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2Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil

(Received 29 July 2008; published 29 September 2008)

The thermodynamics of a scalar field with a quartic interaction is studied within the linear � expansion

(LDE) method. Using the imaginary-time formalism the free energy is evaluated up to second order in the

LDE. The method generates nonperturbative results that are then used to obtain thermodynamic quantities

like the pressure. The phase transition pattern of the model is fully studied, from the broken to the

symmetry restored phase. The results are compared with those obtained with other nonperturbative

methods and also with ordinary perturbation theory. The results coming from the two main optimization

procedures used in conjunction with the LDE method, the principle of minimal sensitivity (PMS) and the

fastest apparent convergence (FAC) are also compared with each other and studied in which cases they are

applicable or not. The optimization procedures are applied directly to the free energy.
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I. INTRODUCTION

Phase transition phenomena in quantum field theories
are typically of nonperturbative nature and thus naive
perturbation theory based on an expansion in the coupling
constant cannot be employed. This is clearly the case of
phase changes at high temperatures, where perturbation
theory becomes unreliable because powers of the coupling
constant become surmounted by powers of the temperature
[1]. Problems with perturbation theory also happen in
phenomena occurring close to critical points, because large
fluctuations can emerge in the system due to infrared
divergences, thus requiring nonperturbative methods as
well in their studies. This is the case of studies involving
second order phase transitions and also in weak first order
phase transitions [2]. Typical examples where these prob-
lems can manifest are in studies of symmetry changing
phenomena in a hot and dense medium, a subject of interest
in quantum chromodynamics (QCD) in the context of
heavy-ion collision experiments, and also in studies of
the early universe. Consequently, there is a great deal of
interest in investigating thermal field theories describing
matter under extreme conditions [3–6].

Familiar nonperturbative methods that have been used to
study symmetry changing phenomena at finite tempera-
tures are resummationlike techniques, such as the daisy
and superdaisy schemes [7,8], composite operator methods
[9], and field propagator dressing methods [10,11]. Other
methods used include expansions in parameters not related
to a coupling constant, like the 1=N expansion and the
�-expansion [12]. In addition, there are numerical meth-
ods, the most notably ones are those based on lattice

Monte Carlo simulations [13]. Each method has its own
advantages and disadvantages. For instance, in numerical
methods there may be issues related to numerical preci-
sion, lattice spacing, and lattice sizes. In addition, there is
the notorious problem of simulating fermions on the lattice
at finite chemical potentials [13]. In any nonperturbative
method based on an expansion in some parameter one has
to face the problem of higher order terms becoming in-
creasingly cumbersome, so stalling further analysis. This is
usually the case when carrying out calculations beyond
leading order in the 1=N expansion. Careless use of a
nonperturbative method can also lead to problems like
the lack of self-consistency or overcounting of effects.
Known examples of such problems are the earlier resum-
mation works dealing with daisy and superdaisy schemes,
that at some point were giving wrong results, e.g. predict-
ing a first order transition [14] for the ��4 theory, an
unexpected result since the model belongs to the universal-
ity class of the Ising model, which is second order. These
methods also predicted a strong first order phase transition
in the electroweak standard model, a result proved to be
misleading [15].
Let us recall that the breakdown of perturbation theory at

high temperatures and its poor convergence properties
have been dealt with many different methods. Examples
are the use of self-consistent approximations [16], hard-
thermal-loop (HTL) resummation [17,18], perturbative ex-
pansions in the coupling constant with resummation im-
plemented with the use of a variational mass parameter,
also known as Screened Perturbation Theory (SPT)
[19,20], and the use of two-particle irreducible (2PI) ef-
fective actions [21]. The 2PI method, in particular, leads to
a much better convergence of thermodynamic quantities
(like the pressure) as compared to some of the other
methods [22]. Related to the 2PI method is the
�-derivable technique, which has been used to study the
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thermodynamics of scalar and gauge theories [23–26]. One
difficulty with the 2PI effective actions is that the renor-
malization procedure is nontrivial [27]. In addition, there
seems that the �-derivable technique breaks down for a
coupling beyond some value [28].

In general, it is desirable that any analytical nonpertur-
bative method obey two basic requirements. First, it should
be self-consistent, and second, it should produce useful
results already at lowest orders without the need for going
to higher orders. That is, it should produce results that
quickly converge at some order where calculations are still
feasible analytically or semianalytically. Though some of
the cited methods may satisfy one, or to some extent both
of these requirements, in the present paper we are particu-
larly interested in the one known as the linear � expansion
(LDE) [29], a nonperturbative method that has been used
successfully in different contexts related to thermal field
theories [30–32] and in many other theories—for a long,
but far from complete list of references see Refs. [33,34].
In the LDE, a linear interpolation on the original model
Lagrangian density is performed in terms of a fictitious
expansion parameter �, which is used only for bookkeep-
ing purposes and set at the end equal to one. The standard
application of the LDE to a theory described by a
Lagrangian density L starts with an interpolation defined
by

L ! L� ¼ ð1� �ÞL0ð�Þ þ �L

¼ L0ð�Þ þ �½L�L0ð�Þ�; (1.1)

where L0 is the Lagrangian density of a solvable theory,
which is modified by the introduction of an arbitrary mass
parameter (or parameters) �. The Lagrangian density L�

interpolates between the solvableL0ð�Þ (when � ¼ 0) and
the original L (when � ¼ 1). The procedure defined by
Eq. (1.1) leads to modified Feynman vertices that become
multiplied by �, and modified propagators that now depend
on�. All quantities evaluated at any finite order in the LDE
will then depend explicitly on �, unless one could perform
a calculation to all orders. Up to this stage the results
remain strictly perturbative and very similar to the ones
obtained via an ordinary perturbative calculation. It is
through the freedom in fixing � that nonperturbative re-
sults can be generated in this method. Since � does not
belong to the original theory, one may fix it requiring that a

physical quantity �ðkÞ, calculated perturbatively to order
�k, be evaluated at the value where it is less sensitive to this
parameter. This criterion, known as the principle of mini-
mal sensitivity (PMS), translates into the variational rela-
tion [35]

d�ðkÞ

d�

�������� ��;�¼1
¼ 0: (1.2)

The optimum value ��which satisfies Eq. (1.2) is a function
of the original parameters of the theory. In particular, �� is a

nontrivial function of the couplings and because of this
nonperturbative results are generated. Another optimiza-
tion procedure used is known as the fastest apparent con-
vergence (FAC) criterion [35]. It requires from the kth
coefficient of the perturbative expansion

�ðkÞ ¼ Xk
i¼0

ci�
i; (1.3)

that

½�ðkÞ ��ðk�1Þ�j�¼1 ¼ 0; (1.4)

which is just equivalent to taking the kth coefficient (at
� ¼ 1) in Eq. (1.3) equal to zero.
One should note that it is not at all guaranteed that the

condition in Eq. (1.2) has a nontrivial solution. In cases
where this may happen, the second criterion, Eq. (1.4),
may be more appropriate. One example where the condi-
tion given by Eq. (1.2) fails to produce a nontrivial solution
was in the problem studied by the authors in Ref. [36], who
applied the LDE to compute the effective potential in
superspace. There, the authors found that while the PMS
condition was unable to give a nonperturbative solution to
the effective potential, the FAC criterion worked perfectly
well. Of course, in many situations both optimization
criteria may work and in this case one may ask whether
they lead to equivalent results. Previous studies indicated
that this is indeed so, but a full comparison of results
obtained with both optimization criteria is still lacking.
Another issue associated with the LDE is its convergence.
Rigorous LDE convergence proofs have been obtained for
the problem of the quantum anharmonic oscillator, at zero
temperature, considered in Ref. [37], while its partition
function at finite temperatures was considered in [38]. For
quantum field theories, Ref. [39] has proved convergence
for a particular perturbative series in an asymptotically-
free, renormalizable model at zero temperature. For a
critical ��4 OðNÞ theory in three dimensions the issue of
convergence was studied in [40] employing both PMS and
FAC optimization criteria. Finally, regarding the possible
solutions that can emerge from the optimization criteria
(PMS or FAC), we must use a definite approach in select-
ing the optimum root �� from either Eq. (1.2) or (1.4). The
problem of dealing with the many possible solutions for ��
was treated in detail in the first two papers cited in
Ref. [40], where the convergence of the LDE was also
studied in detail. Typically, the higher the order in �, the
more solutions can appear. As shown in those references,
all solutions at each given order in � can be classified into
families. The optimum value for � is chosen as follows:
The trivial solutions for ��, e.g. �� ¼ 0 and those that are not
dependent on the coupling constant (and thus cannot lead
to nonperturbative results) are not considered. In addition
to these, at first order there is only one nontrivial solution
(first family), consistent with all our approximations (like
the high-temperature approximation, used later in our cal-
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culations). This family is then followed in the next orders
and used in all our calculations. As proved in earlier
references with the LDE method, this is a consistent and
unambiguous way for choosing the optimum value for �.

It is important to stress that in the method of the LDE the
selection and evaluation of Feynman diagrams proceed in
the same fashion as in ordinary perturbation theory, includ-
ing the renormalization procedure [33,39,40]. The results
obtained are free from infrared divergences, even at the
critical point and in its neighborhood, thus making it a
particularly suitable method to study phase transition phe-
nomena in quantum field theories. It is important to recall
here that there are similarities between the LDE and the
SPT methods. In particular, the implementation of the
latter can be put in a form similar to the LDE by means
of a modified loop expansion [41], named optimized per-
turbation theory (OPT) in this reference. But there are also
some major differences between these methods. For in-
stance, in the LDE no assumption is made a priori for the
parameter �, while in the SPT/OPT it is assumed that such
a mass term is already of some order in the coupling
constant. The implication of this is that the order counting
of loop expansion has to be readjusted accordingly.

In the present paper we study the application of the LDE
to the ��4 theory. We will study the applicability of the
PMS and FAC optimization criteria for the symmetric and
broken phases of the theory and compare results obtained
with both methods. In addition, in the present work we
choose to optimize the free energy, instead of the self-
energy like in many other works employing the LDE,
particularly Refs. [31,32]. There are several reasons for
doing so [30,34], but an important one is that in some
situations it might happen that the optimization of the
self-energy does not lead to nontrivial solutions, while
optimization of the free energy with PMS or FAC are
seen to lead to nontrivial solutions already at first order
in �. The critical temperature Tc, the pressure P, and the
background dependent free energy F are obtained here in
an explicit calculation up to order �2. Calculations at this
order require a calculation of vacuum terms up to three
loops. Since the thermodynamics of this model has been
extensively studied before in the literature with a number
of methods, our calculation here will be useful to bench-
mark the application of the LDE and its two main optimi-
zation procedures against those previous applications. In
addition, we compare our results with those obtained with
standard perturbation theory. Besides correctly reproduc-
ing the expected second order phase transition pattern for
the model, our results at order �2 are shown to be sufficient
to obtain the thermodynamics of the model, in the sense
that the results at Oð�2Þ are not much different from the
ones at Oð�Þ. The results point towards a quickly conver-
gent LDE, as already indicated in previous studies with
different models under different conditions [39,40].

This work is organized as follows. In the next section we
introduce the interpolation procedure for the model. In

Sec. III we compute the free energy in the symmetric and
broken phases to Oð�2Þ. In Sec. IV we present the results
obtained from the optimization procedures. The pressure is
evaluated and contrasted order by order with the one
obtained within perturbation theory. The critical tempera-
ture, the temperature dependent vacuum expectation value
of the scalar field, and the free energy are determined to
Oð�2Þ. Our conclusions are presented in Sec. V.

II. THE MODEL LAGRANGIAN DENSITY

The interpolation defined by Eq. (1.1) when applied for
the standard ��4 model gives

L � ¼ L0ð�Þ � �
�

4!
�4 þ �

�2

2
�2 þL�

ct; (2.1)

where

L 0ð�Þ ¼ 1

2
ð@��Þ2 �m2

0

2
�2 � �2

2
�2; (2.2)

and L�
ct is the part of the Lagrangian density carrying the

renormalization terms needed to render the model finite.
Details about this renormalization procedure in the LDE
and the explicit form for L�

ct are given e.g. in Ref. [31] for
the case of background field dependent contributions (bro-
ken symmetry phase), while the field independent contri-
butions (symmetric phase) were given in Ref. [20] within
the context of the SPT, so we will not repeat those same
renormalization details here. One should also note that the
only ‘‘new’’ terms introduced by the �-expansion interpo-
lation are quadratic terms and so the renormalizability of
the original theory is not changed. This means that the
renormalization of the theory can be carried out in an
analogous way as in ordinary perturbation theory [31].
Specifically, the interpolation procedure given by
Eq. (2.1) introduces a new (quadratic) interaction term,
with Feynman rule i��2. In addition to this modification,
the original bare propagator,

SðkÞ ¼ iðk2 �m2
0 þ i"Þ�1; (2.3)

now becomes

S�ðkÞ ¼ iðk2 �m2
0 � �2 þ i"Þ�1; (2.4)

while the original quartic vertex is changed from �i� to
�i��.
In the next section we will show the results for the finite

temperature free energy density using the interpolated
model with the LDE at Oð�2Þ. We will consider the cases
of m2

0 ¼ jm0j2 and m2
0 ¼ �jm0j2 in Eq. (2.2), correspond-

ing to the symmetric and broken phases, respectively.

III. THE FINITE TEMPERATURE FREE ENERGY
IN THE LDE TO Oð�2Þ

We perform the standard derivation of the free energy
[42] up to Oð�2Þ. With the constant field introduced
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through the usual shift of the scalar field, �! �þ ’, the
Lagrangian density is rewritten as

L ½�ðxÞ; ’� ¼ L2½�ðxÞ; ’� þLI½�ðxÞ; ’�; (3.1)

where L2 is the part of the Lagrangian quadratic in the
fields,

L 2½�ðxÞ; ’� ¼ 1
2ð@��Þ2 � 1

2�
2�2; (3.2)

while LI is

L I½�ðxÞ; ’� ¼ ���

6
’�3 � ��

4!
�4; (3.3)

where in Eq. (3.2) �2 is given by

�2 ¼ �m2
0 þ

��

2
’2 þ ð1� �Þ�2: (3.4)

Note that in all loop contributions the propagators will
carry a mass term as given by Eq. (3.4). These terms are
then expanded in � to the desired order, thus generating the
insertions of �2 that appear as a consequence of the qua-
dratic vertex introduced in Eq. (2.1).

The free energy is

F½’� ¼ F0ð’Þ þ F1-loopð’Þ

þ 1

V
i ln

�
exp

�
i
Z
d4xLI½�ðxÞ; ’�

��
; (3.5)

where F0ð’Þ is the tree-level classical potential and
F1-loopð’Þ is the one-loop contribution to the free energy

(V is the space volume) given by

F1-loopð’Þ ¼ 1

V
i ln

Z
d�ei

R
d4xL2½’;�ðxÞ�: (3.6)

Higher loops are given by the last term in Eq. (3.5), with the
average h� � �i meaning

h� � �i ¼
R
D�ð� � �Þei

R
d4xL2½�ðxÞ;’�

R
D�ei

R
d4xL2½�ðxÞ;’�

: (3.7)

As said above, the scalar field propagators in the diagrams
are obtained from L2½�ðxÞ; ’�, and the vertices are deter-
mined from LI½�ðxÞ; ’�, with both as given at the end of
Sec. II.

Our calculations are performed, as usual, in the
imaginary-time formalism [42]. Thus, the scalar boson
field has Euclidean four-momentum P ¼ ð!n;pÞ, with
P2 ¼ !2

n þ p2, where !n are the discrete Matsubara bo-
sonic frequencies !n ¼ 2�n=�, with n ¼ 0;�1;�2; � � � ,
and � ¼ 1=T. Loop diagrams involve sums over the
Matsubara frequencies and integrals over the space mo-
mentum p. All space momentum integrals are performed in
arbitrary dimension d ¼ 3� 2� and renormalization is
performed in the modified minimal subtraction scheme

(MS). The measure used in the sum-integrals is then de-
fined as

XZ ¼
�
e	�2

4�

�
�
��1

X
n

Z d3�2�p

ð2�Þ3�2�
; (3.8)

where � is an arbitrary momentum scale in dimensional

regularization. The factor ðe	�2

4� Þ� is introduced so that, after
minimal subtraction of the poles in � due to ultraviolet
divergences, � coincides with the renormalization scale in

the MS scheme.
From Eq. (3.5), the free energy is expressed up toOð�2Þ

by expanding all appropriate terms in �. Considering the
vacuum contributions to the free energy, this means that
terms up to three loops must be included. All bare (un-
renormalized) contributions are shown in Fig. 1.
The renormalization procedure for the symmetric phase

was performed in detail in Refs. [20,31]. The counterterms
for the vacuum diagrams are given in Ref. [20], while those

FIG. 1. Diagrams contributing to the free energy up toOð�2Þ, given by (a) vacuum diagrams and (b) background field (external legs).
The black dots indicate a ��2 insertion.

FIG. 2. Diagrams representing the counterterms for the free
energy up to Oð�2Þ: (a) vacuum contribution, (b) background
field contribution. As in Fig. 1, the black dot indicates a ��2

insertion. The circle-cross denotes either insertion of a mass
counterterm or of a vertex counterterm.
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for the field dependent diagrams are given in Ref. [31]. We
also note that the divergences in the broken phase can be
removed by the same counterterms determined for the
symmetric phase [41,43,44], so the renormalization for
the broken phase does not require extra effort. The renor-
malization proceeds just as in standard perturbation theory
and as shown in detail in Ref. [31], only temperature
independent counterterms are required and the temperature
dependent divergent terms cancel out exactly. All diagrams
of counterterms contributing to F½’� up to Oð�2Þ are
shown in Fig. 2.

The circle-cross in Fig. 2 denotes either a mass counter-
term vertex �m2, or a vertex counterterm ��, given,
respectively, by [31]

�m2 ¼ �
�

32�2�
½ðm2 þ ð1� �Þ�2Þ�

� �2 �2

ð32�2Þ2
��2

�2
þ 1

�

�
ðm2 þ �2Þ; (3.9)

�� ¼ ��2 3�2

32�2�
: (3.10)

The final expression for the renormalized free energy
F½’�, including all terms shown in Figs. 1 and 2, becomes

F½’� ¼ Fvacuum þ F’; (3.11)

where Fvacuum denotes the vacuum contributions,

Fvacuum ¼ � 1

8ð4�Þ2
�
2 ln

�
�2

M2

�
þ 3

	
M4 � 1

2ð4�2Þ J0ð�MÞT4 þ �
�

8ð4�Þ4
��

ln

�
�2

M2

�
þ 1

�
M2 � J1ð�MÞT2

	
2

þ �
�2

2ð4�Þ2
��

ln

�
�2

M2

�
þ 1

�
M2 � J1ð�MÞT2

	
� �2 �4

4ð4�Þ2
�
ln

�
�2

M2

�
þ J2ð�MÞ

	

� �2 �

4ð4�Þ4 �
2

�
ln

�
�2

M2

�
þ J2ð�MÞ

	��
ln

�
�2

M2

�
þ 1

�
M2 � J1ð�MÞT2

	

� �2 �2

48ð4�Þ6
��
5ln3

�
M2

�2

�
þ 17ln2

�
M2

�2

�
þ 41

2
ln

�
M2

�2

�
� 23� 23

12�2
�  00ð1Þ þ C0

þ 3

�
ln

�
M2

�2

�
þ 1

�
2
J2ð�MÞ

	
M4 �

�
12ln2

�
M2

�2

�
þ 28 ln

�
�2

�2

�
� 12� �2 � 4C1

þ 6

�
ln

�
M2

�2

�
þ 1

�
J2ð�MÞ

	
J1ð�MÞ�2T2

þ
�
3

�
3 ln

�
M2

�2

�
þ 4

�
J21ð�MÞ þ 3J21ð�MÞJ2ð�MÞ þ 6K2 þ 4K3

	
T4

�
; (3.12)

and F’ denotes the background field dependent contributions,

F’ ¼ F0 þ
�
��M2

32�2

�
log

�
M2

�2

�
� 1þ T2

M2
J1ð�MÞ

	
� �2 ��

2

32�2

�
ln

�
M2

�2

�
� J2ð�MÞ

	

� �2
�2M2

2ð32�2Þ2
��

ln

�
M2

�2

��
2 þ �2

6

	
� �2 3�2M2

2ð32�2Þ2
��

ln

�
M2

�2

�
� 1

�
2 þ 1þ �2

6

	

þ �2 �2

1024�4

�
M2

�
1þ �2

6

�
þ 4M2 ln

�
�

M

�
½1þ J2ð�MÞ� þ J2ð�MÞM2 þ 8M2ln2

�
�

M

�

� 4 ln

�
�

M

�
J1ð�MÞT2 � J2ð�MÞJ1ð�MÞT2� þ �2 �2T2

24ð4�Þ2
�
ln

�
M2

T2

�
þ 5:3025

	

þ �2 �
2M2

256�4

�
�2

24
� 3 ln

�
M
�

�
þ 2ln2

�
M
�

�
þ 1:164032

	�
’2

2
� �2 3�2

32�2

�
log

�
M2

�2

�
� J2ð�MÞ

�
’4

4!
(3.13)

with F0 given by

F0 ¼ 1

2
½�m2

0 þ ð1� �Þ�2�’2 þ �
�

24
’4: (3.14)

In Eqs. (3.12) and (3.13), M2 ¼ �m2
0 þ �2, and the con-

stant terms appearing in Eq. (3.12) are defined as follows:
 00ð1Þ ¼ �2
ð3Þ, where 
ðxÞ is the zeta function, C2 ’
39:429, and C3 ’ �9:8424, while K2 and K3 are three-

dimensional integrals that can be evaluated numerically
[45]. In the high-temperature limit, M=T � 1, they are
given by [20]

K2 ’ 32�4

9
½lnð�MÞ � 0:04597�

� 372:65�M½lnð�MÞ þ 1:4658� (3.15)
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and

K3 ’ 453:51þ 1600�M½lnð�MÞ þ 1:3045�: (3.16)

In Eqs. (3.12) and (3.13), we have also defined the tem-
perature dependent integrals Jn (n ¼ 0, 1, 2) as follows:

JnðaÞ ¼
4�ð12Þ

�ð52 � nÞ
Z 1

0
dx

x4�2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p 1

e
ffiffiffiffiffiffiffiffiffiffi
x2þa2

p
� 1

; (3.17)

which can be expressed as a series expansion as follows
[1,42,46,47]:

J0ðaÞ ¼ 8�

3
a3 þ a4

�
ln

�
a

4�

�
þ 	� 3

4

�

þ 128
X1
n¼1

ð�1Þnð2n� 1Þ!!
ð2nþ 1Það2nþ4Þ

32ðnþ 2Þ!2nþ1ð2�Þ2n

� 4�2

3
a2 þ 16

45
�4; (3.18)

J1ðaÞ ¼ �4�a� 2a2
�
ln

�
a

4�

�
þ 	� 1

2

	
þ 4�2

3

� 16
X1
n¼1

�ð�1Þnð2n� 1Þ!!
ð2nþ 1Það2nþ2Þ

4n!2nþ1ðnþ 1Þð2�Þ2n
�
;

(3.19)

and

J2ðaÞ ¼ 2�

a
þ 2 ln

�
a

4�

�
þ 2	

þ 4

�X1
n¼1

ð�1Þnð2n� 1Þ!!
ð2nþ 1Þa2n
n!2nþ1ð2�Þ2n

	
: (3.20)

Equations (3.18), (3.19), and (3.20) are all convergent in
the high-temperature limit as can be easily checked by
considering a few terms in the sums in these equations.

We should note that when optimizing the free energy,
since J0, J1, and J2 are dependent on �, it is important to
check the stability of the results when truncating the sums
in Eqs. (3.18), (3.19), and (3.20). This is particularly criti-
cal for parameter values such that M=T is not much
smaller than 1, a situation that requires a fairly large
number of terms in the sums. In all results shown in the
next section we have used enough terms in Eqs. (3.18),
(3.19), and (3.20) so to obtain stable results for all parame-
ter and temperature values used.

IV. OPTIMIZATION AND NUMERICAL RESULTS

We now turn to the application of the optimization
procedures in the LDE and show the results obtained by
implementing the PMS, Eq. (1.2), and FAC, Eq. (1.4). As
we explained in the introduction, the optimization criteria
are applied directly to the free energy. The results obtained
with each optimization criterion are contrasted with each
other and with those available from other methods. This

will then allow us to gauge the performance of each
optimization procedure regarding both reliability and
convergence.

A. Symmetric phase

We initially restrict our calculations to the symmetric
phase (with positive mass term in the classical potential)
and evaluate the pressure, P ¼ �F. In Fig. 3 we show our
results for the pressure using the usual perturbation theory
in � up toOð�2Þ and where we have restricted to the case of
high temperatures (M=T � 1). In this figure the behavior
of the pressure is shown as a function of the renormalized
coupling constant, �R, and T0 is a reference energy scale
chosen as T0 ¼ mRðT0Þ, where mR is the renormalized
mass. This is similar as done in Ref. [22] using the 2PI
method. Note that in Ref. [22] the authors define the
quartic coupling differently from us. In their case, g2 ¼
�=24, and their results are plotted as a function of the
renormalized coupling gR. We choose here the same scale
as in Ref. [22] so to facilitate the comparison with their
results for the pressure. It is clear in Fig. 3 the typical
alternating behavior of the perturbative calculation, which
indicates its very poor convergence.
Next, we use the result for the free energy evaluated up

to Oð�2Þ, given by Eq. (3.12). Note that in the symmetric
phase the pressure depends only on vacuum terms, since
the free energy is evaluated at the vacuum expectation
value for the field, ’ ¼ 0. By optimizing the free energy
using the PMS criterion, Eq. (1.2), we determine the root
��, which is then substituted back into the expression for the
free energy, with the criterion used for choosing the opti-
mum root as discussed below Eq. (1.4). This naturally
brings nonlinear � contributions and generates nonpertur-
bative results. The pressure obtained in this case is shown
in Fig. 4, where we show the results obtained up to orders �
and �2. In the same figure we also show the perturbative
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FIG. 3. The pressure in the symmetric phase using perturbation
theory in � up to Oð�2Þ. The parameters used are T ¼ 20T0 for
the temperature and � ¼ T0 for the renormalization scale.
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results of Fig. 3 for comparison. It becomes evident here
the convergence of the results with the LDE-PMS, with
both Oð�Þ and Oð�2Þ results not differing too much, in
contrast to the perturbative (in �) results.

In Fig. 5 we show again the results for the pressure, but
now using the FAC optimization criterion, Eq. (1.4). We
once again see the excellent convergence for the pressure
when contrasted to the perturbative results.

In Fig. 6 we plot side by side our results for the pressure
at order �2 using the PMS and FAC optimization criteria. It
is seen as an excellent agreement between the two optimi-
zation criteria and it shows the equivalence of these two
optimization procedures.

A side by side comparison of the order �2 result for the
pressure (from either the PMS or FAC) with the 2PI two-
loop result of Ref. [22] (second panel of their Fig. 1) shows
an excellent agreement between the two results. Since

operationally the LDE is much simpler to be implemented
than the 2PI calculation and also when compared with
other methods, like those based on the renormalization
group and Schwinger-Dyson equations, this may be a great
advantage of the LDE. Many previous applications of the
LDE to a large variety of problems (cited previously) also
confirm the strength of the method. Its strength comes
basically from the fact that its implementation is similar
to that of standard perturbation theory. The important and
fundamental difference with standard perturbation theory
resides in the optimization procedure that fixes an initial, a
priori, arbitrary parameter, �. It is then interesting to
investigate what kind of role the optimum � represents in
the LDE after optimization. This is partially clarified in the
plot shown in Fig. 7, where we show the optimum � as a
function of the renormalized coupling constant. It shows

0 0.2 0.4 0.6 0.8 1

(λR/24)
1/2

0.96

0.97

0.98

0.99

1

1.01

1.02
P 

/ P
id

ea
l

perturbative λ1

perturbative λ2

PMS δ1

PMS δ2

FIG. 4. The pressure in the symmetric phase to orders � and �2

using the PMS optimization criterion—the perturbative results of
Fig. 3 are also shown. The parameters used are the same as those
in Fig. 3.

0 0.2 0.4 0.6 0.8 1

(λR/24)
1/2

0.96

0.97

0.98

0.99

1

1.01

1.02

P 
/ P

id
ea

l

perturbative λ1

perturbative λ2

FAC δ1

FAC δ2

FIG. 5. The pressure in the symmetric phase to orders � and �2

using the FAC optimization criterion.
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FIG. 6. The pressure for the symmetric phase at order �2 using
the PMS and FAC optimization criteria.
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FIG. 7. The behavior of the optimum parameter �2 with re-
spect to the renormalized coupling constant and evaluated at
order � and �2 using the FAC optimization criterion. The
parameters used are the same as in the previous figures.
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that by increasing the order in �, �� becomes closer and
closer to the thermal mass mT , here computed at one-loop
order for simplicity. In general, we can extrapolate this
expectation and say that the expected optimum value for �
should be the (quantum and) thermal mass (quadratic in the
field) corrections, as would be derived from a true gap
equation. This is in fact confirmed by the many applica-
tions of the LDE to the Gross-Neveu model [30], in which
case exact results are known (in the large-N approxima-
tion) and can then be readily compared with the results
obtained from the LDE method applied to that model.

B. Broken phase

Let us now turn to the symmetry broken case (with
negative square mass term in the classical potential). For
this case we found that only the FAC optimization criterion
leads to nontrivial solutions for �. The FAC criterion is
applied to the free energy and the resulting nonlinear
equation is solved simultaneously with the equation giving
the minimum condition for the field (thermal) expectation
value, �ðTÞ, given by the condition

dF½’�
d’

��������’¼�ðTÞ
¼ 0: (4.1)

As is well known, the phase transition in the pure scalar
theory is second order [15], as required by universality
reasons. Our results for the free energy using the FAC
criterion indicate a second order phase transition. This is
shown in Fig. 8, where the free energy for � ¼ 0:1 is
plotted for different temperature values. The critical tem-
perature obtained here is Tc=� ’ 15:49, consistent with
the perturbative prediction [42] and other nonperturbative
calculations [10]. Another quantity that indicates that the
transition is a continuous one is the temperature evolution

of the minimum of free energy, �ðTÞ. This is shown in
Fig. 9 for � ¼ 0:1 and � ¼ 1:0.
Finally, in Fig. 10 we show the temperature dependence

of the thermal mass, mT , as derived from the free energy,

m2
T ¼ d2F½’�

d2’

��������’¼0
: (4.2)

We once again can notice a continuous and smooth tran-
sition. We note that one can determine the critical tem-
perature by looking at which value of T m2

T changes sign
and check whether this gives the same result for Tc as
obtained from �ðTcÞ ¼ 0 (as in Fig. 9).

V. CONCLUSIONS

One of the motivations for using the LDE to study the
thermodynamics of the scalar field theory at high tempera-
tures, as done in this work, was its ease of implementation

-10 -5 0 5 10
ϕ

-10

0

10

20

30

F
[ϕ

] 
- 

F[
0]

T = 10
T = Tc
T = 20

FIG. 8. The nonperturbative free energy for � ¼ 0:1 evaluated
at order �2 and using the FAC optimization criterion, for three
different temperatures: T < Tc, T ¼ Tc, and T > Tc, where
Tc ¼ 15:49 (in units of the renormalization scale �). Here we
have set � ¼ m0.
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FIG. 9. Temperature dependence of the minimum of the free
energy �ðTÞ at order �2 obtained with the FAC optimization
criterion. Here �ð0Þ is the tree-level minimum of the bare free
energy.
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FIG. 10. Temperature dependence of the nonperturbative ther-
mal mass at order �2 evaluated with the FAC criterion for two
values of the coupling constant �. We use in this plot � ¼ m0.
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and renormalization, which is no different from those of
the standard perturbation theory. One recalls that similar
studies in the context of the 2PI and related methods
typically face difficulties in the renormalization procedure,
making their applicability a nontrivial task. In addition, the
LDE method, differently from other methods, like SPT (or
OPT—optimized perturbation theory), makes no assump-
tion on the introduced mass parameter �, thus we do not
need to adjust the order of the loop expansion accordingly.

By using the LDE, we have studied the thermodynamics
of the ��4 scalar field theory in the symmetric and broken
phases. The LDE is used with two popular optimization
procedures, known as PMS and FAC. There are two major
differences with the work we have done here and previous
ones, like e.g. in Refs. [31,32]. First, while in general the
PMS procedure is the favorite optimization criterion in the
literature related to the LDE and similar methods, we here
have shown that the FAC procedure leads to numerically
indistinguishable results from the ones obtained with the
PMS. In addition, while there may be cases where the PMS
procedure leads to trivial results only, the same may not be
the case for the FAC (here we have shown this to be the
case in the broken phase). In this sense they can be used in
a complementary way, when PMS fails, one can try FAC,
or vice versa. Second, unlike in Refs. [31,32], where the
quantity optimized is the self-energy, here we choose to
optimize the free energy. One advantage of this is that,
while there is no solution for the LDE at first order when
optimizing the self-energy, we do find solutions when
optimizing the free energy already at first order in �.
Furthermore, as shown in Ref. [30], the optimization of
the free energy can be shown to immediately lead to the
solution of the gap equation (here verified numerically
through the results for the optimum�), while in optimizing
the self-energy further constraints must be employed, as,
for example, renormalization group equations. In the nu-
merical studies performed in the present work, we have
shown that the optimum � carries both temperature and

coupling constant contributions. Thus, the LDE with opti-
mization of the free energy implements automatically a
nonperturbative resummation of the thermal corrections, in
conformity with analytical results produced when this
method was used to study the Gross-Neveu model in
Ref. [30], from which exact solutions are available and a
close comparison with the LDE results is possible.
By studying the behavior of the pressure and contrasting

the results obtained with perturbation theory and the 2PI
method, we have shown that the LDE leads to convergent
results already at lowest order in the LDE expansion
parameter �, with the first and second order results chang-
ing only slightly and producing results consistent with the
2PI nonperturbative method. In addition, as already men-
tioned above, we have shown that both optimization pro-
cedures, FAC and PMS, lead to equivalent results for the
pressure.
Another important result of our work is that the LDE is

shown to be adequate for studying phase transitions at high
temperatures. In particular, when applied to the phase
transition in the ��4, the LDE predicts the correct order
of the phase transition, which is second order, in agreement
with general results of statistical mechanics. Besides this,
since the LDE method automatically produces an infrared
cutoff, the results are shown to be valid and applicable
below, above, and at the critical temperature Tc, showing
that the LDE circumvents the usual problem seen in per-
turbation theory, namely, the appearance of infrared diver-
gences close to critical points.
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