson spectrum.
Inclusion of the CS term for the probe branes incorporates
the effects of the axial anomaly into the low-energy theory.

It is possible to construct baryons in this model [16–18].
Witten’s baryon vertex appears as a D4 brane wrapping the
S4. Strings stretching between the D4 brane and the D8
branes will source the gauge field living on the D8s. The
baryon number is then given in terms of the SUðNfÞ valued
field strengths F living on the probe branes as

NB ¼ 1

32�2

Z
d3xdz�MNPQ tr½FMNFPQ�; (1)

whereM, N, P,Q ¼ 1, 2, 3, z. The baryon number integral

also shows up in the probe brane action in the CS term
coupled to the time-component of the U(1) part of the

gauge field, Â:

SCS � Nc

64�2
�MNPQ

Z
d4xdzÂ0 tr½FMNFPQ�: (2)

Thus, Â0 acts as a source for baryon number, and, in order
to turn on a finite chemical potential, we will consider

solutions with nontrivial Â0.
We also wish to turn on an external magnetic field that

couples to our flavor degrees of freedom. There is no
proper U(1) gauge field in our theory. However, we can
simulate the effects of an external field by weakly gauging
U(1) subgroups of the global chiral symmetry. In real QCD
with Nf ¼ 2 flavors, the electric charge is related to both

the third component of isospin and to the baryon number,
Q ¼ I3 þ 1

2B. Therefore, in order to properly introduce an

electromagnetic field into Sakai-Sugimoto, one would
have to gauge both one of the components of I3 and the
baryon number potential. However, for simplicity, in this
paper we will only consider gauging of the isospin com-

ponent by looking for solutions with a nonzero Fð3Þ.

III. SOLUTION WITH FINITE MAGNETIC FIELD
AND CHEMICAL POTENTIAL

We will first establish our conventions and notation.
In this paper, we will consider the case of two flavor D8

branes. The branes and the antibranes will be maximally
separated around the circle of compactification, as in the
original treatment by Sakai and Sugimoto [4].
The effective action of the probe branes is written in

terms of a Uð2Þ ¼ Uð1ÞB � SUð2Þ five-dimensional gauge
field. It will often be convenient to distinguish the fifth
spacetime index z from the four-dimensional boundary
indices. Thus, uppercase roman letters M, N . . . run over
all five spacetime directions, whereas lowercase greek
letters �, � . . . run only over 0, 1, 2, 3. We will use a
combination of form and component notation to describe
the gauge fields. The U(2)-valued form fields are given by

A ¼ AMdx
M; (3)

F ¼ dAþ iA ^A: (4)

The gauge fields can be decomposed into the U(1) part Â
and the SU(2) part A as

A ¼ Aþ Â

2
¼ AðiÞTi þ Â

2
1; (5)

where the Ti are the SU(2) generators normalized as
tr½TiTj� ¼ 1

2�
ij and the numerical factor on the U(1) piece

is to ensure that the U(1) generator is normalized in the
same manner. Likewise, F is decomposed in terms of F

and F̂:
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F ¼ FðiÞTi þ F̂

2
: (6)

In component form,

FðiÞ
MN ¼ @MA

ðiÞ
N � @NA

ðiÞ
M � �ijkAðjÞ

MAðkÞ
N ; (7)

F̂ MN ¼ @MÂN � @NÂM: (8)

The effective theory of the branes is described by the action [4]

S ¼ SYM þ SCS; (9a)

SYM ¼ ��
Z

d4xdz tr

�
1

2
hðzÞF ��F �� þM2

KKkðzÞF �zF �z

�
þOðF 3Þ; (9b)

SCS ¼ Nc

24�2

Z
tr

�
AF 2 � i

2
A3F � 1

10
A5

�
; (9c)

where

� ¼ �Nc

216�3
; (10)

and hðzÞ and kðzÞ are defined as

hðzÞ ¼ ð1þ z2Þ�1=3; kðzÞ ¼ 1þ z2: (11)

In ‘‘bottom-up’’ AdS/QCD models where the chiral sym-
metry is spontaneously broken by the boundary conditions
at the IR brane, the action has the same form as (9), but
with different functions hðzÞ and kðzÞ. For example, in the
model considered in [10], hðzÞ ¼ const and kðzÞ �
coshðbzÞ, where b is a constant.

The Yang-Mills action (9b) arises from expanding the
DBI action for the probe branes to second order in field
strengths. For large values of the field strength, this expan-
sion will no longer be valid. We will see later that turning

on a magnetic involves setting Fð3Þ
12 ¼ B. It can be shown

that the cubic terms involving B can be dropped as long as
B satisfies the inequality

27�

2�

B

M2
KK

� 1: (12)

Alternatively, the action (9b) can be interpreted as a
bottom-up effective action. From this perspective, B is
allowed to be arbitrarily large.

In terms of the U(1) and SU(2) pieces, the action reads
[16]

SYM ¼ ��

2

Z
d4xdz

�
hðzÞ
2

ðFðiÞ
��FðiÞ�� þ F̂��F̂

��Þ

þM2
KKkðzÞðFðiÞ

�zFðiÞ�z þ F̂�zF̂
�zÞ

�
(13)

SCS ¼ Nc

24�2

Z �
3

2
Â trF2 þ 1

4
ÂF̂2

þ 1

2
d

�
Â tr

�
2FA� i

2
A3

���
: (14)

In [16], a localized soliton solution is found whose size is

Oð1= ffiffiffiffi
�

p Þ. In this case, the scaling of the gauge field
solution allows the equations of motion to be expanded
as a series in �. In our case, there is no such scaling in our
solution, so we must work with the full equations of
motion. Variation of the above action leads to the equations

8

	
½hðzÞ@MF̂MN þM2

KK@zðkðzÞF̂zNÞ�

¼ ��N�
��ðFðiÞ
�
F

ðiÞ
�� þ F̂�
F̂��Þ; (15)

8

	
M2

KKkðzÞ@MF̂Mz ¼ ��z�
��ðFðiÞ
�
F

ðiÞ
�� þ F̂�
F̂��Þ;

(16)

4

	
½hðzÞDMF

ðiÞMN þM2
KK@zðkðzÞFðiÞzNÞ�

¼ ��N�
��F̂�
F
ðiÞ
��; (17)

4

	
M2

KKkðzÞDMF
ðiÞMz ¼ ��z�
��F̂�
F

ðiÞ
��; (18)

where the covariant derivative acting on field strengths is

D�F
ðiÞ�� ¼ @�F

ðiÞ�� þ �ijkAðjÞ
� FðkÞ��: (19)

and we have defined, for future convenience,

	 ¼ Nc

16�2�
¼ 27�

2�
: (20)

Wewish to turn on a magnetic field and a baryon number
chemical potential and to look for a solution homogeneous
in Minkowski space. As discussed above, in order to turn
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on the magnetic field we will assume a nonzero Fð3Þ
12 , and to

generate a baryon number chemical potential we will

assume a nonzero Â0. Recall that in terms of the five-
dimensional gauge fields, the baryon number is given by
(1),

NB ¼ 1

64�2

Z
d3xdz�MNPQFðiÞ

MNF
ðiÞ
PQ (21)

whereM, N, P,Q are not zero. We see that in order to have

nonzero baryon number, if Fð3Þ
12 is nonzero then Fð3Þ

3z must

also be nonzero. Because we want a solution that is homo-
geneous in the four-dimensional coordinates, all these
quantities will only depend on z. Let us assume all other
fields are zero. To reduce clutter, we will henceforth denote

Fð3Þ simply by F.
The second and fourth equations of motion are then

trivially satisfied, whereas the first and third become

M2
KK

	
@zðkðzÞF̂z0Þ ¼ �F12F3z (22)

M2
KK

	
ð@zðkðzÞF3zÞ ¼ �F̂z0F12: (23)

The covariant derivative has reduced to a partial derivative

because AðjÞ is zero for j ¼ 1, 2.
We notice that due to the Bianchi identity and the

requirement that fields depend only on z, F12 has to be a
constant, F12 ¼ B. The equations can be solved exactly for
any function kðzÞ. For kðzÞ ¼ 1þ z2 as in the Sakai-
Sugimoto model, the general solution is

F3z ¼ c1
expð ~B arctanzÞ

1þ z2
þ c2

expð� ~B arctanzÞ
1þ z2

; (24)

F̂ z0 ¼ �c1
expð ~B arctanzÞ

1þ z2
þ c2

expð� ~B arctanzÞ
1þ z2

: (25)

where ~B ¼ 	B=M2
KK.

In the presence of a finite chemical potential, the ther-
modynamic ground state will minimize the free energy
H ��NB. Minimizing this quantity will give us the values
of c1 and c2 in the ground state. Under our Ansatz, the
baryon number (1) reduces to

NB ¼ 1

8�2

Z
d3xdzBF3z ¼ V

4�2	
M2

KKðc1 þ c2Þ sinh�
~B

2

(26)

where V is the volume of the three dimensional space.

The energy of the configuration is given by

�

2

Z
d3xdz

�
1

2
hðzÞB2 þM2

KKkðzÞðF3zF
3z � F̂z0F̂

z0Þ
�
:

(27)

The piece proportional to B gives an infinite contribution.
This is the expected divergent energy of a space-filling
magnetic field. This piece is independent of the constants
c1 and c2, so does not affect our minimization problem.
Performing the integrals involved in the energy we write

H ��NB ¼ VM2
KK sinh

� ~B

2

�
2�
~B

cosh
� ~B

2
ðc21 þ c22Þ

� �

4	�2
ðc1 þ c2Þ

�
: (28)

It is simple to minimize this with respect to c1 and c2. The
solution is

c1 ¼ c2 ¼ �B

16�2�M2
KK cosh�

~B
2

: (29)

Plugging into (24) and (25), we can write the ground state
solutions entirely in terms of the parameters of the prob-
lem,

F3z ¼ 27�

�Nc

�B

M2
KK

coshð27�2� B
M2

KK

arctanzÞ
coshð27�2

4�
B

M2
KK

Þð1þ z2Þ (30)

and

F̂ z0 ¼ � 27�

�Nc

�B

M2
KK

sinhð27�2� B
M2

KK

arctanzÞ
coshð27�2

4�
B

M2
KK

Þð1þ z2Þ : (31)

The energy can also be found in terms of fundamental
quantities by plugging in the values of c1 and c2 into our
earlier expression for H. Doing so gives

� � E

V
¼ �2B

4�2Nc

tanh

�
27�2

4�

B

M2
KK

�
: (32)

One can express the energy density in terms of the baryon
number density nB,

� ¼ �2Nc

n2B
B

coth

�
27�2

4�

B

M2
KK

�
: (33)

The asymptotics of (33) at small B is

� ¼ 4�Nc

27

n2BM
2
KK

B2
: (34)

and at large B is

� ¼ �2Nc

n2B
B

: (35)

Note, however, that in order to obtain the large B asymp-
totics we must assume that B=ð�M2

KKÞ � 1. This is pre-
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cisely the limit in which we can no longer trust the qua-
dratic approximation to the DBI action. Thus, in order to
consider this limit, we must be thinking in the context of a
bottom-up AdS/QCD model, where higher order terms in
F are suppressed from the beginning.

IV. INTERPRETATION OF RESULTS

We now try to interpret our results for small and large
magnetic field B. At small magnetic fields, one can use the
chiral perturbation theory. The Hamiltonian describing the
interaction of the �0 field with the magnetic field and
baryon chemical potential is [7]

H0 � H ��NB ¼
Z

dx

�
1

2
ðr�0Þ2 � �

4�2f�
B 	 r�0

�
:

(36)

The minimum of H0 is achieved at

r�0 ¼ �

4�2f�
B; (37)

at which the energy and baryon number densities are

� ¼ �2B2

32�4f2�
; nB ¼ �B2

16�4f2�
: (38)

The relationship between � and nB is

� ¼ 8�4f2�
n2B
B2

: (39)

Now using the value for the pion decay constant found in
[4],

f2� ¼ �Nc

54�4
M2

KK; (40)

we reproduce the low-B asymptotics of Eq. (33) exactly.
We now show that at very large B the thermodynamic

relation between � and nB, obtained in the approximation
where one replaces the DBI action by the Maxwell action,
approaches that of a free noninteracting gas. Consider a
system of free, noninteracting quarks of two flavors u and d
in an external magnetic field coupled to isospin. The
charges of the quarks are 1=2 and �1=2. In a magnetic
field, the transverse motion is quantized. The lowest
Landau level consist of two branches,

E ¼ 
kz; (41)

each having degeneracy in the transverse direction equal to
jejB=ð2�Þ ¼ B=ð4�Þ.

A baryon chemical potential � corresponds to a quark
chemical potential �q ¼ �=Nc. The quarks fill energy

levels below �q, leading to a nonzero baryon density. At

small chemical potentials (or, equivalently, large magnetic
fields) the filled energy levels are all in the lowest Landau
level. The total baryon number is then

nB ¼ Nf

B

4�

Z �q

��q

dkz
2�

¼ �B

2�2Nc

: (42)

Inverting the relation,

� ¼ 2�2Nc

B
nB; (43)

and integrating over nB, one finds the energy density as a
function of the baryon number density

� ¼ �2Nc

n2B
B

: (44)

This coincides exactly with the thermodynamics of our
bottom-up model at large B. Therefore, we conclude that
at large B, the equation of state of matter at finite-baryon
density is identical to that of free quarks.
Moreover, by redoing the previous calculation, one can

show that this feature is independent of the choice of the
function kðzÞ, given that the integral

R1
0 dzk�1ðzÞ is con-

vergent. This condition is satisfied in the model of [10]
where kðzÞ � coshðbzÞ. Therefore, in bottom-up holo-
graphic models of QCD where the action contains only
the Maxwell and Chern-Simons parts, and where chiral
symmetry breaking is due to a boundary condition at z ¼
0, the equation of state at very high magnetic field ap-
proaches that of a free gas.

V. CONCLUSIONS

To conclude, we have found a solution to the field
equations in the Sakai-Sugimoto model that corresponds
to matter at finite-baryon density in an external magnetic
field. In contrast to the case without a magnetic field, it is
possible to write down a solution that is completely homo-
geneous in space. At small B and small chemical potential,
the result can be obtained from the chiral Lagrangian with
the Chern-Simons term. The solution continues to exist for
any value of B, although for larger values of B the solution
can no longer be viewed as arising from the full Sakai-
Sugimoto model. We can, however, interpret our solution
at large B as arising from a bottom-up AdS/QCDmodel. At
large B the system behaves, from the point of view of zero-
temperature thermodynamics, as a system of free quarks.
How can one explain the latter fact? Right now we have

only some vague ideas of how it can be understood. In
magnetic fields, the fermions move in Larmor orbits whose
radius shrinks as B ! 1. This fact may explain why
interaction between quarks do not seem to play any role
at large B.
Clearly, the situation should be investigated further. One

question one can ask is whether the state is stable with
respect to small perturbations. At small �, the energy per
baryon is small and the system is clearly more stable than
the ordinary Skyrmion crystal. We leave the investigation
of the stability of the system at large B and � to future
work.
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out in [19], which contains some overlapping results.
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