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We consider a cosmological solution which can explain anisotropic evolution of spatial dimensions and

the stabilization of extra dimensions in brane gas formalism. We evaluate the effective potentials, induced

by brane gas, bulk flux and supergravity particles, which govern the sizes of the observed three and the

extra dimensions. It is possible that the wrapped internal volume can oscillate between two turning points

or sit at the minimum of the potential while the unwrapped three-dimensional volume can expand

monotonically. Including the supergravity particles makes the effective potential steeper as the internal

volume shrinks.
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I. INTRODUCTION

The idea that the space-time might be more than four
dimensions is being considered widely from particle phys-
ics to cosmology. Obviously string theory provided a
strong motivation for considering higher dimensions.
Recently the development of string theory has led us to
diverse cosmological scenarios, for example, D-brane in-
flation, moduli inflation, cyclic and ekpyrotic scenarios,
mirage cosmology, and string or brane gas cosmology. One
of the primary goals of string cosmology is to achieve
string compactification which can produce inflation
successfully.

Early in the study of cosmology based on string theory, it
was realized that the presence of a gas of strings plays an
important role in the evolution of the Universe in
Refs. [1,2]. They suggested a mechanism to generate dy-
namically the spatial dimensionality of space-time and to
explain the problem of initial singularity. With the sym-
metry of string theory, called T-duality, space-time has the
topology of a nine-dimensional torus, and its dynamics is
driven by a gas of fundamental strings. In string theory the
winding modes can annihilate the antiwinding modes if
they meet. Once the windings are removed from some
dimensions, these dimensions can expand. Since strings
have (1þ 1)-dimensional world volumes, they can inter-
sect efficiently in 2ð1þ 1Þ space-time dimensions or less.
Thus, three spatial dimensions can become large with a gas
of strings.

A gas of fundamental strings was generalized to a gas of
various branes to accommodate the development of
D-branes in string theory [3–5]. Many studies on this issue
of string cosmology with string or brane gas were followed
(see [6] and references therein for comprehensive reviews).
The key point of replacing string gas with brane gas is that
a hierarchy of scales can be achieved between wrapped and
unwrapped dimensions. It has been checked whether the
unwrapped configuration of branes can generate the infla-

tion successfully [7–10]. Also it is known that string or
brane gases of purely winding modes are not enough to
stabilize the extra dimensions. For example, in 11-
dimensional supergravity, Easter et al. [11] have succeeded
in producing anisotropic expansion by selecting a certain
wrapping matrix. However the radions (scales of the extra
dimensions) were not stabilized.
Stabilization of the radion has been the focus of research

in string or brane gas cosmology [12–26]. One way to
obtain the stabilization of the extra dimensions is to in-
troduce bulk fields [27–30]. In the previous work of the
author [31], it is shown that the extra dimensions can be
stabilized by including a bulk Ramond-Ramond (RR) flux
in the brane gas formalism. For the specific configuration
of brane gas and RR-flux where effectively six-
dimensional brane gas is wrapping the extra dimensions
and 4-form RR-flux is in the unwrapped dimensions, the
flux can cause a logarithmic bounce to the effective poten-
tial as the volume of the extra dimensions shrinks.
Considering the quantum aspect of the string or brane

gas, there will be a large amount of energy when winding
modes and antiwinding modes of branes annihilate each
other. For example, string winding modes and antiwinding
modes can annihilate into unwound closed string loops
which can be treated as supergravity particles or radiation.
Thus it will be interesting to see how the simplified stabi-
lization mechanism by brane gas and flux can be modified
if we include supergravity particles. The purpose of this
paper is to extend the previous study by including super-
gravity particles.

II. BRANE GAS DYNAMICS WITH FLUX AND
SUPERGRAVITY PARTICLES

We consider the ten-dimensional supergravity after the
dilaton is stabilized. We start from the point that winding
modes are annihilated in three spatial dimensions causing
them to be free to expand while the brane gas remains in
the extra six dimensions by the mechanism of
Brandenberger and Vafa [1]. With a gas of branes only,*jykim@kunsan.ac.kr
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the extra dimensions will shrink to zero size and our
assumptions of the brane gas cosmology are not valid
anymore. To prevent this collapse we consider the RR-
flux in the transverse dimensions. Thus the bulk effective
action consists of graviton and gauge fields representing
the four-form RR-flux. If we consider only the bosonic
sector, the effective action can be written as [31]

S ¼ 1

2�2

Z
dDþ1x

ffiffiffiffiffiffiffi�g
p �

R� 1

2 � 4!F
2
4

�
; (1)

where R is the scalar curvature, F4 is the field strength of
the bulk gauge field, D ¼ 9, and � is the ten-dimensional
gravitational constant �2 ¼ 1

MD�1�
with M� being the

(Dþ 1)-dimensional unification scale.
The gravitational equations of motion are given by

GMN ¼ ��2ðTMN
g þ TMN

m Þ; (2)

rMF
MNIJ ¼ 0; (3)

where TMN
g is the energy-momentum tensor from the four-

form RR-flux

TMN
g ¼ 1
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�
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and TMN
m is the averaged energy-momentum tensor coming

from all the other matter contributions. Also we have the
Bianchi identity since F is an exact form

r½IFJKLM� ¼ 0: (5)

We assume that background fields and matter sources
are homogeneous within the dimensions where they exist.
Then we can treat them as functions of time only.
Considering the spatial section to be aD-dimensional torus
TD, we write the metric as

ds2 ¼ �dt2 þ XD
k¼1

a2kðtÞðdxkÞ2; ð0 � xk � 1Þ: (6)

The nonvanishing components of the Einstein tensor are
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As in [31], we assume that the RR-flux is confined to the
(3þ 1)-dimensional submanifold

F���� ¼ �����ffiffiffiffiffiffiffiffiffiffi�g4
p FðtÞ; (9)

where the Greek indices belong to f0; 1; 2; 3g and g4 is the
induced metric on the (3þ 1)-dimensional submanifold.

With this choice, the Bianchi identity is automatically
satisfied, and the solution for FðtÞ is given by

FðtÞ ¼ 2Qa1a2a3
V

; (10)

whereQ is an integration constant and V is the total spatial
volume V ¼ Q

D
k¼1 ak. Then the components of the energy-

momentum tensor by the RR-flux are calculated as

ðTgÞtt ¼ � 1
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2

�
2
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; (12)

ðTgÞ44 ¼ � � � ¼ ðTgÞDD ¼ 1
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�
FðtÞ
2

�
2
: (13)

This corresponds to the energy-momentum tensor of a fluid
with

�g ¼ 1

�2

�
FðtÞ
2

�
2
; p1

g ¼ p2
g ¼ p3

g ¼ ��g;

p4
g ¼ � � � ¼ pD

g ¼ �g:

(14)

For other sources of matter, first we consider the mass-
less supergravity particles present in the early universe.
The effect of this source can be expressed by a gas with
energy density �s and pressure ps. We take the gas to be a
homogeneous and isotropic perfect fluid with the equation
of state ps ¼ �s=D. The corresponding energy-momentum
tensor is

ðTsÞtt ¼ ��s; (15)

ðTsÞ11 ¼ ðTsÞ22 ¼ � � � ¼ ðTsÞDD ¼ ps: (16)

If we assume that this energy-momentum tensor is cova-
riantly conserved rMT

MN
s ¼ 0, the energy density scales

with time as

�sðtÞ ¼ �0
s

�
V0

VðtÞ
�ðDþ1Þ=D

; (17)

where �0
s and V0 are the energy density and spatial volume

at time t0.
The second source of matter comes from a gas of branes,

wrapped on the various cycles of the torus. The matter
contribution of a single p-brane to the action, if the dilaton
is stabilized, is represented by the Dirac-Born-Infeld (DBI)
action

Sp ¼ �Tp

Z
dpþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(18)

where Tp is the tension of the p-brane and ĝ	
 is the

induced metric to the brane

ĝ 	
 ¼ gMN

@XM

@�	

@XN

@�
 : (19)
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HereM, N are the indices of the (Dþ 1) dimensional bulk

space-time and 	, 
 are those of the brane. B̂	
 is the

induced antisymmetric tensor field and F	
 is the field

strength tensor of gauge fields A	 living on the brane. The

fluctuations of the brane coordinates and other fields within
the branes are negligible when the temperature is low
enough and the radii is grown enough. So we neglect

B̂	
 and F	
 terms. Ignoring the running of the dilaton,

we have absorbed the effect of the constant dilaton into the
redefinition of brane tension so that the Einstein frame and
the string frame are equivalent.

We start, after the thermal stage in the early universe by
the mechanism of Brandenberger and Vafa, from the mo-
ment that three dimensions are completely unwrapped. We
take the three dimensions in which the RR-flux exists as the
unwrapped ones. The other (D� 3) dimensions are
wrapped with gases of branes whose dimensions are less
than or equal to (D� 3). Assuming each type of brane gas
makes a comparable contribution, we consider a gas of
effective (D� 3)-branes whose tension we denote by
TD�3. Then the energy-momentum tensor for a gas of these
branes can be written as

ðTBÞtt ¼ � TD�3

a1a2a3
; (20)

ðTBÞ11 ¼ ðTBÞ22 ¼ ðTBÞ33 ¼ 0; (21)

ðTBÞ44 ¼ � � � ¼ ðTBÞDD ¼ � TD�3

a1a2a3
: (22)

Since the SOðDÞ Poincare invariance is broken down to
SOð3Þ � SOðD� 3Þ by RR-flux and (D� 3)-brane gas,
we denote the scale factor of three-dimensional space by a
and (D� 3)-dimensional subspace by b. Then the density
and pressure of the brane gas can be written as

�B ¼ TD�3

a3
; p1

B ¼ p2
B ¼ p3

B ¼ 0;

p4
B ¼ � � � ¼ pD

B ¼ �TD�3

a3
:

(23)

Finally we include the cosmological constant term
which can be interpreted as the space filling branes

ðT�ÞMN ¼ diagð���; p�Þ; (24)

where �� ¼ � and p� ¼ ��.

Now we insert the energy-momentum tensors, ðTgÞMN

and ðTmÞMN ¼ ðTs þ TB þ T�ÞMN , into the right-hand side
of the Einstein Eq. (2). After some algebra, the time
component of the Einstein equation can be expressed as,
taking units in which 2�2 ¼ 1 for simplicity,
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The spatial components for SOð3Þ and SOðD� 3Þ subspa-
ces are given by
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TD�3
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:

(27)

The key parameters controlling the relative rates of the
growth for a and b are their accelerations not their veloc-
ities. For the configuration that a exceeds b by many orders
of magnitudes, the source terms in Eqs. (26) and (27) must
produce slow-roll conditions for b making its acceleration
small or negative, while keeping the acceleration of a
positive.

III. EFFECTIVE POTENTIAL

To study the functional behavior analytically, we rewrite
the equations of motion in terms of � ¼ a3 and � ¼ bD�3

corresponding to the volumes of SOð3Þ and SOðD� 3Þ
subspaces. The constraint Eq. (25) can be written as

�s ¼ 2

3

� _�
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2 þD� 4
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�
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�
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�2
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�
��:

(28)

Using (28), the second derivative equations can be written
as
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Removing the coupled first derivative terms (
_�
�

_�
� ), we have
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1
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Since the left-hand side is a function of � and the right-hand side is a function of �, we take the simplest case by equating
them to a constant E to decouple the variable � and �
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þD� 6
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Putting D ¼ 9, we have

€�

�
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� 6E ¼ 0; (34)
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24

� _�

�

�
2 � 47

8
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�2
� 5

16
�� 3E ¼ 0: (35)

We remove the first-order derivative terms with � ¼ f3=4,
� ¼ g24=19, then the equations reduce to the motions of a
particle with unit mass in one dimension

€f� 41

12
T6f

1=4 � 8Ef ¼ 0; (36)

€g� 893

192
Q2g�ð29=19Þ � 19

24

�
3Eþ 5

16
�

�
g ¼ 0: (37)

Now we can analyze the behavior of the two subvolumes

by considering the effective potential as in [31], €f ¼
� dVeff ðfÞ

df , €g ¼ � dVeff ðgÞ
dg . The effective potentials are calcu-

lated as

VeffðfÞ ¼ � 41

15
T6f

5=4 � 4Ef2; (38)

VeffðgÞ ¼ 16967

1920
Q2g�ð10=19Þ � 19

48

�
3Eþ 5

16
�

�
g2: (39)

To make the SOð3Þ subvolume become large indefinitely, E
must be positive and the shape of VeffðfÞ is given in Fig. 1.
The behavior of the effective potential for the SOð6Þ sub-
volume shows a bouncing behavior (Q2 term) for small
values of g. So the overall shape of the potential depends
on the sign of 3Eþ 5

16�. For 3Eþ 5
16�> 0, the shape is

given in Fig. 2. In this case, both the unwrapped three
dimensions and the wrapped six dimensions expand mono-
tonically. For 3Eþ 5

16�< 0, the shape is given by Fig. 3.

In this case, the wrapped internal subvolume can oscillate
between two turning points or sit at the minimum of the
potential gmin while the unwrapped subvolume expands
indefinitely.
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FIG. 1. Typical shape of effective potential VeffðfÞ for un-
wrapped subvolume for E> 1. The plot is for T6 ¼ 15=41 and
E ¼ 1=4.
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FIG. 2. Typical shape of effective potential VeffðgÞ for 3Eþ
5
16�> 0. The plot is for Q2 ¼ 1920=16967 and 3Eþ 5

16 � ¼
48=19.

JIN YOUNG KIM PHYSICAL REVIEW D 78, 066003 (2008)

066003-4



In [31], the existence of the (3þ 1)-form RR-flux in the
unwrapped subspace induces a logarithmic bounce to the
effective potential for small values of �, and this term
prevents the internal subvolume from collapsing.
Including the supergravity particles into the analysis makes
the bounce steeper than the case with only RR-flux. The
reason can be understood by looking at the signs of the
pressures in Eqs. (14), (16), and (23). The brane gas wrap-
ping the internal dimensions exerts negative pressure and
makes the internal subvolume contract. However, RR-flux
and supergravity particles exert positive pressure to prevent
the internal subvolume from collapsing. The internal vol-
ume can be stabilized by the competition of positive and
negative pressures, and our result realized this possibility.

IV. CONCLUSION

We have studied the anisotropic evolution of spatial
dimensions and the stability of the extra dimensions with
particular emphasis on the role of supergravity particles.
We took a perfect fluid form for their energy-momentum
tensor which drives expansion. Assuming dilaton is stabi-
lized, we focused on the late-time behavior of brane gas
cosmology where windings of branes are completely re-
moved from three dimensions and RR-flux exists in these
unwrapped dimensions. We investigated how the existence
of supergravity particles affects the asymmetric evolution
of the Universe by reducing the Einstein equations to the
motions of a particle in the one-dimensional effective
potential. The shape of the potential for thethree-
dimensional subvolume is barrier-type so that it can ex-
pand indefinitely. However the shape of the potential for
the extra dimensional subvolume can be well-type so that it

can oscillate between two turning points or be fixed at the
minimum of the potential.
In most approaches to the stabilization in string cosmol-

ogy, it is crucial that the dilaton runs to a weak coupling.
The scale factor in the Einstein frame is a linear combina-
tion of string frame dilaton and scale factors. If the dilaton
is not fixed, this can cause serious problems at late-time
evolution of the Universe since the Newton constant is not
fixed. The extra dimensions can be unstable as far as the
dilaton evolves. It will be an important challenge to include
the running of the dilaton into the stabilization of the
radion.
Recently it has been shown that dilaton stabilization and

radion stabilization are compatible by Danos, Frey, and
Brandenberger [32]. They identified a stable fixed point
corresponding to the dilaton sitting at the minimum of the
potential and the radion taking on the value at which the
enhanced symmetry states are massless. The stability of
this fixed point was analyzed by studying the linearized
equations of motion around the fixed point. The solution
shows a damped oscillatory behavior confirming the com-
patibility of two types of moduli stabilization. Despite the
promising result, we have to be very careful when we
stabilize both dilaton and radion simultaneously.
Cremonini and Watson [22] have discussed the stabiliza-
tion of moduli in 11-dimensional supergravity. They found
that the production rate of the Bogomol’nyi-Prasad-
Sommerfield bound states could be significant for a modi-
fied brane spectrum with enhanced symmetry. These states
can lead to a stabilization by an attractor mechanism.
However, the stabilization drives the evolution to a region
where a perturbative description of the string dynamics
fails. That is, the supergravity approximation is not valid in
this region. It is important not to forget the string theory
origin of the low-energy effective action.
Realizing the transitions between the different thermo-

dynamic phases of string gas is important in string cos-
mology. In [33], it is pointed out that the dilaton field may
obstruct the transition from the Hagedorn phase of hot and
dense string gas to an expanding Friedmann-Robertson-
Walker phase of dilute string gas. They categorized the
possible branches of the solutions according to the sign of
the dimensionally reduced effective dilaton and noticed
that the branch changing is impossible as long as the
energy density of the Universe is not negative. Finding
the appropriate energy sources which enable the phase
changing seems another challenge in string/brane gas
cosmology.
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