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Recent lattice data have reported an infrared suppressed, positivity violating gluon propagator which is

nonvanishing at zero momentum and a ghost propagator which is no longer enhanced. This paper

discusses how to obtain analytical results which are in qualitative agreement with these lattice data within

the Gribov-Zwanziger framework. This framework allows one to take into account effects related to the

existence of gauge copies, by restricting the domain of integration in the path integral to the Gribov

region. We elaborate to great extent on a previous short paper by presenting additional results, also

confirmed by the numerical simulations. A detailed discussion on the soft breaking of the Becchi-Rouet-

Stora-Tyutin symmetry arising in the Gribov-Zwanziger approach is provided.
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I. INTRODUCTION

As is well known, quantum chromodynamics (QCD) is
confining at low energy. Confinement means that it is im-
possible to detect free quarks and gluons in the low mo-
mentum region as quarks form colorless bound states like
baryons and mesons. Even if one omits the quarks, pure
SUðNÞ Yang-Mills gauge theory remains confining as glu-
ons form bound states known as glueballs. Hitherto, con-
finement is still poorly understood. There is a widespread
belief that the infrared behavior of the gluon and ghost
propagator is deeply related to the issue of confinement
and, therefore, these propagators have been widely inves-
tigated. In this paper, we shall use the following conven-
tions for the gluon and the ghost propagator,

hAa
�ð�pÞAb

�ðpÞi ¼ �abDðp2Þ
�
��� �

p�p�

p2

�
;

hcað�pÞ �cbðpÞi ¼ �abGðp2Þ:
(1)

Until recently, lattice results have shown an infrared
suppressed, positivity violating gluon propagator which
seemed to tend towards zero for zero momentum, i.e.
Dð0Þ ¼ 0, and a ghost propagator which was believed to
be enhanced in the infrared [1,2], Gðk2 � 0Þ � 1=k2þ�

with � > 0. Different analytical approaches were in agree-
ment with these results (e.g. [3–10] to quote only a few).
For instance, several works based on the Schwinger-Dyson
or exact renormalization group equations reported an in-
frared enhanced ghost propagator and an infrared sup-

pressed, vanishing gluon propagator, obeying a power
law behavior characterized by a unique infrared exponent,
as stated by a sum rule discussed in [3–6]. The infrared
propagators have also been studied from a thermodynam-
ical viewpoint in [11]. Also the Gribov-Zwanziger action
predicts an infrared enhanced ghost propagator and a zero-
momentum vanishing gluon propagator [8,9]. This action
was constructed in order to analytically implement the
restriction to the Gribov region �, defined as the set of
field configurations fulfilling the Landau gauge condition
and for which the Faddeev-Popov operator,

M ab ¼ �@�ð@��ab þ gfacbAc
�Þ; (2)

is strictly positive, namely

� � fAa
�; @�A

a
� ¼ 0;Mab > 0g: (3)

The boundary @� of the region � is called the (first)
Gribov horizon. This restriction is necessary to avoid the
appearance of Gribov copies in the Landau gauge related to
gauge transformations [7]. However, this region � still
contains a number of Gribov copies and is therefore still
‘‘larger’’ than the fundamental modular region (FMR),
which is completely free of Gribov copies. Unfortu-
nately, it is unknown how to treat the FMR analytically
[12–15].
However, more recent lattice data [16–19] at larger

volumes display an infrared suppressed, positivity violat-
ing gluon propagator, which is nonvanishing at zero mo-
mentum, i.e.Dð0Þ � 0, and a ghost propagator which is no
longer enhanced, Gðk2 � 0Þ � 1=k2. This implies that the
previous mentioned analytical approaches are not conclu-
sive. It is worth pointing out that, recently, the authors of
[20,21] have obtained a solution of the Schwinger-Dyson
equations which is in agreement with the latest lattice data.
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Furthermore, as we have shown in a previous work [22],
this agreement can also be found within the Gribov-
Zwanziger approach. In this framework, we have added a
novel mass term to the original Gribov-Zwanziger action.
This new term corresponds to the introduction of a dimen-
sion 2 operator. We recall that by including condensates,
which are the vacuum expectation value of certain local
operators, one can take into account nonperturbative ef-
fects which play an important role in the infrared region.
During the course of the current work, it shall become clear
that we also have to add an additional vacuum term to the
action, which will allow us to stay within the Gribov region
�. The previous paper [22] only gave a brief account of the
consequences of adding the mass operator to the original
Gribov-Zwanziger action. For this reason, here we shall
present an extensive study of the Gribov-Zwanziger action
with the inclusion of the new parts.

The purpose of this paper is fourfold, and it is organized
as follows. The first aim, discussed in Sec. II, is to give a
detailed proof of the renormalizability of the extended
action. Therefore, we first present an overview of the
Gribov-Zwanziger action SGZ in the Landau gauge which
implements the restriction of the Gribov region �. Next,

we add the local composite operator Sm ¼ m2

2

R
d4xA2

� to

this action and we prove the renormalizability of this
extended action, SGZ þ Sm. Subsequently, we show that
by adding another term, SM ¼ M2

R
d4x½ð �’’� �!!Þ þ

2ðN2�1Þ
g2N

&�2�, the renormalizability is not destroyed. In sum-

mary, Sec. II establishes the renormalizability of the action
SGZ þ Sm þ SM. The second aim, investigated in Sec. III,
is to demonstrate that this extra term enables us to obtain
propagators which exhibit the desired behavior. In particu-
lar, the tree level gluon propagator is calculated explicitly
and the ghost propagator is determined up to one loop.
Both the ghost and the gluon propagator are in qualitative
agreement with the latest lattice results. Up to this point,
we have added this mass term by hand. Hence, a third aim
is to obtain a dynamical value for M2. Section IV presents
this dynamical value. An estimate for the one loop gluon
propagator at zero momentum as well as for the ghost
propagator at low momenta is given. Also, the positivity
violation of the gluon propagator is scrutinized and com-
pared with the available lattice data. The last aim is to

highlight the Becchi-Rouet-Stora-Tyutin (BRST) break-
ing of the Gribov-Zwanziger action, which is presented
in detail in Sec. V. We already stress here that it is the
restriction to the Gribov region �, implemented by the
Gribov-Zwanziger action, which induces the explicit
breaking of the BRST symmetry. Further, we provide a
few remarks on the Maggiore-Schaden approach to the
issue of the BRST breaking [23], and we revisit a few
aspects of the Kugo-Ojima confinement criterion [24]. We
end this paper with a discussion in Sec. VI.

II. THE EXTENDED ACTION AND
THE RENORMALIZABILITY

A. The Gribov-Zwanziger action

We begin with an overview of the action constructed by
Zwanziger [10] which implements the restriction to the
Gribov region � [7] in Euclidean Yang-Mills theories in
the Landau gauge. We start from the following action,

Sh ¼ SYM þ
Z

d4xðba@�Aa
� þ �ca@�D

ab
� cbÞ

þ �4
Z

d4xhðxÞ; (4)

with SYM the classical Yang-Mills action,

SYM ¼ 1

4

Z
d4xFa

��F
a
��; (5)

and hðxÞ the so-called horizon function,

hðxÞ ¼ g2fabcAb
�ðM�1ÞadfdecAe

�: (6)

The parameter �, known as the Gribov parameter, is not
free and is determined by the horizon condition

hhðxÞi ¼ dðN2 � 1Þ; (7)

where d is the number of space-time dimensions. The
nonlocal horizon function can be localized through a
suitable set of additional fields. The complete localized
action reads

S ¼ S0 þ S�; (8)

with

S0 ¼ SYM þ
Z

d4xðba@�Aa
� þ �ca@�D

ab
� cbÞ þ

Z
d4xð �’ac

� @�ð@�’ac
� þ gfabmAb

�’
mc
� Þ � �!ac

� @�ð@�!ac
� þ gfabmAb

�!
mc
� Þ

� gð@� �!ac
� ÞfabmðD�cÞb’mc

� Þ;
S� ¼ ��2g

Z
d4x

�
fabcAa

�’
bc
� þ fabcAa

� �’bc
� þ 4

g
ðN2 � 1Þ�2

�
: (9)

The fields ð �’ac
� ; ’ac

� Þ are a pair of complex conjugate
bosonic fields, while ð �!ac

� ;!ac
� Þ are anticommuting

fields. Each of these fields has 4ðN2 � 1Þ2 components.
We can easily see that the action S0 displays a global UðfÞ

symmetry, f ¼ 4ðN2 � 1Þ, with respect to the composite
index i ¼ ð�; cÞ ¼ 1; . . . ; f, of the additional fields
ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ. Therefore, we simplify the notation

of these fields by setting
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ð �’ac
� ; ’ac

� ; �!ac
� ;!ac

� Þ ¼ ð �’a
i ; ’

a
i ; �!

a
i ; !

a
i Þ; (10)

so we get

S0 ¼ SYM þ
Z

d4xðba@�Aa
� þ �ca@�ðD�cÞaÞ

þ
Z

d4xð �’a
i @�ðD�’iÞa � �!a

i @�ðD�!iÞa

� gð@� �!a
i ÞfabmðD�cÞb’m

i Þ: (11)

Now we shall try to translate the horizon condition (7)
into a more practical version [9]. The local action S and the
nonlocal action Sh are related as follows:Z

dAdbdcd �ce�Sh ¼
Z

dAdbdcd �cd’d �’d!d �!e�S:

(12)

If we take the partial derivative of both sides with respect to
�2 we obtain

� 2�2hhi ¼ hgfabcAa
�’

bc
� i þ hgfabcAa

� �’bc
� i: (13)

Using this last expression and assuming that � � 0, we can
rewrite the horizon condition (7)

hgfabcAa
�’

bc
� i þ hgfabcAa

� �’bc
� i þ 2�2dðN2 � 1Þ ¼ 0:

(14)

We know that the quantum action � is obtained through the
definition

e�� ¼
Z

d�e�S; (15)

where
R
d� stands for the integration over all the fields. It

is now easy to see that

@�

@�2
¼ 0 (16)

is exactly equivalent with Eq. (14). Therefore, Eq. (16)
represents the horizon condition. We remark that the con-
dition (16) also includes the solution � ¼ 0. However, � ¼
0 would correspond to the case in which the restriction to
the Gribov region would not have been implemented. As
such, the value � ¼ 0 has to be disregarded as an artefact
due to the reformulation of the horizon condition.

As it has been proven in [9], the Gribov-Zwanziger
action S is renormalizable to all orders. In the next section,
we shall give an overview of this renormalizability, but
with the insertion of the local composite operator Aa

�A
a
�, to

extend the action further. Obviously, the renormalizability
of this extended action S0 also includes the renormaliz-
ability of the ordinary Gribov-Zwanziger action S.

B. Adding the local composite operator Aa
�A

a
�

If we add the local composite operator Aa
�A

a
� to (8) one

can prove [25] that the following action is renormalizable
to all orders

S0 ¼ S0 þ S� þ SA2 ; (17)

with

SA2 ¼
Z

d4x

�
�

2
Aa
�A

a
� � �

2
�2
�
; (18)

with � a new source and � a new parameter. We now go a
little bit more into the details of the renormalization of this
action, as it will be useful later. We remark that if we prove
the renormalizability of the action S0, we have also proven
the renormalizability of S ¼ S0 þ S� just by putting �

equal to zero. We will use the method of algebraic renor-
malization [26]. Roughly speaking, this means that we will
embed the action S0 into a larger action by adding new
sources, so it will display a greater number of symmetries.
These symmetries are important as they will imply con-
straints on the possible allowed counterterm. The larger the
number of symmetries, the more limitations wewill find on
the counterterm. This will lead to a bigger possibility to
absorb the counterterm into the original action, thereby
proving the renormalizability. In the end, we give the
sources the correct physical values, so we obtain the action
S0 again.
We shall now implement, step by step, this method of

algebraic renormalization. Firstly, we introduce two local
external sources Mai

� , V
ai
� so we can treat fabcAa

�’
bc
� and

fabcAa
� �’bc

� as composite operators just like A2
�. Hence, we

replace the term S� by

S0� ¼ �
Z

d4xðMai
� ðD�’iÞa þ Vai

� ðD� �’iÞa

þ 4�4ðN2 � 1ÞÞ: (19)

If we set the sources to their physical values in the end

Mab
��jphys ¼ Vab

��jphys ¼ �2�ab���; (20)

we obtain, as requested, the term S� defined in (8).

Secondly, the algebraic renormalization procedure re-
quires this action to be BRST invariant. Therefore, we
further introduce three extra sources Nai

� , U
ai
� , and 	 and

replace S0� þ SA2 by

Ss ¼ s
Z

d4x

�
�Uai

� ðD�’iÞa � Vai
� ðD� �!iÞa �Uai

�V
ai
�

þ 1

2
	Aa

�A
a
� � 1

2
��	

�

¼
Z

d4x

�
�Mai

� ðD�’iÞa � gUai
�f

abcðD�cÞb’c
i

þUai
� ðD�!iÞb � Nai

� ðD� �!iÞa � Vai
� ðD� �’iÞa

þ gVai
� fabcðD�cÞb �!c

i �Mai
�V

ai
� þUai

�N
ai
�

þ 1

2
�Aa

�A
a
� þ 	Aa

�@�c
a � 1

2
��2

�
; (21)

where the BRST transformations of all the fields and
sources are:
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sAa
� ¼ �ðD�cÞa; sca ¼ 1

2
gfabccbcc;

s �ca ¼ ba; sba ¼ 0; s’a
i ¼ !a

i ;

s!a
i ¼ 0; s �!a

i ¼ �’a
i ; s �’a

i ¼ 0;

(22)

and

sUai
� ¼ Mai

� ; sMai
� ¼ 0; sVai

� ¼ Nai
� ;

sNai
� ¼ 0; s	 ¼ �; s� ¼ 0:

(23)

We recall that the BRST operator s is nilpotent, meaning
that s2 ¼ 0. We mention again that by replacing the
sources with their physical values in the end

Uai
� jphys ¼ Nai

� jphys ¼ 0; (24)

	jphys ¼ 0; (25)

one recovers the original terms S� þ SA2 .

Finally, a term Sext,

Sext ¼
Z

d4x

�
�Ka

�ðD�cÞa þ 1

2
gLafabccbcc

�
; (26)

was added, which is needed to define the nonlinear BRST
transformations of the gauge and ghost fields. Ka

� and La

are two new sources, invariant under the BRST symmetry s
and with

Ka
�jphys ¼ Lajphys ¼ 0: (27)

The enlarged action is thus given by

� ¼ S0 þ Ss þ Sext; (28)

and one easily sees that the action � is indeed BRST
invariant. This action now enjoys a larger number of
Ward identities summarized as follows:

(i) For the UðfÞ invariance mentioned before we have

Uij� ¼ 0;

Uij ¼
Z

d4x

�
’a

i

�

�’a
j

� �’a
j

�

� �’a
i

þ!a
i

�

�!a
j

� �!a
j

�

� �!a
i

þMai
�

�

�Maj
�

�Uaj
�

�

�Uai
�

þ Nai
�

�

�Naj
�

� Vaj
�

�

�Vai
�

�
: (29)

By means of the diagonal operator Qf ¼ Uii, the

i-valued fields and sources turn out to possess an
additional quantum number. One can find all quan-
tum numbers in Tables I and II.

(ii) The Slavnov-Taylor identity reads

S ð�Þ ¼ 0; (30)

with

Sð�Þ ¼
Z

d4x

�
��

�Ka
�

��

�Aa
�

þ ��

�La

��

�ca
þ ba

��

� �ca

þ �’a
i

��

� �!a
i

þ!a
i

��

�’a
i

þMai
�

��

�Uai
�

þ Nai
�

��

�Vai
�

�
: (31)

(iii) The Landau gauge condition and the antighost
equation are given by

��

�ba
¼ @�A

a
�; (32)

��

� �ca
þ @�

��

�Ka
�

¼ 0: (33)

TABLE II. Quantum numbers of the sources.

Uai
� Mai

� Nai
� Vai

� Ka
� La � 	

Dimension 2 2 2 2 3 4 2 2

Ghost number �1 0 1 0 �1 �2 0 0

Qf-charge �1 �1 1 1 0 0 0 0

TABLE I. Quantum numbers of the fields.

Aa
� ca �ca ba ’a

i �’a
i !a

i �!a
i

Dimension 1 0 2 2 1 1 1 1

Ghost number 0 1 �1 0 0 0 1 �1
Qf-charge 0 0 0 0 1 �1 1 �1
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(iv) The ghost Ward identity is

G a� ¼ �a
cl; (34)

with

G a ¼
Z

d4x

�
�

�ca
þ gfabc

�
�cb

�

�bc
þ ’b

i

�

�!c
i

þ �!b
i

�

� �’c
i

þ Vbi
�

�

�Nci
�

þUbi
�

�

�Mci
�

��
;

(35)

and

�a
cl ¼ g

Z
d4xfabcðKb

�A
c
� � LbccÞ: (36)

Notice that the term �a
cl, being linear in the quan-

tum fields Aa
�, c

a, is a classical breaking.

(v) The linearly broken local constraints yield

��

� �’ai
þ @�

��

�Mai
�

¼ gfabcAb
�V

ci
� ; (37)

��

�!ai
þ @�

��

�Nai
�

� gfabc �!bi ��

�bc

¼ gfabcAb
�U

ci
�; (38)

��

� �!ai
þ @�

��

�Uai
�

� gfabcVbi
�

��

�Kc
�

¼ �gfabcAb
�N

ci
� ; (39)

��

�’ai
þ @�

��

�Vai
�

� gfabc �’bi ��

�bc

� gfabc �!bi ��

� �cc
� gfabcUbi

�

��

�Kc
�

¼ gfabcAb
�M

ci
�: (40)

(vi) The exact Rij symmetry reads

R ij� ¼ 0; (41)

with

Rij ¼
Z

d4x

�
’a

i

�

�!a
j

� �!a
j

�

� �’a
i

þ Vai
�

�

�Nai
�

�Uai
�

�

�Mai
�

�
: (42)

(vii) The integrated Ward identity

Z
d4xðca ��

�!ai þ!ai ��

�ca
þUai

�

��

�Ka
�

Þ ¼ 0:

(43)

When we turn to the quantum level, we can use
these symmetries to characterize the most general al-
lowed invariant counterterm �c. Following the algebraic
renormalization procedure [26], �c is an integrated local
polynomial in the fields and sources with dimension
bounded by four, and with vanishing ghost number and
Qf-charge. The previous Ward identities imply the follow-

ing constraints for �c:
(i) The UðfÞ invariance:

Uij�
c ¼ 0: (44)

(ii) The linearized Slavnov-Taylor identity:

B ��
c ¼ 0; (45)

with B� the nilpotent linearized Slavnov-Taylor
operator,

B � ¼
Z

d4x

�
��

�Ka
�

�

�Aa
�

þ ��

�Aa
�

�

�Ka
�

þ ��

�La

� �

�ca
þ ��

�ca
�

�La þ ba
�

� �ca
þ �’a

i

�

� �!a
i

þ!a
i

�

�’a
i

þMai
�

�

�Uai
�

þ Nai
�

�

�Vai
�

�
;

(46)

and

B �B� ¼ 0: (47)

(iii) The Landau gauge condition and the antighost
equation:

��c

�ba
¼ 0;

��

� �ca
þ @�

��

�Ka
�

¼ 0: (48)

(iv) The ghost Ward identity:

G a�c ¼ 0: (49)

(v) The linearly broken local constraints:

��c

�’ai þ @�
��c

�Vai
�

� gfabc �!bi ��
c

� �cc

� gfabcUbi
�

��c

�Kc
�

¼ 0;

��c

� �!ai þ @�
��c

�Uai
�

� gfabcVbi
�

��c

�Kc
�

¼ 0;

��c

�!ai þ @�
��c

�Nai
�

¼ 0;
��

� �’ai þ @�
��

�Mai
�

¼ 0:

(vi) The exact Rij symmetry:

R ij�
c ¼ 0: (50)
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(vii) The integrated Ward identity

Z
d4xðca ��c

�!ai þ!ai ��
c

�ca
þUai

�

��c

�Ka
�

Þ ¼ 0:

(51)

These constraints imply that �c does not depend on the
Lagrange multiplier ba, and that the antighost �ca and the
i-valued fields ’a

i , !
a
i , �’a

i , �!a
i can enter only through

the combinations [9,25]

~K a
� ¼ Ka

� þ @� �c
a � gfabc ~Ubi

�’
ci � gfabcVbi

� �!ci;

~Uai
� ¼ Uai

� þ @� �!ai; ~Vai
� ¼ Vai

� þ @�’
ai;

~Nai
� ¼ Nai

� þ @�!
ai; ~Mai

� ¼ Mai
� þ @� �’ai:

(52)

The most general counterterm fulfilling the conditions
(44)–(51) contains four arbitrary parameters, a0, a1, a2,
a3 and reads

�c ¼ a0SYM þ a1
Z 4

d4xðAa
�

�SYM
�Aa

�

þ eKa
�@�c

a

þ eVai
�
eMai
� � eUai

�
eNai
� Þ þ

Z 4
d4xða2

2
�Aa

�A
a
�

þ a3
2
��2 þ ða2 � a1Þ	Aa

�@�c
aÞ: (53)

Once the most general counterterm has been determined,
one can straightforwardly verify that it can be reabsorbed
through a multiplicative renormalization of the fields,
sources, and coupling constants. We also mention the
renormalization factors, useful for later calculations. If
we set 
 ¼ ðAa

�; c
a; �ca; ba; ’a

i ; !
a
i ; �’

a
i ; �!

a
i Þ for all the

fields and � ¼ ðKa�; La;Mai
� ; N

ai
� ; V

ai
� ; Uai

� ; �; 	Þ for the

sources, and if we define

g0 ¼ Zgg; �0 ¼ Z��;


0 ¼ Z1=2

 
; �0 ¼ Z��;

(54)

one can determine

Zg ¼ 1þ 	
a0
2
; Z1=2

A ¼ 1þ 	

�
a1 � a0

2

�
;

Z� ¼ 1þ 	ð�a3 � 2a2 þ 4a1 � 2a0Þ:
(55)

These are the only independent renormalization constants.
For example, the Faddeev-Popov ghosts ðca; �caÞ and the
i-valued fields ð’a

i ; !
a
i ; �’

a
i ; �!

a
i Þ have a common renormal-

ization constant, determined by the renormalization con-

stants Zg and Z1=2
A ,

Zc ¼ Z �c ¼ Z’ ¼ Z �’ ¼ Z! ¼ Z �! ¼ ð1� 	a0Þ
¼ Z�1

g Z�1=2
A : (56)

The renormalization of the sources ðMai
� ; N

ai
� ; V

ai
� ; Uai

� Þ is
also determined by the renormalization constants Zg and

Z1=2
A , being given by

Z�2 � ZM ¼ ZN ¼ ZV ¼ ZU ¼ Z�1=2
g Z�1=4

A : (57)

Also Z� is related to Zg and Z1=2
A [25]:

Z� ¼ ZgZ
�1=2
A : (58)

Finally, Zb, ZK, and ZL are also not independent as they are
given by

Zb ¼ Z�1
A ; ZK ¼ Z1=2

c ; ZL ¼ Z1=2
A : (59)

C. Adding a new mass term

1. Extended action

We first explain the need for the inclusion of a new
dynamical effect. According to the latest lattice results,
the gluon propagator does not seem to vanish for zero
momentum. This is incompatible with the actions (8) and
(17), which both lead to a vanishing gluon propagator near
the origin. The tree level gluon propagator in the Gribov-
Zwanziger model reads [25]

hAa
�ð�pÞAb

�ðpÞi � �abDðp2Þ
�
��� �

p�p�

p2

�

¼ �ab p2

p4 þ �4

�
��� �

p�p�

p2

�
; (60)

where we have set

�4 ¼ 2g2N�4: (61)

One recognizes indeed that expression (60) vanishes at
the origin due to the presence of Gribov parameter �. In
the A2

� model the gluon propagator is modified in the

following form:

hAa
�ð�pÞAb

�ðpÞi � �abDðp2Þ
�
��� �

p�p�

p2

�

¼ �ab p2

p4 þm2p2 þ �4

�
��� �

p�p�

p2

�
;

(62)

which reveals a further suppression near the origin and
thus it still vanishes. We recall here that the fields
ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ were introduced to localize the hori-

zon function [9], which implements the restriction to the
Gribov region�. If we take a closer look at the action (11),
we observe an A’-coupling at the quadratic level. One can
suspect that a nontrivial effect in the ’-sector will imme-
diately get translated into the gluon sector. For this reason,
if we try to give a mass to the �’, ’-fields without spoiling
the renormalizability of the action, we might be able to
modify the gluon propagator in the desired way. Imple-
menting this idea means that we add a new term to the
action (17) of the form J �’a

i ’
a
i , with J a new source. If we

want to preserve the renormalizability we have to add the
mass term in a BRST invariant way. Therefore, we consider
the following extended action:

S00 ¼ S0 þ S �’’; (63)
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S �’’ ¼
Z

d4xðsð�J �!a
i ’

a
i Þ þ �J�Þ

¼
Z

d4xð�Jð �’a
i ’

a
i � �!a

i !
a
i Þ þ �J�Þ; (64)

with � a parameter and J a dimension 2 source, invariant
under the BRST transformation

sJ ¼ 0: (65)

2. Renormalizability

The proof of the renormalizability of this action S00 can
be easily done with the help of the Ward identities derived
in the previous section. Again, we embed the action S00 into
a larger action,

�0 ¼ �þ S �’’; (66)

containing more symmetries. It is subsequently trivial to
check that all Ward identities (29)–(42) remain unchanged
up to potential harmless linear breaking terms and there-
fore the constraints (44)–(50) as well as the combinations
(52) are preserved. Only the integrated Ward identity (51)
is lost by the introduction of the new mass term. However,
as we are using mass independent renormalization
schemes, the value of the new mass dimension 2 source J
cannot influence the explicit expression of the counterterm
�c already determined in Eq. (53). This is quite logical, as
a mass term can only add its own renormalization factor, it
does not affect the renormalization factors of other quan-
tities, which can be equally well computed with J ¼ 0.
This implies that the counterterm �c0 corresponding to the
action �0 is now given by

�c0 ¼ �c þ �c
’ �’; �c

’ �’ ¼ a4J�; (67)

with a4 an arbitrary parameter. This counterterm can be
absorbed into the original action �0, hence we have proven
the renormalizability of our extended action. If we define

J0 ¼ ZJJ; �0 ¼ Z��; (68)

we find

ZJ ¼ Z�1
’ ¼ ZgZ

1=2
A ; Z� ¼ 1þ 	

�
a4 � a0

2
� a2

�
:

(69)

As the reader might have noticed, symmetries also do
not prevent a term �J2 from occurring, with � a new
parameter, but we can argue that � is in fact a redundant
parameter, as no divergences in J2 will occur. A term of
this form is independent of the fields, hence it would only
be necessary to get rid of the infinities in the functional
energy, which we calculate by integrating the action over
all the fields Z

d�e�S00 ¼ e�WðJÞ: (70)

Seen from another perspective, we need a counterterm /
J2 to remove possible divergences in the vacuum correla-

tors hð �’’� �!!Þxð �’’� �!!Þyi for x ! y. Such new di-

vergences are typical when a local composite operator
(LCO) of dimension 2 is added to the theory in 4D. An a
priori arbitrary new coupling � is then needed to reabsorb
these divergences. In general, it can be made a unique func-
tion of g2 such that WðJÞ obeys a standard homogeneous
linear renormalization group equation [25]. This is a good
sign, as we do not want new independent couplings enter-
ing our action or results. A nice feature of the LCO under
study, i.e. ð �’’� �!!Þ, is that divergences / J2 are in fact
absent in the correlators, so there is even no need for the
coupling � here. The argument goes as follows. The Ward
identities prohibit terms in J�2 from occurring. Notice that
this is not a trivial point, as naively we expect it to occur
from the dimensional point of view. It is only by making
use of the extended action and its larger symmetry content
that we can exclude a term / J�2 from the game. Hence,
we can set �2 ¼ 0 to find the vacuum divergence structure
/ J2, as we will employ as usual mass independent renor-
malization schemes like the MS scheme. Now, there are
two ways to understand that no divergences in J will occur.
Firstly, at the level of the action, it is easily recognized that
the term gð@� �!a

i ÞfabmðD�cÞb’m
i in the action is irrelevant

for the computation of the generating functional as the
associated vertices cannot couple to anything without ex-
ternal !- and c-legs. Thus forgetting about this term, the
ð �’;’Þ- and ð �!;!Þ-integrations can be done exactly, and
they neatly cancel due to the opposite statistics of both sets
of fields. Hence, all J-dependence is in fact lost, and a
fortiori no divergences arise. Secondly, for �2 ¼ 0, the
action S00

�2¼0
is BRST invariant, sS00

�2¼0
¼ 0. Conse-

quently, the vacuum correlators hð �’’� �!!Þx �
ð �’’� �!!Þyi ¼ hs½ð’ �!Þxð �’’� �!!Þy�i ¼ 0. Therefore,

we have again proven that no divergences in J appear.
For �2 � 0, the BRST transformation s no longer gener-
ates a symmetry (see Sec. V), hence a nonvanishing result
for the correlator hð �’’� �!!Þxð �’’� �!!Þyi or the con-

densate h �’’� �!!i is allowed. A nonvanishing vacuum
expectation value (VEV) for our new mass operator is thus
exactly allowed since the BRST is already broken by
the restriction to the horizon. From the first viewpoint,
the ð �’;’Þ- and ð �!;!Þ-integrations will no longer cancel
against each other, giving room for J-dependent contribu-
tions in the generating functional, albeit without generating
any new divergences.

D. Modifying the effective action in order to
stay within the horizon

1. Extended action

A very important fact is to check if it is still possible to
stay within the Gribov region �, after adding this new
mass term. This can be investigated with the help of the
ghost propagator Gðk2Þ, which can be easily read off from
the Feynman diagrams depicted in Fig. 1,
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Gabðk2Þ ¼ �abGðk2Þ

¼ �ab

�
1

k2
þ 1

k2

�
g2

N

N2 � 1

Z d4q

ð2�Þ4
ðk� qÞ�k�
ðk� qÞ2

� hAa
�A

a
�i
�
1

k2

�
þOðg4Þ

¼ �ab 1

k2
ð1þ ðk2ÞÞ þOðg4Þ; (71)

with

ðk2Þ ¼ N

N2 � 1

g2

k2

Z d4q

ð2�Þ4
ðk� qÞ�k�
ðk� qÞ2 hAa

�A
a
�i: (72)

Going back to the original formulation of Gribov [7], being
inside the region �, is equivalent to stating that

ðk2Þ � 1; (73)

which is called the no-pole condition. In this case, the
ghost propagator can be rewritten in the following form:

G ðk2Þ ¼ 1

k2
1

1� ðk2Þ þOðg4Þ; (74)

which represents the fact that we are working at the level of
the inverse propagator or equivalently, at the level of the
1-particle irreducible n-point functions, which are gener-
ated by the effective action �. This form is more natural, as
we can now impose the gap equation (16), which is also
formulated at the level of the effective action. However, in
the next section, it shall become clear that the current
action S00 does not guarantee us that we are located within
the region� asð0Þ � 1. Therefore, we add a second term
to the action, Sen, given by

Sen ¼ 2
dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi

2g2N
p Z

ddx&�2J (75)

with & a new parameter. We have introduced the particular

prefactor of 2 dðN2�1Þffiffiffiffiffiffiffiffi
2g2N

p for later convenience. As it is a

constant term, is it comparable with the term
ð�R

d4x4ðN2 � 1Þ�4Þ in the original Gribov-Zwanziger
formulation (9). Therefore, it can be responsible for allow-
ing us to stay inside the Gribov horizon by enabling to be
smaller than 1. The explicit calculation ofwill be done in
the next section, but we can already intuitively sketch the
reasoning why  will be altered. As this new term is in-
dependent of the fields, it will only enter the expression for
the vacuum energy. However, due to the gap equation (16),
it will also enter in the expression of the ghost propagator

(and analogously any other quantity which contains �2).
Recapitulating, the complete action now reads

S000 ¼ S00 þ Sen (76)

with S00 given in Eq. (63).

2. Renormalizability

The renormalizability of S000 can be easily verified.
Therefore, we replace Sen with

�en ¼
Z

d4x&�J; (77)

with� a color singlet and BRST invariant source, s� ¼ 0.
In the end, we give � the physical value of

�jphys ¼ 2
dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi

2g2N
p �2; (78)

to return to the original action S000. Again, we embed the
action S000 into a larger action �00,

�00 ¼ �0 þ�en; (79)

with �0 given by (66). Firstly, as it is easily checked, the
term �en can only give rise to an additional harmless
classical breaking in the Ward identities. Therefore, all
the previous Ward identities will remain valid. Secondly,
we have the following additional Ward identity:

��00

��
¼ &J; (80)

which implies that the counterterm is independent from�.
Taking these two arguments together, we can conclude that
the counterterm will be exactly the same as before, given
by (67). Therefore,

&0�
2
0J0

g0
¼ &�2J

g
(81)

and consequently, no new renormalization factor is
necessary,

Z& ¼ ZgZ
�1
�2 Z

�1
J : (82)

3. Boundary condition

Introducing a new parameter & requires a second gap
equation in order to determine this new parameter. We
recall that, in the case in which M2 ¼ 0 or equivalently
in the original Gribov-Zwanziger formulation, we have

ðk2 � 0Þ ¼ 1� Ck2; (83)

FIG. 1. The one loop corrected ghost propagator.
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with C a certain positive constant, which causes the
enhancement of the ghost propagator Gðk2Þ at zero
momentum,

G ðk2 � 0Þ � 1

Ck4
: (84)

Therefore, we know that at zero momentum, slowly
switching off M2 will cause ðk2 ¼ 0Þ going to 1. It
is therefore very natural to demand that this transition
has to occur smoothly by imposing the following boundary
condition:

@ð0Þ
@M2

��������M2¼0
¼ 0: (85)

In summary, we have now two gap equations. Firstly, the

gap equation @�
@�2 ¼ 0 fixes �2 as a function of M2 and

secondly, demanding that @ð0Þ
@M2 jM2¼0 ¼ 0 will uniquely fix

&. This leaves us with one free parameter, M2, the fixation
of which shall be discussed in Sec. IV.

III. THE MODIFIED GLUON AND
GHOST PROPAGATOR

Now that we have constructed the action S000, by adding
two additional terms S �’’ and Sen to the original Gribov-

Zwanziger action, we investigate the gluon and the ghost
propagator in detail. For the calculations, we have replaced
the sources J and � with the more conventional mass
notations M2 and m2 respectively.

A. The gluon propagator

We shall first examine the tree level gluon propagator. In
order to calculate this free gluon propagator we only need
that part of the free action S00 containing the A-fields and
the ’, �’-fields. This free action reads

S000 ¼
Z

d4x

�
1

4
ð@�Aa

� � @�A
a
�Þ2 þ 1

2�
ð@�Aa

�Þ2

þ �’ab
� @2’ab

� � �2gðfabcAa
�’

bc
� þ fabcAa

� �’bc
� Þ

�M2 �’ab
� ’ab

� þm2

2
A2
� þ 	 	 	

�
; (86)

where the limit � ! 0 is understood in order to recover the

Landau gauge. The ‘‘	 	 	’’ stand for the constant terms

�dðN2 � 1Þ�4 and 2 4ðN2�1Þffiffiffiffiffiffiffiffi
2g2N

p &�2M2 and other terms in

the ghost- and !, �!-fields irrelevant for the calculation
of the gluon propagator. Next, we integrate out the ’- and
�’-fields. As we are only interested in the gluon propagator,

we simply use the equations of motion,
@S000
@ �’bc

�
¼ 0 and

@S000
@’bc

�
¼

0, which give

’bc
� ¼ �’bc

� ¼ 1

@2 �M2
�2gfabcAa

�: (87)

We use this result to rewrite S000 ,

S000 ¼
Z

d4x

�
1

4
ð@�Aa

� � @�A
a
�Þ2 þ 1

2�
ð@�Aa

�Þ2 þm2

2
A2
�

þ �4g2fabcAa
�

1

@2 �M2
fdbcAd

�

� 2�4g

�
fabcAa

�

1

@2 �M2
gfdbcAd

�

�
þ 	 	 	

�

¼
Z

d4x

�
1

4
ð@�Aa

� � @�A
a
�Þ2 þ 1

2�
ð@�Aa

�Þ2

þm2

2
A2
� � N�4g2Aa

�

1

@2 �M2
Aa
� þ 	 	 	

�
: (88)

The last step is explained with the following relation:

fabcfdbc ¼ N�ad; (89)

and we restrict ourselves to the color group SUðNÞ
throughout. We continue rewriting S000 so we can easily

read the gluon propagator

S000 ¼
Z

d4x

�
1

2
Aa
��

ab
��A

b
� þ 	 	 	

�
;

�ab
�� ¼

��
�@2 þm2 � 2g2N�4

@2 �M2

�
���

� @�@�

�
1

�
� 1

��
�ab: (90)

The gluon propagator can be determined by taking the
inverse of �ab

�� and converting it to momentum space.

Doing so, we find the following expression

hAa
�ðpÞAb

�ð�pÞi ¼ 1

p2 þm2 þ 2g2N�4

p2þM2

�
��� �

p�p�

p2

�
�ab

¼ p2 þM2

p4 þ ðM2 þm2Þp2 þ 2g2N�4 þM2m2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Dðp2Þ

�
��� �

p�p�

p2

�
�ab: (91)

From this expression we can already make two
observations:

(i) Dðp2Þ enjoys infrared suppression.

(ii) Dð0Þ / M2, so the gluon propagator does not van-
ish at the origin. Even if we set m2 ¼ 0 we still find
a nonvanishing gluon propagator, so we want to
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stress that this different result is clearly due to the
novel mass term proportional to �’’� �!!.

In Sec. IVB we shall uncover a third property, namely, that
Dðp2Þ displays a positivity violation. Also this observation
is in accordance with the latest lattice results [27].

B. The ghost propagator

The observation that m2 ¼ 0 does not qualitatively alter
the gluon propagator will be repeated for the ghost propa-
gator. Henceforth, we set m2 ¼ 0, which also improves the
readability of the paper. However, all calculations could in
principle be repeated with the inclusion of the mass m2.

We start with the expression for the ghost propaga-
tor. Substituting the expression of the gluon propagator,
we find

ðk2Þ ¼ N

N2 � 1

g2

k2

Z ddq

ð2�Þd
ðk� qÞ�k�
ðk� qÞ2 hAa

�A
a
�i

¼ Ng2
k�k�

k2

Z ddq

ð2�Þd
1

ðk� qÞ2
q2 þM2

q4 þM2q2 þ �4

�
�
��� �

q�q�

q2

�
; (92)

where we have also used Eq. (61). As we are interested in
the infrared behavior of this propagator, we expand the
previous expression for small k2,

ðk2 � 0Þ ¼ Ng2
k�k�

k2
d� 1

d
���

Z ddq

ð2�Þd
1

q2

� q2 þM2

q4 þM2q2 þ �4
þOðk2Þ

¼ Ng2
d� 1

d

Z ddq

ð2�Þd
1

q2
q2 þM2

q4 þM2q2 þ �4

þOðk2Þ: (93)

For later use, let us rewrite ð0Þ as

ð0Þ ¼ Ng2
d� 1

d

Z ddq

ð2�Þd
1

q4 þM2q2 þ �4

þ Ng2M2 d� 1

d

Z ddq

ð2�Þd
1

q2
1

q4 þM2q2 þ �4
:

(94)

Notice that the first integral in the right-hand side of
Eq. (94) diverges while the second integral is UV finite
in 4D.

We continue with the derivation of the gap equations as
we would like to write �2 as a function of M2, i.e. �2ðM2Þ,
in expression (94). Firstly, we calculate the horizon condi-
tion (16) explicitly starting from the effective action. The

one loop effective action �ð1Þ
� is obtained from the quadratic

part of our action S00

e��ð1Þ
� ¼

Z
d�e�S00

0 : (95)

This time, the terms �dðN2 � 1Þ�4 and 2 dðN2�1Þffiffiffiffiffiffiffiffi
2g2N

p &�2M2

have to be maintained, as they will enter the horizon
condition. After a straightforward calculation the one
loop effective action in d dimensions yields,

�ð1Þ
� ¼ �dðN2 � 1Þ�4 þ 2

dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi
2g2N

p &�2M2 þ ðN2 � 1Þ
2

�ðd� 1Þ
Z ddq

ð2�Þd ln
q4 þM2q2 þ 2g2N�2

q2 þM2
:

(96)

Setting �4 ¼ 2g2N�4 [see Eq. (61)], we rewrite the pre-
vious expression,

E ð1Þ ¼ �ð1Þ
�

N2 � 1

2g2N

d

¼ ��4 þ 2&�2M2 þ g2N
d� 1

d

Z ddq

ð2�Þd

� ln
q4 þM2q2 þ �4

q2 þM2
; (97)

and apply the gap equation (16),

@Eð1Þ

@�2
¼ 2�2

�
�1þ &

M2

�2
þ g2N

d� 1

d

Z ddq

ð2�Þd

� 1

q4 þM2q2 þ �4

�
¼ 0: (98)

Secondly, we impose the boundary condition (85) in order
to obtain an explicit value for &. Instead of explicitly
starting from expression (92) to fix &, there is a much
simpler way to find the corresponding &. Therefore, we
act with @

@M2 on the gap equation (98). Subsequently setting

M2 ¼ 0, gives

&
1

�2ð0Þ �
d� 1

d
g2N

Z ddq

ð2�Þd
1

q2
1

q4 þ �4ð0Þ ¼ 0; (99)

where we imposed (85). Proceeding, we find

� d� 1

d
g2N

Z ddq

ð2�Þd
1

q2
1

q4 þ �4ð0Þ þ &
1

�2ð0Þ ¼ 0 ) & ¼ �2ð0Þ 3
4
g2N

Z ddq

ð2�Þd
1

q2
1

q4 þ �4ð0Þ ) & ¼ 3g2N

128�
; (100)
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which determines & at the current order.
With the help of the latter two gap equations (98) and

(100), we can rephrase the correction to the self energy of
the ghost. Combining equation (94) and (98) we can write

ð0Þ ¼ 1þM2g2N
d� 1

d

Z ddq

ð2�Þd
1

q2

� 1

q4 þM2q2 þ �4ðM2Þ � &
M2

�2ðM2Þ : (101)

From this expression, we can make several observations.
Firstly, when M2 ¼ 0, from the previous expression it
immediately follows that

ð0Þ ¼ 1; (102)

which gives back the ordinary Gribov-Zwanziger result
[7,8,10,25]. Indeed, from the previous expression, one

derived that the ghost propagator,

G ðk2Þ ¼ 1

k2
1

1� ðk2Þ ;

is enhanced and behaves like 1=k4, for k2 � 0. Secondly,
when M2 � 0, we notice that the ghost propagator is no
longer enhanced and behaves like 1=k2 as already found in
[22], which is in qualitative agreement with the latest
lattice results. This behavior is clearly due to the novel
mass term M2

R
d4xð �’a

i ’
a
i � �!a

i !
a
i Þ. Thirdly, we see that

the term in & is crucial in order to obtain a ð0Þ which is
smaller than 1. Omitting this term would result inð0Þ> 1
in the case that M2 � 0. However, including this term, we
can easily prove that  � 1. Indeed, taking expression
(101) and replacing & with the integral in (100), we find

ð0Þ ¼ 1þM2g2N
3

4

Z d4q

ð2�Þ4
1

q2
1

q4 þM2q2 þ �4ðM2Þ �
M2

�2ðM2Þ�
2ð0Þ 3

4
g2N

Z d4q

ð2�Þ4
1

q2
1

q4 þ �4ð0Þ

¼ 1þ 3

4

M2

�2ðM2Þg
2N

Z d4p

ð2�Þ4
1

p2

1

p4 þ M2

�2ðM2Þp
2 þ 1

� 3

4

M2

�2ðM2Þg
2N

3

4
g2N

Z d4p

ð2�Þ4
1

p2

1

p4 þ 1

¼ 1� 3x2

4
g2N

Z d4p

ð2�Þ4
1

p2

1

ðp4 þ xp2 þ 1Þðp4 þ 1Þ ; (103)

with x ¼ M2

�2ðM2Þ � 0, hence ð0Þ � 1. At this point, we can
really appreciate the role of the novel vacuum term (75). It
serves as a stabilizing term for the horizon condition.
Indeed, without the term (75), we would end up outside
of the Gribov region for some k2 > 0, even for an infini-
tesimal1 M2 > 0. In this sense, the action S000 constitutes a
refinement of the original Gribov-Zwanziger action, which
is a smooth limiting case of S000.

For later use, we can evaluate the integral in expression
(101) as it is finite. The explicit one loop value for ð0Þ
yields

ð0Þ ¼ 1þM2 3g
2N

64�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p ½lnðM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ

� lnðM2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ� �

�
3g2N

128�

�
M2

�2ðM2Þ ;
(104)

where we have substituted the value (100) for &.
In summary, we have found a ghost propagator which is

no longer enhanced. So far, we have fixed �2 in function of
M2 and we have found a constant value for &. However, we
have not yet fixed M2. This will be the task of the next
section.

IV. A DYNAMICALVALUE FOR M2

Up to this point, we have only introduced the mass M2

by hand, however it is recommendable to obtain a dynami-
cal value for this parameter. We shall present two methods
to find such a value. Firstly, we explain how to obtain a
dynamical value for M2 with the help of the effective
action. However, as the calculations become too involved,
we investigate a second method, the variational principle,
and apply this to the ghost and gluon propagator, with more
success.

A. The effective action and the gap equations

We first explain the idea behind the method before going
into detailed calculations. In the previous section we have
derived the gluon propagator. We recall that the mass term
m2A2

� does not qualitatively change the form of the gluon

and ghost propagators, therefore we have putm ¼ 0 for our
purpose. With m ¼ 0, the tree level propagator (91) yields

D ðp2Þ ¼ p2 þM2

p4 þM2p2 þ 2g2N�4
: (105)

Expanding the mass M2 as a series in g2 gives

M2 ¼ M2
0 þ g2M2

1 þ g4M2
2 þ 	 	 	 : (106)

We only need to considerM0, which is of order unity, as we
are considering the tree level propagator. We know that at

1Notice that we must take M2 � 0 to avoid unwanted ta-
chyonic instabilities.
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the end of our calculations we have to set our sources equal
to zero, or J ¼ M2 ¼ 0. If we work at lowest order, this
means we have to set M0 ¼ 0 (and the gluon propagator
will not display the desired behavior). However, going one
order higher gives

M2
0 þ g2M2

1 ¼ 0: (107)

The last equation might imply thatM2
0 is no longer equal to

zero, and consequently, the tree level gluon propagator will
attain the desired form. Let us elaborate further on this
aspect.

1. One loop effective potential

To implement the above-mentioned ideas, we shall first
calculate the one loop energy functional. We start with the
action (63), whereby setting m ¼ 0 is equivalent with
putting � ¼ 0. We replace the mass M2 again with the
source J. In order to determine the one loop effective
action, we first need the one loop energy functional
W0ðJÞ which we obtain from the quadratic part of the
action,

e�W0ðJÞ ¼
Z

d�e�S000
0 : (108)

From the previous expression we find for W0ðJÞ,

W0ðJÞ ¼ �dðN2 � 1Þ
2g2N

�4 þ dðN2 � 1Þ
g2N

&�2J þ ðN2 � 1Þ
2

�ðd� 1Þ
Z ddp

ð2�Þd ln

�
p2

�
p2 þ �4

p2 þ J

��
:

(109)

We shall work in the MS scheme, and use a notational
shorthand:

m2
1 ¼

J � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � 4�4

p

2
; m2

2 ¼
J þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 � 4�4
p

2
;

(110)

whereby �2 is defined in Eq. (61). Evaluating the integrals
in W0ðJÞ gives

W0ðJÞ ¼ � 4ðN2 � 1Þ
2g2N

�4 þ dðN2 � 1Þ
g2N

&�2M2

þ 3ðN2 � 1Þ
64�2

�
8

3
�4 þm4

1 ln
m2

1

��2
þm4

2 ln
m2

2

��2

� J2 ln
J

��2

�
:

(111)

This calculation is explained in detail in the Appendix.
As we have determined the energy functionalW0ðJÞ, we

can now calculate the one loop effective action via the
Legendre transform of WðJÞ. If we define

ðxÞ ¼ �WðJÞ
�JðxÞ cl ¼ dðN2 � 1Þ

g2N
&�2 (112)

then

̂ðxÞ ¼ ðxÞ � cl ¼ �
R
d�ð �’’� �!!Þe�S000R

d�e�S000 ; (113)

represents the expectation value of the local composite
operator �ð �’’� �!!Þ. The effective action is given by

�ðÞ ¼ WðJÞ �
Z

d4xJðxÞðxÞ; (114)

or equivalently, as we prefer to work in the variable ̂,

�ð̂Þ ¼ WðJÞ �
Z

d4xJðxÞð̂ðxÞ þ clÞ: (115)

Calculating �ð̂Þ by explicitly doing the inversion is a
rather cumbersome task. In most cases one can perform a
Hubbard-Stratonovich transformation to eliminate the term
Jð �’’� �!!Þ from the action and introduce a new field 0
which couples linearly to J. This greatly simplifies the
calculation. However, in this case, it seems impossible to
do such a transformation as a required term in J2 is miss-
ing. Hence, there is no other option than to actually per-
form the inversion. In order to calculate this inversion, we
shall limit ourself to constant J and ̂ as we are mainly
interested in the (space-time) independent vacuum expec-
tation value of the operator �ð �’’� �!!Þ coupled to the
source J. This vacuum expectation value is given by

̂jJ¼0 ¼ �
R
d�ð �’’� �!!Þe�SR

d�e�S
; (116)

where S represents the ordinary Gribov-Zwanziger action
(8). As we already have calculatedWðJÞ up to one loop is it
straightforward to verify that

̂ ¼ @

@J
W0ðJÞ � cl

¼ 1

2

3ðN2 � 1Þ
64�2

J

�
2 ln

t

4
þ

� ffiffiffiffiffiffiffiffiffiffiffi
1� t

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
�

� ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1� t
p

1� ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
�
; (117)

whereby we shortened the notation by putting t ¼ 4�4=J2.
From the previous expression we find for the condensate

̂jJ¼0 ¼ � 3ðN2 � 1Þ
64�

�: (118)

This is an important result, as it indicates that a nonzero
value for the Gribov parameter � will result in a non-
vanishing condensate h�ð �’’� �!!Þi even at the pertur-
bative level.
We are now ready to compute the effective action up to

one loop along the lines of [28]. The energy functional can
be written as a series in the coupling constant g2,
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WðJÞ ¼ W0ðJÞ þ g2W1ðJÞ þ 	 	 	 ¼ X1
i¼0

ðg2ÞiWiðJÞ: (119)

As a consequence, looking at the definition (112), we
can write

̂ ¼ ̂0ðJÞ þ g2̂1ðJÞ þ 	 	 	 ¼ X1
i¼0

ðg2ÞîiðJÞ; (120)

where ̂iðJÞ corresponds to the ith order in g2 (regarding J
as of order unity). This is called the original series. The
inverted series is defined as

J ¼ J0ð̂Þ þ g2J1ð̂Þ þ 	 	 	 ¼ X1
j¼0

ðg2ÞjJjð̂Þ; (121)

with Jjð̂Þ the jth order coefficient. Substituting (121) into
(120) gives,

̂ ¼ X1
i¼0

ðg2Þîi

�X1
j¼0

ðg2ÞjJjð̂Þ
�

¼ ̂0ðJ0ð̂ÞÞ þ g2ð̂0
0ðJ0ð̂ÞÞ 	 J1ð̂Þ

þ ̂1ðJ0ð̂ÞÞÞ þ 	 	 	 : (122)

By regarding ̂ as of the order unity and by comparing both
sides of the last equation, one finds

̂ ¼ ̂0ðJ0ð̂ÞÞ; (123)

J1ð̂Þ ¼ � ̂1ðJ0ð̂ÞÞ
̂0

0ðJ0ð̂ÞÞ
:

..

.
(124)

For the moment, as we are working at lowest order, we only
need Eq. (123). We can invert this equation, so we find for
J0ð̂Þ,

J0ð̂Þ ¼ ̂�1
0 ð̂Þ; (125)

meaning that we have to solve

̂ � ̂0ðJ0; �Þ

¼ 1

2

3ðN2 � 1Þ
64�2

J0

�
2 ln

tð�; J0Þ
4

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tð�; J0Þ
q

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tð�; J0Þ

p �
ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tð�; J0Þ
p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tð�; J0Þ

p �
; (126)

for J0, so we can write

J0 ¼ fð̂; �Þ: (127)

We immediately suspect that this inversion will not give
rise to an analytical expression. Once we have found
fð̂; �Þ, we substitute this expression into the effective
action,

�ð̂; �Þ ¼ Wðfð̂; �Þ; �Þ � fð̂; �Þ̂: (128)

At this point, as we have found an expression for the one
loop effective action, we can implement two equations to
fix ̂ and �. Firstly, the minimization condition reads

@

@̂
�ð̂; �Þ ¼ 0; (129)

and secondly, the horizon condition (16) can be trans-
lated as

@

@�
�ð̂; �Þ ¼ 0: (130)

We start with the first gap equation. Replacing � by
Eq. (115) leads to

@

@̂
�ð̂; �Þ ¼ 0 ) @W

@J

@J

@̂
� @J

@̂
̂� @J

@̂
cl � J

¼ 0 ) J ¼ 0 ) fð̂; �Þ ¼ 0: (131)

Since there are only 2 explicit scales, � and ̂, present, the
first gap equation can be used to express e.g. ̂ in terms of
�. For the sake of a numerical computation, we can there-
fore momentarily set � ¼ 1. From Fig. 2 one can obtain an
estimate ̂0 of fð̂0; 1Þ ¼ 0, with ̂0 ¼ 2

3 64�
2 ̂
N2�1

. Doing

so, we find ̂0 � �6:28, so that

̂ � �6:28�
�
3ðN2 � 1Þ
128�2

�
�; (132)

which of course corresponds to the already obtained per-
turbative solution (118). The second gap equation (130)
must then consequently also give us back the perturbative
solution. To check this, we first calculate the perturbative
result for � by taking the limit J ! 0 in expression (111)

�0 ¼ � 2ðN2 � 1Þ
g2N

�4 þ 3ðN2 � 1Þ
64�2

�
8

3
�4 � 2�4 ln

�2

��2

�
:

(133)
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FIG. 2 (color online). A plot of fð̂0; 1Þ in terms of ̂0 ¼
2
3 64�

2 ̂
N2�1

.
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Next, we take the partial derivative with respect to �
which gives

@�0

@�
¼ 4�3

�
� 2ðN2 � 1Þ

g2N
þ 3ðN2 � 1Þ

64�2

�
5

3
� 2 ln

�2

��2

��
:

(134)

The natural choice for the renormalization constant is to set
�� ¼ � to kill the logarithms. Imposing the gap equation
@�0

@� ¼ 0 gives us

g2N

16�2
¼ 8

5
: (135)

We remark that we have neglected the solution � ¼ 0, as
explained in Sec. II A. From

g2ð ��2Þ ¼ 1

�0 ln
��2

�2

MS

; with �0 ¼ 11

3

N

16�2
; (136)

and expression (135) we find an estimate for �,

�4 ¼ e44=15; (137)

where we have worked in units�MS ¼ 1. This perturbative
solution is also in compliance with [25]. Now, we return to
the effective action (128). We first take the partial deriva-
tive with respect to �, afterwards we set N ¼ 3, we ex-
plicitly replace g2 by expression (136), and we use the
minimizing condition (132). Numerically, we find the fol-
lowing value for �4:

�4 ¼ 1:41; (138)

as one can read from Fig. 3. This is exactly the perturbative
result (137). If we calculate the vacuum energy with this
value for �, we find from (133),

Evac ¼ 3

64

N2 � 1

�2
e44=15: (139)

We notice that the vacuum energy is positive.

2. Intermediate conclusion

We can conclude at this point, that in the framework we
have used, we recover only the perturbative solution.
Unfortunately, at lowest order, one finds J0 ¼ 0 as ex-
plained in the beginning of this section, so we were unable
to find a dynamical value for M2 at first order. However, if
we would be able to go one order higher, with J0 þ g2J1 ¼
0, we might find J0 � 0 and consequently the gluon propa-
gator at tree level would attain the desired form (105). In
addition, we might even discover a nonperturbative solu-
tion. Unfortunately, this is not as straightforward as at
leading order. The main difficulty resides in the evaluation
of two loop vacuum bubbles for the effective potential with
three different mass scales. While the master integrals are
known [29–31], the main complication is that the propa-
gator of (91) with m2 ¼ 0 needs to be split into standard
form but this introduces the masses of (110) which are
either complex or negative. In either scenario the master
two loop vacuum bubble is known for distinct positive
masses and involves several dilogarithm functions. There-
fore in our case for even the simplest of mass choices the
resulting dilogarithms will be complex as well as being a
complicated function of m2

1, m
2
2, and �. Moreover, this is

prior to computing the full effective potential itself by
adding all the relevant combinations of master integrals
together. Therefore, it seems to us that while such a com-
putation could be completed in principle, currently the
resulting huge expression could not possibly lend itself to
a tractable analysis similar to the relatively simple one we
have carried out at one loop.

1.35 1.40 1.45 1.50 1.55 1.60
λ4

0.02

0.01

0.01

d d λ

FIG. 3 (color online). The horizon function @�
@� for N ¼ 3.

D. DUDAL et al. PHYSICAL REVIEW D 78, 065047 (2008)

065047-14



B. Applying the variational principle on the ghost
propagator and the gluon propagator

In this section, we shall rely on variational perturbation
theory in order to find a value for the hitherto arbitrary
mass parameter M2.

Along the lines of [32], we introduce a formal loop
counting parameter ‘ � 1 by replacing the action S with
1
‘ S. At the same time, we replace all the fields � by

ffiffiffi
‘

p
�.

Symbolically,

Sð�; gÞ ! 1

‘
Sð ffiffiffi

‘
p

�; gÞ: (140)

It is readily derived that multiplying each field with a factor

of
ffiffiffi
‘

p
and performing an overall 1=‘ rescaling is the same

as replacing the coupling g with
ffiffiffi
‘

p
g, so we can replace

(140) with

Sð�; gÞ ! Sð�;
ffiffiffi
‘

p
gÞ: (141)

In this fashion, the free (quadratic) part of the action is
‘-invariant, while every interaction term contains powers2

of
ffiffiffi
‘

p
. The first order in the ‘-expansion, obtained by

setting ‘ ¼ 0, then corresponds to the free theory. More
generally, the ‘-expansion is equivalent with the loop
expansion, where it is understood that we put the formal
bookkeeping parameter ‘ ¼ 1 at the end.

The next step is to introduce the variational parameter
M2 into the theory. This is done in a specific way: we add
the quadratic mass term SM � M2

R
d4x½ð �’’� �!!Þ þ

2ðN2�1Þ
g2N

&�2� to the action, but substract it again at higher

order in ‘, i.e. we consider the action

Sð�; gÞ ! Sð�;
ffiffiffi
‘

p
gÞ þ SM � ‘kSM; (142)

with k > 0. Since ‘ � 1, we did not change the actual
starting action at all.

However, we maintain the strategy of performing an
expansion in powers of ‘. Since the mass term is split
up into 2 parts �ð1� ‘kÞM2, both parts will enter the
‘-expansion in a different way. At the end, we must set ‘ ¼
1 again. If we could compute an arbitrary quantity Q
exactly, theM2-independence would of course be apparent
since the theory is not altered. However, at any finite order
in ‘, a residual M2-dependence will enter the result for Q
due to the reexpanded powers series in ‘. Said otherwise,
we have partially resummed the perturbative series for Q
by making use of the parameter ‘. The hope is that some
nontrivial information, encoded by the operator coupled to
1� ‘k, will emerge in the final expression for Q. One
query remains: how to handle the M2 which appears in the
approximate Q? Therefore we can rely on the lore of
minimal sensitivity [33]: we know that the exactQ cannot
depend on M2, hence it is very natural to demand that also

at a finite order @Q
@M2 ¼ 0, leading to a dynamical optimal

value for the yet free parameter M2.
The described method of variationally introducing extra

parameters into a quantum field theory provides us with a
powerful tool to study nontrivial dynamical effects in an
approximate fashion, yet the calculational efforts do not
exceed those of conventional perturbation theory.
We still have to choose a value for k. We recall that the

constant term Sen was introduced in order to stay within
the horizon. Therefore, we want to retain this term when
we are applying the variational principle. However, we are
working up to first order, meaning that we shall expand the
quantity Q up to first order in ‘ and subsequently set ‘ ¼
1. Hence, taking k ¼ 1 is not a good option as the constant
term would vanish and have no influence. Therefore, a
better option is to take e.g. k ¼ 2, to assure the consistency
of the variational setup with the restriction to the Gribov
region. In this way, we are simply coupling the variational
parameter M2 directly to the theory.

1. The ghost propagator

We start from the expression (74) of the ghost
propagator

G ðk2Þ ¼ 1

k2
1

1� ðk2Þ ; (143)

and apply the variational principle on the ghost propagator
near zero momentum. We have,

ðk2 � 0Þ ¼ Ng2
d� 1

d

Z ddq

ð2�Þd
1

q2
q2 þM2

q4 þM2q2 þ �4

þOðk2Þ: (144)

As explained above, we replace g2 ! ‘g2 andM2 ! ð1�
‘2ÞM2. Subsequently, we expand Gðk2Þk2�0 in powers of ‘
corresponding to a reordered loop expansion. As we have
calculated the ghost propagator up to one loop, we only
need to expand the above expression to the first power of ‘,

ð0Þ ¼ Ng2‘
d� 1

d

Z ddq

ð2�Þd
1

q2
q2 þM2

q4 þM2q2 þ �4
:

(145)

As indicated earlier, setting ‘ ¼ 1 gives

ð0Þ ¼ Ng2
d� 1

d

Z ddq

ð2�Þd
1

q2
q2 þM2

q4 þM2q2 þ �4
; (146)

which is exactly the same as (144). This expression not
only depends on M2, but also on �2. However, we already
know that �2 andM2 are not independent variables, as they
are related through the gap equation (98),

� 1þ &
M2

�2
þ g2N

d� 1

d

Z ddq

ð2�Þd
1

q4 þM2q2 þ �4
¼ 0:

(147)

2We recall that the perturbative expansion is one in powers of
g2, and thus in integer powers of ‘.
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Following the variational principle, we replace M2 with
ð1� ‘2ÞM2 and g2 with ‘g2, expand the equation up to
order ‘1, and set ‘ ¼ 1 in the end. Doing so, we recover
again expression (147). At this point, it can be clearly seen
that k ¼ 1 in Eq. (142) would cancel the effect of the

constant term &M2

�2 , while k ¼ 2 is a better choice.3

Evaluating the integral in expression (147), we find

0 ¼ �1þ Ng2

64�2

�
5

2
þ 3

m2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � 4�4
p ln

m2
1

��2

� 3
m2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p ln
m2

2

��2

�
þ &

M2

�2
: (148)

This integral could be similarly calculated as done in the
Appendix, or one could start from the effective action
(128) and derive this equation with respect to �2. We recall
that from the boundary condition (100), we have already

determined & ¼ 3g2N
128� .

We still require an appropriate value for ��. Therefore,

we fix ��2 ¼ 3
2 jM2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
j which was chosen as in

[25]. We have opted for this specific renormalization scale
��2 which shall result in an acceptably small effective

expansion parameter g2N
16�2 . Consequently, from Eq. (136),

we find

g2N

16�2
¼ 3

11 lnð32 jM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
jÞ (149)

in units of �MS ¼ 1.

In summary, as ð0Þ remained the same after applying
the variational principle, we can take the expression (104)
for ð0Þ,

ð0Þ ¼ 1þM2 3g
2N

64�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4ð�2ðM2ÞÞ2p ½lnðM2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4ð�2ðM2ÞÞ2

q
Þ � lnðM2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4ð�2ðM2ÞÞ2

q
Þ� �

�
3g2N

128�

�
M2

�2ðM2Þ ;
(150)

where �2ðM2Þ is determined by the gap equation,

0 ¼ �1þ Ng2

64�2

�
5

2
þ 3

m2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � 4�4
p ln

m2
1

��2

� 3
m2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p ln
m2

2

��2

�
þ 3g2N

128�

M2

�2
: (151)

Before continuing the analysis, let us first have a look at
the gap equation. The gap equation solved for �2 as a
function ofM2 is depicted in Fig. 4. We find two emerging
branches, displayed by a continuous and a dashed line. The
former solution exists in the interval [0,1.53], while the

latter one only exists in ½1:25;1½. As the latter branch does
not exist around M2 ¼ 0, we shall not consider this solu-
tion because the boundary condition (85) demands a
smooth transition for the M2 ! 0 limit.
We can now have a closer look at the ghost propagator or

equivalently ð0Þ. We have graphically depicted ð0Þ in
Fig. 5. Firstly, from the figure, we see that ð0Þ is nicely
smaller than 1 for all M2 in the interval [0,1.53]. This is a
remarkable fact as it implies that we have managed to stay
within the horizon. Secondly, we notice that the boundary

condition @ð0Þ
@M2 jM2¼0 ¼ 0 is indeed fulfilled, which is a nice

check on our result. We can now apply the minimal sensi-
tivity approach on the quantity ð0Þ. From Fig. 5 we
immediately see that there is no extremum. However,
looking at the derivative of ð0Þ with respect to M2 in
Fig. 6, we do find a point of inflection at M2 ¼ 0:37�2

MS
.

Demanding @2ð0Þ
ð@M2Þ2 ¼ 0 is an alternative option when no

extremum is found [33]. Taking this value for M2, we find

ð0Þ ¼ 0:93: (152)

The effective coupling is given by
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FIG. 4 (color online). �2 in function of M2 in units �MS ¼ 1.
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FIG. 5 (color online). ð0Þ drawn in function of M2 in units
�MS ¼ 1.3Actually, every value for k, with k � 2 is allowed.
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g2N

16�2
¼ 0:53; (153)

which is smaller than 1.

2. The gluon propagator

In order to apply the variational principle to the gluon
propagator, we require its one loop correction. Given
the rather complicated form of the propagator, obtaining
the full exact expression for its one loop correction is
not possible. Indeed to appreciate how cumbersome such
an expression could be one has only to examine the

M2 ¼ m2 ¼ 0 case [34], where all the one loop corrections
to the propagators are given explicitly. However, despite
this we can still achieve our main aim of studying the low
momentum behavior of the gluon propagator corrections
directly in the zero momentum limit without knowledge of
the full correction. In [34] this limit for the gluon propa-
gator was deduced from the exact one loop computation.
However, the resulting expression tallied with that ob-
tained via the vacuum bubble expansion of the underlying
2-point functions. The latter is a much easier technique to
apply and given the equivalence of the expressions it
justifies its application to our case when M2 � 0. Briefly
one expands the 2-point functions relevant to the gluon
propagator construction in powers of the external momen-
tum p2. Though the expansion is truncated at some order
such as Oððp2Þ2Þ. The accompanying Feynman integrals
are massive vacuum bubbles which are essentially trivial to
compute at one loop. However, our situation is complicated
significantly by the fact that there is mixing in the quadratic
part of the fAa

�; ’
ab
� g sector of the tree action. Therefore in

addition to the gluon propagator (72), we require the
propagators of the remaining fields. For this derivation
here we use the conventions and notation of the article
[34] for an arbitrary color group, where the M2 ¼ 0 prob-
lem was discussed at length. There it is evident that one has
to consider the full fAa

�; ’
ab
� g part of the momentum space

action in order to invert the quadratic sector to derive all the
propagators. In the Landau gauge we find the set of propa-
gators for our situation is

hAa
�ðpÞAb

�ð�pÞi ¼ �abðp2 þM2Þ
½ðp2Þ2 þM2p2 þ CA�

4�P��ðpÞ; hAa
�ðpÞ �’bc

� ð�pÞi ¼ � fabc�2ffiffiffi
2

p ½ðp2Þ2 þM2p2 þ CA�
4�P��ðpÞ;

h’ab
� ðpÞ �’cd

� ð�pÞi ¼ � �ac�bd

ðp2 þM2Þ	�� þ fabefcde�4

ðp2 þM2Þ½ðp2Þ2 þM2p2 þ CA�
4�P��ðpÞ; (154)

where the presence of 1=
ffiffiffi
2

p
was a key ingredient in

ensuring that ghost enhancement correctly emerged in
the M2 ¼ 0 case [34]. Therefore we are confident that
our extension here will include the previous valid analysis
and therefore will provide a useful check.

For the one loop propagator corrections one has to first
compute the corrections to all the 2-point functions which
were relevant for the derivation of (154). From [34] this is
of the form

p2�ac ��2facd

��2fcab �ðp2 þM2Þ�ac�bd

� �
þ X�ac Ufacd

Nfcab Q�ac�bd þWfacefbde þ Rfabefcde þ SdabcdA

� �
aþOða2Þ; (155)

which is written with respect to the basis f 1ffiffi
2

p Aa
�; ’

ab
� g and

as we work in the Landau gauge the common Lorentz
structure P��ðpÞ has been factored off. The first matrix
corresponds to the tree part of the action and the quantities
X, U, N, Q,W, R, and S represent the one loop corrections

and we have used the shorthand coupling constant a ¼
g2=ð16�2Þ. The totally symmetric object dabcdA is defined
by [35]

dabcdA ¼ 1

6
TrðTa

AT
ðb
A Tc

AT
dÞ
A Þ; (156)
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FIG. 6 (color online). dð0Þ
dM2 drawn in function of M2 in units

�MS ¼ 1.
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where ðTa
AÞbc ¼ �ifabc is the adjoint representation of the

color group generators. At this stage we note that (155)
represents a formal definition and no vacuum bubble ex-

pansion has been performed. To one loop one can formally
invert (155) to obtain the one loop corrections to all the
propagators (154) which is

ðp2þM2Þ
½ðp2Þ2þM2p2þCA�

4��
cp � �2

½ðp2Þ2þM2p2þCA�
4� f

cpq

� �2

½ðp2Þ2þM2p2þCA�
4� f

pcd � 1
ðp2þM2Þ�

cp�dq þ �4

ðp2þM2Þ½ðp2Þ2þM2p2þCA�
4� f

cdrfpqr

0
@

1
A

þ A�cp Cfcpq

Efpcd G�cp�dq þ Jfcpefdqe þ Kfcdefpqe þ LdcdpqA

� �
aþOða2Þ: (157)

The objects A, C, E, G, K, J, and L are related to the
quantities of the one loop matrix of (155). However, as we
are focusing in this article on the gluon propagator at zero
momentum then we only need the relation for A and note
that the formal correction at one loop for this is

A ¼ � 1

½ðp2Þ2 þM2p2 þ CA�
4�2

�
�
ðp2 þM2Þ2X � CA�

2ðN þUÞðp2 þM2Þ

þ CA�
4

�
Qþ CARþ 1

2
CAW

��
: (158)

As noted above we could in principle compute the exact
form of each of the 2-point functions contributing to (158)
but ultimately as we will take the p2 ! 0 limit this would
be unnecessarily overcomplicated. Instead we compute
those pieces of (158) which remain at leading order in
the vacuum bubble expansion.

For this we need to determine the 14 contributing Feyn-
man diagrams. These were generated using the QGRAF

package [36] and converted into FORM input language
where FORM is a symbolic manipulation language [37].
The vacuum bubble expansion written in FORMwas applied
to each integral and expressions obtained for all the 2-point
functions. As these depend on M2 and �2 we were able to
check that our expressions agreed with those already de-
termined in the M2 ¼ 0, �2 � 0 case of [34]. Moreover,
we also checked the explicit Slavnov-Taylor identities for
the renormalization of the new mass operator in the MS
scheme by applying the MINCER algorithm [38] written in
FORM [39] to the Green’s function where the operator

ð �’ab
� ’ab

� � �!ab
� !ab

� Þ is inserted in an ! 2-point function.

The resulting renormalization constants were crucial to not
only ensuring that our conventions were consistent but also
that our 2-point function vacuum bubble expansion is
correctly finite after being fully renormalized. The upshot
of our computations is the observation that for the gluon
propagator in the zero-momentum limit only X is required
for the leading (momentum independent) term of (158).
Thus we finally obtain

Dð1Þð0Þ ¼ M2

�4
� g2N

16�2

M4

�8

�
M4

�4

9

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
ln
m2

2

m2
1

þM6

�4

�
9

16
ln
�4

M4

�
� 15

16
M2�4 1

M4 � 4�4
þ 3

2
�4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � 4�4
p ln

m2
2

m2
1

þ 15

8
�8 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ3 ln

m2
2

m2
1

þM2

�
9

8
� 21

16
ln
�4

M4

�
� 3

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
ln
m2

2

m2
1

�
(159)

for the one loop correction at zero momentum where all
mass variables correspond to renormalized ones. We note
that unlike the M2 ¼ 0 case the nonzero freezing akin to
tree order is driven by the gluon 2-point function correc-
tion. By contrast in the M2 ¼ 0 situation the gluon sup-
pression at one loop derives from the ’ 2-point which is
related to the horizon condition and the gap equation. Also
in this case A will be Oðp2Þ and not Oð1Þ to retain sup-
pression at one loop [34].

We apply the variational principle to the gluon propa-
gator in a completely similar manner as in the case of the
ghost propagator. Therefore, we replace M2 with ð1�
‘2ÞM2 and g2 with ‘g2 in the expression (159), expand
up to order ‘1, and set ‘ ¼ 1. Doing so, we find the original

expression (159) for the gluon propagator back. Firstly, we
try to apply the principle of minimal sensitivity. Therefore,
we have depicted the gluon propagator in Fig. 7. First, we

notice that Dð1Þð0Þ is positive for all M2 2 ½0; 1:53�.
Unfortunately, we do find neither a minimum nor a point
of inflection in this interval. Therefore, we shall take the
value of M2, which was obtained in the study of the ghost
propagator (see previous section). Hence, setting M2 ¼
0:37�2

MS
gives

D ð1Þð0Þ ¼ 0:63

�2
MS

¼ 11:65

GeV2
: (160)
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Evidently, the effective coupling is still smaller than 1
[cf. (153)].

In summary, the infrared value of the ghost propagator
and the zero momentum gluon propagator seem to be rea-
sonable. We find a nonenhanced ghost propagator and a
gluon propagator which is nonzero at zero momentum. Our
results for the gluon and ghost propagator are of a quali-
tative nature as we are only working in a first order ap-
proximation. In order to improve these numerical results,
higher order calculations are recommendable. This is how-
ever far beyond the scope of the present article.

3. The temporal correlator: Violation of positivity

With the help of the variational technique, we can also
show that the gluon propagator displays a violation of posi-
tivity. If we rewrite the gluon propagator in the Källén-
Lehmann spectral representation,

D ðp2Þ ¼
Z þ1

0
dM2

p

�ðM2
pÞ

p2 þM2
p

; (161)

�ðM2
pÞ should be a positive function in order to interpret

the fields in terms of stable particles. If �ðM2
pÞ< 0 for

certain M2
p, Dðp2Þ is positivity violating. As a practical

way to uncover this property, one defines the temporal
correlator [2]

C ðtÞ ¼
Z þ1

0
dMp�ðM2

pÞe�Mpt

¼ 1

2�

Z þ1

�1
e�iptDðp2Þdp: (162)

Consequently, if we can show that CðtÞ becomes negative
for certain t, �ðM2

pÞ cannot be positive for allM2
p, resulting

in a positivity violating gluon propagator. If the gluon
propagator vanishes at zero momentum, Dð0Þ ¼ 0, one
can immediately verify from (161) that �ðM2

pÞ cannot be
a positive quantity. However, having Dð0Þ � 0 does not
exclude a positivity violation as we shall soon find out.

We can now apply the variational technique on the
temporal correlator. At tree level, this CðtÞ is given by

C ðt;M2Þ ¼ 1

2�

Z þ1

�1
e�ipt p2 þM2

p4 þM2p2 þ ð�2ðM2ÞÞ2 dp;
(163)

where �2ðM2Þ is still determined by the gap equation (151).
Replacing M2 ! ð1� ‘2ÞM2 and g2 ! ‘g2 is redundant
in this case, as we only have the tree level gluon propagator
Dðp2Þ at our disposal. We shall now implement the mini-
mal sensitivity principle as follows: for each different value
of t, we minimize the temporal correlator with respect to
M2. CðtÞ displays a minimum atM2

min � 0, for t * 6=�MS.

In Table III, some values for M2
minðtÞ for different t are

presented. For t & 6, we have taken M2 ¼ 0; it is clearly
visible from the table below that M2

min ! 0 for decreasing

t. The corresponding Cðt;M2
minÞ is depicted in Fig. 8. Both

the x-axis and y-axis are shown in units fm (1=�MS ¼
0:847 fm), in order to compare our results with [27,40].
Not only do we find a positivity violating gluon propagator
as CðtÞ becomes negative, but even the shape of this func-
tion is consistent with the lattice results4 [27,40]. More-
over, in [27,40], the positivity violation starts from t�
1:5 fm, in good agreement with our results. Finally, Fig. 9
displays the corresponding values of g2N=16�2. We can
conclude that the previous results are reliable for t & 8 as
g2N=16�2 is smaller than 1.

C. A remark about the strong coupling constant

A renormalization group invariant definition of an ef-
fective strong coupling constant g2eff can be written down

from the knowledge of the gluon and ghost propagators as

g2effðp2Þ ¼ g2ð ��2Þ ~Dðp2; ��2Þ~G2ðp2; ��2Þ (164)

(see e.g. [3]). ~D and ~G stand for the gluon and ghost form
factor, defined by

~Dðp2Þ ¼ p2Dðp2Þ; ~Gðp2Þ ¼ p2Gðp2Þ: (165)

The definition (164) represents a kind of nonperturbative
extension of the nonrenormalization of the ghost-gluon
vertex. At the perturbative level, this is assured by the

Ward identity (56), Zg ¼ Z�1
c Z�1=2

A . Usually, this is as-

sumed to remain valid at the nonperturbative level. Al-
though this cannot be proven, this hypothesis has been
corroborated by lattice studies like [41,42].
In recent years, there was accumulating evidence that

g2effðp2Þ would reach an infrared fixed point different from

zero: see e.g. [3–5,10] for a Schwinger-Dyson analysis,
[34,43] in the ordinary Gribov-Zwanziger approach, and
[44,45] for lattice results. These studies are mostly done in
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FIG. 7 (color online). The gluon propagator Dð1Þð0Þ drawn in
function of M2 in units �MS ¼ 1.

4Reference [27] included quarks, while [40] considered gluo-
dynamics as we are studying in this work.
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a momentum substraction renormalization scheme, with

the exception of [34] where theMS scheme was employed.
The manifestation of this infrared fixed point was mo-
tivated in Schwinger-Dyson studies and the ordinary
Gribov-Zwanziger case by means of the power law be-
havior of the form factors,

~Dðp2Þp2�0 / ðp2Þ2�; ~Gðp2Þp2�0 / ðp2Þ��; (166)

being expressable in terms of a single exponent �. The
Schwinger-Dyson community heralded in a variety of stud-
ies the value � � 0:595, whereas the Gribov-Zwanziger
scenario gives � ¼ 1. Anyhow, substituting a behavior like
(166) into the definition (164) leads to g2effðp2Þp2�0 /
ðp2Þ0, opening the door for a finite value.

However, once again quoting the more recent large
volume lattice data of [16,18,19,41], the power law behav-
ior (166) seems to be excluded in favor of

~Dðp2Þp2�0 / p2; ~Gðp2Þp2�0 / ðp2Þ0; (167)

leading to a vanishing infrared effective strong coupling
constant at zero momentum since g2effðp2Þp2�0 / p2. The

refined analysis in this paper of the extended Gribov-
Zwanziger action, including an additional dynamical ef-
fect, allows us to draw a similar conclusion up to the one
loop level, i.e. an infrared vanishing g2eff . Certain lattice

studies also pointed towards this particular scenario [46].

V. THE BRST BREAKING IN THE
GRIBOV-ZWANZIGER THEORY

We recall here that the Gribov-Zwanziger action (8) is
not invariant under the BRST transformation (22). Indeed,
if we take the BRST variation of the action (8), one finds a
breaking term �� given by

�� � sS¼g�2
Z
d4xfabcðAa

�!
bc
� �ðDam

� cmÞð �’bc
� þ’bc

� ÞÞ:
(168)

We see that the presence of the Gribov parameter � pre-
vents the action from being invariant under the BRST
symmetry. Nevertheless, this fact does not prevent the
use of the Slavnov-Taylor identity to prove the renormaliz-
ability of the theory, which is very remarkable. Since the
breaking �� is soft, i.e. it is of dimension 2 in the fields, it

can be neglected in the deep ultraviolet, where we recover
the usual notion of exact BRST invariance as well as of
BRST cohomology for defining the physical subspace [47].
However, in the nonperturbative infrared region, the break-
ing term cannot be neglected and the BRST invariance is
lost. In the following, we shall present a detailed analysis
of this breaking and of its consequences. In particular, we
shall be able to prove that the origin of this breaking can be
traced back to the properties of the Gribov region�. More-
over, it turns out that the existence of this breaking enables
us to give an elementary algebraic proof of the fact that the
Gribov parameter � is a physical parameter of the theory,
entering thus the expression of the correlation functions of
gauge invariant operators.

A. The transversality of the gluon propagator

The reader might wonder whether the gluon propagator
still remains transverse in the presence of the Gribov ho-
rizon. As the gluon propagator is the connected 2-point
function, we ought to consider the generator Zc of con-
nected Green functions, which can be constructed from the
quantum effective action5 � by means of a Legendre trans-
formation. The renormalizability of the theory entails that
� obeys the renormalized version of the Ward identity
(32), or

TABLE III. Some M2
min for different t in units �MS ¼ 1.

t 6 7 8 9 10

M2
min 0 0.16 0.35 0.51 0.65

2 4 6 8
t fm
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FIG. 8 (color online). CðtÞ (fm) in function of t (fm).
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FIG. 9 (color online). g2N=ð16�2Þ in function of t (fm). 5This is the generator of the 1PI Green functions.
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��

�ba
¼ @�A

a
�: (169)

Introducing sources IaðJa�Þ for the fields baðAa
�Þ and per-

forming the Legendre transformation, the identity (169)
translates into

Ia ¼ @�
�Zc

�Ja�
: (170)

Acting with �
�Jb�

on this expression, and by setting all

sources equal to zero, we retrieve

0 ¼ @x�
�2Zc

�Ja�ðxÞ�Jb�ðyÞ
��������I;J¼0

¼ @x�hAa
�ðxÞAb

�ðyÞi; (171)

which expresses nothing else but the transversality of the
gluon propagator.

B. The BRST breaking and its consequences on the
Slavnov-Taylor identity

Let us present here a few considerations on the conse-
quences stemming from the BRST breaking �� appearing

in the left-hand side of Eq. (168) of the Slavnov-Taylor
identity. Our argument will follow [48]. We start from the
generalized Slavnov-Taylor identity (31) which is fulfilled
by the enlarged action � (28). The quantum effective ac-

tion � ¼ �þ @�ð1Þ þ 	 	 	 obeys the quantum version of
this Slavnov-Taylor identity [26],

Sð�Þ ¼
Z

d4x

�
��

�Ka
�

��

�Aa
�

þ ��

�La

��

�ca
þba

��

� �ca

þ �’a
i

��

� �!a
i

þ!a
i

��

�’a
i

þMai
�

��

�Uai
�

þNai
�

��

�Vai
�

�
¼ 0:

(172)

We now pass to the Gribov-Zwanziger action, defined
by giving the sources ðM;N;U; VÞ their physical values
(20) and (24). As a consequence, the physical quantum
effective action �phys will now obey a broken Slavnov-

Taylor identity,

S ð�physÞ ¼
Z

d4x

�
��phys

�Ka
�

��phys

�Aa
�

þ ��phys

�La

��phys

�ca
þ ba

��phys

� �ca
þ �’a

i

��phys

� �!a
i

þ!a
i

��phys

�’a
i

�

¼ �
Z

d4x

�
Mai

�

��

�Uai
�

þ Nai
�

��

�Vai
�

���������phys

¼ �g�2

�Z
d4xfabcAa

�!
bc
� 	 �phys

�
þ g�2

�Z
d4xfabcðDam

� cmÞð �’bc
� þ ’bc

� Þ 	 �phys

�
¼ �½�� 	 �phys�; (173)

whereby ½�� 	 �phys� represents the generator of the 1PI
Green functions with the insertion of the composite opera-
tor ��. Expression (173) generalizes at the quantum level
the broken identity of Eq. (168). Once having a Slavnov-
Taylor identity like (173) at our disposal, we can obtain
relations between different Green functions by acting on it
with test operators �n

�	ðx1Þ...�	ðxnÞ , with 	 any field, and by
setting all fields and sources equal to zero at the end. The
breaking term in the right-hand side of expression (173)
will be translated into an extra contribution. In particular,
we shall obtain

�n½Sð�physÞ�
�	ðx1Þ . . .�	ðxnÞ

��������fields;sources¼0

¼ � �n½�� 	 �phys�
�	ðx1Þ . . .�	ðxnÞ

��������fields;sources¼0
: (174)

One sees thus that the right-hand side. of the foregoing
expression, corresponding to a 1PI Green function with the
insertion of the composite operator �� and with n ampu-
tated external legs of the type 	ðx1Þ; . . . ;	ðxnÞ, gives
precisely the modification of the relationships among the
Green functions due to the Gribov horizon. To our under-

standing, the contributions stemming from the right-hand
side of Eq. (174) should be correctly taken into account
when checking the validity of the Slavnov-Taylor identities
or when invoking Slavnov-Taylor related identities in com-
putations when the restriction to the Gribov horizon is
understood.
It is worth noticing that the breaking term of (174) will

certainly vanish if the chain 	ðx1Þ . . . 	ðxnÞ has a ghost
number different from þ1. Indeed, the action preserves
ghost number and the breaking term �� itself carries a

nonvanishing ghost charge of þ1, so that the operator
�n

�	ðx1Þ...�	ðxnÞ must have ghost number �1 in order to allow

for a nonvanishing contribution (174).
In summary, we emphasize that the broken Slavnov-

Taylor identity (173) does in fact maintain a powerful
predictive character. It allows us to establish relationships
among various Green functions of the theory in a way
which takes into account the presence of the Gribov hori-
zon. At the same time, there exist Green functions for
which the breaking of the Slavnov-Taylor identity is harm-
less. In particular, this is the case when considering gauge
invariant operators built up with only the gauge fields Aa

�.

For these Green functions, the physical quantum action
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�phys behaves as it fulfills the unbroken Slavnov-Taylor

identity, namely

S ð�physÞ ¼ 0: (175)

The gauge invariance of the correlator hF2ðxÞF2ðyÞi im-
plies in fact that no useful information can be extracted for
it from the Slavnov-Taylor identities. In a loose way of
speaking, hF2ðxÞF2ðyÞi lives on its own and is not related to
other Green functions. To formally prove this, one should
add the operator F2ðxÞ to the action with a (BRST invari-
ant) scalar source KðxÞ, the (broken) Slavnov-Taylor iden-
tity (173) will remain unchanged. Hence, similarly as in the
previous subsection, by performing a Legendre transfor-
mation to pass to Zc and by acting with �

�KðxiÞ on that

identity and again setting all sources to zero, it will follow
that there is a trivially vanishing breaking term due to ghost
charge conservation.

C. A few words on unitarity

Certainly, the BRST breaking and its consequences on
the Green functions of the theory deserve further inves-
tigation. In this respect one could attempt to evaluate some
gauge invariant correlation function like, for instance,
hF2ðxÞF2ðyÞi in order to see if, despite the presence of
the BRST breaking and of a positivity violating gluon
propagator, this gauge invariant correlation function might
display a real pole in momentum space. A first hint that
something like this might happen has been given by a tree
level computation in [8].

As one can easily figure out, the presence of the BRST
breaking �� is related to the lack of unitarity in the gluon

sector. To our understanding, this is a manifestation of
gluon confinement: unitarity is jeopardized in the gluon
sector because gluons are confined. This is also apparent
from the positivity violation exhibited by the gluon propa-
gator, which does not allow for a physical interpretation of
the elementary gluon excitations. One might have the
tendency to believe that the existence of the soft breaking
�� of the BRST symmetry is a welcome feature, in par-

ticular, signaling that, in a confining theory, physics in the
infrared region is not necessarily definable in the same way
as in the deep ultraviolet, where the BRST breaking could
be neglected and one recovers usual perturbation theory.
As we already stated in the beginning of this section, in the
ultraviolet, we also recover the usual notion of the BRST
cohomology [47], allowing to prove that the ghost degrees
of freedom cancel against 2 unphysical gluon polariza-
tions, leaving over only 2 physical transverse polarizations,
endowed with a positive norm. In the confining regime, it is
unknown what the analogue of this scenario might be. The
absence of the BRST symmetry in the infrared does not
necessarily entail that the theory is not unitary. Certainly,
the S-matrix of the excitations of the physical spectrum has
to be unitary. But as gluons are not the excitations belong-
ing to the physical spectrum, unitarity is not to be expected

in the sector described by the elementary gluon fields.
From this perspective, the question of what the number
of physical gluon polarizations might be in the nonpertur-
bative confining infrared sector loses its context.

D. The BRST breaking as a tool to prove that the
Gribov parameter is a physical parameter

The breaking term (168) has also the interesting conse-
quence that it allows us to give a simple algebraic proof of
the fact that the Gribov parameter � is a physical parameter
of the theory, and that as such it can enter the explicit
expression of gauge invariant correlation functions like for
instance hF2ðxÞF2ðyÞi or the vacuum condensate hF2i. In
fact, by taking the derivative of both sides of Eq. (168) with
respect to �2 one gets

s
@S

@�2
¼ 1

�2
��

¼ g
Z

d4xfabcðAa
�!

bc
� � ðDam

� cmÞð �’bc
� þ ’bc

� ÞÞ;
(176)

from which, keeping in mind that the BRST operator s as
defined in Eq. (22) is still nilpotent, it immediately follows
that @S

@�2 cannot be cast in the form of a BRST exact varia-

tion, namely

@S

@�2 � s�̂�; (177)

for some local integrated dimension 2 quantity �̂�. From

Eq. (177) it becomes then apparent that the Gribov pa-
rameter �2 is a physical parameter, as much as the gauge
coupling constant g, for which a similar equation holds.
Furthermore, it is worth underlining that, due to the form of
the BRST operator s, the presence of the soft breaking ��

is, in practice, the unique way to ensure that the Gribov
parameter indeed is a physical parameter and not an un-
physical one, as it would be the case of a gauge parameter
entering the gauge fixing term. Let us suppose that the part
of the action S� containing the Gribov parameter would be

left invariant by the BRST transformation (22), namely

sS� ¼ 0; (178)

instead of inducing the breaking term ��. Since S� de-

pends on the auxiliary fields ð �’ac
� ; ’ac

� ; �!ac
� ;!ac

� Þ which

constitute a set of BRST doublets6 [26], it would follow

from Eq. (178) that a local integrated polynomial Ŝ� would

exist such that

6We remind here that a BRST doublet is given by a pair ð�;�Þ
transforming as: s� ¼ �, s� ¼ 0. It can be shown that a BRST
doublet has always vanishing cohomology, meaning that any
invariant quantity, sFð�;�Þ ¼ 0, has necessarily the form of an
exact BRST cocycle, namely Fð�;�Þ ¼ sF̂ð�;�Þ.
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S� ¼ sŜ�: (179)

Subsequently, taking the derivative of both sides of expres-
sion (179) with respect to �2, one would obtain

@S�

@�2
¼ s

@Ŝ�

@�2
; (180)

a relation implying that �2 would have the same meaning
as an unphysical gauge parameter.7 In turn, this would
imply that correlation functions of gauge invariant opera-
tors would be completely independent from �2. We see
thus that the presence of the soft breaking term �� plays

an important role, ensuring that �2 is a relevant parameter
of the theory. The same conclusion also holds when the
Gribov-Zwanziger action is supplemented by the BRST
invariant mass term (63). The existence of the breaking
�� thus seems to be an important ingredient to introduce

a nonperturbative mass gap in a local and renormaliz-
able way.

A question which arises almost naturally is whether it
might be possible to modify the BRST operator, i.e. s !
sm, in such a way that the new operator sm would be still
nilpotent, while defining an exact symmetry of the action
smS

00 ¼ 0. Although we are not going to give a formal
proof, we can present a simple argument discarding such a
possibility. We have already observed that the BRST trans-
formation (22) defines an exact symmetry of the action
when � ¼ 0, which corresponds to the physical situation in
which the restriction to the Gribov region has not been
implemented. Hence, it appears that one should search for
possible modifications of the BRST operator which de-
pends on �, namely

sm ¼ sþ s�; (181)

whereby

s� ¼ �-dependent terms; (182)

so as to guarantee a smooth limit when � is set to zero.
However, taking into account the fact that � has mass
dimension 1, that all auxiliary fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ

have dimension 1 too, and that the BRST operator s does
not alter the dimension of the fields,8, it does not seem
possible to introduce extra �-dependent terms in the BRST
transformation of the fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ while pre-

serving locality, Lorentz covariance as well as color group
structure.

E. Tracing the origin of the BRST breaking

Having clearly seen the explicit loss of the BRST sym-
metry, it would be instructive to point out more precisely
where this breaking originates. We recall that the BRST
transformation of the gluon field A� is in fact constructed

from the infinitesimal gauge transformations. Indeed, for
an infinitesimal gauge parameter !a, the corresponding
gauge transformation is determined by

�!A
a
� ¼ Dab

� !b; (183)

which can be compared with the BRST transformation
(22). Based on this identification, we shall present our ar-
gument using infinitesimal gauge transformations. In par-
ticular, we shall establish the following proposition: any
infinitesimal gauge transformation of field configurations
belonging to the Gribov region � necessarily gives rise to
configurations which lie outside of �. We can distinguish
two cases.

(i) The field A� is not located close to the bound-
ary @�.
Let us consider a gauge configuration A� which

belongs to the Gribov region � but not close to
its boundary @� (the horizon), thus @�A� ¼ 0

and �@�D�ðAÞ> 0. Next, consider the field ~A�

obtained from A� through an infinitesimal gauge

transformation with parameter !,

~A� ¼ A� þD�ðAÞ!: (184)

This configuration ~A� cannot belong to�. Suppose

the contrary, then @� ~A� ¼ 0 ¼ @�A� would lead to

@�D�ðAÞ! ¼ 0; (185)

in contradiction with the hypothesis that A� is not

located on the boundary @�, thus there are no zero
modes ! allowing for (185) to hold.

(ii) The field A� is located close to the boundary @�.

In this case, we can even make a more precise
statement. If A� lies very close to the boundary

@�, we can decompose it as

A� ¼ a� þ C�; (186)

with C� 2 @�, thus C� lies on the horizon. The

shift a� is a small (infinitesimal) perturbation. Ob-

viously, @�C� ¼ @�a� ¼ 0. Subsequently, we find

~A� ¼ C� þ a� þD�ðCÞ!þ 	 	 	 (187)

for the gauge transformed field at lowest order in the
infinitesimal quantities ! and a�. Since C� 2 @�

and by identifying ! with the zero mode corre-
sponding to C�, we find

@� ~A� ¼ @�D�ðCÞ! ¼ 0; (188)

7One easily shows that in this case, @hGi
@�2 ¼ �hsð @ �S

@�2 GÞi ¼ 0 for
any gauge invariant operator G.

8It is understood that the usual canonical dimensions are
assigned to the fields Aa

�, b
a, ca, �ca [26], as shown in Table I.

It is apparent that the BRST operator s does not alter the
dimension of the fields.
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showing that ~A� is transverse. The field ~A� also lies

very close to the boundary @�. However, as it fol-
lows from Gribov’s original statement9 [7], it is
located on the side of the horizon opposite to that
of the field A�, i.e. it lies outside of the Gribov

region �.

We can conclude thus that any infinitesimal transformation
of a gauge field configuration which belongs to the Gribov
region � results in another configuration which lies out-
side�. Since the BRST transformation of the gluon field is
naturally obtained from the infinitesimal gauge transfor-
mations, it is apparent that the breaking of the BRST sym-
metry looks almost as a natural reflection of the previous
result.

We can also offer a pictorial depiction of what is happen-
ing. We recall that the Gribov region� is convex, bounded
in all directions in field space, that every gauge field has an
equivalent representant within �, that the origin A� ¼ 0

belongs10 to � [13,49,50], and that every gauge con-
figuration near the horizon @� has a copy on the other
side of @� [7]. The first four quoted properties are im-
portant to make � a suitable domain of integration in
the path integral, i.e. we can restrict the whole space of
A�-configurations to � as proposed by Gribov. However,

implementing this restriction in A� space jeopardizes the

BRST invariance. As we have seen, if we move throughout
A� space with a BRST transformation (cf. infinitesimal

gauge transformations), we must unavoidably cross the
horizon @�. Hence, restricting the fields within the horizon
breaks the BRST invariance.

F. The Maggiore-Schaden construction revisited

The authors of Ref. [23] attempted to interpret the BRST
breaking as a kind of spontaneous symmetry breaking. We
shall now reexamine this proposal and conclude that, in-
stead, the BRST breaking has to be considered as an ex-
plicit symmetry breaking, where we shall present a few
arguments which have not been considered in [23]. Al-
though this discussion might seem to be only of a rather
academic interest, there is nevertheless a big difference
between a spontaneously or explicitly broken continuous
symmetry, since only in the former case a Goldstone mode
would emerge. For the benefit of the reader, we shall first
explain in detail the approach of [23]. One starts by adding
the following BRST exact term to the Yang-Mills action:

S1 ¼ s
Z

d4xð �ca@�Aa
� þ �!ac

� @�D
ab
� ’bc

� Þ; (189)

with s, the same nilpotent BRST operator as defined in
(22). The first term represents the Landau gauge fixing,
while the second term is a BRST exact piece in the fields
ð’;!; �’; �!Þ. Of course, from expression (189), it follows
that s defines a symmetry of the action SYM þ S1. As a
consequence, the nilpotent operator s allows us to defines
two doublets ð’;!Þ and ð �’; �!Þ. This doublet structure
implies that we can exclude these fields from the physical
subspace [26,47], which makes SYM þ S1 equivalent to
the ordinary Yang-Mills gauge theory. Next, Maggiore
and Schaden introduced a set of shifted fields, which—
translated to our conventions—are given by

’ab
� ¼ ’0ab

� þ �2�abx�; �’ab
� ¼ �’0ab

� þ�2�abx�;

�ca ¼ �c0a þ g�2fabc �!bc
� x�; ba ¼ b0a þ g�2fabc �’bc

� x�:

(190)

All fields ð’0ab
� ; �’0ab

� ; �c0a; b0aÞ have vanishing vacuum ex-

pectation value (VEV), namely

h’0ab
� i ¼ h �’0ab

� i ¼ h �c0ai ¼ hb0ai ¼ 0: (191)

Along with these new fields ð’0ab
� ; �’0ab

� ; �c0a; b0aÞ, one in-

troduces a modified nilpotent BRST operator ~s given by

~s �c0a ¼ b0a; ~sb0a ¼ 0; ~s’0ab
� ¼ !ab

� ;

~s �’0ab
� ¼ 0; ~sAa

� ¼ �Dab
� cb; ~s!ab

� ¼ 0;
(192)

which looks exactly like (22). However, we emphasize that
by introducing these new fields, the BRST operator ~s will
give rise to an explicit x-dependence when acting on the
field �!ab

� :

~s �!ab
� ¼ �’0ab

� þ �2�abx�: (193)

Furthermore, by taking the vacuum expectation value of
both sides of Eq. (193), one gets

h~s �!ab
� i ¼ �2�abx�; (194)

from which the authors of [23] infer that the BRST opera-
tor ~s suffers from spontaneous symmetry breaking. Notice
also that (194) gives a VEV to a quantity with a free Lo-
rentz index.
With the introduction of the shifted fields, we can re-

write the action S1 as

S1 ¼ ~s
Z

d4xð �c0a@�Aa
� þ �!ac

� @�D
ab
� ’0bc

�

þ g�2fabc �!bc
� x�@�A

a
� þ �2 �!ac

� @�D
ab
� �bcx�Þ:

(195)

The last two terms can be simplified, leading to

9For the benefit of the reader we quote here Gribov’s state-
ment, proven in [7]: for each field A� belonging to the Gribov
region� and located near the boundary @�, i.e. A� ¼ C� þ a�,
there exists an equivalent field ~A�, ~A� ¼ C� þ a� þD�ðCÞ!,
near the boundary @�, located, however, on the other side of the
horizon, outside of the region �.
10This means that perturbation theory belongs to �.
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S1 ¼ ~s
Z

d4xð �c0a@�Aa
� þ �!ac

� @�D
ab
� ’0bc

�

� g�2 �!ab
� fabcA

c
�Þ: (196)

If we calculate this action explicitly, we recover the origi-
nal Gribov-Zwanziger action, without the constant part
4�4ðN2 � 1Þ. For this reason one adds ��2~s

R
d4x@� �!

aa
�

to the action S1. Doing so, one finds

S1 ¼ ~s
Z

d4xð �c0a@�Aa
� þ �!ac

� @�D
ab
� ’0bc

� � g�2 �!ab
� fabcA

c
� � �2@� �!aa

� Þ

¼
Z

d4x½b0a@�Aa
� þ �c0a@�ðDab

� cbÞ� þ
Z

d4x½ �’0ac
� @�D

ab
� ’0bc

� þ �2x�@�D
ab
� ’0ba

� þ �!ac
� @�ðgfakbDkd

� cd’0bc
� Þ

� �!ac
� @�D

ab
� !bc

� � þ
Z

d4x½�g�2 �’0ab
� fabcA

c
� � g�2 �!ab

� fabcD
cd
� cd � 4�4ðN2 � 1Þ�: (197)

If we naively assume that we can perform a partial inte-
gration, we find after dropping the surface terms,

SYM þ S1 ¼ ð8Þ � g�2fabc
Z

d4x �!ab
� Dcd

� cd: (198)

The last expression reveals that one has recovered the
Gribov-Zwanziger action from an exact ~s-variation with
the addition of an extra term ð�g�2fabc

R
d4x �!ab

� Dcd
� cdÞ.

However, this term is irrelevant as we shall explain now.
Assume that we want to compose an arbitrary Feynman
diagram without any external �!-leg and thereby using the
action (198). The second term from this action can never
contribute to this Feynman diagram as it contains an ex-
ternal �!. Indeed, this leg requires an !-leg, which in its
turn is always accompanied by an �!-leg. Hence, the action
(198) is equivalent to the standard Gribov-Zwanziger ac-
tion (8) when we exclude the diagrams containing external
�!-legs.11

Although at first sight this construction might seem
useful, it turns out that a few points have been overlooked.
Let us investigate this in more detail. Firstly, we point out
that rather delicate assumptions have been made concern-
ing the partial integration. To reveal the obstacle, we per-
form once more the partial integration explicitly,

Z
d4x�2x�@�D

ab
� ’0ba

� ¼ surface term

�
Z

d4x�2���D
ab
� ’0ba

� : (199)

Normally, one drops the surface terms, as the fields vanish
at infinity. However in this case, as x� does not vanish at

infinity, it is not sure if the surface terms / x� will be zero.

One would have to impose extra conditions on the fields to
justify the dropping of the surface terms. On the other
hand, when we do not perform the partial integration to
avoid the surface terms, we are facing an explicit, un-
wanted x-dependence in the action, resulting in an explicit
breaking of translation invariance.
Another way of looking at the problem consists of

performing a partial integration on the second term of the
action (196) before applying the BRST variation ~s. Doing
so, we find

S1 ¼ ~s
Z

d4xð �c0a@�Aa
� � @� �!

ac
� Dab

� ’0bc
�

� g�2 �!ab
� fabcA

c
� � �2@� �!aa

� Þ: (200)

Subsequently, applying the BRST variation gives

S1 ¼
Z

d4x½b0a@�Aa
� þ �c0a@�ðDab

� cbÞ� þ
Z

d4x½�@� �’
0ac
� Dab

� ’0bc
� � �2���Dab

� ’0ba
� � ð@� �!ac

� ÞgfakbDkd
� cd’0bc

�

þ ð@� �!ac
� ÞDab

� !bc
� � þ

Z
d4x½�g�2 �’0ab

� fabcA
c
� � g�2 �!ab

� fabcD
cd
� cd � 4�4ðN2 � 1Þ�

¼ ð8Þ � g�2fabc
Z

d4x �!ab
� Dcd

� cd: (201)

In this case, we do not encounter the problem of non-
vanishing surface terms. To recapitulate, if we first let the
BRST variation act on the action (196), and then perform a
partial integration, we find a different result than perform-

ing these two operations the other way around. This
difference is exactly given by the surface term from
Eq. (199). This discrepancy arises of course from the
explicit x-dependence introduced in the BRST transforma-
tion ~s, giving nontrivial contributions. For example, we
introduced a term ��2~s

R
d4x@� �!

aa
� which might seem to

be zero since we are looking at the integral of a complete
derivative (thus usually taken to be a vanishing surface

11For our purposes these diagrams are irrelevant, e.g. the
vacuum energy, the gluon, and ghost propagator, etc.

REFINEMENT OF THE GRIBOV-ZWANZIGER APPROACH . . . PHYSICAL REVIEW D 78, 065047 (2008)

065047-25



term), but when the BRST variation is taken first, a non-
trivial integrated piece remains.

Apparently, to find the correct Gribov-Zwanziger action
with the Maggiore-Schaden argument, there is some kind
of a ‘‘hidden working hypothesis’’ that (200) is the correct
action to start with, and that partial integration is not al-
ways allowed.12 The fact that there seems to be a kind of
‘‘preferred’’ action to start with is just a signal that there is
a problem with the boundary conditions for some of the
fields and hence surface terms when integrating.

Even if one forgets about the previous criticism, a sec-
ond problem arises. In the Gribov-Zwanziger approach, we
recall that the parameter � is not free and is determined by
the horizon condition (16). As it has been explained in
Sec. II A, the solution � ¼ 0 is excluded. In Eq. (137), we
found a solution for � � 0. This gave rise to a positive
vacuum energy Evac > 0, as one can see from Eq. (139);
see also [25]. However, according to Maggiore-Schaden
argument, at one loop order the stable solution should be
that corresponding to � ¼ 0 [23], as, if � ¼ 0, the vacuum
energy would be vanishing, i.e. Evac ¼ 0, which is ener-
getically favored over a positive vacuum energy. This
delivers a contradiction with the Gribov-Zwanziger ap-
proach, as the restriction to the Gribov region requires
that � � 0, thus giving a positive energy Evac > 0 at
one loop.

To end this section, let us now consider the new operatorR
d4xð �’ab

� ’ab
� � �!ab

� !ab
� Þ within the Maggiore-Schaden

approach. We observe that we obtain an explicit
x-dependence if we rewrite this operator in terms of the
new fields,Z

d4xð �’ab
� ’ab

� � �!ab
� !ab

� Þ ¼
Z

d4xð �’0ab
� ’0ab

� � �!ab
� !ab

�

þ �2x�’
0aa
� � �2x� �’0aa

�

� �4x�x�ðN2 � 1ÞÞ:
(202)

However, this x-dependence is necessary so that (202)
would be invariant under the new BRST symmetry ~s,

~s
Z

d4xð �’0ab
� ’0ab

� � �!ab
� !ab

� þ �2x�’
0aa
�

� �2x� �’0aa
� � �4x�x�ðN2 � 1ÞÞ ¼ 0: (203)

A second option is to introduce the BRST ~s-exact mass
operator

~s
Z

d4xð �!ab
� ’ab

� Þ ¼
Z

d4xð �’0ab
� ’ab

� � �’ab
� ’ab

�

þ �2x�’
aa
� Þ; (204)

which also displays an explicit x-dependence.

Finally, let us consider a third and last possible option. If
we would have started with the following mass operator,Z

d4xð �’0ab
� ’0ab

� � �!ab
� !ab

� Þ; (205)

which does not contain an x-dependence, this operator is
not left invariant by the symmetry ~s. In fact,

~s
Z

d4xð �’0ab
� ’0ab

� � �!ab
� !ab

� Þ ¼ ��2
Z

d4xx�!
aa
� :

(206)

One sees that, with the introduction of the new mass
operator, the Maggiore-Schaden construction will always
give rise to an explicit breaking of translation invariance if
the BRST invariance ~s has to be preserved. We thus con-
clude that the Maggiore-Schaden construction cannot be
implemented in the presence of the new operator and even
without the new mass operator we have collected a few
arguments from which the frame of a possible spontane-
ous symmetry breaking cannot be applied to the Gribov-
Zwanziger action.

G. A few remarks on the Kugo-Ojima
confinement criterion

In this section we shall take a closer look at the Kugo-
Ojima confinement criterion [24] in relation to the Gribov-
Zwanziger action. In the literature, it is usually stated that
the Kugo-Ojima confinement criterion is realized when the
Gribov-Zwanziger scenario is realized. A key ingredient in
the criterion is uð0Þ ¼ �1, whereby uð0Þ is the value at
zero momentum of a specific Green function. u is related to
the ghost propagator in the Landau gauge according to [51]

G ðp2Þp2�0 ¼
1

p2

1

1þ uðp2Þ : (207)

From this expression, it is obvious that an infrared en-
hanced ghost propagator results in uð0Þ ¼ �1, thereby
fulfilling the criterion. Let us recall here that the derivation
of the Kugo-Ojima criterion is based on the assumption of
an exact BRST invariance and is written down in a Min-
kowskian rather than a Euclidean space-time. This has a
few repercussions:

(i) At a nonperturbative level, some care should be
taken when passing from Euclidean to Minkows-
kian space-time. According to our understanding, it
is not clear whether a Wick rotation can always be
implemented; e.g., the gluon propagator (105) can
exhibit two complex conjugate poles, so one should
be careful of not crossing these poles when the con-
tour is Wick rotated. Clearly, there could be poten-
tial caveats when considering a more complicated
gluon propagator.

(ii) A more crucial shortcoming is the following. As
we have emphasized in the foregoing section, the
restriction to the Gribov region inevitably leads to a

12If it would be allowed, one would be able to cross from the
second action (200) to the first one (196), but as we have just
shown, these two starting actions are inequivalent.
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breaking of the BRST symmetry which, however,
was the very starting point of the Kugo-Ojima
analysis. In addition, parts of the Kugo-Ojima
study rely on analyzing the charge of the global
color current and the expression of a piece of it in
terms of the BRST symmetry generator. In our
opinion, as the Gribov-Zwanziger action is essen-
tially differing from the usual Faddeev-Popov fixed
(Landau gauge) action due to new fields, extra in-
teractions and especially another symmetry con-
tent, the Kugo-Ojima analysis cannot simply be
applied to the Gribov-Zwanziger formalism, al-
though both might superficially seem to be in ac-
cordance with each other. Therefore, it seems to us
that one cannot verify the Kugo-Ojima criterion
(uð0Þ ¼ �1) when the restriction to the Gribov
horizon is taken into account.13

(iii) The latest lattice data point towards a ghost propa-
gator which is no longer enhanced, so that the
condition uð0Þ ¼ �1 does not seem to be realized
anyhow.

VI. DISCUSSION

Our starting point was the original localized Gribov-
Zwanziger action SGZ and the observation of the new lat-
tice data, which shows an infrared suppressed, positivity
violating gluon propagator, nonvanishing at the origin and
a ghost propagator which is no longer enhanced. However,
the propagators corresponding to the original Gribov-
Zwanziger action are not in accordance with these new lat-
tice data. Hence, we have searched for a solution by look-
ing at nonperturbative effects like condensates. Therefore,
we have added two extra terms to the Gribov-Zwanziger

action, SM ¼ M2
R
d4x½ð �’’� �!!Þ þ 2ðN2�1Þ

g2N
&�2�. A first

intuitive argument why we added the first term,
M2

R
d4xð �’’� �!!Þ, was the following. In the Gribov-

Zwanziger action, SGZ, an A’-coupling is already present
at the quadratic level. Therefore, altering the ’-sector will
be translated to the A-sector, thus modifying the gluon
propagator. Secondly, this condensate is already present
perturbatively as, at lowest order, we have found

h �’’� �!!i ¼ 3ðN2 � 1Þ
64�

�2; (208)

with �4 ¼ 2g2N�4. This implies that the condensate is
nonvanishing for � � 0 already in the original Gribov-
Zwanziger action. It was therefore very natural to add
this operator to the theory. The second pure vacuum term,

M2
R
d4x 2ðN2�1Þ

g2N
&�2, was added in order to stay within the

horizon or equivalently, to keep ð0Þ smaller than 1 when

the horizon condition is implemented. We have fixed & by

imposing @ð0Þ
@M2 jM2¼0 ¼ 0; this ensures a smooth limit to the

original Gribov-Zwanziger action.
The extended Gribov-Zwanziger action SGZ þ SM has

many interesting features. Not only is this action renorma-
lizable, it is also remarkable that no new renormalization
factors are necessary for the proof of its renormalizabil-
ity, meaning that only two independent renormalization
factors are required. As an extra feature, we have also

shown that SGZ þ SM þ SA2 , with SA2 ¼ m2

2

R
d4xA2

�, is

renormalizable.
Another important observation is that the gluon propa-

gator is already modified at tree level. We have found

D ðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þ �4 þM2m2
: (209)

This type of propagator is in qualitative agreement with the
most recent lattice data, which was the starting point of our
analysis. In Sec. IV the gluon propagator at zero momen-
tum was also presented at one loop [see Eq. (159)], where
we switched off the effects related to A2 by settingm2 ¼ 0.
By virtue of the novel mass M2, Dðp2Þ � 0 at zero mo-
mentum. Also the one loop ghost propagator is modified.
At small momenta we have obtained

G ðp2Þp2�0 ¼
1

p2

1

1� 
; (210)

with

ð0Þ ¼ 1þM2 3g
2N

64�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p ½lnðM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ

� lnðM2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ� �

�
3g2N

128�

�
M2

�2
: (211)

We see that the ghost propagator is clearly no longer
enhanced, again in accordance with the most recent lat-
tice data.
Up to this point, the mass M2 was put in by hand.

However, we have treated ð �’a
i ’

a
i � �!a

i !
a
i Þ as a composite

operator coupled to the source J ¼ M2. In this way, we
have been able to find nonperturbative effects induced
by this composite operator without altering the original
Gribov-Zwanziger action, and making the mass M2 dy-
namical. We have developed two methods to find such
nonperturbative effects. The first method uses the well-
known principles of the effective action formalism. Unfor-
tunately, the calculations become intractable. Therefore,
we have implemented a second method, the variational
principle. Intuitively, we have included effects of the mass
term without altering the original Gribov-Zwanziger action
by performing a suitable resummation. With the help of
this technique, we have found in theMS scheme that ð0Þ,
the one loop correction to ðp2Gðp2ÞÞ�1

p2�0
is given by14

13This would also include Schwinger-Dyson results which
implemented the restriction to the Gribov region by suitable
boundary conditions. 14We set �MS ¼ 0:233 GeV, the value reported in [52].
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ð0Þ ¼ 0:93; (212)

resulting in a nonenhanced ghost propagator. Simulta-
neously, for the one loop gluon propagator at zero momen-
tum, we have found

D ð1Þð0Þ ¼ 0:63

�2
MS

� 11:65

GeV2
; (213)

which is nonzero. The corresponding value for the cou-
pling constant is smaller than 1 [see Eq. (153)], which
is acceptable for a perturbative expansion. We have also
checked the positivity violation of the gluon propagator
with the help of the variational technique and again, our
results were in nice agreement with lattice results: not only
is the shape of the temporal correlator CðtÞ, displayed in
Fig. 8 in qualitative agreement, also the value of the point
t� 1:5 fm at which the violation of positivity starts is con-
sistent with the results reported in lattice investigations.
Using the plots displayed in [17] which were also obtained
in the SUð3Þ case, one can extract a rough lattice estimate
for the quantities (212) and (213),

D latticeð0Þ � 13

GeV2
; (214)

p2Gðp2Þlattice
p2�0

� 5 , ð0Þlattice � 0:8: (215)

We notice that our lowest order approximations (212) and
(213) are qualitatively compatible with the current lat-
tice values.

To conclude, we would like to emphasize that the origi-
nal Gribov-Zwanziger action already breaks the BRST
symmetry. Because of this breaking, it is in unclear at
present how to define the observables of the theory in the
nonperturbative infrared region. According to our under-
standing, this breaking cannot be interpreted as a sponta-
neous breaking, according to the proposal of [23]. In fact,
we have argued that the BRST breaking is a natural con-
sequence of introducing the restriction to the Gribov re-
gion. In addition, we have underlined that the presence of
the BRST breaking term in the Gribov-Zwanziger action
provides a consistent way to ensure that the restriction to
the Gribov region can have physical consequences, i.e.
that the Gribov parameter � enters the expectation value
of physical, gauge invariant correlators. In the absence of
such a breaking term, the Gribov mass parameter would
play the role of an unphysical gauge parameter. The pres-
ence of the breaking is thus a necessary tool within the
Gribov-Zwanziger approach, allowing for the introduction
of a nonperturbative mass parameter in a local and renor-
malizable way. Finally, we have also commented on the
Kugo-Ojima confinement criterion. Since it is funda-
mentally based on the concept of an exact BRST symme-
try, it cannot be straightforwardly related to the Gribov-
Zwanziger framework due to the breaking.

In summary, this paper presented the 4D analysis of
the gluon and the ghost propagator within the Gribov-
Zwanziger framework. By comparing these results with
recent lattice data, we have found a good qualitative agree-
ment. The ghost and gluon propagator have also been
extensively studied on the lattice in 2 and 3 dimensions
[16,18,19,53]. The 3D and 2D analysis of the extended
Gribov-Zwanziger action, and a comparison with the lat-
tice data, is currently under consideration.
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APPENDIX: THE ONE LOOP
EFFECTIVE POTENTIAL

We explain in detail how we obtained Eq. (111). We start
by evaluating the integral appearing inWðJÞ. We recall that
this integral originates from

Z
dA� exp� 1

2

Z
d4xAa

�ð�ab
��ÞAb

�

¼
�
det

�
�
�
@2 þ 2g2N�4

@2 �M2

�
��� � @�@�

�
1� 1

�

����1=2

¼ e�ð1=2Þ Tr lnQab
��; (A1)

withQab
�� ¼ �ð@2 þ 2g2N�4

@2�M2 Þ��� � @�@�ð1� 1
�Þ. From this

expression it follows that we need to calculate 1
2 Tr lnQ

ab
��

to obtain the energy functional

1

2
Tr lnQab

�� ¼ N2 � 1

2
ðd� 1ÞTr ln

�
�@2 � 2g2N�4

@2 �M2

�

¼ N2 � 1

2
ðd� 1ÞfTr lnð�@2ð@2 �M2Þ

� 2g2N�4g � Tr lnð�@2 þM2Þg: (A2)

The second part is a standard integral and evaluated as

Tr lnð�@2 þM2Þ ¼ ��ð�d=2Þ
ð4�Þd=2

1

ðM2Þ�d=2
; (A3)

with � the Euler gamma function. Using dimensional
regularization d ¼ 4� � we obtain
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� N2 � 1

2
ðd� 1ÞTr lnð�@2 þM2Þ

¼ �3
N2 � 1

64�2
M4

�
� 5

6
� 2

�
þ ln

M2

��2

�
: (A4)

We recall that we work in the MS scheme. Next, we try to
convert the first part in to the standard form,

N2 � 1

2
ðd� 1ÞTr lnð�@2ð@2 �M2Þ � 2g2N�4Þ ¼ N2 � 1

2
ðd� 1ÞTr lnð�@2 þm2

1Þ þ Tr lnð�@2 þm2
2Þ

¼ N2 � 1

2
ðd� 1Þ

���ð�d=2Þ
ð4�Þd=2

1

ðm2
1Þ�d=2

þ��ð�d=2Þ
ð4�Þd=2

1

ðm2
2Þ�d=2

�

¼ N2 � 1

2
ðd� 1Þ

���ð�d=2Þ
ð4�Þd=2

1

ðm2
1Þ�d=2

þ��ð�d=2Þ
ð4�Þd=2

1

ðm2
2Þ�d=2

�

¼ 3
N2 � 1

64�2

�
m4

1

�
� 5

6
� 2

�
þ ln

m2
1

��2

�
þm4

2

�
� 5

6
� 2

�
þ ln

m2
2

��2

��
þOð�Þ;

(A5)

where we have used the notational shorthand (110). We
still have to calculate the first and the second term of (109).
For the first term, we recall that

�4
0 ¼ Z2

�2�
4; with Z2

�2 ¼ 1þ 3

2

g2N

16�2

1

�
; (A6)

with Z�2 defined in (57), so we find

�dðN2 � 1Þ�4
0 ¼�4ðN2 � 1Þ�4 � 4

3

2
ðN2 � 1Þ g

2N

16�2

1

�
�4

þ 3

2

g2N

16�2
�4ðN2 � 1Þ: (A7)

The second term is invariant under renormalization and
therefore given by

dðN2 � 1Þ
g2N

&�2J: (A8)

From Eqs. (A4), (A5), and (A7) we see that the infinities
cancel out nicely, so that the functional energy reads

Wð1ÞðJÞ ¼ � 4ðN2 � 1Þ
2g2N

�4 þ dðN2 � 1Þ
g2N

&�2J

þ 3ðN2 � 1Þ
64�2

�
8

3
�4 þm4

1 ln
m2

1

��2
þm4

2 ln
m2

2

��2

� J2 ln
J

��2

�
; (A9)

which is exactly expression (111).
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