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All modern routes leading to a quantum theory of gravity—i.e., perturbative quantum gravitational one-

loop exact correction to the global chiral current in the standard model, string theory, and loop quantum

gravity—require modification of the classical Einstein-Hilbert action for the spacetime metric by the

addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that

manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of

birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave

propagates. Observation of gravitational waves that have propagated over cosmological distances may

allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects.

The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the

gravitational waves from sources at cosmological distances great enough that interesting bounds on the

Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime

birefringence to the propagation of gravitational waves from such systems. Focusing attention on the

gravitational waves from coalescing binary black holes systems, which LISAwill be capable of observing

at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent

change in the apparent orientation of the binary’s orbital angular momentum with respect to the observer

line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling

over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also

lead to an evolution of the system’s orbital angular momentum, the time dependence and other details of

this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing

the two effects to be separately identified. In this way gravitational-wave observations with LISA may

thus provide our first and only opportunity to probe the quantum structure of spacetime over cosmological

distances.
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I. INTRODUCTION

‘‘Gravitational wave’’ is the name we give to a short-
wavelength feature of the structure of spacetime, the arena
within which all other phenomena play out their roles. As
such, the direct observation of gravitational waves offers
an unprecedented opportunity to explore the environment
that both enables and constrains the action of the broader
phenomena of nature. Here we describe how, using the
proposed Laser Interferometric Gravitational-Wave
Antenna (LISA) [1–4], to search for evidence of a correc-
tion to general relativity that is well motivated by current
models of effective (perturbative) and nonperturbative
quantum gravity.

In most corners of the perturbative string theory moduli
space in 4-dimensionall compactifications, the addition of

a parity-violating Chern-Simons term to the Einstein-
Hilbert is required for mathematical consistency [5].
Furthermore, in the presence of the Ramond-Ramond sca-
lar (D-instanton charge), the Chern-Simons term is induced
in all string theories due to duality symmetries [6,7].
The requirement for a Chern-Simons term is not unique

to string-motivated quantum gravity theories: A Chern-
Simons correction to the classical Einstein-Hilbert action
arises as a perturbative quantum gravitational one-loop
exact correction to the global chiral current in the standard
model, similar to the anomaly-canceling correction to the
QCD path integral [8]. While the anomaly-canceling field
in the standard model case interacts with photons (leading
to significant observational constraints on its coupling), the
anomaly-canceling term considered here affects only the
gravitational sector of the theory and is mostly uncon-
strained by observation [9–11]. A Chern-Simons term
also arises in loop quantum gravity, where the coupling
is not necessarily limited to small values. In the strong
gravity sector of this framework, this term arises to ensure
invariance under large gauge transformations of the
Ashtekar connection variables [12].
An ad hoc ‘‘classical’’ Chern-Simons ‘‘correction’’ to

the classical Einstein-Hilbert action can, of course, always
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be introduced, though the prescription for doing so is not
unique. In fact, classical realizations of Chern-Simons
gravity can generally be made equivalent classical theories
of torsion [13,14]. In contrast, when our space-time phys-
ics includes both fermions and quantum effects one is led
to a specific one-loop exact effective Chern-Simons cor-
rection to the Einstein-Hilbert action [14]. Given the ubiq-
uity of a Chern-Simons correction when exploring either
perturbative or nonperturbative quantum gravitational ef-
fects, and the ad hoc and ambiguous character of its
appearance in classical theories, we characterize observa-
tional tests for the presence of a Chern-Simons correction
to the classical Einstein-Hilbert action as probes of effec-
tive quantum gravity.

Chern-Simons corrections to general relativity were first
introduced in the context of topologically massive gauge
theories in three-dimensional gravity [15]. More recently
the three-dimensional theory was generalized to four-
dimensional general relativity [16] and, since then, the
four-dimensional theory has been studied in cosmological
[7,17–19], weak [9–11], and strong gravity contexts
[20,21]. In the context of gravitational-wave theory,
Chern-Simons gravity leads to an amplitude birefringence
of space-time for gravitational-wave propagation
[7,16,22]: i.e., a polarization dependent amplification/at-
tenuation of wave amplitude with distance propagated.
Observation of gravitational waves that have propagated
over cosmological distances, such as will be possible with
the Laser Interferometer Gravitational-Wave Observatory
(LISA) [2–4], provide the opportunity to measure or bound
the magnitude of the birefringence and, correspondingly,
provide the first experimental constraints on string theory
models of gravity.

Gravitational-wave observations have long been recog-
nized as a tool for testing our understanding of gravity (see
[23] for a recent review). Eardley and collaborators [24,25]
first proposed a far-field test of all metric theories of
gravity through gravitational-wave observations. Finn
[26], and later Cutler and Lindblom [27], proposed a means
of realizing these measurements using a space-based de-
tector in a circumsolar orbit observing solar oscillations in
the far-zone field. Ryan [28] argued that observations of
the phase evolution of the gravitational waves emitted
during the gravitational-wave driven inspiral of, e.g., a
neutron star or stellar mass black hole into a supermassive
black hole could be used to ‘‘map out’’ the spacetime
metric in the vicinity of the black hole horizon, testing
the predictions of general relativity in the regime of strong-
fields. There have been several proposals describing differ-
ent ways in which gravitational-wave observations could
be used to place bounds on the graviton Compton-
wavelength [29–34], the existence of a scalar component
to the gravitational interaction [32–35], and the existence
of other corrections to general relativity as manifest in
some fundamental, dimensionful length scale [36,37].

The measurements we propose here are, we believe, the
first example of a direct model-independent probe of string
theory and quantum gravity with gravitational waves.
In Sec. II we review Chern-Simons modified gravity,

focusing attention on the scale of the Chern-Simons term
and its effect on the propagation of gravitational waves in a
cosmological background. In Sec. III we evaluate the ob-
servational consequences of the Chern-Simons term in the
context of ground- and space-based gravitational-wave
detectors. In Sec. V we summarize our conclusions and
discuss avenues of future research.
Conventions used in relativity work and conventions

used in quantum field theory work are often at odds. We
follow the relativity conventions Misner, Thorne, and
Wheeler [38] in this work: in particular,
(i) Our metric has signature �þþþ ;
(ii) We label indices on spacetime tensors with greek

characters and use latin indices to label indices on
tensors defined on spacelike slices;

(iii) We use a semicolon in an index list to denote a
covariant derivative (i.e., rVU becomes V�U�;�)

and a comma to denote ordinary partial derivatives;
(iv) Except where explicitly noted we work in geomet-

ric units, wherein G ¼ c ¼ 1 for Newtonian gravi-
tational constant G speed of light c.

Note that in geometric units, units of mass and length are
interchangeable [i.e., G=c2 has units of (length)/(mass)].
This is in contrast to Planck units (@ ¼ c ¼ 1), where units
of mass and units of inverse length are interchangeable
(i.e., @=c has units of ðmassÞ � ðlengthÞ).

II. CHERN-SIMONS MODIFIED GRAVITY

A. Brief review

In this subsection we review the modification to classical
general relativity by the inclusion of a Chern-Simons term,
based on [16,22]. All four-dimensional compactifications
of string theory lead, via the Green-Schwarz anomaly
canceling mechanism, to the presence of a four-
dimensional gravitational Chern-Simons term [6]. Chern-
Simons forms are formally defined for odd dimensions,
with the 3-form of particular interest for gauge theories. By
introducing an embedding coordinate, which may be dy-
namical, Jackiw and Yi [16] described a Chern-Simons
correction to the Einstein-Hilbert action

SCS ¼ 1

64�

Z
d4x�R�R; (2.1)

where � is (a functional of) the embedding coordinate

R�R ¼ 1
2R����	

����R����; (2.2)

and 	���� is the Levi-Civita tensor density. The variation
with respect to the metric of this contribution to the total
action (which includes the Einstein-Hilbert action plus the
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action corresponding to any additional matter fields) yields
[16]

�SCS ¼ � 1

16�

Z
d4x

ffiffiffiffiffiffiffi�gp
C���g

��; (2.3)

where g is the determinant of the metric and Cab is the C-
tensor [39],

C�� ¼ � 1ffiffiffiffiffiffiffi�gp ½�;			��ð�r�R
�Þ
� �r��;�	

���ð�R�Þ��� �;
(2.4)

and the parenthesis in the superscript stand for symmetri-
zation. The variation of SCS, the usual Einstein-Hilbert
action, and the action of other matter fields leads to the
equations of motion of Chern-Simons modified gravity

G�� þ C�� ¼ 8�T��; (2.5)

where Gab is the Einstein tensor (i.e., the trace-reversed
Ricci tensor) and Tab is the stress-energy tensor of the
matter fields.

By construction the divergence of the Einstein tensor
G�� vanishes. If � is treated as a fixed, external quantity

then general covariance, which requires r � T ¼ 0, leads
to the constraint r � C ¼ 0, which is shown in [16] to be
equivalent to R�R ¼ 0. Alternatively, if � is a dynamical
field, then variation of the action with respect to �will lead
to the same constraint on R�R. Here we are interested in the
propagation of gravitational waves in vacuum, where T ¼
0 and the constraint r �C ¼ 0 is satisfied regardless of
whether we view � as a dynamical field or a fixed,
externally-specified quantity.

B. Linearized Chern-Simons gravitational waves

Focus attention on gravitational-wave perturbations to a
Friedmann-Robertson-Walker (FRW) cosmological back-
ground in Chern-Simons gravity. Following [22], we can
write the perturbed FRW line element as

ds2 ¼ a2ð
Þ½�d
2 þ ð�ij þ hijÞd�id�j�; (2.6)

where 
 is conformal time, �i are comoving spatial coor-
dinates, �ij is the Euclidean metric, and hij is the metric

perturbation, which—for gravitational-wave solutions—
we can take to be transverse and traceless [40].
Introducing this perturbation into the field equations
[Eq. (2.5)] leads to

hgh
j
i ¼ � 1

a2
	pjk½ð�00 � 2H�0Þ@ph0ki þ �0@phghki�;

(2.7)

where we have introduced the notation

0 ¼ @
; (2.8)

hg ¼ @2
 � �ij@i@j þ 2H@
; (2.9)

H ¼ a0=a: (2.10)

Conformal time 
 is related to proper time measured by an
observer at rest with respect to the cosmological fluid via

dt ¼ að
Þd
; (2.11)

correspondingly, the conformal Hubble function H is
related to the Hubble function H measured by an observer
at rest with respect to slices of homogeneity via

H � _a

a
¼ 1

a
H ; (2.12)

where we have use dots to stand for derivatives with respect
to cosmic time t.
Focus attention on plane-wave solutions to the wave

equation [Eq. (2.7)]. With the ansatz

hlmð
;�lÞ ¼ Alm

að
Þ e
�i½�ð
Þ�nk�k�; (2.13)

where the amplitude Alm, the unit vector in the direction
of wave propagation nk and the conformal wave number
 > 0 are all constant, we find that �, , and Aij must

satisfy

DAij ¼ �a�2	pjknpAki½ð�00 � 2H �0Þð�0 � iH Þ
þ i�0D�; (2.14)

where

D ¼ �i�00 � ð�0Þ2 �H 0 �H 2 þ 2: (2.15)

Since the Chern-Simons correction breaks parity, it is
convenient to resolve Aij into definite parity states, cor-

responding to radiation amplitude in the right- and left-
handed polarizations eRij and e

L
ij,

A ij ¼ ARe
R
ij þALe

L
ij; (2.16a)

where

eRkl ¼
1ffiffiffi
2

p ðeþkl þ ie�klÞ; (2.16b)

eLkl ¼
1ffiffiffi
2

p ðeþkl � ie�klÞ; (2.16c)

and eþ;�kl are the usual linear polarization tensors [38]. It is

straightforward to show that

ni	
ijkeR;Lkl ¼ i�R;LðejlÞR;L; (2.17a)

where

�R ¼ þ1; (2.17b)

�L ¼ �1: (2.17c)

With this substitution Eq. (2.14) becomes two decoupled
equations, one for right-hand polarized waves and one for
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left-hand polarized waves

i�00
R;L þ ð�0

R;LÞ2 þH 0 þH 2 � 2

¼ i�R;Lð�00 � 2H�0Þð�0 � iH Þ=a2
ð1� �R;L�

0=a2Þ : (2.18)

The terms on the right-hand side of Eq. (2.18) are the
Chern-Simons corrections to gravitational plane-wave
propagation in a FRW spacetime. To understand the rela-
tive scale of these terms, we rewrite the equation in terms
of the ratio �0=,

y0


þ ið1� �2�2 � ��� y2Þ

¼ �R;Lð	E� 2���ZÞ
1� �R;L�Z

ðy� i��Þ; (2.19a)

where

y ¼ �0


; (2.19b)

� ¼ H 0


and � ¼ H

H 0

; (2.19c)

� ¼ H 0
0

2
and � ¼ H 0

H 0
0

; (2.19d)

	 ¼ �000
a20

and E ¼ �00

a2	
; (2.19e)

� ¼ �00
a20

and Z ¼ �0

a2�
; (2.19f)

and a subscript 0 indicates the present-dayvalue of the
functions �0, �00, H , H 0, and a.

If we assume that � andH evolve on cosmological time
scales (i.e., f0 �H f) then

	2 � ð��Þ2 � �2 � j�j: (2.20)

Treating the terms in 	 and �� as perturbations, write the
solution to Eq. (2.19a) as

y ¼ y0 þ 	y0;1 þ ��y1;0 þ . . . ; (2.21)

where y0 ¼ �0
0= is the solution to the unperturbed equa-

tion [i.e., the dispersion relation in an FRW cosmology,
given by equation (2.19a) with vanishing right-hand side].
The first corrections y0;1 and y1;0 owing to the Chern-

Simons terms satisfy

y00;1 � 2iy0y0;1 ¼ �R;LEy0; (2.22a)

y01;0 � 2iy0y1;0 ¼ �2�R;L�Zy0: (2.22b)

Requiring that the perturbation vanish at some initial (con-
formal) time 
i the perturbations y0;1 and y1;0 satisfy

y0;1ð
Þ ¼ �R;LY½E�ð
Þ; (2.23a)

y1;0ð
Þ ¼ �2�R;LY½�Z�ð
Þ; (2.23b)

where

Y ½g�ð
Þ ¼ e2i�0ð
Þ
Z 



i

dxe�2i�0ðxÞy0ðxÞgðxÞ: (2.23c)

Finally, the Chern-Simons correction to the accumulated
phase as the plane wave propagates from 
i to 
 is

��R;L ¼ �R;L

Z 



i

d
f	Y½E�ð
Þ � 2��Y½�Z�ð
Þg:
(2.24)

When �� 1, i.e., k0 is very much greater than the
Hubble constant H0, the rescaled frequency jy0j � 1. In
this limit we can use integration by parts to find an asymp-
totic expansion for Y½g�,

Y½g�ð
Þ � ie2i�0ð
Þ

2

�
e�2i�0

Xn
‘¼0

�
1

2i

�
‘
�
1

y0

d

d


�
‘
g

�




i

þO
�
1

2i

�
nþ1

: (2.25)

In the next section we explore the observational con-
sequences of gravitational-wave propagation in Chern-
Simons gravity.

III. OBSERVATIONAL CONSEQUENCES

A. Birefringence in a matter-dominated cosmology

Current and proposed ground-based gravitational-
wave detectors are sensitive to gravitational waves in the
10 Hz–1 KHz band [41–44]. Detectable sources in this
band are expected to have redshifts z & 1. Space-based
gravitational-wave detectors like LISA [2] will be sensitive
to gravitational waves in the 0.1–100 mHz band and, in this
band, be sensitive enough to observe the gravitational
waves from the inspiral of several �106M	 black hole
binary systems at z & 30: i.e., anywhere in the universe
they are expected [3,45]. For sources in the band of these
detectors

� ¼ 3:7� 10�19

�
h100
0:72

��
1 Hz

kc=2�

�
� 1; (3.1)

where

h100 ¼ H0

100 kms�1 Mpc�1
: (3.2)

Additionally, for redshifts z & 30 the universe is well
described by a matter-dominated FRW cosmological
model. In this section we evaluate the effect that the
Chern-Simons corrections described above have on propa-
gation of gravitational plane waves through a matter-
dominated FRW model.
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In a matter-dominated FRW model the scale factor aðtÞ
satisfies [38]

að
Þ
a0

¼ 
2 ¼ 1

1þ z
; (3.3a)

where, by convention, 
 ¼ 1 at the present epoch. In this
model and with this convention

H ¼ 2



¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
and H 0 ¼ 2; (3.3b)

� ¼ 2


and � ¼ 
�1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

; (3.3c)

� ¼ � 2

2
and � ¼ 
�2 ¼ 1þ z; (3.3d)

	 ¼ H2
0

4
�000 and E ¼ 1


4

�00

�000
; (3.3e)

� ¼ H0k

2
�00 and Z ¼ 1


4

�0

�00
; (3.3f)

Additionally,

E ¼ 1


4

�00

�000
; (3.3h)

Z ¼ 1


4

�0

�00
; (3.3i)

a0 ¼ H 0

H0

¼ 2

H0

: (3.3j)

With the � and � parameters for a matter-dominated
FRW cosmological model, the unperturbed equation for y0
has solutions of the form

y0 ¼ � i




ð1þ C
� 2
2Þ cosð
Þ � ðC� 
� C2
2Þ sinð
Þ
ð1þ C
Þ cosð
Þ � ðC� 
Þ sinð
Þ ; (3.4)

where C is a constant of the integration. In the limit of large  the evolution of  should decouple from the universal
expansion; thus, we are led to choose C ¼ 
i, which eliminates the oscillatory terms in our general solution for y0,

y0 ¼ 
3
3 � i


ð1þ 2
2Þ (3.5)

Consistent with our ansatz [cf. Eq. (2.13)] we choose the solution with positive<ðy0Þ: i.e., C ¼ þi. Solving this equation
for the phase �0

0 ¼ y0 we find

��0ð
Þ ¼ �0ð1Þ ��0ð
Þ; (3.6a)

¼
�
ð1� 
Þ � arctan

ð1� 
Þ
1þ 2


�
� i

2
ln

�
1þ 2
2


2ð1þ 2Þ
�
; (3.6b)

¼
�
2

�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p � arctan
2�ð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p � 1Þ

4þ �2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
� i

2
ln

�
1þ �2z

4þ �2

�
: (3.6c)

In the absence of the Chern-Simons correction an observer
at rest with respect to slices of (cosmological) homogene-
ity will observe a passing gravitational plane-wave to
undergo a change in phase ��0ð
Þ between cosmological
time 
 and the present epoch.

With y0 and Eqs. (2.23) we can evaluate the Chern-
Simons contribution to the phase change owing to propa-
gation from cosmological time 
0. Making use of the
asymptotic expansions for y0;1 and y1;0 [Eq. (2.25)] we find

y0;1ðR;LÞ � i�R;L

2
½Eð
Þ � Eð
0Þe�2i½��0ð
0Þ���0ð
Þ��

þOð�Þ; (3.7a)

y1;0ðR;LÞ � �i�R;L½�ð
ÞZð
Þ � �ð
0ÞZð
0Þ
� e�2i½��0ð
0Þ���0ð
Þ�� þOð�Þ; (3.7b)

which may be integrated to find ��1ðR;LÞ,

��1ðR;LÞ ¼ i�R;L



2

Z 1




�
	
1


4

�00ð
Þ
�000

� 2��
1


5

�0ð
Þ
�00

�
d


þOð�Þ; (3.8a)

¼ i�R;L

k0
H0

�ð
Þ: (3.8b)

It is convenient to rewrite � as a function of z,

�ðzÞ ¼ �AðzÞ þ �BðzÞ; (3.8c)

where

AðzÞ ¼
Z z

0
dzð1þ zÞ5=2 d�=dz

ðd�=dzÞ0 ; (3.8d)
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BðzÞ ¼
Z z

0
dzð1þ zÞ7=2 d2�=dz2

ðd2�=dz2Þ0
; (3.8e)

� ¼ ��� þ 3	

2

ðd�=dzÞ0
2ðd2�=dz2Þ0 þ 3ðd�=dzÞ0

; (3.8f)

� ¼ 	ðd2�=dz2Þ0
2ðd2�=dz2Þ0 þ 3ðd�=dzÞ0

; (3.8g)

and the subscript zero denotes present-dayvalues of the
subscripted quantities. The leading-order Chern-Simons
correction to the accumulated phase is thus pure imaginary,
corresponding to an attenuation of one circular polarization
state and an equal amplification of the other. The attenu-
ation/amplification is linearly dependent on the wave num-
ber. The function �ðzÞ may be thought of as a ‘‘form-
factor’’ that probes the past history of the coupling �.

B. Binary inspiral at cosmological distances

The proposed LISA gravitational-wave detector is ca-
pable of observing coalescing binary black hole systems at
cosmological distances; for example, the gravitational
waves associated with a pair of 106M	 black holes will
be observable at redshifts z approaching 30. Over the year
leading up to the merger of two such black holes the
binary’s period will decrease by two orders of magnitude,
leading to a corresponding decrease in the radiation wave-
length and increase in the magnitude of the Chern-Simons
correction. The time-dependent relationship between the
radiation amplitude in the two polarization states thus
carries with it the signature of Chern-Simons gravity and

can be used to characterize the functional � that describes
the Chern-Simons correction to classical general relativity.
To calculate the signature left by the Chern-Simons

correction on the gravitational waves from a coalescing
binary system at redshift z, we begin with the radiation
near the source. Treating, as before, the Chern-Simons
correction as a perturbation, the quadrupole approximation
to the radiation from the binary system in the neighborhood
of the source is given by

ĥ ¼ <½ĥþeþ þ ĥ�e��; (3.9a)

ĥþ ¼ 2M̂
d

½1þ �̂2�½M̂ k̂ðt̂Þ=2�2=3 exp½�ið�̂ðt̂Þ � k̂ðt̂ÞdÞ�;
(3.9b)

ĥ� ¼ 4iM̂
d

�̂½M̂ k̂ðt̂Þ=2�2=3 exp½�ið�̂ðt̂Þ � k̂ðt̂ÞdÞ�; (3.9c)

where d is the proper distance to the source and

�̂ðt̂Þ ¼ �2

�
T̂ � t̂

5M̂

�
5=8 þ �̂; (3.10)

k̂ðt̂Þ ¼ 2

M̂

�
5

256

M̂

T̂ � t̂

�
3=8
: (3.11)

The constants T̂ and �̂, which determine when coalescence
occurs and the phase of the gravitational-wave signal at
some fiducial instant, are set by initial conditions. The

quantities M̂ and �̂ are constants that depend on the binary
system’s component masses (m1, m2) and orientation with
respect to the observer

�̂ ¼ ðcosine-angle between the orbital angular momentum and the observer line-of-sightÞ; (3.12a)

M̂ ¼ m3=5
1 m3=5

2

ðm1 þm2Þ1=5
¼ ð“chirp” massÞ: (3.12b)

We ‘‘hat’’ all these quantities to remind us that, as ex-
pressed above, they are appropriate descriptions only in the
neighborhood of the source where the Chern-Simons and
cosmological corrections to the propagation of the waves
may be neglected.

To describe the radiation after it has propagated to the
detector we first describe the near-source radiation in terms
of circular polarization states

ĥ ¼ <½ĥReR þ ĥLeL�; (3.13a)

ĥR;L ¼ ffiffiffi
2

p M̂
d

�
M̂k

2

�
2=3ð1þ �R;L�̂Þ2

� exp½�ið�̂ðt̂Þ � k̂ðt̂ÞdÞ�: (3.13b)

We are interested in the radiation incident on our detector
today (z ¼ 0, 
 ¼ 1) from a source at redshift z. Matching
the near-source description of the radiation [Eq. (3.13)) to

our ansatz [Eq. (2.13)] we find the description of the
radiation after propagating to the detector from a redshift z,

h ¼ <½ĥReR þ ĥLeL�; (3.14a)

hR;L ¼ ffiffiffi
2

p M
dL

�
Mk0
2

�
2=3ð1þ �R;L�̂Þ2

� exp½�ið�0ðtÞ � ð1� 
Þ þ ��0ðtÞ
þ ��1ðR;LÞðtÞÞ�; (3.14b)

where

�0ðtÞ ¼ �2

�
T � t

5M

�
5=8 þ �; (3.14c)

k0ðtÞ ¼ 2

M

�
5

256

M
T � t

�
3=8
; (3.14d)
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dL ¼ a0
ð1þ zÞ ¼ ðLuminosity distance to sourceÞ;
(3.14e)

M ¼ ð1þ zÞM̂; (3.14f)

��0 ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p � 1Þ
H0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p k0ðtÞ � arctan2�ðtÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p � 1

4þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�2ðtÞ �

i

2
ln

�
1þ �2ðtÞ z

4þ �2ðtÞ
�
;

(3.14g)

�ðtÞ ¼ H0

k0ðtÞ ; (3.14h)

and ��1ðR;LÞ given by Eq.. (3.8) above. Here t is proper

time as measured by a detector at rest with respect to the
cosmological fluid at the present epoch (
 ¼ 1), k0ðtÞ is
the instantaneous wave number of the wave front passing
the detector at observer time t, and T and � are, as before,
constants of the integration. The correction ��0, which is
the same for all polarizations, embodies Oðk0=H0Þ correc-
tions to the wave phase owing to the wave propagation
through the time-dependent cosmological background.
The correction ��1ðR;LÞ is of opposite character for the

two polarization states and embodies the (first-order) cor-
rections to wave propagation owing to the Chern-Simons
corrections to the Einstein field equations.

Focus attention on the argument of the exponential in
Eq. (3.14b). The term ð1� 
Þ cancels the first term in
Eq. (3.14g) for ��0, leading to

hR;L ¼ ffiffiffi
2

p M
dL

�
Mk0
2

�
2=3ð1þ �R;L�̂Þ2

� exp

�
�ið�0ðtÞ � �ðtÞ

2
ð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p � 1Þ

þ��1ðR;LÞðtÞÞ
�
: (3.15)

The observational effect of the Chern-Simons is readily
identified by looking at the ratio of the polarization ampli-
tudes hR and hL,

hR
hL

¼ ð1þ �̂Þ
ð1� �̂Þ exp

�
2kðtÞ�ðzÞ
H0

�
; (3.16)

¼ 1þ x

1� x
; (3.17)

where � is given by Eq.. (3.8) and x may be interpreted as
the apparent inclination cosine-angle. The effect of the
Chern-Simons correction on gravitational-wave propaga-
tion is to confound the identification between polarization
amplitude ratios and binary orbit inclination cosine-angle.
In the same way that we say that the curvature of spacetime
‘‘bends’’ light passing close to strongly gravitating body
we may say that the effect of the Chern-Simons correction

is to ‘‘rotate’’ the apparent inclination angle of the binary
system’s orbital angular momentum axis either toward or
away from us.

IV. DISCUSSION

A. What can be measured?

Over the course of a year-long observation the LISA
spacecraft constellation will measure the radiation in both
polarizations of an incident gravitational-wave train asso-
ciated with an inspiraling coalescing binary system. The
relative amplitude of the two polarizations will be deter-
mined by the orientation of the binary systems orbital plane
to the observer line-of-sight and the form factor �ðzÞ. A
nonvanishing � leads to a time-varying apparent inclina-
tion angle that, by nature of its time dependence, can (in
principle) be measured directly from the apparent inclina-
tion angle’s time variation.
Other properties of an inspiraling binary can lead to an

evolution of the (apparent) inclination cos-angle. Spin-
orbit coupling leads to a real precession of the binary’s
orbital plane and a corresponding time-dependence in the
actual inclination cos-angle �̂. Referring to Eq. (3.14b), it
is apparent that for small j�̂j � 0 an incremental change �
in �̂ will lead to changes in hR;L that are indistinguishable

from an increment in x associated with �. Following
Vecchio ([46] Eqs. 27–31) we note that, at first nonvanish-
ing post-Newtonian order, spin-orbit interactions in an
inspiraling binary system lead to�

d�̂

dt

�
so
/ k2=30 ðtÞ: (4.1)

This is a different dependence on k0 than theOðk0Þ depen-
dence associated with �. Thus, it remains in principle
possible to distinguish the signature of Chern-Simons
gravity in the signal from cosmologically distant coales-
cing binary black hole systems. The accuracy with which
such a measurement can be made is the topic of the next
subsection.

B. How accurately can � be measured?

The most general astrophysical black hole binary system
can be described by eleven independent parameters, which
may be counted as two component masses; component
spins and their orientation (six parameters); orbital eccen-
tricity; orbital phase; and a a reference time when the
phase, spins and eccentricity are measured. The
gravitational-wave signal in any particular polarization
will depend on the description of the binary and six addi-
tional parameters that describe the binary’s orientation
with respect to the detector. These six additional parame-
ters may be counted as orbital plane orientation (two
angles); source location with respect to the detector (dis-
tance and two position angles); and orbit orientation in
orbital plane (one angle) [47]. To these seventeen parame-
ters we now add �, which describes the effect of propaga-
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tion through the birefringent Chern-Simons spacetime, for
a total of eighteen parameters that are required to describe
the signal from a coalescing binary system.

To-date, all analyses of expected parameter estimation
errors have been made under a set of approximations that
focus attention on the measurement of component masses,
source location (both distance and angular position), and
the expected time of binary coalescence. Even the most
sophisticated of these analysis ignore all but the leading-
order contribution to the gravitational-wave signal ampli-
tude at twice the orbital frequency [48] and assume that the
orbital eccentricity is known to vanish. These approxima-
tions are quite appropriate for their purpose (estimation of
component masses, source location, and expected time of
coalescence); however, by ignoring all but the leading-
order contribution to the signal magnitude they are inade-
quate starting points for exploring the accuracy with which
�, which affects only the signal amplitude in the different
polarizations, can be bounded [49]. Evaluating and pre-
senting the errors associated with the measurement of � via
a full covariance matrix analysis is thus a formidable
enterprise, to be addressed in a future work.

Nevertheless, through a series of plausible approxima-
tions it is possible to make a crude estimate of the accuracy
with which � can be determined. To begin, assume we have
two gravitational-wave detectors such that, via a linear
combination of observations made at each, we can can
synthesize two other detectors with one exclusively sensi-
tive to hR and and one exclusively sensitive to hL. Write the
scalar detector response of each of these detectors as

mR;LðtÞ ¼ exp½�R;LðtÞ þ i R;LðtÞ�; (4.2)

for real �R;L and  R;L. Next, note that the parameters that

describe a coalescing binary system can be divided into
two groups: those that principally affect only the signal
amplitude (i.e., �ðtÞ) and those that affect only or princi-
pally the real part of the signal phase (i.e.,  ðtÞ). The first
group includes distance, source orientation with respect to
the observer line-of-sight, and �. The second group in-
cludes the orbital phase, sky location (through its affect on
the Doppler correction to the signal phase as the detector
orbits about the sun), the instantaneous binary period at
some fiducial moment, and the parameters associated with
spin and orbital angular momentum [50]. If we approxi-
mate each detector’s noise as white with one-sided noise
power spectral density S0 then the elements of the inverse
covariance matrix �—the so-called Fisher matrix—are
given by [51,52]

�ij ¼
X
k¼R;L

2

S0

Z tf

ti

<
�
@mk

@xi

�
<
�
@mk

@xj

�
dt; (4.3)

where the integration is over the observation period ðti; tfÞ
and the xi are the parameters that characterize the incident
gravitational wave, which we have divided into two
groups. Matrix elements �ij where xi and xj belong to

different groups will be much smaller than elements where

xi and xj belong to the same group. Setting the cross-group
elements to zero we obtain an approximate � that is block
diagonal, with one block corresponding to �ij with ðxi; xjÞ
drawn from the first group, and the other block correspond-
ing to �ij with ðxi; xjÞ drawn from the second group.

Estimation uncertainties of parameters in either group
can now be determined independently of the parameters
in the other group.
Focus attention now on those parameters that affect only

�ðtÞ, the signal’s amplitude evolution. The leading order
dependence of the amplitude jhR;Lj on the binary systems

parameters is given by

AR;L ¼ jhR;Lj

¼ ð1þ �R;L�̂0Þ2 2MdL
�
k0ðtÞM

2

�
2=3

exp

�
�R;L�

k0ðtÞ
H0

�
;

(4.4)

where M is assumed known. Setting aside the antenna
pattern factors associated with the projection of the signal
onto the LISA detector (which depend only on the known
source sky position and the LISA orbital ephemeris), as-
suming that there is no real precession in the binary system
under observation (i.e., �̂0), and that kðtÞ is given by
Eq. (3.11) the inverse of the covariance matrix—the so-
called Fisher matrix, �—associated with the amplitude
measurements is a symmetric 3� 3 matrix with elements

�DD ¼ 1

S0

Z tf

ti

ðA2
R þ A2

LÞdt

’ 8ð1þ 6�̂2
0 þ �̂4

0Þ
�
M
dL

�
2
I þOð�Þ; (4.5a)

�D�̂0
¼ 1

S0

Z tf

ti

�
2

1� �̂0

A2
L �

2

1þ �̂0

A2
R

�
dt

’ �16�̂0ð3þ �̂2
0Þ
�
M
dL

�
2
I þOð�Þ; (4.5b)

�D� ¼ 1

S0

Z tf

ti

k0ðtÞ
H0

ðA2
L � A2

RÞdt

’ � 64�̂0ð1þ �̂2
0Þ

MH0

�
M
dL

�
2
J þOð�Þ; (4.5c)

��̂0�̂0
¼ 1

S0

Z tf

ti

�
4A2

R

ð1þ �̂0Þ2
þ 4A2

L

ð1� �̂0Þ2
�
dt

’ 32ð1þ �̂2
0Þ
�
M
dL

�
2
I þOð�Þ; (4.5d)

��̂0�
¼ 1

S0

Z tf

ti

2k0ðtÞ
H0

�
A2
R

1þ �̂0

þ A2
L

1� �̂0

�
dt

’ 32ð1þ 3�̂2
0Þ

MH0

�
M
dL

�
2
J þOð�Þ; (4.5e)

��� ¼ 1

S0

Z tf

ti

k20ðtÞ
H2

0

ðA2
R þ A2

LÞdt

’ 32ð1þ 6�̂2
0 þ �̂4

0Þ
ðMH0Þ2

�
M
dL

�
2
KþOð�Þ; (4.5f)
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where

D ¼ lndL; (4.5g)

I ¼
Z tf

ti

�
k0ðtÞM

2

�
4=3 dt

S0
¼ 5

192

Z kmax

kmin

�
kM
2

��7=3 M2dk

S0

¼ � 21=3M
S0

5

64
ðkMÞ�4=3jkmax

kmin
; (4.5h)

J ¼
Z tf

ti

�
k0ðtÞM

2

�
7=3 dt

S0
¼ 5

192

Z kmax

kmin

�
kM
2

��4=3 M2dk

S0

¼ � 21=3M
S0

5

32
ðkMÞ�1=3jkmax

kmin
; (4.5i)

K ¼
Z tf

ti

�
k0ðtÞM

2

�
10=3 dt

S0

¼ 5

192

Z kmax

kmin

�
kM
2

��1=3 M2dk

S0

¼ 21=3M
S0

5

128
ðkMÞ2=3jkmax

kmin
: (4.5j)

and we have taken advantage of the fact that for inspiraling
compact binary systems in the quadrupole approximation
kðtÞ is monotonic in t to reexpress the integrals over the
interval ðti; tfÞ as integrals over ½kðtiÞ; kðtfÞ� ¼ ðkmin; kmaxÞ.
In the particular case of a binary seen plane-on (�̂0 ¼ 0),
the ðD�̂0Þ and ðD�Þ blocks of � are diagonal, leading to

��̂0�̂0
¼ 1

4�2

KI
IK� J 2

; (4.6a)

��� ¼ ðMH0Þ2
4�2

I2

IK� J 2
; (4.6b)

where �ij is the ensemble average covariance

�ij ¼ ðxi � �xiÞðxj � �xjÞ ¼ ð��1Þij; (4.6c)

and we have expressed the �ij in terms of the ensemble

average amplitude-squared signal-to-noise ratio �2

�2 ¼ 1

S0

Z tf

ti

dtðA2
R þ A2

LÞ: (4.6d)

Focus attention on a binary system of two black holes at
redshift z, each with massM ¼ 106M	ð1þ zÞ�1. Over the
final year before coalescence the radiation wavelength
2�=k observed at the detector will range from
cð10�4 HzÞ�1 to cð10�2 HzÞ�1. For such a system,

� ¼ 105h100

1þ z� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
10�40 Hz�1

S0

�
1=2
; (4.7)

��� ¼ 3:1� 10�40

�
S0

10�40 Hz�1

�
ð1þ z� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p Þ2:

(4.8)

Observation of binary systems like these at z ¼ 15 by
LISAwill be capable of placing a ‘‘1-sigma’’ upper bound
on � of order 10�19.

C. How large might � be?

To estimate � [cf. Eq. (3.8c)] we must invoke a theoreti-
cal model for the functional �½�ðzÞ�. As described in the
introduction, perturbative string theory requires a Chern-
Simons correction to the Einstein-Hilbert action [53]. Here
we describe a different mechanism, that can also lead to the
presence of a Chern-Simons correction. Consider the back-
reaction of aN ¼ 1 supersymmetric Yang-Mills theory in
a curved background (cf. [54] Appendix A]) with action

SCS ¼ 1

16�

Z
d4xF 1ðSÞðR?RÞ; (4.9)

where S is the glueball superfield and F 1ðSÞ, which plays
the role of � in Eq. (2.1), can be exactly evaluated by using
perturbative matrix model technology developed in [55].
Within this Yang-Mills framework, � is a functional �½’�
of some pseudoscalar field ’, the gravitational axion, that
depends only on conformal time [22]. The functional �½’�
can be expressed as

�½’� ¼ N ‘2Pl
2�

’

MPl

; (4.10)

where ‘Pl ¼ ð@G=c3Þ1=2 is the Planck length, MPl ¼
ð‘Pl

ffiffiffiffiffiffiffi
8�

p Þ�1 is the reduced Planck mass and N is a di-
mensionless constant. Through use of the low-energy ef-
fective four-dimensional heterotic string action the
constant N can be evaluated in terms of the ten-
dimensional fundamental string energy scale Ms and the
dimensionless string coupling gs,

N ¼
�
MPl

Ms

�
2 1ffiffiffiffiffi
gs

p ; (4.11)

leading to

�½’� ¼ 1

16�2M2
Pl

’

Ms

MPl

Ms
ffiffiffi
g

p
s
: (4.12)

Assuming that ’, which has units of inverse length,
evolves with the Hubble parameter H / 
�3 we have

AðzÞ ¼ BðzÞ ¼ �� 2
11½ð1þ zÞ11=2 � 1�; (4.13)

and

� ¼ � 1
11½ð1þ zÞ11=2 � 1�ð	� 2��Þ; (4.14)

with ð	� ��Þ of the order of

	� 2�� ’ ð1:8þ 3:5h2100Þ � 10�120ffiffiffiffiffi
gs

p
�
’0

Ms

��
1016 GeV

Ms

�
:

(4.15a)

The size of � thus depends on the present value of the field
’0, the fundamental string energy scale Ms and the string
coupling gs, none of which are constrained by present-day
theory.
The lesson to draw from the discussion of this scenario is

that the magnitude of any Chern-Simons correction de-
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pends strongly on the external theoretical framework that
prescribes the functional �½’�. For nonvanishing string
coupling in the perturbative string theory scenario the
Chern-Simons correction seems undetectable owing to
the Planck scale suppression of the decay constant of the
universal gravitational axion field ’. However, this model
and the associated expected scale of 	� 2�� applies only
to the perturbative sector of string theory and, in particular,
when Ramond-Ramond charges are turned off. If present
these additional degrees of freedom do couple and source
the Chern-Simons correction, leading to a larger decay
constant (e.g., D3 branes always excite the Chern-Simons
interaction in four dimensions). In a recent work, Svrcek
and Witten [56] noted that, due to nonperturbative gravi-
tational instanton corrections, the Chern-Simons coupling
in the nonperturbative sector is currently incalculable.
Even within the perturbative framework there are theoreti-
cal frameworks where � could become significant: e.g., if
the string coupling gs vanishes at late times [57–67].
Therefore, within the full string theory framework, a larger
coupling, which would push the stringy Chern-Simons
correction into the observational window, is not excluded
and bounding it places a constraint on string theory moti-
vated corrections to classical general relativity.

As discussed briefly in the introduction, other (non-
string) theoretical frameworks lead to a Chern-Simons
correction to the Einstein-Hilbert action. In quantum theo-
ries Chern-Simons corrections to the Einstein-Hilbert ac-
tion are required in both the standard model[8] and in loop
quantum gravity (where it is required to ensure invariance
under large gauge transformations [12]). A Chern-Simons
correction can also be introduced ad hoc into the classical
theory [16], where it is related to torsion [13,14]. In any of
these scenarios—quantum or classical—there is no theo-
retical constraint on the Chern-Simons coupling to the
Einstein-Hilbert action: i.e., a coupling of order unity is
theoretically consistent. Moreover, in the presence of fer-
mions the Chern-Simons correction is actually enhanced
through axial fermion currents [14]. By bounding this
coupling, gravitational-wave observations that can discern
the unique birefringence of spacetime associated Chern-
Simons gravity thus probe quantum corrections to classical
gravity.

V. CONCLUSIONS

Chern-Simons corrections to the Einstein-Hilbert action
are strongly motivated by string theory, quantum gravita-

tional corrections to the standard model and loop quantum
gravity. In all cases these corrections lead to an amplitude
birefringence for gravitational waves propagating through
space time. We have evaluated the correction to the gravi-
tational waves amplitude that propagate over cosmological
distances in a matter-dominated Friedmann-Robertson-
Walker cosmology. In the case of the gravitational waves
from inspiraling binary black hole systems the effect of the
spacetime birefringence is an apparent time-dependent
change in the inclination angle between the binary sys-
tem’s orbital angular momentum and the line-of-sight to
the detector. (This change is ‘‘apparent’’ in the same sense
that light is apparently ‘‘bent’’ upon passage nearby a
strongly gravitating object.) Sufficiently long observations
of a binary system will enable this apparent rotation to be
distinguished from the real rotation caused by spin-orbit
and spin-spin angular momentum interactions in the binary
system. Observations of just this kind will be possible
using the LISA gravitational-wave detector [2–4], which
will be able to observe the inspiral of massive black hole
binaries at redshifts approaching 30 for periods of a year or
more. Gravitational-wave observations of these systems
with LISA may thus provide the first test of string theory
or other quantum theories of gravity: yet another way in
which gravitational-wave observations can act as a unique
tool for probing the fundamental nature of the universe.
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