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We propose an operational definition of the entropy of cosmological perturbations based on a truncation

of the hierarchy of Green functions. The value of the entropy is unambiguous despite gauge invariance and

the renormalization procedure. At the first level of truncation, the reduced density matrices are Gaussian

and the entropy is the only intrinsic quantity. In this case, the quantum-to-classical transition concerns the

entanglement of modes of opposite wave vectors, and the threshold of classicality is that of separability.

The relations to other criteria of classicality are established. We explain why, during inflation, most of

these criteria are not intrinsic. We complete our analysis by showing that all reduced density matrices can

be written as statistical mixtures of minimal states, the squeezed properties of which are less constrained

as the entropy increases. Pointer states therefore appear not to be relevant to the discussion. The entropy is

calculated for various models in Paper II.
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I. INTRODUCTION

The standard predictions of inflation are in noteworthy
agreement with the recent observations [1]. Yet several
aspects of inflation remain poorly understood. Among
these is the so-called quantum-to-classical transition of
cosmological perturbations.

In the inflationary scenario, primordial power spectra of
gravitational waves and scalar perturbations result from the
parametric amplification of vacuum fluctuations which
begins once the modes exit the horizon. In the course of
this unitary evolution, modes of opposite wave vector
become more and more entangled. However, the primor-
dial power spectra are impervious to this entanglement
[2,3] because, for this expectation value, the relative con-
tribution of the quantum correlations is inversely propor-
tional to the amplification factor. Therefore, as far as
(today) observational data are concerned, one can safely
use a stochastic ensemble of growing modes in place of the
pure entangled state predicted by the quantum treatment.

Yet, this distinction matters for other observables. In
particular, the calculation of the entropy and that of back-
reaction effects (like any kind of radiative corrections)
must be addressed in the quantum settings. Although these
aspects are related, in these papers we specifically consider
the question of decoherence. We split the presentation into
two papers, called I and II. In Paper II [4], we calculate the
entropy in various models. In the present paper we focus on
the formulation of the question. There is no way around
this first step. Even though we have some notions of
general features of decoherence, there is no universal
description of it. It occurs in a variety of ways, depending

on whether the system is chaotic [5], fermionic [6], a two-
level system [7], or dominated by tunneling events [8].
Decoherence must be analyzed case by case.
Let us therefore present the specific difficulties regard-

ing cosmological perturbations. The first is of a technical
nature. It is due to the fact that these perturbations are
described by weakly interacting quantum fields propagat-
ing on a fixed background geometry. Renormalization is
then a necessary step in the calculation of any observable
(e.g. the power spectrum) beyond tree level. This technical
operation is efficiently achieved at the level of Green
functions. However, the customary approach to decoher-
ence consists of defining the reduced density matrix as a
solution of the so-called master equation [9]. The latter
being an operator equation, it is not clear how the renor-
malization and ordering should be done (for non-Gaussian
quantum field theories). One could proceed so that the
values of a sufficient number of independent physical
quantities coincide with the values calculated in a pertur-
bative Lagrangian formalism. Assuming that this technical
step could be done, the master equation would then be used
to calculate other quantities, e.g. the entropy. This ap-
proach is, however, unnecessarily complicated, because
all that is needed to define the reduced density matrix
and to calculate the entropy are the renormalized Green
functions. We therefore work from the onset with the latter.
The second difficulty concerns the physical nature of the

environment. Indeed, since one is describing adiabatic
perturbations, one cannot introduce ‘‘external’’ dynamical
degrees of freedom that will act as an environment. (If one
does so, and postulates that these have white noise, deco-
herence obtains by construction; see [10,11]. But it is based
on a mechanism which might not be relevant in inflation,
and it occurs at a rate which is unknown, because both the
coupling strength and the statistical properties of the extra
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degrees of freedom are ad hoc.) In Paper II we therefore
calculate the entropy in the context of physically motivated
inflationary models.

Finally, let us point out that, in relation to the former
difficulty, Green functions offer the possibility of defining
well-defined and intrinsic coarse graining procedures,
namely, by truncating at a given level, and in a self-
consistent manner, the hierarchy of Green functions. In
these papers, we shall study the first nontrivial level: we
only retain the (dressed) two-point correlation function,
and set to zero all higher order connected correlation
functions. In the case of weak interactions (which is the
case of gravitational interactions at energies below the
Planck scale), this is a legitimate approximation. To con-
clude this presentation, let us note again that the master-
equation approach seems inadequate in an inflationary
context: it is neither clear how to properly define it without
referring to renormalized quantities, nor how to actually
trace over the ‘‘unobservable’’ degrees of freedom when
reducing the density matrix.

The reduced density matrices defined by truncating the
hierarchy at the first level are Gaussian and homogeneous
density matrices (GHDM). These factorize in two-mode
sectors characterized by opposite wave vectors ðk;�kÞ.
The class of reduced density matrices being defined, we
can turn to the calculation of the entropy and to the analysis
of the quantum-to-classical transition. For the entropy, we
argue that its value is unambiguous, despite infinities of
quantum field theory and gauge invariance. We also prove
that, during inflation, the entropy is the only intrinsic
property of GHDM. Indeed, the values of the other quan-
tities (e.g. the number of quanta) depend on the choice of
the canonical variables which are not univocally defined
because the frequency is not constant.

To address the question of the quantum-to-classical
transition, we need to classify the reduced density matrices
into ‘‘classical’’ and ‘‘quantum’’ states. The quantum prop-
erties of GHDM are linked to the entanglement of modes
of opposite wave vectors. The quantum-to-classical tran-
sition thus occurs when this entanglement is lost (which
happens when the state is neither pure nor thermalized, but
at a sharp frontier in between). This gives an operational
definition of classical states and of the time of decoherence
for GHDM.

To apply this definition, one must first select creation
and destruction operators. The latter are well defined only
if the Hamiltonian is time independent. This criterion, as
well as the other criteria discussed in Sec. VI, are therefore
unambiguous during the radiation dominated era [3], but
not during inflation. Yet, within a given representation,
separability is a meaningful concept which yields to a
physical picture of entanglement.

This physical interpretation is developed in Secs. VI and
VII A. In particular, in Sec. VII A, we link decoherence to
the possibility of writing GHDM as statistical mixtures of

minimal states (displaced squeezed states), the squeezing
of which is less and less constrained as the entropy in-
creases. In Sec. VII B, we argue that pointer states are not
relevant to describe the decoherence of primordial
fluctuations.
We have organized the paper as follows. Section II

recapitulates the properties of the state of the linear per-
turbations. The coarse graining is defined in Sec. III, where
the properties of the GHDM are also summarized.
Classicality is then defined as separability, as explained
in Sec. V. Sections III and V aim also at clarifying our
previous work [3]. In Sec. IV, we identify the von Neumann
entropy as the only intrinsic statistical property of these
states. This establishes that it is unambiguous despite the
redundancy of Einstein’s equations and the ambiguities
from the perturbative renormalization of Green functions.
In Sec. VI, the definition of separable states is compared to
three alternative equivalent criteria of classicality, and to
one nonequivalent criterion. Our concluding remarks in
Sec. VII B concern the irrelevance of pointer states to the
question of the quantum-to-classical transition.

II. THE STATE OF LINEAR PERTURBATIONS

A. Settings

In models with one inflaton field, the dynamics of line-
arized (scalar and tensor) perturbations is similar to the
evolution of a massless scalar field ’ in the background
space-time [12]. The latter is a Friedmann-Robertson-
Walker space-time with flat spatial section. The line ele-
ment is

ds2 ¼ a2ð�Þ½�d�2 þ �ijdx
idxj�: (1)

The Hubble parameter H ¼ d lna=dt is slowly evolving.
This variation is governed by �, the first slow-roll parame-
ter, � ¼ �d lnH=d lna. We consider scalar perturbations;
the treatment of tensor perturbations proceeds along simi-
lar lines. In this case, ’ designates the Mukhanov-Sasaki
variable which is a linear combination of the inflaton
perturbations of the gravitational potential. Its
Hamiltonian is unique up to a boundary term which cor-
responds to a particular choice of canonical variables. We
will come back to this important point in Sec. III C. If we
choose the conjugate momentum of ’ to be � ¼ @�’, the

Hamiltonian describing the evolution of linear perturba-
tions is

H ¼
Z

d3kHk;�k;

Hk;�k ¼ j�kj2 þ
�
k2 � @2�z

z

�
j’kj2; (2)

where ’k ( ¼ ’�
�k) is the Fourier transform of the field

amplitude, and �k its conjugate momentum. The time-
dependent function z relates ’ to � , the scalar primordial
curvature perturbation (defined on hypersurfaces orthogo-
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nal to the comoving worldlines [12])

’ðt;xÞ ¼ zðtÞ�ðt;xÞ; zðtÞ ¼ a
ffiffiffi
�

p
cs

4�G
: (3)

In single field inflation, the sound velocity is cs ¼ 1.
We quantize each two-mode system ð’k; ’�kÞ in the

Schrödinger picture (SP) which is best adapted to describe
the Gaussian states considered in the following sections.
The field amplitude is decomposed at a given time �in in
terms of time-independent creation and annihilation opera-
tors

’kð�inÞ ¼ 1ffiffiffiffiffi
2k

p ðaink þ ainy�kÞ;

�kð�inÞ ¼ �i

ffiffiffi
k

2

s
ðaink � ainy�kÞ;

(4a)

where ain and ainy verify the commutation relations

½aink ; ainyk0 � ¼ �ð3Þðk� k0Þ: (5)

The free vacuum will be taken to be the Bunch-Davis (BD)
vacuum, defined as the state which minimizes the
Hamiltonian (2) in the asymptotic past,

aink j0 ini ¼ 0; for �in ! �1: (6)

Alternately, in the Heisenberg picture (HP), it corresponds
to the state with only positive frequencies in the asymptotic

past. In the decomposition of the field amplitude ’kð�Þ ¼
aink’

in
k ð�Þ þ ainy�k’

in�
k ð�Þ, the mode functions ’in

k verify

ði@� � kÞ’in
k jk�!�1 ¼ 0: (7)

In a de Sitter background, a ¼ �1=H�, they are given by

’in
k ð�Þ ¼

1ffiffiffiffiffi
2k

p
�
1� i

k�

�
e�ik�: (8)

As is well known, there are no linear scalar perturbations in
a purely de Sitter background. The solution (8) merely
serves the purpose of writing the modes in a closed form.
In the slow-roll approximation, the scalar perturbation
spectra in the long wavelength limit (k� � 1) can be
inferred from the above solutions by the substitution H �
Hk=

ffiffiffiffiffi
�k

p
where the background quantities are evaluated at

horizon crossing, i.e. k ¼ akHk.
The free evolution corresponding to the Hamiltonian (2)

preserves the Gaussianity and the purity of the initial state
(6). In addition, each two-mode sector can be analyzed
independently since the state and the Hamiltonian split into
a tensor product and a sum, respectively,

j�inð�Þi¼
O

ð1=2Þk0s
j�k;�kð�Þi;

j�k;�kð�Þi¼T exp

�
�
Z �

�1
d�0Hk;�kð�0Þ

�
j0 in; ðk;�kÞi;

(9)

where the tensor product is over half of the wave vectors
since j�k;�ki is a two-mode state.

B. The covariance matrix

Because the pairs of modes are statistically independent
in the state (9), we consider only one such pair and drop the
index ðk;�kÞ. To use only one formalism throughout the
paper, from now on we adopt the density matrix notation

�ð�Þ ¼ j�ih�j: (10)

Since �ð�Þ is Gaussian, its statistical properties are
summarized in the one- and two-times correlation func-
tions. The former vanish identically by statistical homoge-
neity. Many of the second moments vanish as well, also
because of statistical homogeneity, namely Trð�’2

�kÞ ¼
Trð��2

�kÞ ¼ Trð�’k�kÞ ¼ Trð�’�k��kÞ ¼ 0. Finally,

due to the relation ’y
k ¼ ’�k and similarly for �k, the

remaining covariances can be conveniently condensed into
a 2� 2matrix (instead of 4� 4) that we shall also call the
covariance matrix,

C � 1

2
Trð�fV; VygÞ ¼ P’ P’�

P’� P�

� �
;

V ¼
ffiffiffi
k

p
’k

��k=
ffiffiffi
k

p
 !

;

(11)

where the P ’s are functions of � and k. In the inflationary
phase (approximated by a de Sitter evolution), they are
given by

P’ ¼ k

2
hf’k; ’�kgi ¼ kj’in

k j2 ¼
1

2

�
1þ 1

x2

�
; (12a)

P� ¼ 1

2k
hf�k; ��kgi ¼ k�1j@�’in

k j2 ¼
1

2

�
1� 1

x2
þ 1

x4

�
;

(12b)

P’� ¼ 1

2
hf’k; ��kgi ¼ 2Re½’in�

k @�’
in
k � ¼ � 1

2x3
; (12c)

where f; g is the anticommutator and we used the notation
x ¼ k�.
We introduce an additional representation of the state �

which clearly displays the entanglement between modes of
opposite wave vectors:

n � Trð�ð�Þainyk aink Þ; (13a)

c � Trð�ð�Þainkain�kÞ: (13b)

n is real while c is complex. The utility of this representa-
tion stems from the fact that n is simply related to the
power spectrum while jcj measures the strength of the
correlations between the two modes. These three real
numbers provide an equivalent representation of the co-
variance matrix since inverting Eqs. (4) and inserting into
(13) gives
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nþ 1
2 ¼ 1

2ðP’ þ P�Þ; ReðcÞ ¼ 1
2ðP’ � P�Þ;

ImðcÞ ¼ P’�:
(14)

As we shall see in Sec. III D, the determinant of C is
related to S, the von Neumann entropy of the state. With
(12), one finds that the x (time) dependence drops out and
thus

detðCÞ ¼ 1
4 () jcj2 ¼ nðnþ 1Þ () S ¼ 0: (15)

The minimal value that detðCÞ can take is 1=4. When this
lower bound is saturated, the state minimizes the
Heisenberg uncertainty relations since detðCÞ ¼ P’P� �
P 2

’� � 1=4.

The state of the linear perturbations is therefore charac-
terized by a single function, the power spectrum P’ðk; �Þ
(and an angle that plays no part in this paper). In realistic
models, i.e. with interactions, the complete description of
the system requires the full hierarchy of connected corre-
lation functions. Such knowledge is out of reach, and in
practice, one resorts to a coarse grained description. This
gives a reduced state �red characterized by a nonzero
entropy. The choice of the correlations that are discarded
must be done on physical grounds and in a way consistent
with the dynamics. This is the subject of the next section.

III. COARSE GRAINING AND REDUCED
GAUSSIAN DENSITY MATRICES

In Sec. III A, we present an operational definition of
reduced density matrices appropriate for interacting field
theories. The advantages of this definition will be empha-
sized in Paper II through the analysis of explicit models.
We apply it to cosmological perturbations in Sec. III C in
the simplest case, the Gaussian approximation. The prop-
erties of the Gaussian states are summarized in Sec. III D.

A. Operational definition of coarse graining

The program begins with the specification of a finite set

of ‘‘relevant’’ observables fÔ1; . . . ; Ông (which can be
functions of both time and space or momentum). This set
defines our knowledge about the state and the dynamics
(see Appendix A where this important aspect is empha-

sized) of the system. In general, the finite set fÔ1; . . . ; Ông
allows only for a partial reconstruction of this state. The
reconstruction is performed in the following way. The

reduced density matrix �redð �O1; . . . ;
�OnÞ is defined by the

constraints on the expectation values �Oj of these observ-

ables,

Tr ð�redÞ ¼ 1; Tr½�redð �O1; . . . ;
�OnÞÔj� � �Oj: (16)

There is of course an infinite number of density matrices
verifying these constraints. However, to be consistent with

our hypothesis that the Ôj are the only observables acces-

sible to us, we must choose the density matrix �red which

maximizes the entropy given the constraints (16):

S½�red� � S½��; (17)

where

S½�� ¼ �Trð� ln�Þ: (18)

The formal solution of this variational problem is [13]

�red ¼ 1

ZO
exp

�
�Xn

j¼1

�jÔn

�
;

ZO ¼ Tr

�
exp

�
�Xn

j¼1

�nÔj

��
:

(19)

[If these observables depend on space-time, one should

read
R
d3x�ðt;xÞÔnðt;xÞ.] This is an out-of-equilibrium

generalization of Gibbs canonical and grand canonical
states which reduce to these distributions in equilibrium.
The �n are Lagrange multipliers. The constraints on the

expectation values (16) are therefore written as

�O j ¼ � @

@�j

lnZO: (20)

One then inverts this system of n equations to express the
Lagrange multipliers in terms of the expectation values

�j ¼ �jð �O1; . . . ;
�OnÞ (21)

and substitutes in (19). The von Neumann entropy of the
solution �red is the Legendre transform of the logarithm of
the partition function ZO,

S½�red� ¼ lnZO þXn
j¼1

�j
�Oj ¼ Sð �O1; . . . ;

�OnÞ: (22)

For quantum fields, one notices the close resemblance
between lnZO and the generating functional of Green
functions, and between S and the effective action.
Notice that the solution (19) is formal. Ambiguities stem

from the noncommutativity of the operators Ôj. As a

result, (22) is strictly valid only when all the Ôj commute

[see also Eq. (A3) and the following comment]. In the
following we will only consider Gaussian density matrices.
The theory of their representation is well developed, and
we shall rely on this body of work. In particular, the
ordering ambiguities in (19) and (22) can be resolved.
The correct formula of the entropy is given by Eqs. (26)
and (27).

B. Application to quantum fields

For quantum fields, the above program transposes into
the following. We start from the observation that the
knowledge of the Green functions of a (self-)interacting
field is equivalent to the knowledge of the state of that field.
A coarse graining is therefore naturally defined by a trun-
cation of the BBGKY (Bogolyubov, Born, Green,
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Kirkwood, and Yvon) hierarchy of Green functions at a
given rankN. As explained above, to be self-consistent, the
hierarchy of Green functions must be closed.

This coarse graining is the field theoretic version of
Boltzmann’s Ansatz. In the latter, N-body interactions are
neglected for N � 3 and the object of physical interest is
the one-particle correlation function. Beyond the Gaussian
approximation, this coarse graining is formalized in terms
of the so-called n-particle irreducible representations of the
effective action [14].

C. Coarse grained description of metric perturbations

Let us apply this program to the scalar perturbation ’.
The lowest nontrivial order of truncation is at N ¼ 2. The
reduced density matrix is then defined by the anticommu-
tator of ’. The corresponding reduced density matrices
�red which maximize S are Gaussian [15]. These states will
be described in detail in the next sections. Here we wish to
give a qualitative understanding of this coarse graining.

Each Fourier component of the anticommutator de-
scribes the effective evolution of the two-mode sector
ð’k; ’�kÞ and can be analyzed separately, as it was the
case in the linearized treatment. The growth of entropy
associated with the coarse graining in the present case can
therefore be described by the set of Gaussian two-mode
density matrices �red

k;�k. Each of them characterizes the loss

of entanglement between the two modes in the presence of
interactions, which are self-interactions of gravity or (and)
interactions of the metric perturbations with other fields
(e.g. the fields of the standard model of particle physics or
isocurvature perturbations in multi-inflaton field scenar-
ios). The environmental degrees of freedom are thus either
the collection of the modes’k0�k, or modes of other fields.

Returning to the formalism, for each two-mode, �red
k;�k is

defined by the anticommutator

Gað�;�0; kÞ ¼ 1

2

Z
d3xeikx Tr½�totð�inÞ

� f’ð�;xÞ; ’ð�0; 0Þg�; (23)

where the in-state �totð�inÞ is the interacting vacuum of the
total system. It replaces the Bunch-Davis vacuum of line-
arized modes. ’ð�;xÞ is the Heisenberg operator of the
nonlinear metric perturbations. In the SP, using (11),
�redð�Þ is the Gaussian density matrix possessing the fol-
lowing covariance matrix:

P’ ¼ Gað�;�; kÞ; P’� ¼ @�0Gað�;�0; kÞj�¼�0 ;

P� ¼ @�@�0Gað�;�0; kÞj�¼�0 : (24)

It will indeed be shown in [4] that in the Gaussian approxi-
mation it is always possible to make a canonical trans-
formation ð’;�0Þ � ð’;� ¼ @�’Þ. As we recalled in

Sec. IV, the entropy is invariant under canonical trans-
formations. Throughout this paper we use this Gaussian
approximation. Since the interactions do not spoil the

property of statistical homogeneity, the reduced states
can be described in the same way as the pure state of the
linear perturbations (Sec. II). Only the values of the co-
variance matrix element differ. These are now given by
(24) in place of (12). We call these states GHDM.

D. Entropy of �red

To measure the strength of the correlations between k
and �k, we introduce the parameter � defined by

jcj2 � nðnþ 1� �Þ; 0 	 � 	 nþ 1: (25)

The standard inflationary distribution of Sec. II is maxi-
mally coherent and corresponds to � ¼ 0. The least coher-
ent distribution corresponds to � ¼ nþ 1. The entropy
(17) is a strictly growing function of �. It is related to the
determinant of the covariance matrix by

S ¼ �Trð� ln�Þ ¼ 2½ð �nþ 1Þ lnð �nþ 1Þ � �n lnð �nÞ�; (26)

where the parameter �n is defined by

ð �nþ 1
2Þ2 � detðCÞ ¼ 1

4 þ n�: (27)

The prefactor 2 in (26) accounts for the fact that � is the
state of two modes. In the range � 
 1=n, n 
 1, the
expression (26) of the entropy simplifies,

�n ’ ffiffiffiffiffiffi
n�

p
; S ¼ lnðn�Þ þOð1Þ: (28)

These equations have a simple geometric interpretation
that we will use in Secs. VI and VIIA. The instantaneous
eigenvectors of the covariance matrix are given by the
rotated canonical variables

�kð�Þ ¼ cos�
ffiffiffi
k

p
’in

k þ sin�
�in

kffiffiffi
k

p

¼ 1ffiffiffi
2

p ðâinke�i� þ âiny�ke
þi�Þ;

�kð�Þ ¼ � sin�
ffiffiffi
k

p
’in

k þ cos�
�in

kffiffiffi
k

p

¼ �iffiffiffi
2

p ðâinke�i� � âiny�ke
þi�Þ:

(29)

The angle � ¼ �ð�Þ ¼ 1
2 argðcð�ÞÞ gives the orientation of

the eigenbasis of the covariance matrix with respect to the
(fixed) original variables ’in

k and �in�k. The eigenvalues of
the covariance matrix are the variances of � and �,

hf�k;�
y
kgi ¼ nþ 1

2 þ jcj ¼ 2nþOð1; �Þ;(30a)
hf�k;�

y
kgi ¼ nþ 1

2
� jcj ¼ �

2
þO

�
1

n

�
;(30b)

and hf�k;�
y
kgi ¼ 0. Hence, when � 
 1=n, one has

detðCÞ ’ n� ’ A ) S ’ lnA; (31)

where A is the area under the 1� 	 contour in phase
space.

DECOHERENCE AND . . .. I. FORMALISM AND . . . PHYSICAL REVIEW D 78, 065044 (2008)

065044-5



IV. THE INTRINSIC PROPERTIES OF GHDM

The von Neumann entropy S ¼ �Trð� lnð�ÞÞ is mani-
festly an intrinsic property of the state. We show that for
GHMD it is the only intrinsic property. Important conse-
quences are then derived.

A. Entropy as the unique intrinsic property

To illustrate the question, let us first consider the follow-
ing situation. In place of the Mukhanov-Sasaki variable,
one could choose instead to work directly with the curva-
ture perturbation � . The quadratic part of the Lagrangian is

S� ¼ 1

8�G

Z
dtd3x�ðtÞ½a3ð _�Þ2 � aðr�Þ2�; (32)

where _� ¼ @t� ¼ a�1@�� . The conjugate momentum of

the curvature perturbation is

�� ðtÞ ¼ a3�

4�G
_�ðtÞ: (33)

Assuming the slow-roll condition � ’ cte and _�=H� ’ cte,
the modes with positive frequency in the asymptotic past
are

�kð�Þ ¼ �0k ð1þ ik�Þe�ik�; j�0k j2 ¼
4�G

�k

H2
k

2k3
: (34)

From this solution and (33), one obtains the following
expressions for the covariance matrix at tree level:

P � � 1
2hf�kð
Þ; ��kð
Þgi ¼ j�0k j2ð1þ x2Þ; (35a)

P �� � 1

2
hf�kð
Þ; ��kð
Þgi ¼ � a3�

4�G
Hx2j�0k j2; (35b)

P� � 1

2
hf�kð
Þ; ��kð
Þgi ¼

�
a3�

4�G

�
2
H2x4j�0k j2: (35c)

Despite the differences with the variances (12), one checks
that detðCÞ ¼ 1=4. The determinant of the covariance ma-
trix, and hence the entropy, are invariant under the linear
canonical transformation ð’;�Þ � ð�; �� Þ.

More generally, the entropy does not depend on the
choice of canonical variables. Indeed, canonical transfor-
mations are linear symplectic transformations of the co-
variance matrix. The intrinsic properties of �red are
therefore the symplectic invariants [of the group Spð4;RÞ
for a system of two modes]. The symplectic invariants of
4� 4 covariance matrices are known [16]. When the con-
straint of statistical homogeneity is added, these invariants
degenerate into a single quantity, namely, the determinant
of C. In other words, detðCÞ is the unique intrinsic property
of the effective Gaussian state �red of the cosmological
perturbations. ‘‘Unique’’ here is employed in the sense of
an equivalence class: any quantity which can be expressed
in terms of detðCÞ only, e.g. the entropy, characterizes the
same quantity. It is interesting to notice that this unique-
ness rests on statistical homogeneity.

We now apply this result to prove that the entropy is well
defined despite the redundancy of Einstein’s equations and
the arbitrariness in the definition of the perturbatively
renormalized Green functions.

B. Entropy and gauge invariance

The entropy of metric perturbations is independent of
the choice of gauge. The reason is that, in a change of
coordinates x� � x� þ ��, the Lagrangian (of Einstein-
Hilbert plus the inflaton) changes by a total derivative. It
can therefore be seen as a canonical transformation. That
the entropy is a gauge invariant quantity can also be seen
independently from the fact that we quantize gauge invari-
ant variables like the Mukhanov-Sasaki variable or the
comoving curvature perturbations.

C. Entropy and renormalization

To show the independence of the entropy of the renor-
malization scheme, we proceed in three steps. We consider
first renormalizable field theories inMinkowski space, then
generalize to nonrenormalizable theories in Minkowski
space, and finally to nonrenormalizable theories on a
curved background. In what follows we are only consider-
ing the entropy per two-mode.
For renormalizable theories in Minkowski space, we

have to examine two potential sources of ambiguities, the
parameters of the Lagrangian and the wave function renor-
malization. First consider the parameters. They are local
terms in the effective action, and therefore appear as local
terms in the equation of the propagator. It can be checked
(see Paper II) that they are not responsible for the change of
entropy.
In a renormalizable theory, after renormalization of the

bare parameters, the renormalized Green’s functions are
numerically equal to the bare ones, up to a multiplication
factor given by the wave function renormalization constant
(s) to the appropriate power. The field strength renormal-
ization is also a canonical transformation, and therefore
leaves the entropy unchanged. The quadratic part of the
bare Hamiltonian is, in general,

H ¼ 1

2

Z
d3x

�
Z�

�2


2�a3
þ Z�


2�aðr�Þ2
�
; (36)

where Z� and Z� renormalize the operators h�ðxÞ�ðyÞi and
h�ðxÞ�ðyÞi. The commutation relation ½�ðt;xÞ; �ðt; yÞ� ¼
i�ð3Þðx� yÞ implies

Z� ¼ 1

Z�

: (37)

The renormalization of the wave function therefore leaves
detðCÞ unchanged since the two products h�kðtÞ��kðtÞi �
h�kðtÞ��kðtÞi and hf�kðtÞ; ��kðtÞgi2 involve the same
number of � and �.
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The situation is a little different in a nonrenormalizable
theory (still in Minkowski space) because the cancellation
of divergences at the order L of the loop expansion requires
counterterms with higher derivatives. However, at order L,
these counterterms are local and therefore do not change
the entropy. In other words, the nonlocal parts of the
effective action [e.g. in Fourier space terms like

lnð�k2=�2Þ or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�k2=�2
p

] responsible for the growth of
entropy are precisely those predicted by the quantum the-
ory [17]. Irrelevant operators containing more than two
derivatives require some care, since the equation of the
two-point function is then higher than second order and can
no longer be solved from the knowledge of the covariance
matrix at an initial time. These higher derivative terms are
generally discarded in a self-consistent perturbative treat-
ment, because the extra solutions of the propagation equa-
tion are not analytic in the limit @ ! 0 [18]. In this self-
consistent perturbative sense, these counterterms do not
introduce ambiguities to the definition of the entropy.

Transposition to a curved background should not alter
these conclusions because the previous considerations
about the canonical structure, the distinction between local
and nonlocal corrections and their distinct contributions to
the entropy, and the role of higher derivative operators, still
hold on a curved background. However, we have not
verified explicitly for the models of Paper II that the
counterterms do not introduce ambiguities in a self-
consistent perturbative treatment. We leave this analysis
for future work.

V. SEPARABLE DENSITY MATRICES AS
CLASSICAL STATES

To interpret the value of the entropy induced by a given
coarse graining, we need a classification of the correspond-
ing reduced states. In the class of two-mode density ma-
trices there exists an operational definition of classical
states. After recalling the definition of separability, we
explain why it cannot be applied unambiguously to cos-
mological perturbations during the inflationary era.

A. Definition and characterization of separable states

The state (9) is entangled, i.e. it violates some Bell
inequalities [19]. We recall that this entanglement refers
to the correlations between the modes of opposite wave
vectors. The definition of classicality called separability is
a statement on the nature of these correlations. Explicitly,
separable states do not violate any Bell inequality based on
pairs of observables, each of them acting only in one
sector, i.e. on k or on �k. These states can therefore be
represented as a convex sum of tensor products of density
matrices [20],

�sep ¼
X
l

pl�
ðlÞ
k � �ðlÞ

�k; pl � 0: (38)

Unlike entangled states, these can be prepared with local
classical operations (in the sense that one can prepare the

states �ðlÞ
k and �ðlÞ

�k without making the modes k and �k
interact), and by using a random generator (characterized
by the probabilities pl). Although physically transparent,
this definition (38) is of little practical use because of the
difficulty of proving or disproving the existence of the set

of �ðlÞ and pl. Fortunately, for Gaussian states, a criterion
of separability is known [21]. For the GHDM, it is ex-
pressed as the following inequality on the parameter � [3]:

�red separable () � ¼ 1: (39)

In brief, GHDM fall into two disjoint classes, separable
states (� � 1) which are operationally indistinguishable
from stochastic ensembles, and entangled states (� < 1)
characterized by a departure of the anticommutator from
classical correlations. This is the definition of a classical
GHDM that we adopt.
Finally, at the threshold of separability, the entropy is

equal to one-half of the entropy of the thermal state with
the same value of n (for n 
 1), see Eq. (28),

Sðn; � ¼ 1Þ ¼ 1
2SmaxðnÞ ’ lnðnÞ: (40)

B. Discussion

From (14), we see that the values of n and c, and there-
fore that of � as well, depend on the choice of canonical
variables. As explained in Sec. IV, only the combination

detðCÞ ¼ ðnþ 1
2Þ2 � jcj2 (41)

does not. This poses a fundamental limitation to the appli-
cability of the criterion of separability to systems with a
time-dependent Hamiltonian, and therefore to the cosmo-
logical perturbations during inflation; see (2).
For instance, in place of the variables (’k, ��k ¼

@�’k) and the Hamiltonian (2), one could choose to

work with the variables ’k and ~��k ¼ @�’k �
ðz0=zÞ’k, as done, for instance, in [2]. In this case the
corresponding Hamiltonian is

Hk;�k ¼ j ~�kj2 þ k2j’kj2 þ
@�z

z
ð ~��k’k þ ~�k’�kÞ:

(42)

We leave it to the reader to verify that in the Bunch-Davis
vacuum the functional dependence of the variances is
different from Eq. (14) while detðCÞ ¼ 1=4. However,
the canonical transformation from these two sets of varia-
bles mixes modes of opposite wave vectors; i.e. it belongs
to Spð4Þ but not to its subgroup Spð2Þ � Spð2Þ. The prop-
erty of ðk;�kÞ separability is therefore not stable under
such canonical transformations.
As a result, the threshold of separability (40) depends,

during inflation, on the choice of canonical variables. The
inequality � � 1 is in fact an inequality on the eigenvalues
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of the so-called partial transpose of the density matrix [21].
Namely, the lowest eigenvalue should be larger than the
variance in the vacuum state. Hence, for any choice of the

creation and annihilation operators ðaðiÞ; ayðiÞÞ, it yields

�ðiÞ � 1. Therefore a separable state in the i representation
can be entangled in other representations related to it by a
Bogoliubov transformation mixing the modes k and �k.

In this we find another illustration of the well-known fact
that when the frequency varies, one loses some of the
useful characterizations of quantum states. Remember
that in time-dependent backgrounds there is no intrinsic
definition of the occupation number, even though the ex-
pectation value of the stress tensor stays well defined. Here,
even though the entropy is well defined, the criterion of
classicality is not clearly defined as long as the frequency
significantly varies (to be more precise, outside the validity
domain of the WKB approximation.) Since there is no
clear notion of particle as pair creation (or mode amplifi-
cation) proceeds, there is no clear distinction between
quantum and classical states, as illustrated by the criterion
of separability.

On the contrary, during the radiation dominated era, this
ambiguity disappears since the mode frequency of the
Mukhanov-Sasaki variable is constant (because z ¼ cte)
[12]. Then, defining classical states as the separable ones
presents several advantages. First, since it relies on the
possibility of violating Bell inequalities, it is an operational
definition. Second, the separation between quantum and
classical states is sharp. This contradicts the common
belief that the quantum-to-classical transition is fuzzy.
Being sharp, ‘‘the time of decoherence’’ is also precisely
defined. Starting from an entangled state, this transition
occurs at the time when � crosses 1.

VI. OTHER CRITERIA OF CLASSICALITY

We show the equivalence between separability and three
other classicality criteria. The latter suffer from the same
ambiguities during inflation as the one of separability.
They must therefore be compared to each other in the
same representation, e.g. that defined in Sec. II. We con-
clude by discussing a class of inequivalent criteria which
do not suffer from the above ambiguity but which are based
on another arbitrary choice.

A. Criteria equivalent to separability

1. The broadness of the Wigner representation

A first alternative criterion was introduced in [22] for
one-mode systems, generalized in [23] to two-mode sys-
tems, and applied to cosmological perturbations in [11]. It
rests on the observation that, in many respects, the Wigner
representation behaves like a probability density over
phase space, except for the fact that it can have a finer
structure than @ and, in particular, can take negative values
in small regions.

We recall that theWigner function can be defined by [for
a system with canonical variables ðq; pÞ]

W�ðq; pÞ �
Z d�

2�
eip��

�
q��

2
; qþ�

2

�
: (43)

For Gaussian states, W� is Gaussian and its covariance

matrix is C of Eq. (11). Although it is positive everywhere,
we see from Eq. (30b) that when � < 1, the variance of the
subfluctuant variable � is smaller than the variance in the
vacuum. The criterion of classicality therefore consists of
asking that the Wigner representation does not contain
features that are smaller than those of the Wigner function
in the vacuum state (this definition includes the case of
negative values). For GHDM, we therefore expect that this
is the case when

h��yi � 1
2 ; (44)

i.e. � � 1þOð1=nÞ, which is equivalent to the criterion
(39) for large n.
This requirement is made more precise by asking that

the Wigner representation of �red is broad enough to be the
Husimi (orQ) representation of some normalizable density
matrix �0. Indeed, the Wigner representation of a state �0 is
mapped onto its Q representation by a convolution with a
Gaussian function of covariance matrix 1

2 , i.e.

Q�0 ðq; pÞ ¼
Z dq0dp0

2�
e�ðq�q0Þ2�ðp�p0Þ2W�0 ðq0; p0Þ; (45)

which explains why the Husimi representation Q�0 of �0 is
a broader function than its Wigner representation W�0 .

Moreover, the Husimi representation Q�0 of any density

matrix is positive because Q�0 ðq; pÞ is the expectation

value of �0 in the coherent state jðqþ ipÞ= ffiffiffi
2

p i. We show
in Appendix B that the GHDM � verifying this condition
are

� � �Q ¼ 1þ 1

4n
¼ �sep þ 1

4n
; (46)

as anticipated from the heuristic argument in the previous
paragraph. It is larger than the condition of separability, but
only slightly, and the two criteria are equivalent in the limit
n 
 1 relevant for cosmological perturbations.

2. P representability

A second alternative definition of classicality is the
requirement that �red admits a P representation as defined
by Glauber [3,24]. It means that the states can be written as
a statistical mixture of coherent states,

�P-repr �
Z d2v

�

d2w

�
Pðv;wÞjv;kihv;kj

� jw;�kihw;�kj; (47)

where Pðv;wÞ is a normalizable Gaussian distribution. A
P-representable state is obviously separable. In general,
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the converse is not true, but it turns out that for GHDM P
representability and separability are equivalent. Hence a
GHDM is P representable if, and only if,

� � 1 ¼ �sep: (48)

To avoid any misunderstanding, we emphasize that this
condition does not mean that coherent states are ‘‘the
pointer states.’’ These have only been used as a resolution
of the identity. We shall return to this point in the next
section.

3. Decay of off-diagonal matrix elements

A third alternative condition of classical two-mode
states is provided by the decay of interference terms of
macroscopically distinct states, sometimes referred to as
Schrödinger cat states. Since this decay is asymptotic, this
criterion is less precise than the other three criteria.
However, it is qualitatively equivalent to them in the
following sense. We refer to Appendix D in [3] for details.
The off-diagonal matrix elements of the density matrix of
the pure state (6) in, say, the basis of coherent states are
correlated over a range / n. Using the coherent states as
representative of semiclassical configurations of the field at
a given time, the squeezed state is a linear superposition of
macroscopically distinct semiclassical configurations. As
for the entropy, see (40), the correlation length between
off-diagonal matrix elements is very sensitive to the value
of � in the range [0,1] where it decreases monotonously
from OðnÞ to Oð1Þ as � increases. For � � 1, the correla-
tion length depends very slowly on � and stays Oð1Þ.
Hence the decay of the correlation length also distin-
guishes classical Gaussian states as those with � � 1.

4. Adding one quantum incoherently

There is a simple physical interpretation of the criterion
� � 1. Such a density matrix is obtained from the pure
state by adding incoherently one quantum on average [24].
One obtains

n � n0 ¼ nþ 1
2; jcj � jc0j ¼ jcj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
:

(49)

We have split evenly the contribution of the quantum
between each mode in order to preserve statistical homo-
geneity. One obtains that the corresponding value of �
defined by jc0j2 ¼ n0ðn0 þ 1� �Þ is

� ¼ 1þ 1

2n
þO

�
1

n2

�
; (50)

in agreement with the other criteria when n 
 1. As an
interesting side remark, remembering Eq. (40), the fact that
the entropy gain associated with this addition of one quan-
tum is large clearly establishes the fragile character of the
quantum entanglement.

B. Inequivalent criteria

Let us now discuss a criterion [11,25] which is not
equivalent to the above four criteria. Instead of adding
incoherently one quantum, one can consider the entropy
gain associated with the loss of one bit of information.
Then, whatever the system is, the change of entropy is S ¼
lnð2Þ. Applying this criterion to the standard inflationary
distribution, the value of the parameter � is

�one bit ’ 0:4

n
: (51)

The statistical properties of the corresponding density
matrix are essentially the same as those of the original
pure state.1 For instance, Bell inequalities are still violated,
and the correlation length between off-diagonal matrix
elements is still OðnÞ.

C. Summary

In conclusion, we have found that the various criteria of
decoherence fall into two distinct classes. On the one hand,
classical states with respect to the statistics of the anti-

commutator Ô ¼ f’kðtÞ; ’�kðt0Þg are the separable states
with � � 1. This criterion is ambiguous during inflation
because it rests on a choice of canonical variables ’k; �k.
On the other hand, a lower bound on the entropy S � lnðNÞ
is intrinsic, as only the value of the entropy is involved.
However, we could not identify any operator(s) to which
this criterion might refer. The value of N is therefore not
dictated by any physical property of the state. (It might be
provided by the resolution of observational data, but this
would confirm that it does not characterize the state of the
system.)

VII. DECOHERENCE AND STATISTICAL
MIXTURES

The two classes of criteria presented above seem a priori
rather different, as the first class is based on the quantum
properties of the system, whereas the second class is based
on a lower bound for the entropy. In this section, we show

1It was noticed in [25] that adding one quantum yields to S ¼
Smax=2, but no physical interpretation was mentioned. In this
early work, the authors do not, however, refer to the criteria of
Sec. VIA and prefer instead the criterion S ¼ lnð2Þ, referring to
[26] for an experimental situation where decoherence is effective
for such values. This reference is misleading. Indeed, the ex-
perimental observation of decoherence reported there concerns a
system of a two-level atom in a cavity interacting with the
electromagnetic field in a coherent state (the environment).
One finds that the interferences are blurred when one photon
is exchanged. Since the Hilbert space of the atom has two
dimensions, the exchange of one photon between the system
and the environment is equivalent to the exchange of one bit. In
inflationary cosmology, since n ’ 10100, this correspondence is
lost.

DECOHERENCE AND . . .. I. FORMALISM AND . . . PHYSICAL REVIEW D 78, 065044 (2008)

065044-9



that these two criteria can be incorporated into a single
treatment.

A. A picture of decoherence

First we need to write two-mode density matrices as a
tensor product of two one-mode density matrices. Indeed,
recall that entangled states cannot be represented in the
form (47). Instead, all GHDM can be decomposed as

�k;�kð�Þ ¼ �1ð�Þ � �2ð�Þ; (52)

where 1 and 2 refer to a separation of the Hilbert space into
two sectors defined by the variables

’1;2 � ’k � i’�kffiffiffi
2

p : (53)

Because of homogeneity, the matrices �1 and �2 are char-
acterized by the same covariance matrix C, which, more-
over, coincides with that of �. Explicitly, one has

C1 ¼ C2 ¼ h’2
1i 1

2 hf’1; �1gi
1
2 hf’1; �1gi h�2

1i
 !

¼ P’ P’�

P’� P�

� �
¼ C: (54)

In this way, the properties of the state of cosmological
perturbations have been encoded into two fictitious one-
mode systems. The entanglement (� < 1) between modes
of opposite wave vectors k and �k reflects into the ex-
istence of two subfluctuant variables �1;2 as in Eq. (30b).

The question we address concerns the use of minimal
Gaussian states jðv; �Þi of ’1;2, i.e. squeezed coherent

states, to represent the states �1;2ð�Þ as statistical mixtures

in the following sense:

�1ð�Þ ¼
Z d2v

�
P�ðv;�Þjðv; �Þihðv; �Þj; (55)

that is, by summing only over the complex displacement v.
The basis of states we use therefore have a common
orientation and elongation which is fixed by the squeezing
parameter

� ¼ re2i�c : (56)

Using the 1	 contour in phase space, the state jðv; �Þi is
represented by an ellipse of unit area, centered around
ð �’1 / ReðvÞ; ��1 / ImðvÞÞ, with a long axis (the superflu-
ctuant direction) h��yi / e2r making and angle �c w.r.t.
the horizontal ’1 axis. The latter is chosen for simplicity
along the superfluctuant mode of �1 defined in Eq. (30a).
Hence in this ‘‘frame’’ �c is the relative angle between the
big axis of �1 and the big axis of jðv; �Þi; see Eq. (C12).

As shown in Appendix C, the states �1;2ð�Þ can be

represented as in (55) for any value of �. More interest-
ingly, the choice of the basis vector, which is parametrized
by �, is more limited when � < 1, in that the range of

allowed values of �c belongs to a bounded interval which
shrinks to zero as � ! 0. That is to say, the pure state (� ¼
0) admits only one representation, itself. As � increases
from zero, the allowed range of �c increases but is neces-
sarily strictly smaller than �=2. One can say that �1

‘‘polarizes’’ the pavement (55) along its superfluctuant
mode. In addition, the range of r also increases and the
distribution P�ðvÞ becomes broader, which means that a

growing number of families of minimal states can be used
to represent �1ð�Þ. For any � < 1, one must have r > 0; i.e.
the states jðv; �Þi are necessarily squeezed (and as we saw,
they tend to align with the big axis of �1). When the
threshold of separability is approached, i.e. � ! 1�, the
lower bound of r decreases to zero. In this limit one can
represent �1ð� � 1Þ with coherent states. Notice also that
as � increases, the distribution P �ðv;�Þ becomes broader

(in v) and, at the threshold of separability, does not have
any structure finer that a unit cell of phase space. In this we
recover what was observed in Sec. VIA 1.
The fact that �1 polarizes phase space is easy to under-

stand a contrario. Indeed, consider the minimal states
which are squeezed in the direction perpendicular to that
of �1, i.e. �c ¼ �=2. The corresponding spread in the
subfluctuant variable � of (29) is large. A statistical mix-
ture of these states is necessarily spread out in the �
direction, i.e. h��yi> 1=2, that is � > 1 [see (30)] and
therefore S > Smax=2.
Let us formulate these results the other way around in

terms of �� (or S�), the amount of decoherence (or en-

tropy) needed for the state to be written in the � basis as in
Eq. (55). According to what we just said, the further
jðv; �Þi departs from �1, the larger is �� (and S�). For

well-aligned jðv; �Þi, i.e. for �c ¼ 0, 8j�j ¼ r � 0, we
have �� < �sep, the minimal amount of decoherence to

reach the separability threshold.
Hence, given a certain decoherence rate, these consid-

erations translate into the time of decoherence t�, i.e. the

time t� after which any initial state �1ðt0Þ has evolved, as
decoherence proceeds (as � increases), into the statistical
mixture (55) for that value of �. When using again well-
aligned jðv; �Þi, this defines tsep as the maximal t�. It is also

the first time that the representation (47) is allowed.

B. Ambiguity in choosing pointer states

Pointer states are meant to bridge the gap between the
quantum and classical descriptions of a system [27,28].
The defining property of pointer states is their robustness
over a given lapse of time tp:s: which makes them the

quantum counterparts of points in the phase space of
classical mechanics. That is, once the system has been
prepared into a given initial state and placed into contact
with a given environment, pointer states are the states the
least perturbed by the environment over tp:s:. One generally

obtains radically different pointer states whether tp:s: is
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much smaller or comparable to the dynamical time scales
of the open dynamics (the proper frequency of the system
or the characteristic time of dissipation).

To make the choice of tp:s: less arbitrary, one often adds

the requirement that any initial state of the system evolves,
over a time tD, into a density matrix which cannot be
operationally distinguished from a statistical mixture of
the pointer states. Since the evolution of both the pointer
states and � are governed by the same dynamics, consis-
tency requires that the times tp:s: and tD be commensurable.

As we saw at the end of Sec. VII A, choosing a family of
pointer states [i.e. a pair ðr; �cÞ] is arbitrary since it
amounts to a choice of ��, or to a choice of a lower bound

S � lnðN�Þ which we recall is not dictated by physical

considerations. The corresponding time of decoherence
tD ¼ t� is therefore arbitrary. But there is a more funda-

mental obstruction to the identification of a pointer basis
during inflation; namely, pointer states refer to a choice of
canonical variables, which is arbitrary when the
Hamiltonian depends explicitly on time (compare, for in-
stance, narrow wave packets in ’ or �).

In brief, on the one hand, during inflation the question of
finding ‘‘the’’ pointer states is not well defined. On the
other hand, during the radiation dominated era the criterion
of separability offers an unambiguous definition of classi-
cal states based on the statistical properties of the state.
From these two facts we conclude that the concept of
pointer states does not seem useful to analyze the decoher-
ence of cosmological perturbations.

VIII. SUMMARY

By truncating the hierarchy of Green functions, we first
show how to get a reduced density matrix for the adiabatic
perturbations, in a self-consistent manner, and from the
interacting properties of the system itself, i.e. without
introducing some ad hoc environmental degrees of
freedom.

When truncating the hierarchy at the first nontrivial
level, statistical homogeneity still implies that the density
matrix factorizes into sectors of opposite wave vectors.
Hence the reduced density matrix of each sector is deter-
mined by three moments related to the anticommutator
function; see (24). This also implies that decoherence
here describes the loss of the entanglement of these two
modes. The level of decoherence is characterized by one
real parameter in each sector, the parameter � introduced
in (25).

We then show that the entropy S contained in each
reduced two-mode density matrix is a well-defined quan-
tity which monotonously grows with �. The important
conclusion is that S is the only intrinsic quantity of these
reduced density matrices, that is, the only quantity whose
value does not depend on the choice of a pair of canonical
variables.

After the entropy, we studied the quantum-to-classical
transition. We show that the criterion of separability agrees
with three other criteria, namely, the broadness of the
Wigner function, the P representability, and the neglect
of off-diagonal elements of the density matrix. During
inflation, these four concepts are ill defined, because, con-
trary to the entropy, they require us to have selected some
creation and destruction operators, which is ambiguous
since the frequency significantly varies when modes are
amplified.
We compare the above four criteria which give a large

entropy at the threshold of classicality, see (40), to another
class of criteria which give much smaller entropies, see
(51), and explain why they differ so much. In the last
section, we present a unified treatment of the reduced
density matrices in which both types of criteria can be
found. We show that each reduced density matrix can be
written as statistical mixtures of minimal states which
possess a well-defined range of the squeezing parameter
� of Eq. (56). The details are given in Appendix C.
This analysis clearly shows that there is no intrinsic

definition of a threshold of decoherence (or a critical
entropy) at which the quantum-to-classical transition
would occur during inflation. We also argue that the pointer
states are of no help in providing such a definition.
In the next paper, we calculate the entropy for two

dynamical models. It appears that no significant entropy
is gained during single field inflation, so that the quantum-
to-classical transition should occur during the adiabatic
era. On the contrary, it is very efficient in multifield
scenarios.
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APPENDIX A: WHY BOTHER ABOUT THE
COVARIANCE MATRIX ?

In this appendix, we emphasize the role of the dynamics
and the canonical structure in defining reduced states and
their associated entropy.
One may object to our analysis of the two-point function

at different times on the grounds that one can only measure
the values of this correlation function on our past light cone
or on the last scattering surface. This objection can be
answered as follows. The outcomes of a measurement are
analyzed through the grid of a particular dynamical model.
There are, in general, more dynamical variables necessary
to write a consistent model than one can actually measure.
The state of the system, either the exact state or a partial
reconstruction of it, depends on both the outcome of the
measurement (for instance, the values of the power spec-
trum and bispectrum) and the correlation functions.
As an example, we keep only the power spectrum and

show that this assumption is untenable as it amounts to
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ignoring the canonical structure of the theory. As a result,
the von Neumann entropy of the reconstructed state is not
well defined. Indeed, following the algorithm of Sec. III A,
we write the Ansatz for the density matrix,

�� ¼ 1

Z�

exp

�
��

k3

2�2
�̂2
�
¼
Z

d�Pð�Þj�ih�j;

Z� ¼
ffiffiffiffi
�

�

r
;

(A1)

where � is a Lagrange multiplier ensuring that the power

spectrum of � has the measured value P� , i.e. P � ðqÞ ¼
Trð���̂q�̂�qÞ ¼ 1=2�. The distribution Pð�Þ is therefore

Pð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�P �

q exp

�
� k3

2�2

�2

2P �

�
; (A2)

and the von Neumann entropy is then found to be

S ¼ lnZ� þ �P � ¼ 1
2 lnð2�P � Þ þ 1

2: (A3)

The constant 1=2 is universal and corresponds in this
scheme to the entropy of the vacuum. For P � � 10�10,

the entropy (A3) is negative. To cure these pathologies, we
must add some physical input, i.e. enlarge the set of
observables to include the variances P� and P ��.

Another way to see the necessity of considering C rather
than P � alone is the following. Note that even though the

state (A1) is Gaussian, we cannot calculate its von
Neumann entropy from the formulas (11), (26), and (27).
The latter are only valid for a state reconstructed from the
anticommutator function. If one insists on doing so, one
finds P� ¼ 1 (since �� is diagonal in the field-amplitude

basis), so that the entropy is infinite. The state �� must

therefore be regularized first, by giving a finite width to
h�2i. This operation is arbitrary without additional physi-
cal input about the dynamics.

APPENDIX B: EQUIVALENCE OF THE CRITERIA
OF SEPARABILITYAND OF BROADNESS OF THE

WIGNER FUNCTION

Let us consider a Gaussian density matrix � of a bipar-
tite system and let C be its covariance matrix. We adopt a
different parametrization than in the text, following [21],

C ¼ Trð�fA; AygÞ ¼

nþ 1
2 0 0 c

0 nþ 1
2 c� 0

0 c nþ 1
2 0

c� 0 0 nþ 1
2

0
BBBBBB@

1
CCCCCCA;

A ¼

ak

ayk
a�k

ay�k

0
BBBBB@

1
CCCCCA: (B1)

The positivity of the density matrix and the noncommuta-
tivity of the creation and annihilation operators puts a
constraint on C, namely,

Cþ E

2
� 0; E ¼

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

0
BBB@

1
CCCA: (B2)

This is the general form of the Heisenberg uncertainty
relation for the second moments. Indeed, this condition
puts a lower bound on the lowest eigenvalue ofC, which, in
the case of homogeneous states, reads nþ 1=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijcj2 þ 1=4
p � 0. The latter can be recast as the
Heisenberg uncertainty relation,

hakaykihaykaki � jhakakij2: (B3)

A necessary and sufficient condition for the separability
of a GHDM 2 is

� separable () �C�þ E

2
� 0;

� ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
BBB@

1
CCCA;

(B4)

which gives n� jcj � 0, or � � 1 using (25).
A different criterion than separability is used in [22].

With this condition, the Wigner representation of � must
be broad enough to also be the Q representation of a
density matrix �0. We specialize to Gaussian states. To
obtain the corresponding condition on theWigner function,
one simply notices that the convolution of the Wigner
representation of a state � with a Gaussian of covariance
matrix 1=2 yields the Q representation of that state,

W�ðVÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
detC

p exp

�
� 1

2
VyC�1V

�
�

Q�ðVÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detCQ

p exp

�
� 1

2
VyC�1

Q V

�
;

with C � CQ ¼ Cþ 1

2
; (B5)

where Vy ¼ ð’;�y; ’y; �Þ. Hence the condition (B2) on
C can be written as a similar condition for the covariances
CQ of the Q representation,

2We recall that a necessary condition for � to be a separable
density matrix is that its partial transpose is a bona fide den-
sity matrix [29]. The partial transpose �pt is, by definition,
obtained from � by a transposition in one sector only, say
�k. In any basis jn;kijm;�ki, this is written as
hn;kjhm;�kj�ptjm0;�kijn0;ki¼ hn;kjhm0;�kj�jm;�kijn0;ki.
In Eq. (B4) this operation is implemented by the matrix �.
Gaussian states are separable when this condition is satisfied
[21].
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Cþ 1
2ðE� 1Þ � 0: (B6)

In consequence, a necessary condition for the Wigner
representation W� of a state � to also be the Q representa-

tion Q�0 of a state �0 is that the covariance matrix C of �

verifies Cþ 1
2 ðE� 1Þ � 0. For Gaussian states, this con-

dition is also sufficient. Specializing now to the case of
GHDM, we arrive at the conclusion

n2 � 1=4 � jcj2()� � 1þ 1

4n
: (B7)

This is slightly more constraining than the separability
condition n � jcj, but the difference between the two is
not relevant when n 
 1.

APPENDIX C: REPRESENTATIONS OF
PARTIALLY DECOHERED DISTRIBUTIONS

In this appendix we show that all partially decohered
Gaussian distributions can be written as statistical mixtures
of minimal states which belong to a certain family. As
decoherence increases, the ranges of the parameters char-
acterizing this family become larger. As the threshold of
separability, the angle between the superfluctuant modes of
the minimal states and that of the distribution becomes
unrestricted.

The statistical homogeneity allows a formal reduction of
the problem. One can decompose the field amplitude �q

into its ‘‘real’’ and ‘‘imaginary’’ parts �q ¼ ð�1 þ
i�2Þ=

ffiffiffi
2

p
, such that

a1 ¼ 1ffiffiffi
2

p ðak þ a�kÞ; a2 ¼ �iffiffiffi
2

p ðak � a�kÞ: (C1)

With this decomposition of the Hilbert space, GHD fac-
torize

�k;�k ¼ �1 � �2; (C2)

where �1 ¼ �2. In addition, the parameters of (13) are
given by

n ¼ Trð�1a
y
1a1Þ; c ¼ Trð�1a

2
1Þ: (C3)

Similarly, for two-mode coherent states jv;ki �
jw;�ki ¼ jv1i � jv2i where v ¼ ðv1 þ iv2Þ=

ffiffiffi
2

p
and

w ¼ ðv1 � iv2Þ=
ffiffiffi
2

p
.

Let us consider a Gaussian density matrix � of a single
mode, characterized by a value of 0 	 � 	 nþ 1. We ask
whether there exists a family of minimal Gaussian states
jðv; �Þi and a Gaussian distribution P�ðvÞ such that

�̂ � ¼
Z d2v

�
P�ðvÞjðv; �Þihðv; �Þj: (C4)

The minimal Gaussian states are chosen to be the displaced
squeezed states

jðv; �Þi ¼ DðvÞSð�Þj0i; (C5)

where DðvÞ ¼ eðvay�v�aÞ is the displacement operator and

Sð�Þ ¼ eðr=2Þðei�ay2�e�i�a2Þ (C6)

the squeezing operator. The distribution P�ðvÞ is centered
and is therefore defined by its covariance matrix C�,

P�ðvÞ ¼ ðdetC�Þ�1=2 exp

�
� 1

2
XyC�1

� X

�
;

X ¼ v
v�

� �
; C� ¼ n� c�

c�� n�

 !
:

(C7)

The moments of the state � defined in Eq. (13) are obtained
from the ones of the distribution P� by the definition (C3),

n ¼
Z d2v

�
P�ðvÞhðv; �Þjayajðv; �Þi

¼
Z d2v

�
P�ðvÞðjvj2 þ j�j2Þ;

c ¼
Z d2v

�
P�ðvÞhðv; �Þja2jðv; �Þi

¼
Z d2v

�
P�ðvÞðv2 þ ��Þ:

(C8)

Here, � and � are the Bogoliubov coefficients associated
with the squeezed state j�i by

� ¼ chðrÞ; � ¼ e�i2�cshðrÞ; � ¼ rei�c : (C9)

Hence, the momenta of the distribution P� are

n ¼ n� þ j�j2; c ¼ c� þ ��: (C10)

The only constraints on n� and c� arise from the fact that

the right-hand side of (C4) must be positive and normal-
izable in order to be a density matrix. These conditions are,
respectively,

� � 0 () P� � 0;

Trð�Þ ¼ 1 ()
Z d2v

�
P�ðvÞ ¼ 1 () detðC�Þ � 0:

(C11)

We write

� ¼ reið2�cþargðcÞÞ; (C12)

where �c is the angle made by the squeezed coherent states
with the superfluctuant mode (the eigenvector ofCwith the
largest eigenvalue). We now look for the range of values of
x ¼ e2r and �c allowed by the constraint on the determi-
nant (C11), that is,

RðxÞ ¼ Ax2 þ 2Bxþ C 	 0; (C13a)

A ¼ nþ 1
2 � jcj cosð2�cÞ; B ¼ �ðn�þ 1

2Þ;
C ¼ nþ 1

2 þ jcj cosð2�cÞ: (C13b)

Since A > 0, the inequality (C13a) can only be satisfied if
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the discriminant � ¼ B2 � AC is positive. Since the coef-
ficients A, B, and C depend only on �c and �, this gives an
implicit constraint equation for �cð�Þ,

�ð�c; �Þ ¼ ðn�Þ2 � jcj2sin2ð2�cÞ � 0()

sin2ð2�cÞ 	 gð�Þ � ðn�Þ2
nðnþ 1� �Þ : (C14)

The function gð�Þ is strictly growing over the interval 0 	
� 	 nþ 1 and takes the special values gð0Þ ¼ 0 and
gð1Þ ¼ 1. We distinguish the following two cases:

(1) If � � 1 (the corresponding two-state is separable),
all the values of �c are allowed and the squeezed
coherent states in (C4) can have an arbitrary
orientation.

(2) If 0 	 � < 1, the angle � can only vary into the
interval ½��M;þ�M� where the angular opening is
defined by

sin 2ð2�MÞ � ðn�Þ2
nðnþ 1� �Þ : (C15)

The value �M ¼ �=2 corresponds to � ¼ 1. The
interval ½��M;þ�M� shrinks to zero as � decreases.
In the limit � ¼ 0 (that is, for the pure squeezed
state), the squeezed coherent states jðv; �Þi must be
aligned with the superfluctuant mode of �1.

We now specialize to the case 0 	 � 	 1 and we look
for the range of allowed values of x for a given � and �. We
first note that

1 	 x 	 xM � 2½nþ 1
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
�: (C16)

The lower bound comes from r ¼ j�j � 0, and the upper
bound from the requirement that the eigenvalues of C�

(which are expectation values) are positive, that is, n� �
j�j2 ¼ sh2ðrÞ. For the values of �c such that the discrimi-
nant � � 0, RðxÞ of Eq. (C13a) is negative for x in the
interval ½x�; xþ�, where the roots of the quadratic form are

x�ð�; �Þ ¼ 1

Að�Þ
�
1

2
þ n�� ½ðn�Þ2 � jcj2sin2ð2�Þ�1=2

�
:

(C17)

For a given value of �, the length of the interval is a strictly
decreasing function of �c: the smaller the deviation be-
tween the superfluctuant directions of jðv; �Þi and �, the
smaller the allowed range of x. Indeed, the smallest root
decreases from x�ð0;�Þ ¼ 2½nþ 1=2þ jcjð�Þ�=ð1þ
4n�Þ � xM to x�ð�M;�Þ ¼ ð1þ 2n�Þ=2Að�MÞ, while the
largest root decreases from xþð0;�Þ ¼ 4½nþ 1=2þ
jcjð�Þ�> xM to xþð�M;�RÞ ¼ x�ð�M;�RÞ< xM.
The common value of the roots at �M means that, for this

angle, there is a unique value of the squeezing parameter.
Not surprisingly, for � ¼ 1, this common value is 1, i.e.
r ¼ 0, and the fact that � can take any value corresponds to
the isotropy of the coherent states.
To study the limit � ! 0, please notice that we can set

� ¼ 0 and that xþð0; �Þ is larger than xM for � � 1. This
means that x belongs to the interval ½x�ð�Þ; xM� which
shrinks to xM since x�ð0;�Þ approaches xM from below.
In the limit of a pure state (� ¼ 0), there is a unique
representation of the form (C4), the state itself [that is,

the distribution of Eq. (C4) is P� ¼ �ð2Þ
Diracðv1Þ].
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