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Quantum corrections to energy of short spinning string in AdS;
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Motivated by a desire to shed light on the strong-coupling behavior of dimensions of short gauge-theory
operators, we consider the famous example of folded spinning string in AdSs in the limit of small
semiclassical spin parameter S = S/\. In this limit the string becomes short and is moving in a near-flat
central region of AdSs. Its energy scales with spin as E = v/2S[ay + a,S + a,S? + ...]. We explicitly
compute the leading 1-loop quantum AdSs X S superstring correction to the short string energy and show
that the coefficient a is not renormalized from its classical value while a; receives a nontrivial

contribution containing (3).
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L. INTRODUCTION

The remarkable progress achieved recently in uncover-
ing the integrable structure underlying the spectrum of
planar N" = 4 SYM theory or the free AdSs X S° super-
string theory was largely limited to a sector of gauge-
theory operators with large number of fields/derivatives
or strings with large values of quantum numbers like spins.
It is important to try to learn more about dimensions/
energies of short operators/strings and a step in that direc-
tion is to study quantum corrections to energies of strings
carrying parametrically small values of spins.

With this motivation in mind here we revisit the compu-
tation of the 1-loop quantum correction to the energy of the
prototypical example of rotating string-folded rotating
string located at the center of AdSs [1,2].

The classical energy of this string is proportional to
string tension, i.e. Ey = VAES), S = 757 and in the limit

of large S one finds [2]: Ey = S + */7} InS + .... In gen-
eral, the radial coordinate p of the global AdSs space
(ds* = —cosh?pdt® + dp?* + sinh?pdQ3) is expressed in
terms of an elliptic function of the spatial string coordinate
o and thus finding the explicit form of the 1-loop correc-
tion [3] to the energy E, of this soliton solution of 2d string
sigma model appears to be technically challenging. The
analytic form of the quantum correction can be found in the
limit of large S when the ends of the string reach the
boundary of the AdSs. Then the solution drastically sim-
plifies (p becomes linear in o) [3,4] and one finds that
E,=cInS+...,¢c;=—-31n2.

Since rotation of the string balances the contracting
effect of its tension, smaller values of the spin correspond
to smaller values of the length of the string whose center of
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mass is at p = 0: S essentially measures the length of the
string. Since the AdSs space is nearly flat at the vicinity of
p = 0, the slowly rotating (i.e. small) string with S < 1
should have essentially the same classical energy as in flat

space [2],i.e. Ey = V2JAS + ..

Below we shall expand the general expression for the 1-
loop correction to the energy of the spinning string in [3]
(given by a sum of logarithms of determinants of the 2d
second order differential operators depending on the string
background) in the ‘“‘short string” limit S§ << 1 and find
explicitly the coefficients of the first two leading terms in
the small spin expansion of the 1-loop energy.

Our results can be summarized as follows. Given the
energy E(S, A) of the corresponding state in the AdS/CFT
spectrum we may expand it at large A with S = 757‘ fixed,

i.e. in the semiclassical string limit. Expanding then in the
limit S < 1,i.e. S < +/A, and reexpressing E as a function
of S and A one is to find

E(S, A) = AV4V2S[ho(A) + 7y (WS + hy(A)S2 + .. ]

(1.1)
h ! ( 4Gy G2 ) A> 1
n = a0+ — on), ,
WO\ VA (VAP
S
— = fixed < 1. 1.2
7 (1.2)
In the classical string theory limit
doo = 1’ aypp = %r ay) = _%! cee (13)
while our 1-loop string computation gives
ag = 1, apn = 5 - %{(3) =~ —(.398. (14)

Since the leading +/2S term is essentially the same as in the
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flat-space string theory, is natural to conjecture that
ho(A) =1 to all orders in string coupling expansion.'
This is indeed confirmed by our I-loop computation.
Then (1.1) can be written as

ES,A) = /\1/4\/5[1 + (a,o + % + )% + 0(52)].

(1.5)

In contrast to the large spin or “long string” limit where
the limits of large A and large S appear to commute” (and
thus one finds the same S dependence of the gauge-theory
anomalous dimension and string theory energy at both
weak and strong coupling, i.e. E= S+ f(A)InS + ...,
with fA<KD)=cA+cA2+..., f(A>1)=

V(b +%+ ...)) here one cannot directly continue

(1.1) to small A and small S.

Indeed, the anomalous dimensions of low-twist gauge-
theory operators like tr(®D3 ®) computed for small A and
fixed S (see, e.g., [5]) and then formally expanded in small
S limit scale as

E(A S) = ¢:(D)S + ¢2:(1)S* + 0(S), A<,
S = fixed, (1.6)
where
ql(/\)= 1 +d01/\+d02/\2+..., (17)

qZ(/\) =d21/\+d22)12+...,....

To relate the “small spin” string theory (1.1) and gauge-
theory (1.6) expansions one would need to resum the series
in both arguments (A, S), e.g., first sum up the weak-
coupling expansion in (1.6) and then reexpand the result
first in large A for fixed S = 7 and then in small S.

In view of the need of this resummation which is, in fact,
a generic situation in comparing the semiclassical string
theory and the perturbative gauge-theory expansions® it is

'In flat space superstring (treated, e.g., in the in light-cone
gauge) the fluctuation Lagrangian is quadratic and any possible
quantum shifts are actually canceled due to supersymmetry.
Supersymmetry should also be behind the cancellation of
hi%her-]oop corrections to hy in AdSs X S°.

The perturbative string theory and perturbative gauge-theory
limits are actually different as limits of functions on the two-
parameter space (A, S): in string theory one assumes A >> 1 with
S = % fixed and then takes S large; in gauge theory one
assumes A < 1 with S fixed and then takes S large. However,
this appears not to matter for the leading InS term which can be
described by a single universal interpolating function of A (cusp
anomaly).

“Analogous resummation is needed to compare the weak-
coupling gauge-theory expansion for anomalous dimensions of
sl(2) sector operators in the limit A < 1 withJ > 1, § > 1, j =
ﬁ = fixed and j <1 with the strong-coupling string theory
expansion in the limit A > 1 with J = ﬁ, S = %, E% =
fixed and € < 1 (see [3,4,6-10]).
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not clear at the moment how to directly interpret our result
(1.5) as strong-coupling limit of a gauge-theory anomalous
dimension. One interesting question is if the conjectured
nonrenormalization (in strong-coupling expansion) of the
leading VS term in (1.5) has some counterpart in the
properties of the corresponding gauge-theory anomalous
dimensions.

We shall start in Sec. II with a review of the folded
spinning string solution and its small spin expansion [2].

In Sec. III we shall first recall the general expression for
the quadratic fluctuation Lagrangian L [3] of the AdSs X
S° superstring [11] near the folded spinning string solution.
We shall then expand the coefficients in L in the small spin
or short string parameter € = V28 + ... This expansion
may be viewed as a particular case of a near flat space
expansion of the quantum AdSs X S° superstring. We will
then show that the leading O(e) term in the 1-loop string
energy vanishes.

In Sec. IV we shall expand the 2d determinants that enter
the expression for the 1-loop partition function to first two
leading orders in € and compute the value of the first
nonzero correction to the string energy, i.e. the coefficient
ar in (15)

In the appendix we shall discuss a generalization to the
short string expansion of the folded spinning string solu-
tion which also carries a momentum J in S° [3].

II. SHORT STRING LIMIT OF FOLDED SPINNING
STRING SOLUTION

Let us start with a review of the classical solution for the
folded string spinning in the AdS; part of AdSs,

t = KT, ¢ = wr, p = p(o),
2.1)
ds®> = —cosh?pdt*> + dp? + sinh?>pd >,
where
p'? = K’cosh’p — w?sinh?p. (2.2)
p varies from 0 to its maximal value p.
w? 1

Thus € measures the length of the string. The solution of
the differential equation (2.2), i.e.

p = iK‘/l — € %sinh?p, p(0) =0 (2.4)
can be written in terms of the Jacobi function sn
sinhp = esn(ke o, —€?). (2.5)

The periodicity in o implies the following condition on the

parameters [2]
k= &F (33 1;—€).

(2.6)
The classical energy E, = /A, and the spin § = V/AS
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are found to be

2.7

Here we will be interested in the short string limit 0 < € <«
1 in which

p. = €— i€ + 0(&). (2.8)

In the strict limit e = 0 or k = 0 we get p = p,. = 0, so
that the string shrinks to a point with £ = 0.*
From (2.7) we obtain in the small € or the small S limit

€ =28 — LSW +...,
42 (2.9)

3
Ey =28+ -—=-8¥2+ .|
0 42

so the short string limit corresponds to & << 1 and the
expansion of the energy looks like

3
Eo(S, A) = A/428 + m)rl/‘*sm + 0(5%2). (2.10)

For the purpose of computing the 1-loop correction to the
energy to order O(S%?) we will need the expression for
p(o) to order €*. Expanding the exact solution (2.5) in
powers of € we obtain

el

sinhp = esino — T sinocos?o + O(e’) (2.11)
Other useful expansions are
€ €
K=€(1—Z+...), w=1+—+...,
. 2.12)
p' = ecoso — %00530- + ...,
&
K sinhp = € sino — §(3 + cos2o)sino + ..., (2.13)

e’ et
wcoshp =1 + Z(l + 2sin?0) — 6—4(8 —cosdo) + ...
(2.14)

“Note that in this limit the string disappears instead of reduc-
ing to a massless point particle with nonzero momentum moving
along null geodesic. This corresponds in flat space to considering
a massive string state in the rest frame (which is possible in
covariant quantization). In contrast to the flat space case where
adding a nonzero center of mass momentum can be achieved by
a Lorentz boost, adding a motion of the spinning string center of
mass in curved AdSs X S° space is a nontrivial operation (differ-
ent parts of the string move along different geodesics) leads in
general to a new nontrivial configuration.
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The above small spin expansion is an example of a near flat
space expansion: the leading-order in € solution can be
identified with the folded spinning string solution in the flat
space

t= €T, p = €sino,

b=,

2 2 2 2942 2.15)
ds* = —dt* + dp~ + p~d¢-,

where € is an arbitrary constant amplitude. The energy and
the spin then satisfy the usual flat-space Regge relation (we

. . _
use string tension 7' = 32)

Ey,= eﬁ, S = %\/X, i.e. E = PUANGYS
(2.16)

In the flat space case this is the exact expression for any
value of S [cf. (2.10)] which also does not receive quantum
corrections.

III. VANISHING OF 1- LOOP CORRECTION TO
SHORT STRING ENERGY AT ORDER /S

Following [3] and expanding the AdSs X S superstring
action [11] in conformal gauge to quadratic order in fluc-
tuations near the folded spinning string solution one finds

§=—3A [ar [27 doL with the bosonic part
Ly=—0,00°T— ui? + 9,9°¢ + p2 ¢
+ 45(k sinhpdof — wcoshpdyd) + 9,50%p
+ upp” + 0aBu0 By + upBi + dapde

X9 X (3.1
where

WP gt

,u% =2p” —w? — K%, ,u,% =2p".

Here B, (u = 1, 2) are two AdSs5 fluctuations transverse to
the AdS; subspace in which the string is moving, while ¢,
X, (s = 1,2,3, 4) are fluctuations in S°. The fermionic part
of the quadratic fluctuation Lagrangian can be put into the
form [3]
Lp=2i(Py"9,¥ — up¥Ty,W), wi = p?
(3.3)

and can be interpreted as describing a system of 4 + 4 2d
Majorana fermions with o-dependent mass w .

We now expand the coefficients in this fluctuation
Lagrangian in € as discussed in the previous section. To
leading order in € we get

u? = e*cos2o + ...,

34
,LL§5=—1+(COS20'+%)62+..., 3-4)
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wh=—1+(cos2o —He* + ...,
3.5)
up =2uf =2€cos’a + ...,
4p(k sinhpdyf — w coshpdyd)
= plae?sinadof — [4 + €2(1 + 2sin0)]9yd}). (3.6)

If we set € to zero we are back to the flat space case: indeed,
the only two coupled modes that are not massless are then
described by

Lo=03,00¢ — > = 4pded + 3,p0°p — p*,

which becomes the Lagrangian for two massless modes
after a T-dependent rotation

(3.7)

c,Z = —m; sin7 + 1, COST.
(3.8)
If we perform this rotation also at order €> we get L =

Lo+ €*L, + O(e*) where L, is the same as in flat space
and a nontrivial part of the subleading term is’

p = m;cosT + m, sinT,

L) = —cos20? + (sin’1 + cos’o)n?
+ (cos® + cos2o)m3 + 2(n; cosT + 1, sinT)i sinor
— 2(7, cosT + 1, sinT)fsino
+ 2(n, sinT — m, cosT)Esing — 17, sin27
— ny7,(1 + 2sin’0). (3.9)

One can then argue on general grounds that the leading €
part of 1-loop correction to string energy should vanish.
Indeed, the 1-loop correction to string energy will look like
(assuming all propagators were diagonalized)®

1 det[92 — 92 + €2M?]
F = - _1 i 1 1 0 1 L
! 22( f1n det[63 — 7]

~ €’ [deO'TrZ(—l)”fM% + 0(e*). (3.10)

Since t = k7, Kk =€ + ...
energy is given by

the 1-loop correction to string

Tz[m~w 3.11)
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Here M? may be nontrivial matrices which depend on 7, 0.
We are now to recall that the 1-loop logarithmic UV
divergencies in the AdSs X S° superstring action expanded
near an arbitrary string solution manifestly cancel in the
conformal gauge [3,12]. The nontrivial UV logarithmic
divergencies have as their coefficient precisely the sum
of the mass squared terms in the r.h.s. of (3.10); it vanishes
for a generic on-shell string background, thus implying the
absence of the € term in the 1-loop string partition
function.

Let us now verify this by a direct computation. For the
contribution of the 3, fields we get (rotating to euclidean
space, T — i7, and factorizing the infinite time interval 7")

det[— 93 — 93 + 2€*cos’a]

= T[— det[ -9} + w? + 2€%cos’o].  (3.12)
We can now use perturbation theory in €2, i.e.
det[A + €°B
AT EBl_ onaip o). Ga3)

detA

Then to order € [here o € (0, 277)]

det[— 9% + w? + 2€2cos’ o]
det[—82 + w?]

27 do 1
622 ,[ ZWCOSU 522+w

(3.14)

n

Similarly, the € contribution of the fermionic modes is
proportional to

det[ — 9% + w? + €%cos’a]
det[—82 + w?]

~ ezz o f%gacos o= Z Ty

I

(3.15)

The nontrivial part of the total Euclidean partition func-
L7
tion

det’’?[— 97 — 0% + €*cos’o]det”?[—d% — 93]

detz/z[ 92 — 97 + 2€’cos’aldet’’ [ — a3 — a2]det!/2Q

(3.16)

involves the operator Q on the space of the three mixed fluctuations g, ¢, 7 in (3.1)

SWe shall not use this 7-dependent form of the fluctuation Lagrangian for explicit computations below.
®To cancel the leading flat space term, i.e. to ensure that the total number of effective degrees of freedom is zero, one is of course to

include also the conformal gauge ghost contribution.

"Here we choose not to rotate 7 — if to make all fluctuations having physical norm but this can be easily done at any stage of what
follows; we shall assume this rotation in the free (flat) part of the partition function.
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93 + 02 — €* cos2a 0
Q= 0

2i€? singd, —2id, —

=93 — 07 — 1 + €*(} + cos20)
i€?(3 + sin*o)d,

PHYSICAL REVIEW D 78, 066002 (2008)
—2i€? sinod,
2id + ie*(} + sin?0)d,
=05 — 91 — 1 — €2} — cos20)

Since there is no explicit 7 dependence in the functional determinants we can write the 1-loop correction as

T [ det’[—0? + w? + €*cos?
rl=-—m21=-—4fj' doln—y——— [ T iCOZU] ; , (3.17)
T J)- det’[—d7 + w* + 2¢e*cos*o]det’[—d] + w*]det[Q,, ]
where 0, = Q(9y — iw).
Let us expand: Q, = ng,)) + eng) + ..., where
—(—01 + 0?) 0 0
0) _ _ a2 2 _ _
oY 0 2+ w?— 1 2w , (3.18)
0 2w -9t + 0® — 1
—cos2o 2w sino
0?2 = 0 cos20 +1  —w( + sino) (3.19)
—2wsine o + sin*o) cos2o — 1
— (=01 + w?) 0 0
P, = 0 -0 + »? 0 ) (3.20
0 0 -9} + w?

the remaining nontrivial part of I"; which was not already
computed is given by

T dw(lndet[Qw] _ pdetPol )
4w det[QY]  det[0)]

The second term here vanishes for the same reason why the
rotation in (3.8) lead to the standard massless kinetic terms
for the two originally coupled modes and thus to the trivial
flat-space partition function. Indeed the “mixed” 2 by 2
block contribution to Indet{QY'] can be written as
Indet[— 9?2 + (@ + i)*] + Indet[ — 9% + (w — i)*]. Under
the integral over w one can then shift ® by —i in one
term and by +i in another to get the cancellation against

other massless determinants. These separate shifts are thus
|

(3.21)

I
consistent with the trivial (supersymmetric) result for I'; in
flat space, and we shall perform similar shifts of the
corres(%ondmg terms in what follows [in particular in
det[ 0] contribution of the first term in (3.21)].

To compute the first term in (3.21) we expand in € as in
(3.13)

IMMA

_ O—1,2)
ndet[QEf,J)] = TN 10271+ ...

_ggj

The momentum-space propagator corresponding to Q(O)

O @) + ... (3:22)

T te? 0
0)y— 2t+w’—1 2
(QSI))) b= 0 n4+2n2?m2j01)+(w2+l)2 n4+2n2(w27a;)+(w2+l)2 (323)
_ 2w 24+ w1
0 n*+2n%(w?>—1)+(w?+1)? n4+2n2?w271)+(w2+1)2
It can be diagonalized by a rotation
- nz_}_wz 0 1 0 0
M) M=DE = 0 G O ) M=|0 g (3.24)
0 2+((lu AL 0 2 2

Q(a%) gets rotated into
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— cos2o w sino w sino
M 10PM =D? = | —2wsine il — 1cos20) + cos2o -1
—2w sino = —iw(l —1cos20) + cos2o

and the € term in (3.22) becomes

2rdo
22 )2 _ 22
€ 4 '[0 %Dw Dw = € 2 [

Thus finally

lw w ]
4+ (w+i)? n+(w-—0)]

(3.25)

iw i

F] € 00 2 w
= = — — + + 3 .
Ey kT 4 [—oo dw;lin2 +w? P+ (w+i)? n?+(w-— i)z] o(e)

Doing the opposite shifts of w in each of the last two terms
we conclude that the order € term in E| indeed vanishes,
ie.

E, =0+ 0(é). (3.27)

The above formal argument overlooks an important
subtlety of IR divergences that we have so far postponed
to discuss but which will become crucial at the next order
in € studied in the following section. Indeed, if the sum
over n in (3.25) runs over all values from —oo to +0o0 one
may get different results by interchanging the order of
integration over @ and summation over n: the integral
over w has an IR divergence at n = (.

In fact, as in the usual perturbative expansion near a
soliton, there is an issue of possible IR singularities due to a
zero mode associated to the translational symmetry o —
o + 0. In the present case of expansion in € the “free”
propagator is essentially the massless one on R X S! and
thus the zero mode that is not damped in the path integral
corresponds to n = 0. Its contribution can be either regu-
larized by introducing a small mass or i€ in the propagator
as in [13] or by isolating the modes constant in ¢ in the
path integral and thus not including the n = O contribu-
tions in the propagators (as is done, e.g., in quantizing a
sigma model on a compact 2d space). This is the prescrip-
tion we shall adopt here, i.e. the sums over n in (3.14),
(3.15), (3.25), and (3.26) will be understood not to include
the n = 0 term.

IV. 1- LOOP CORRECTION TO THE $*2 TERM IN
THE STRING ENERGY

After a warm-up in the previous section we are now
ready to compute the first nontrivial 1-loop correction to
|

(3.26)

|
the short string energy: the coefficient a;; of the $3/2 term
in (1.1) or (1.5). For that we shall consider the next order of
the near flat space or € — 0 expansion of the fluctuation
Lagrangian (3.1) and (3.3). As in (3.13) we shall use that

det[A + €’B + €*C]
detA

n

4
— E&THA 'B] - % TH{A"'BA~'B] + € Ti{A~'C]

+ O(e%) (4.1)
Expanding the fluctuation Lagrangian in € using (2.11),
etc., we get

L=1Ly+ L, +¢el,+..., 4.2)

where the €* terms in the masses and the mixing terms are
Su? = €*(} — cos*o), duy = €' — costo),

4o

e Sup = —€'costo,

2 _ R
Sy = €(5 — cos o),

Sut = —1e‘costo,

8[4p(k sinhpdyf — wcoshpdyd)]
= —1e*p[(3 + cos20) sinodyf — (1 — écos4a')80$i|
“4.3)

Let us first compute the €* contribution to 1-loop effective
action coming from the terms like €* Ti[A7!C] in (4.1).
Going to momentum space in the (Euclidean) world-sheet
time direction (9, — iw) the operator Q acting on the 7, g,
d~> subspace can be expanded as [cf. (3.18) and (3.19)]

0, =09+ e0% + &0l + ..., (4.4)
—(% — cos*o) 0 —%(3 + cos20) sino
oW = 0 3 —costo — £ (cosdo — 8) 4.5)

% (3 + cos2o)sino $5(cosdo — 8)

pil

— 4
e cos o
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As in (3.24) we rotate this to M_IQ(af)M = ng) whose
diagonal elements are

diag[DW] = {—4 + costo;35(13 — 8iw — 32cos*cr
+ iw cos40); 35(13 + 8iw — 32cost o

— iwcosdo)}

The computation of the €* term in (4.1) coming from the
coupled part gives

Tied) o1 = 3 [ I Ti(0l) o]

-3 [7SZ )
—Jo 2w

ziz[ 4 4 1—8iw
3R24<ln>+w? n?+(o+i0)
1+ 8iw
el 4.6
n2+(a)—i)2] (4.6)

The €* contribution of the decoupled modes 8, coming
from the single insertion of the e* perturbation, i.e. an
e* Tr[A~'C] type term is

PHYSICAL REVIEW D 78, 066002 (2008)
det[— 07 + w? + 2€’cos’o — €*cos* o]
det[ - 07 + w?]

1 27 dor
> — 4§ 4
€ 2+w2j;) 27TCOS 7

4.7

The single fermionic field gives just half of this contribu-
tion (up to the sign).

Putting together all of the contributions of the type
e*Ti{A71C] we get

Tet [ 7 28 1
r—»-—-=-° L= _ 2
P f_md‘”g[ 8 n> +w? 32

1 —8iw 1 1+ 8iw
L e R
n? + (w + i)? 32n2+(w—i)2] “4.8)

Now let us compute the contributions of the type
1€* Ti{A~'BA™'B]in (4.1). Let us start with the decoupled
fields B,. Using the form of the O(e*) correction to the
corresponding mass we get

4
€ -1 -1 1 27 da’l dO’z 2 ioy(nj—n 2 —ioy(n;—n
<7 Tr[A BA B]) = _nlznznl n a) n2 T w /;) E WCOS ge 1(ny Z)COS ose 2(ny—n5)
1 1 1
+ 4.9
Z T [n e AT [y ] I[P e w2]] )
I
As discussed at the end of the previous section, to project (3.18) and (3.19)]
out the zero mode contribution the sums over n in the
massless propagators should not include the n = 0 point. &
Thus the sum in (4.8) should be over all n # 0. In comput-  — Tr[(Qg?))_ng)(Qig))_ng)]
ing the integrals over o in (4.9) we have formally shifted n Jo d
. . . 2mdoy do
by *2, so the last llpe in the above equation shou}d be e Z f 91 92 [(Q(O)) 1(n1)Q(2)( )
understood as a combination of the three sums where in the nl ™ 2
first sum n # 0, in the second n # 0, 2 and in the third O)y— 2 L N
X (Qw) M (n2) Qi (0ry)]ei =)o =) (4.10)

n#+0,—2.

The corresponding fermionic contribution is essentially
1 of (4.8), as u% is half of ,u% but here there are two mass
insertions. Putting together such contributions from the
decoupled bosons and the fermions we observe that they
cancel each other.

Next, let us find the €* Tr{A~'BA~!B] type contribution
of the coupled set of fluctuations. It can be written as [see

To compute this expression we again first diagonalize the
propagator matrix and then integrate over o. Putting to-
gether all the contributions from the two insertions of the
€’ perturbations and adding the contribution with single €*
insertion (4.8) we get the following result for the 1-loop
effective action to order €*
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Te* [oo 7 1 1 1-S8iw 1 1+8iw

r 4=__[ d{ [__7__ L ]

== ). “’Z S+ w R+ (w+i)’ 2+ (w—i)

w? w? 11 1 1
"2 Z[ [+ (o + )2 [n2+(w—i)2]2+4—ln2+w2((n—2)2+w2+(n+2)2+w2>

L1 1 N w2< 1 N 1 )( 1 N 1 >
2 [n* + (o + i)*][n* + (0 — i)*] (n+ 1+ (n—17+0?/\n*+ (0 +i)? n*+(0—i)?

( m))Z 1 1 1
- ~|—(a)—i)2((n—2)2+(w—i)2+(n+2)2 +(a)—i)2)

( 1w)2 1 1 1
' 4 Pt (o+i) ((n -2+ (w +i)? - n+2?+ (o + ,-)z)]} 4.11)

Again, this expression should be understood as a combination of sums over n where the values of n for which the effective
(shifted) value of n vanishes should be projected out as it came from the original n; in the propagator after doing the
integral over o and shifting the summation index. For example, we have

Z 1 1 [277@ @ COSZU’] Coszo-zel(n]*nz)(g'lfgb)
nl#Onzz#Onl + wrni+ o)y 27 2w
4 2 . 4.12
4,5, + o’ (n =20+ o’ 4n¢(z),72 n* 4+ w? (n +2)* + o? (4.12)

The first three terms in (4.11) can be simplified as in (3.26) by doing separate shifts of w by *i in the last two terms; this

gives
1 —8iw 1+ 8iw
+ + . 4.13
n#),/ [n +w? n?+(w+0)? n2+(a)—i)2:| 16,12#),[ (4.13)

Similar separate shifts of w under the integral [®_ dw can be used to transform some other terms in (4.11). For example,
we get

w? w? w?r—1

W+ @+ P+ @=0TF  w+ R (4.14)

1 o o o 1
2+ (0 + )02 + (0 — 0)7] %[n2 +(w+i)? n+(0— i)2:| 2(w? + 1) n? + w?

Using the identity - = (1 — 1) -1 with a, b being (n + k)> + (w + v)?, (k = 0, =2, v = 0, %) and shifting w in terms
containing only propagator factors with (w * i) one finds that

w? w?
n#%—l [+ D2+ W + (w1 0P] n;m (= D+ o + (@ + 7] <
(n - 1) wz(n + 1) n— C()z(l’l + 2)
- n;o,l [(n =17+ & = 1? + 0] ,,g,,l [+ D2+ [ + D? + ] ,,gﬂ T
—n+w2(n—2)__ 2 4w?
) n;m P @ rIr %m (4.15)

The second line above comes from the unshifted terms, while the third line from the w-shifted terms. Performing similar
shifts of w and n in the last two lines in (4.11) we get

(1+9) 1 1 1 o 0’ — 1
TZ n? + (0 — i)? [(n =2+ (0 —0)? i (n+2)?+ (0 — i)2] e 4(n® + 0?)(n — 2)* + w?’ (4.16)

where the final term should be summed over n # 0, 2.
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Collecting the above expressions we get for (4.11)

. Te* [ i
F](G):_? _dwCO+C1+C2+ZSn,

n=3
(4.17)
where
Co— 1 _7w4+84w2+93
O (@ )Y P8+ DX’ +9)
8wl + 137w* — 89w? — 308
2= 2 2 4 2 (4.18)
8(w? + 4)*(w* + 17w? + 16)
1 2(n? + w?)
Sy =53 90> = Tn* + 16 - —5——
"8+ wz)z[ @ . w?+1
— (% + o) (w?—3)
1 1
X + . 4.19
((n +2)?%+w? (n—2)72+ wz)] ( )

The result is UV finite as expected [3]. It is also IR finite
(which would not be the case if the zero mode contribu-
tions were not properly projected out). The integrals over
w give

[oo d(l)COZ_g, /Do d(()cl:g?ﬂ-,
00 17
[ d(l)Cz = 7

j‘oo m(n* — 7n® + 3n + 16n — 16)
dwS, = —
4n¥(n*> —4)(n —1)

(4.20)

4.21)

Remarkably, the remaining sum over n can be also com-
puted exactly

—4£3), (4.22)

§n4—7n3+3n2+16n—16_149

B —4)n-1 32
giving
_ I _Ti(eh) 5
E=Fe™ 1e 10O
_ s 3 5
—4[32 g(3)]e o). (423)
Using (2.9) this can be written also as
E = [13 {(3)]83/2 + 0(8°2), (4.24)
1KY '

which corresponds to the value of a;; given in (1.4).
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APPENDIX: GENERALIZATION TO NONZERO $°
ANGULAR MOMENTUM

The above discussion can be generalized to the case of
the (S, J) string which is spinning with spin S in AdS; and
also moving with momentum J around big circle in S° [3].
This generalization is potentially important as it allows one
to relate the corresponding string states to operators like
tr(D5. ®7) in the closed sI(2) sector of the SYM theory
(with J having the interpretation of the length of the
corresponding spin chain [14]).

The relations in Sec. II have straightforward general-
ization to the case when the string also moves along the !
in $°:

@ = VT, J = \/XI/,
) (A1)
p? = Kk*cosh’p — w?sinh?p — 12,
2 52 1
0=p=p., cotth*zw szl—i-—z,
1 K> — v €’ (A2)
_ 3
s — €— —€ + ...
p. =€~ €

Here v = J plays the role of the semiclassical $°> momen-
tum parameter and € again measures the length of the

string. To include nonzero v one is to shift w—

Vw? — 12, k — VKk? — 1% We get [cf. (2.6) and (2.7)] [3]
11
VK? — 1’ = ,F, (2 5 b —62)

(A3)
_ K |
5°‘ﬂffl(‘z’z’l’ 9)
S = \/1+e F< 2—6) (A4)
\/K — 2 2

To consider the short string limit we should expand in
small € while keeping v arbitrary. Then we find

E=v+e(1+vH)+ 2(1 + 4)+0(66),

(AS)
52=€—4(1 + 2)-‘1-6—6(1 — %) + 0(€®)
AT €
ie.
28
€= + 0(S?),
V1 + 12 (A6)

E =12 +28V1 + 2 + 0(8?).

The short string limit € << 1 [3] can thus be achieved by,
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e.g., considering a slowly spinning string S < 1 or by
assuming large momentum in S3, i.e. » > 1. The latter is
the fast string or BMN-like limit while the former may be
called a near flat space limit in which » may be kept
arbitrarily small.

Below we shall concentrate on the short string limit € <<
1. If we further assume that € < v then the classical
energy will be

Eo=v+ §\/u2 + 1+ 0(S?).
14

If we then expand in large » >> 1 that will correspond to
the usual fast short string limit where one takes v large at
fixed % = § and then expands in % < 1[3]

(AT)

S S
Eo=v+S+_—5+..., v> 1, — <1
2v v
(A8)

In the slow short string limit we have e < 1, S < 1; if we
assume in addition that the S rotational energy is smaller
than the spinning one, then v < VS <« 1.1In this case v <
€ which is opposite to the above assumption that led to
(A7). Here we get € = 25 — ﬁéﬁ/z(l + %) +...50
that the classical energy has a “‘near flat space’ expansion
form

€=\/2_S(1+V—2+ )+i83/2(1+5—1/2+ )
0 48 e 4\/5 128 e

+..., y<JS < 1. (A9)

The fluctuation Lagrangian will now have 4 of S° fields
having mass »* and while the masses of the other fluctua-

PHYSICAL REVIEW D 78, 066002 (2008)
tion fields become [3] [cf. (3.1), (3.2), and (3.3)]:

u2=2p2— K2+ 12 ,ufb=2p’2—w2+vz,

,LL% =2p”% —w? — K> + 217, ,u,% =2p” + 12

ur=p?+ 2 (A10)
We can then compute the 1-loop correction to string energy
by expanding in the short string limit, i.e. in € << 1 while
keeping v fixed.

Expanding the masses and the coefficients in the mixing
term in the fluctuation Lagrangian we get the following
expression for the 1-loop effective action [cf. (3.17), (3.18),
(3.19), (3.20), and (3.21)]

T [ det[Ay + v* + €*cos’o]
I(e)=—— f d (81. 2
1(6 ) 47 ) - @ ! det[AO + V2]

det[A, + v* + 2€cos o] det[Q,]
—2In 5 —In
det[A, + %] det[ 0]
det[ P
AN n
det[Qu']
where now
_AO 0 0
Pw = O AO + V2 O y
0 0 Ag+? (Al2)

AOE —8%+w2

and the mixing term operator Q,, is given to order € by the
following matrix (i = 1, 2, 3)®

(Q,)1; ={—(Ay + €2 cos20);0; 2ew sinaVv? + €2}

1 1 1
(Qu)2 = {0; Ap— 1+ 62<COSZO' + 5), —2a)<1 + zezsinza')wflﬂ +1+ 562}

(A13)

1 1 1
(0,)3 = {—26W sinoVv? + 62;2w<1 + Eezsinza'%’vz +1+ 562; Ag— 1+ 62(00820' - 5)}

So far we considered € << 1 with v arbitrary. Next, we may specify either to the fast short string case (v >> €) or to the slow
: : — 00 6 202
short string case (v < €). In the fast string case we get O, = Q» + €Qw» + €0, + ... where

_AO O 0
oY = ( 0 Ag—1  —20V1+1?

0 2wV1+1? Ag—1
—cos2o 0
Q(ﬁ) - 0 cos2o + %

0 W%;-[% + (1 + v¥)sin?o]

0 0 2wvsino
, oY= 0 0 0 )
—2wvsinoc 0 0

0 (Al4)

- 7—1“;1}2 [% + (1 + v?)sin’o]

cos2o — 1

8Here we expanded to order €2 in small € at fixed » but in some terms formally kept €2 contributions under the square roots to allow

for a smooth v — 0 limit.

066002-10



QUANTUM CORRECTIONS TO ENERGY OF SHORT ...

We can again diagonalize the propagator matrix

PHYSICAL REVIEW D 78, 066002 (2008)

- n?+w? O O
- - o
DE‘?) =M I(QE‘('))) lM = r12-¢—(Lu-%—z\/m2+1/2 0 » (AIS)
1
0 0 Py e
where M is the same as in (3.24). Similarly,
0 wvsinoe wvsino
DY =m10VM = | —2wvsino 0 )
—2wvsino 0
—cos2o o sino] 0 (A16)
lW|5 v)sm o
DY =M 10PM = 0 cos2o + — ‘_]% -
0 —% cos20 — "“[#(1:/”251“ o]

One can show that the last term in (A11) vanishes. The
leading term in the short-string limit of I'; is of order €. To
compute it we note that

det[ — 9% + w? + v? + 2€cos’ 7]

In
det[—a2 + w? + 2]

R e

. (A17)

and use the expansion

det[A + €B; + € Bz]
detA

In eTr{A'B,] + € Ti{A™'B,]

62
- E Tr[A_lBlA_lBl] + ce
(A18)

in the third nontr1v1a1 term in (A11). The order € contrlbu—

tion vanishes. The €2 terms come from Tr[D'Y D?'] and

T DYDY DY DI, Summing them up we get for the €
J

1(6)—T—€

|
term in the effective action

242

”62)__[ Z( n+w+v+2m

lw
X[ +c.c.]
n?+ 12+ (o + iV + 1)?

v w?

B 2(n* + w?)

1
X
I:(n+1)2+1/2+(a)+i\/1/2+12

1
! (n =172+ 2+ (0 + iVi2 + 1) ! C'C'D
(A19)

Performing separate shifts of @ under the integrals in
various terms as discussed in Secs. III and IV gives

w*(n—1-12) — (¥?

o0 1
4 j_ dwn_z:_oo [n2+w2+V2

Here we used the symmetry of the sum under shifts of n; it

further allows one to simplify the square bracket under the
(n—1)(w?+v2+n)

N+ w?+2)[(n+ 1?22+ w2 (v?*+1)] "

can be performed exactly and we get

sum into Then the sum over n

2

Fl(f
00 : 2
% / do 7 sin(27v?) ’
—o  cos(27v?) — coshQmwvVr? + 1)
(A21)
or finally

+ D(n+1+ 12
MES e rea e ey | Y
2 2 _
T, = T e 2v 1 + 0(eh. (A22)

KNGS

Recalling that £, = KF—TL and that in the “‘short fast string”

limit under the consideration (i.e. € < 1, € < v) one has
K= v+%+ ..., we finally obtain

S 21X —1

e 2 P+ 1

where we have replaced € by S using (A6). So far » here is

arbitrary apart from the condition v > €, ie. 258 <

\/,__)’__.P ,

v?>V/1 + 12, so that (A23) is the 1-loop correction to the
classical energy in (A7).

+ 0(S?), (A23)

066002-11



A. TIRZIU AND A.A. TSEYTLIN

Assuming further that v >> 1 we get

E:§_§§+ :§<l_éi+ )+
1 v 2]/3 J 2]2 ceey

(A24)

which should be the correction to (AS).

This expression may be compared to the 1-loop correc-
tion to the folded spinning string energy found by quantiz-
ing the s/(2) Landau-Lifshitz model in Appendix D of [15]

) A S
E =——+0S)=
v R Vel
There one first has taken the large » limit with £ < kept fixed
and then expanded in % < 1. Here the order of limits was
different (we first expanded in € for fixed ) and that could
J

+ 0(S?).  (A25)

PHYSICAL REVIEW D 78, 066002 (2008)

be a possible reason for a disagreement between (A24) and
(A25).° To recover the standard fast string result one would
need to start with the short string fluctuation operators in
(A13), where no assumption on % was made, use them and
(A17) without expanding in €, compute the determinants
needed in (A11), then expand in large v with ‘; kept fixed,
and at the end take % to be small.

Let us now consider the 1-loop correction in the small v
region by taking e to zero while keeping the parameter x =

£ fixed, i.e. scaling v to zero together with € so that \/% =X

remains finite. We can then expand in small x and recover
the case of ¥ << € < 1. This will correspond to a correc-

tion to the near flat space expression (A9). In this limit k =
eV1 + x* + O(€?) and from (A13) we get

_AO 0 O
0, =00 +e0P+...., o0=[ 0 A -1 —2w )
0 2w AO -1
A26
—cos2o 0 2w+1 + x*sino (6:26)
0P = 0 cos2o + 1 —w( + x* + sin’o)
—2wV1 + x*sinc w(} + x* + sin*o) cos2o — 1
Diagonalizing Q(,f,)) and using perturbation theory in € we get
j 2(1 + x?)
Tr[(QY - 1+2[ o @ :|~ = A27
[ 0u]= ,;]( *) Yt} 2+ (0-—i) ,;)nz-i-wz (A27)

where as in Sec. III we made shifts of @ under the integral and also excluded the zero mode terms. For the decoupled

modes we find

det[— 9% + w? + x?€* + 2€%cos 0']

5+ O(e),

I

det[— 07 + w? + x%€?]

(A28)

222

n#O

and a similar expression is obtained for the fermionic contribution. In the last term in (A11) now P, includes € while Q)
does not, so that term is no longer zero. Computing it perturbatively in €2 we get

det[P ] 2
L s+ O(e* A2
RN D ozt 0. (A29)
Finally, for the leading term in (Al 1) we obtain
C2(1+x%) 2x?
I(e?)=— [d [ :I = 0. A30
1(€) @ n”+w P+’ n?+ o’ ( )

Thus the 1-loop correction to (A9) at order /S vanishes not only for v = 0 (as we have seen already in Sec. III) but also for
any v ~ € < 1. As in Sec. III, this can be again related to the UV finiteness property of the AdSs X S superstring.
It would be interesting to extend the above computation to compute the first nonvanishing 1-loop correction to (A9).

The presence of an unusual § term in the 1-loop correction (A24) may be an artifact of the limit of the above expansion procedure.
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