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The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu–Jona-Lasinio model

in 1þ 1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find

numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition.

Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes

unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a

function of fermion mass, chemical potential and temperature, and compared with the one of the discrete

chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero

temperature for various densities and fermion masses.
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I. INTRODUCTION

To map out the phase diagram of hot and dense matter
has been a major goal of strong interaction physics during
the last decades, both experimentally and theoretically. As
is often the case, these efforts have been accompanied by
studies of drastically simplified, solvable model problems
to sharpen the theoretical tools and get guidance for more
realistic cases. Among the few known field theories which
are both solvable and possess a nontrivial phase structure,
fermionic large N models in 1þ 1 dimensions like the ’t
Hooft model [1] or Gross-Neveu models [2] are perhaps
most instructive, as they share a number of properties with
quantum chromodynamics (for a pedagogical review, see
Ref. [3]). Given that these models have been formulated
back in 1974 already, it is surprising that their phase
diagrams as a function of temperature, chemical potential
and fermion mass have not yet been fully established. As
far as we can tell, the reason is not that these phase
diagrams were considered to be uninteresting. Rather,
this situation reflects a shortcoming of the first round of
theoretical investigations during the 1980s and 1990s with
methods too crude to expose the full, rich phase structure.
As a consequence, there has been renewed interest recently
in this topic with results which also have some bearing on
low dimensional condensed matter systems, and the origi-
nal phase diagrams are still in the process of revision right
now. For an update on the current state of the art, see
Refs. [4,5] and references therein.

In the present paper, we focus on the phase structure of
the massive, chiral Gross-Neveu (GN) model at finite
temperature and chemical potential. This model is nothing
but the 1þ 1 dimensional Nambu–Jona-Lasinio model [6]
with N fermion flavors and a bare mass term explicitly
breaking the Uð1Þ � Uð1Þ chiral symmetry. Its Lagrangian

reads

L ¼ � ði6@�m0Þ þ g2

2
½ð �  Þ2 þ ð � i�5 Þ2� (1)

where flavor indices are suppressed as usual, i.e., �  ¼PN
k¼1

� k k etc. We are only interested in the ’t Hooft limit

(N ! 1, Ng2 ¼ const) in which classic no-go theorems
can be bypassed and breakdown of continuous symmetries
becomes possible in 1þ 1 dimensions. In spite of the fact
that semiclassical methods for solving such models have
been developed in the 1970s already [2,7], the full phase
diagram of the simple field theory with Lagrangian (1) is
still largely unknown. Consider first the chiral limit (m0 ¼
0) of the model. If one constrains the condensates h �  i,
h � i�5 i to be spatially constant, the resulting phase dia-
gram is identical to the one from the simpler GN model
variant with discrete chiral symmetry and scalar-scalar
coupling ð �  Þ2 only. One finds two phases in the (�, T)
plane, a massless and a massive Fermi gas, separated by 1st
and 2nd order transitions [8]. As soon as one allows for
spatially inhomogeneous condensates, the system takes
advantage of the Peierls effect [9] and opens a gap at the
Fermi surface. This results in a solitonic chiral crystal
phase. The first crystalline solution of the Hartree-Fock
(HF) problem which was found is the ‘‘chiral spiral’’ with
helical order parameter and a strikingly different phase
diagram [3,10]. As pointed out in Ref. [11], these results
can also be understood readily in terms of bosonization.
Very recently however, they have been challenged by a
more sophisticated candidate for the complex order pa-
rameter in the form of a chirally twisted crystal, using
powerful resolvent methods to generate self-consistent
solutions in closed analytical form [5,12]. The implications
for the phase diagram have not yet been fully worked out
but promise an even richer structure of the solitonic crystal
phase than previously thought.
Turning to the massive chiral GN model (m0 > 0), we

first should like to remind the reader that the bare parame-
ters g2, m0 in Eq. (1) together with the UV cutoff �=2 get
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replaced by two physical, renormalization group invariant
parameters m and � in the process of regularization and
renormalization [4,13]. Here, m is the physical fermion
mass in the vacuum (set equal to 1 without loss of general-
ity throughout this paper) and � the ‘‘confinement parame-
ter’’ measuring the explicit violation of chiral symmetry,

�

Ng2
¼ �þ ln

�

m
; � :¼ �

Ng2
m0

m
: (2)

The following bits and pieces are known about the phase
structure of the massive model. The phase diagram assum-
ing x-independent condensates only [14] is once again
indistinguishable from that of the massive discrete chiral
GN model, but this is an artefact of the assumption of
homogeneity [4]. As far as inhomogeneous condensates
are concerned, it is useful to start from the low density, low
temperature limit governed by the isolated baryons of the
model. Baryons of the massive chiral GN model were first
studied near the chiral limit by means of variational tech-
niques [15] and subsequently via the derivative expansion
[16]. They turn out to be closely related to the sine-Gordon
kink. A recent numerical HF calculation, supplemented by
analytical asymptotic expansions, has been able to follow
the baryon mass and structure to arbitrary � [17]. This was
actually done in preparation of the present study. Unlike in
the discrete chiral GN model, the self-consistent baryon
potentials found were not reflectionless, a serious obstacle
for a full analytical solution. Aside from individual bary-
ons relevant to the base line at T ¼ 0 of the (�,�, T) phase
diagram, the vicinity of the tricritical point (� ¼ 0,� ¼ 0,
T ¼ eC=�) has also been explored in some detail [18]. The
phase structure was deduced from a microscopic Ginzburg-
Landau (GL) approach, based once again on the derivative
expansion. In this work, both first and second order critical
lines between homogeneous and inhomogeneous phases
were identified. As a result, one already starts to see that
the GN models with (broken) discrete and continuous
chiral symmetry have totally different phase diagrams, as
is indeed expected on the basis of universality arguments.

In the present paper, we report on a solution of the HF
problem at finite T, � for a whole range of � values and
construct a first candidate for the full phase diagram of the
massive chiral GN model. It is not yet known what impact
the more general, chirally twisted soliton crystals of the
massless model discovered in Ref. [12] would have on the
massive model, and we cannot contribute anything to this
question. Our aim here is to extend the calculations of
Ref. [18] near the tricritical point to a significant portion
of (�, T, �) space, so that a 3D plot of the phase diagram
can be drawn and compared with the one from the discrete
chiral GN model. We think that such an undertaking is
worthwhile in the present situation, but should be followed
up by efforts to identify alternative chiral crystal structures
which might be thermodynamically more stable [12], or by

further attempts to arrive at a full analytical solution as in
the case of the discrete chiral GN model [4].
The remaining paper is organized as follows. Section II

is devoted to the HF calculation at zero temperature. We
explain the general numerical procedure (Sec. II A), dis-
cuss analytically the low and high density asymptotics
(Sec. II B) and present selected numerical results
(Sec. II C). Section III contains all the material about finite
temperature and the phase diagram. We briefly outline the
thermal HF approach to the grand canonical potential
(Sec. III A) and recall previous results from GL theory
(Sec. III B). In Sec. III C, we describe in detail how we
have obtained the perturbative, 2nd order critical sheet.
The nonperturbative, 1st order sheet represents the most
difficult part of our analysis, since we can only determine it
numerically at present. This is presented in Sec. III D along
with the final results. In the concluding Sec. IV, we sum-
marize our findings, compare the phase diagram with other
related phase diagrams and identify areas where morework
is needed.

II. HARTREE-FOCK CALCULATION OF DENSE
MATTER AT T ¼ 0

A. Setup of the numerical calculations

The HF calculation in the chiral GN model starts from
the Dirac Hamiltonian

H ¼ �5

1

i

@

@x
þ �0SðxÞ þ i�1PðxÞ (3)

with scalar and pseudoscalar potentials S, P to be deter-
mined self-consistently. In Ref. [17], a numerical HF study
including the Dirac sea has been used to construct the
baryons of this model. For technical reasons, the calcula-
tion was done in a finite interval of length L with anti-
periodic boundary conditions for the fermions, using a
basis of free, massive spinors in discretized momentum
space. Now assume that S, P are periodic with spatial
period a. We can actually reduce the HF calculation for
such a crystal to the one for a single baryon performed in
[17]. We enclose the crystal in a box of length L ¼ Na
containing N periods and impose again antiperiodic
boundary conditions on the fermion single particle wave
functions in this large interval,

 ðLÞ ¼ � ð0Þ: (4)

According to the Bloch theorem, the eigenspinors of H are
of the form

 ðxÞ ¼ �ðxÞeipx; �ðxþ aÞ ¼ �ðxÞ: (5)

The boundary condition (4) discretizes the Bloch mo-
menta,

pn ¼ 2�

L

�
nþ 1

2

�
; ðn 2 ZÞ: (6)

For a single period, e.g., the interval ½0; a�, this implies
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quasiperiodic boundary conditions,

 ðaÞ ¼ ei�� ð0Þ; (7)

where the N discrete values of �� parametrize the Nth
roots of ð�1Þ,

�� ¼ 2�

N

�
�þ 1

2

�
; � ¼ 0; 1; . . . ; N � 1: (8)

Hence, to get the spectrum of H with a periodic potential,
all we have to do is compute the spectrum for a single
‘‘baryon’’ in an interval of length a with quasiperiodic
boundary conditions along the lines of Ref. [17], repeat
the calculation N times (for all possible values of the phase
��) and collect the spectra. This enables us to take over the
calculational method literally from Ref. [17]. We also stick
to the conditions

SðxÞ ¼ Sð�xÞ; PðxÞ ¼ �Pð�xÞ; (9)

reflecting the difference between scalar and pseudoscalar
potentials if parity is unbroken. To evaluate the energy
density of the crystal at T ¼ 0, we once again combine a
numerical diagonalization with perturbation theory for
states deep down in the Dirac sea. The technical details
like vacuum subtraction, double counting correction and
renormalization are identical to those given in Ref. [17]
and need not be repeated here.

A key element of the HF approach is self-consistency of
the potentials S, P. As explained in Ref. [17], this can be
achieved by minimizing the HF energy at a fixed fermion
number with respect to the potentials, provided one varies
the potentials without any bias. In the present work, we
assume periodicity, expand S and P into Fourier series,

SðxÞ ¼ X
‘

S‘e
i2�‘x=a; PðxÞ ¼ i

X
‘

P‘e
i2�‘x=a; (10)

and minimize the HF energy with respect to the Fourier
coefficients S‘, P‘, and the spatial period a, using a stan-
dard conjugate gradient algorithm. The only other bias put
in aside from periodicity are the symmetry relations (9). If
the true self-consistent potential � ¼ S� iP would not be
strictly periodic but carry a chiral twist,

�ðxþ aÞ ¼ e2i’�ðxÞ; (11)

as proposed in a recent study of the massless chiral GN
model [5,12], our calculation might still be useful as a
variational calculation, but we could miss the true self-
consistent potential. Note however that there is so far no
claim of nonperiodic potentials in the massive model con-
sidered in the present work.

B. Low and high density limits

In the limits of low and high fermion density, the ground
state energy can be calculated analytically. If the valence
band is completely filled (as is indeed found in the full HF
calculation), the spatially averaged baryon density per

flavor is related to the period a via

� ¼ 1

a
¼ pf
�
: (12)

The last equation defines the Fermi momentum pf. At very

low density, we expect the energy density to be determined
by the baryon mass,

E HF � Evac � MB�: (13)

The baryon mass is known already from Ref. [17]. At high
density on the other hand, we can use perturbation theory
to predict the asymptotic behavior of the energy density.
This is a simple generalization of a similar calculation
done in Ref. [19] for the massive GN model with broken
discrete chiral symmetry; cf. Eqs. (67)–(74) of that paper.
It is sufficient to keep the Fourier amplitudes S0, S1 and P1

for this purpose. Standard 2nd order perturbation theory
then yields the single particle energies

E�;p ¼ �sgnðpÞ
�
pþ S20

2p
þ ðS1 þ fP1Þ2

2ðpþ pfÞ þ ðS1 � fP1Þ2
2ðp� pfÞ

�
(14)

where � ¼ �1 and

f ¼ 1� 2	�;sgnðpÞ: (15)

Along the lines of Ref. [19], we find for the perturbative
ground state energy

EHF ¼ ��2

8�
þ p2

f

2�
þ S20

2�
½�þ lnð2pfÞ� � �S0

�

þ y2

4�
½2�� 1þ lnðy2Þ� þ 2X2

�
½�þ lnð4pfÞ� (16)

where we have set

S1 ¼ X þ y=2; P1 ¼ X � y=2: (17)

Minimizing EHF with respect to S0, X and y yields

X ¼ 0; S0 ¼ �

�þ lnð2pfÞ (18)

and the equation

y½2�þ lnðy2Þ� ¼ 0 (19)

with the solutions y ¼ 0 (homogeneous condensate) and

y ¼ �e��: (20)

The self-consistent potential � ¼ S� iP for the nontrivial
solution y ¼ e�� is inhomogeneous,

�ðxÞ ¼ �

�þ lnð2pfÞ þ expf�2ipfx� �g: (21)

(The other sign of y merely corresponds to a translation of
the crystal by a=2.) The ground state energy (16) at the
minimum is indeed lower than the one of the homogeneous
solution,
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E HFðy � 0Þ � EHFðy ¼ 0Þ ¼ � 1

4�
e�2�: (22)

At � ¼ 0 this agrees with the result for the chiral spiral
[10]. Finally we write down the ground state energy for
large pf, relative to the vacuum. It has the asymptotic

behavior

E HF�Evac �
p2
f

2�
� �2

2�ð�þ ln2pfÞþ
1

4�
ð1þ 2�� e�2�Þ:

(23)

Equations (13) for pf ! 0 and (23) for pf ! 1 are the

main results of this section, ready to be compared to full
numerical results below.

C. Numerical results

We vary with respect to the Fourier components S‘, P‘
which, owing to Eqs. (9) and (10), are real and satisfy
S�‘ ¼ S‘, P�‘ ¼ �P‘. The actual calculations were done
as follows. We use N ¼ L=a ¼ 8, i.e., perform single
baryon computations with 8 different boundary conditions.
In the sum over single particle energies we now have to
subtract numbers of O(100 000), as compared to O(10 000)
for a single baryon. To keep computations feasible with
MAPLE, we had to compromise on the size of the momen-

tum space basis and choose the smallest size which gave
sufficient precision in the tests, �N ¼ 50 (corresponding to
201� 201 matrices). The total number of single particle
states computed by diagonalization is therefore 8� 201 ¼
1608. We kept all Fourier modes of S, P up to ‘max ¼ 6, so
that 14 real parameters had to be varied in total (the period
a, S0, and fS‘; P‘g for ‘ ¼ 1 . . . 6). To test our MAPLE code,
we computed the energy density of crystals where the
analytic solution is known (chiral spiral, massless and
massive GN models). In all of these cases the energy
density was reproduced correctly to 7 significant digits.
The other uncertainty comes from the minimization pro-
cedure. It was found that after only 20 conjugate gradient
steps, the results as shown in the figures below did not
change anymore significantly. Under these conditions, all
calculations could still be done using MAPLE on high-end
PC’s, without need to switch to compiled programming
languages.

We now turn to the results of the T ¼ 0 computations.
Just as in the discrete chiral GN model, we found that it is
always energetically advantageous to let the Fermi surface
coincide with the lower end of an energy gap, as expected
from the Peierls effect. We first illustrate the self-consistent
potentials which show no surprise. At low density, one
recognizes the shapes of clearly resolved individual bary-
ons from Ref. [17]; see Figs. 1 and 2. At high density where
the baryons overlap significantly, the lowest Fourier modes
(S0, S1, P1) dominate, as anticipated in our perturbative
calculation (Figs. 3 and 4). Increasing � tends to wash out
the oscillations at all densities. The energy difference

between the crystal and the homogeneous phase is shown
in Fig. 5 for 3 values of �. As expected, the crystal phase is
favored at all densities and � parameters. The horizontal
lines at large pf show the asymptotic prediction of

Eq. (22), whereas the slopes of the straight lines near pf ¼
0 have been obtained from the baryon masses [17] and the
mixed phase of the homogeneous calculation (see the
appendix of [19]). This provides us with yet another useful
test of the computations. Figure 6 shows the
pf-dependence of the energy density, now relative to the

vacuum, for the same three values of �. The dots are
numerical results. The curves have simply been obtained
by matching the asymptotic expansions Eqs. (13) and (23),
at the point where they coincide (indicated by the cross). At
the scale of the figure, the agreement is perfect, reminis-
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x
2 4 6 8 10 12 14

FIG. 1. Self-consistent scalar HF potential SðxÞ at T ¼ 0,
pf ¼ 0:2 and � ¼ 0:2, 0.6, 1.0 (from bottom to top), showing

well-resolved baryons. Here and in Figs. 2–4 only one spatial
period of the periodic potentials is shown.
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2 4
x
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6 8 10 12 14

FIG. 2. One period of self-consistent pseudoscalar HF poten-
tial PðxÞ at T ¼ 0, pf ¼ 0:2 and � ¼ 0:2, 0.6, 1.0 (with decreas-

ing amplitude).
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cent of similar findings in an earlier numerical study of the
nonchiral GN model [20].

III. CONSTRUCTING THE PHASE DIAGRAM

A. Grand canonical potential

The phase diagram in the temperature-chemical poten-
tial plane is best analyzed via the grand canonical potential
density �. The evaluation of � in the relativistic HF
approach is well understood and follows earlier studies
of the nonchiral GN model, the only small complication
being the fact that the spectrum is no longer symmetric
under E! �E. The main building block is the familiar
single particle contribution to �,

� ¼ � 1

�L

X
�;n

lnð1þ e��ðE�;n��ÞÞ: (24)

For large positive or negative energy eigenvalues, one has
to use perturbation theory in order to do the renormaliza-
tion analytically. The corresponding expression is

�pert ¼ � 2

�

Z �=2

�p

dp

2�

X
�

lnð1þ e��ðE�;p��ÞÞ (25)

where E�;p denotes the 2nd order perturbative eigenvalue

of the Dirac-HF Hamiltonian H. The standard manipula-
tion

�pert ¼ � 2

�

Z 1

�p

dp

2�
lnð1þ e��ðEþ1;p��ÞÞ � 2

�

Z 1

�p

dp

2�

� lnð1þ e�ðE�1;p��ÞÞ þ 2
Z �=2

�p

dp

2�
½E�1;p ���

(26)

–1
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0.2 0.4
x

P

0.6 0.8 1 1.2

FIG. 4. Same as Fig. 2, but at pf ¼ 2:5.
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∆ε
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γ = 1.0     

γ = 0.6

γ = 0.2

FIG. 5. Difference between energy density of solitonic crystal
phase and homogeneous phase versus pf for 3 different values of

�. The straight line segments drawn show the analytical expec-
tations for small and large pf, respectively; see the main text.

0
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0.8

ε

1

1.2

0.5 1 1.5 2 2.5
P f

FIG. 6. Ground state energy density of crystal at T ¼ 0 as a
function of pf for � ¼ 0:2, 0.6, 1.0 from bottom to top. Points

represent numerical HF results. Curves represent asymptotic
predictions according to Eqs. (13) and (23). They are matched
at the point marked by a cross.
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FIG. 3. Same as Fig. 1, but at pf ¼ 2:5 where the baryons
overlap strongly.
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isolates the divergence in the sum over single particle
energies, which can then be dealt with like at T ¼ 0 (see
Sec. II and Ref. [17]) adding the double counting correc-
tion and using the gap equation to eliminate unphysical
parameters. We then minimize � with respect to the po-
tentials S, P. The result is the renormalized grand canoni-
cal potential density, together with the self-consistent
potential at a given temperature and chemical potential.
Avacuum subtraction finally normalizes� to 0 at the point
(T ¼ 0,� ¼ 0) and removes remaining trivial divergences
from the Dirac sea.

B. Ginzburg-Landau theory

There are regions in (�, �, T) space where a full HF
calculation can be bypassed. This is the case whenever a
microscopic GL theory can be derived, leading to an
effective bosonic field theory directly in terms of the scalar
and pseudoscalar potentials S, P with the fermions ‘‘inte-
grated out’’. One can identify two such regions requiring
somewhat different approximations. Close to the tricritical
point (� ¼ 0, � ¼ 0, T ¼ eC=�), the potentials are both
weak and slowly varying. This was exploited in Ref. [18],
where a GL effective action was obtained analytically,
using the derivative expansion around the free, massless
fermion theory. The resulting effective action was then
minimized by a numerical solution of the Euler-Lagrange
equation, an inhomogeneous, complex nonlinear
Schrödinger equation. In this manner, a soliton crystal
solution could be identified in a small region of (�, �, T)
space, separated by 2nd and 1st order transitions from a
homogeneous massive Fermi gas phase. We refer the
reader to this paper for more details. Another approxima-
tion allows one to study the phase diagram for �� 1 and
�� 1, but without any restriction in temperature. Here,
the potentials are still slowly varying but develop a large,
constant scalar term S0, i.e., a mass. The derivative expan-
sion can still be trusted, provided one expands now around
the massive free Dirac theory. This technique was applied
some time ago at T ¼ 0 to the baryons in the chiral GN
model near � ¼ 0 [16]. The generalization to finite tem-
perature and chemical potential is technically rather in-
volved. In particular, it does not lead anymore to analytic
expressions as in Ref. [16], since the thermal integrals with
massive single particle energies cannot be done in closed
form. As this technique was used here only for a small part
of the phase diagram, we refrain from giving all the details
which have been worked out in Ref. [21]. The resulting
effective action is a polynomial in S, P and its derivatives
with (�, �, T) dependent coefficients given in terms of
one-dimensional numerical integrals. It can be minimized
numerically by varying the period and the Fourier coeffi-
cients of S and P, resulting in the equilibrium value of �.
In this way, it is possible to extend the calculation of the 1st
order transition line at small � down to zero temperature
and check that the base point of the critical line coincides

with the baryon mass. Some examples of results for the
phase boundary thus obtained will be shown below to-
gether with the results of the full HF calculation; see
Sec. III D and Figs. 11 and 12.

C. Perturbative 2nd order phase boundary

As is well understood by now from similar studies of the
nonchiral GN model or from the GL approach near the
tricritical point, the exact location of a contingent 2nd
order phase boundary between crystal and homogeneous
phases is a perturbative matter. For this purpose, S0 (i.e.,
the dynamical fermion mass) has to be treated exactly,
whereas it is sufficient to keep S1, P1 from the inhomoge-
neous terms and treat them in 2nd order almost degenerate
perturbation theory (ADPT). As a matter of fact, right at
the phase boundary this amounts to naive 2nd order per-
turbation theory and a principal value prescription for
integrating through the pole when summing over single
particle states [20]. The Hamiltonian is divided up accord-
ing to

H ¼ H0 þ V (27)

where

H0 ¼ �5

1

i

@

@x
þ �0m;

V ¼ �02S1 cosð2pfxÞ � i�12P1 sinð2pfxÞ:
(28)

To define the notation, we cast the unperturbed problem
into the form (� ¼ �1 is the sign of the energy)

H0j�; pi ¼ �Ej�;pi; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
(29)

with the free, massive spinors

hxj�; pi ¼ � isgnðpÞffiffiffiffiffiffi
2L

p
E

ip�m
�E

� �
eipx: (30)

Matrix elements of V are then given by

h�0; p0jVj�; pi ¼ sgnðpÞsgnðp0Þ
2EE0 ðAS1 þBP1Þ (31)

with

A ¼ ½�Eðip0 þmÞ � �0E0ðip�mÞ�
� ð	p0;pþ2pf þ 	p0;p�2pf Þ

B ¼ i½��0EE0 þ ðip�mÞðip0 þmÞ�
� ð	p0;pþ2pf � 	p0;p�2pf Þ; (32)

leading to the following 2nd order energy shift:

	E�;p ¼ �ðE2S21 þ p2P2
1Þ þ 2pfES1P1

ðp2 � p2
fÞE

: (33)

We insert

E�;p ¼ �Eþ 	E�;p (34)
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into the single particle contribution to the grand canonical
potential density,

� ¼ � 2

�

Z �=2

0

dp

2�
ln½ð1þ e��ðE1;p��ÞÞ

� ð1þ e��ðE�1;p��ÞÞ�; (35)

and linearize in 	E�;p. Adding the usual HF double count-

ing correction term and invoking the gap equation for the
fermion mass at finite T, � in the translationally invariant
case,

0 ¼ mð�þ lnmÞ � �þm
Z 1

0

dp

E

�
1

e�ðE��Þ þ 1

þ 1

e�ðEþ�Þ þ 1

�
; (36)

to simplify the resulting expression, the perturbative cor-
rection to the grand canonical potential becomes

	� ¼ E2
fS

2
1 þ p2

fP
2
1

�
�
Z 1

0
dp

1

Eðp2 � p2
fÞ
�

1

e�ðE��Þ þ 1

þ 1

e�ðEþ�Þ þ 1

�
þ 2pfS1P1

�
�
Z 1

0
dp

1

p2 � p2
f

�
�

1

e�ðE��Þ þ 1
� 1

e�ðEþ�Þ þ 1

�
þ S21 þ P2

1

�

�

m

� E2
fS

2
1 þ p2

fP
2
1

2�pfEf
ln

�
Ef � pf
Ef þ pf

�
: (37)

The energies E, Ef are defined with the mass m ¼ S0 and

momenta p, pf, respectively. The principal value integrals

are the only remnant of ADPT at the phase boundary [20]
and have to be evaluated numerically. The phase boundary
can now be found using the following strategy. In 2nd order
perturbation theory, according to Eq. (37) we may write the
grand canonical potential schematically as

� ¼ �hom þM11S
2
1 þ 2M12S1P1 þM22P

2
1 (38)

where all coefficients depend onm and pf. We have to vary

� with respect to the 4 parameters, m, S1, P1 and pf. This

yields the 4 equations:

0 ¼ @�hom

@m
þ S21

@M11

@m
þ 2S1P1

@M12

@m
þ P2

1

@M22

@m
;

(39)

0 ¼ S1M11 þ P1M12; (40)

0 ¼ S1M12 þ P1M22; (41)

0 ¼ S21
@M11

@pf
þ 2S1P1

@M12

@pf
þ P2

1

@M22

@pf
: (42)

At the phase boundary, Eq. (39) can be simplified to the
standard equation for the homogeneous phase since S1, P1

vanish,

@�hom

@m
¼ 0: (43)

Equations (40) and (41) represent a homogeneous system
of equations which can be cast into the equivalent form

detM ¼ M11M22 �M2
12 ¼ 0; (44)

S1
P1

¼ �M12

M11

: (45)

Dividing Eq. (42) by P2
1 and using Eqs. (44) and (45), we

finally obtain the condition

@ detM
@pf

¼ 0: (46)

In order to determine the phase boundary, we have to find
the points in the (�, T) plane where Eqs. (43), (44), and
(46) hold simultaneously. Equation (45) then yields the
unstable direction. All of this can be done numerically to
any desired accuracy. Before turning to the results, it may
be worthwhile to ask whether we can say anything about
the outcome of the calculation beforehand. Indeed, it is
easy to determine the asymptotic behavior of the perturba-
tive 2nd order sheet in the limit �! 1, for any �. Along
the lines of a similar analysis in the appendix of Ref. [20]
we arrive at the approximate expression for the grand
canonical potential valid at large � � pf,

� ¼ S20
2�

½�þ lnð2pfÞ� � �S0
�

þ 2X2

�
½�þ lnð4pfÞ� þ y2

4�

�ð2�� 1þ lny2Þ � 2

��

Z 1

0
dp lnð1þ e��

ffiffiffiffiffiffiffiffiffiffi
p2þy2

p
Þ

(47)

(using once again variables X ¼ ðS1 þ P1Þ=2, y ¼ S1 �
P1). S0 and X are not affected by finite temperature at all,
so that Eqs. (18) still hold. Minimization with respect to y
yields either y ¼ 0 (translationally invariant solution) or
the condition

�þ lnyþ 2
Z 1

0
dp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ y2

p 1

e�
ffiffiffiffiffiffiffiffiffiffi
p2þy2

p
þ 1

¼ 0: (48)

In order to compute the phase boundary, we expand the
integral for small y [22],

�þ lny� ln
�y

�
� Cþ Oðy2Þ ¼ 0; (49)

where C is the Euler constant. The critical line where the
nontrivial solution for y disappears is then given by the
following asymptotic expression valid at large �:

Tcrit ¼ e��
�
eC

�

�
: (50)
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Figure 7 shows the results for the perturbative 2nd order
sheet (a preliminary version of this plot has been given
before in [23]). This figure actually contains the 2nd order
sheets for both the chiral and the nonchiral GN models to
highlight the differences between the two models. The
lower sheet ending at the fat black tricritical line belongs
to the GN model with discrete chiral symmetry. To test our
method, we have recalculated the curves shown here per-
turbatively. They agree indeed with the results of Ref. [24]
where the same critical surface was deduced from the full,
analytical solution of the HF problem. The upper sheet in
Fig. 7 is the new result for the chiral GN model. Here we
have supplemented the equidistant curves at � ¼
0:1; 0:2; . . . 2:0 by 2 more curves at the small � values
0.01 and 0.0001. This is useful to illustrate how this 2nd
order sheet goes over into the horizontal critical line T ¼
eC=� in the chiral limit �! 0. We also compare the 2nd
order sheet with the analytical prediction, Eq. (50), at large
�. As the dashed curve shows, the full results are already
indistinguishable from this formula at � ¼ 2. At low �,
the curves bend over. Our calculation gives us no clue as to
where the tricritical points are beyond which these curves
turn into 1st order critical lines. We will get back to this
issue in the following subsection when we discuss the full
HF calculation. Notice also that at large �, the perturbative
sheets of both variants of the GN model seem to come
together at the same line (the tricritical line of the discrete
chiral GN model), whereas this does not hold anymore at
small �.

Finally, we should stress the fact that the sheet in Fig. 7
represents the surface where the homogeneous phase be-
comes unstable towards crystallization in a continuous
transition. If a 1st order transition occurs before reaching

this sheet from the outside, there will be no 2nd order
transition and the corresponding part of the 2nd order sheet
becomes obsolete. As shown below, this is indeed what
happens at sufficiently low temperatures.

D. Nonperturbative 1st order phase boundary and full
phase diagram

The most tedious task of the present study is to deter-
mine the 1st order phase boundary. For arbitrary � and �,
no shortcut like GL theory is known and we have to resort
to the full, numerical HF calculation. For a given point in
the (�, �, T) diagram, we evaluate the renormalized grand
canonical potential density � by minimization with re-
spect to the period a and the Fourier components S‘, P‘ of
the mean field. The critical line is then constructed as
follows. We evaluate � along a straight line trajectory
for fixed �, T and several equidistant values of �, starting
from inside the anticipated crystal phase and proceeding
towards lower � values. We then plot � against � and
compare this thermodynamic potential with the one of the
homogeneous solution. In Fig. 8, we illustrate the outcome
of such a computation for the case � ¼ 1:0, T ¼ 0:08. The
thermodynamically stable phase is the one with the lowest
value of �, hence the point of intersection of the 2 curves
defines the critical chemical potential at this temperature.
Since we can follow the crystal solution beyond this point
(before it jumps onto the other curve), this is clearly a 1st
order transition where two different solutions coexist at the
phase boundary. The difference in slopes at the intersection
point translates into two different densities, so that a mixed
phase would appear in a (�, T) phase diagram. The critical
point can be determined accurately in cases like that shown
in Fig. 8. By contrast, Fig. 9 illustrates an example where

0 0.4 0.8 1.2 1.6 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3T

γ µ

0.4

0.5

0.6

FIG. 7. 3D plot of the perturbative, 2nd order phase boundary
in the chiral GN model (upper sheet), compared to the corre-
sponding phase boundary in the nonchiral GN model (lower
sheet). The fat line is the tricritical curve of the latter model. The
tricritical curve of the chiral GN model cannot be determined by
this calculation. The dashed curve at � ¼ 2 is the asymptotic
prediction of Eq. (50).
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FIG. 8. Determination of the 1st order phase boundary at T ¼
0:08, � ¼ 1:0. Points: Grand canonical potential from numerical
HF calculation vs �. The crystal phase can be followed down to
� ¼ 0:88. Solid line: Prediction assuming homogeneous con-
densates only. The crossing of the 2 lines yields the critical
chemical potential for a 1st order transition.
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the transition is likely to be 2nd order, namely, at � ¼ 1:0,
T ¼ 0:12. Here, one does not see a crossing of the two
curves. Because of the limited numerical accuracy, one
cannot rule out a very weak first order transition, therefore
it is difficult to locate the tricritical point precisely in this
manner.

The result of such a computation of the 1st order critical
line at � ¼ 1:0 is shown in Fig. 10. The solid line is the
perturbative 2nd order line from Sec. II C and Fig. 7,
without information on the tricritical point. The squares
are numerically determined 1st order phase transitions. We
only show those points for which we could unambiguously
identify a 1st order transition. Above T ¼ 0:1, there was no
visible line crossing anymore. In this way, a small gap
between the 2nd and 1st order phase boundaries is left. All

we can say is that the tricritical point lies on the 2nd order
line above the last 1st order point shown, i.e., at T > 0:10
in the case at hand. For as much as we can tell, the two
critical lines are joined tangentially at the tricritical point.
Note that the base point of the 1st order line at T ¼ 0
drawn here is the baryon mass at � ¼ 1:0 taken from
Ref. [17]. The fact that the numerical points interpolate
nicely between the baryon mass at T ¼ 0 and the pertur-
bative phase boundary is a healthy sign, suggesting that the
accuracy reached here is adequate.
In a lengthy numerical calculation with MAPLE, we have

determined a number of 1st order critical lines, see Fig. 11.
The solid curve at T ¼ 0 is the baryon mass from Ref. [17].
The thin lines are the 2nd order critical lines from Fig. 7,
the points are numerically determined 1st order transitions
computed on a grid with resolution �� ¼ 0:1, �T ¼ 0:01.
Also shown are two additional curves at very small � (0.01
and 0.0001) obtained previously by means of the GL theory
[21]. These results confirm the picture discussed in con-
nection with Fig. 10 and provide us with a first candidate
for the full phase diagram of the chiral GN model. We find
no indication of any further phase transitions beyond those
which have been identified in the earlier study near the
tricritical point [18].
In Fig. 11, we have also plotted a tricritical line where

the 1st and 2nd order critical sheets are joined together. As
is clear from the gap between the calculated 1st order sheet
and this line, some extrapolation had to be used. We
proceeded as follows. For a fixed value of �, we move
along the 2nd order instability line, starting well below the
expected tricritical point. We then perform the HF mini-
mization and follow, in particular, the evolution of the
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–0.025

–0.02

–0.015

–0.01

–0.005

0
0.9 0.92 0.94 0.96 0.98 1

µ

Ψ

FIG. 9. Same plot as in Fig. 8 at T ¼ 0:12, � ¼ 1:0. The
absence of line crossing is indicative of a continuous, 2nd order
phase transition.
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FIG. 10. Example of a construction of the phase boundaries at
� ¼ 1:0. Solid line: 2nd order, perturbative critical line from
Fig. 7. Points: 1st order, nonperturbative critical line determined
as shown in Fig. 8. The tricritical point has not yet been located
but must lie on the solid line, above T ¼ 0:1.
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FIG. 11. Summary of all the results about the phase diagram of
the chiral GN model obtained in this work. Fat solid curve at
T ¼ 0: Baryon mass. Solid lines at fixed �: Perturbative 2nd
order sheet. Points: numerically determined 1st order sheet,
computed in steps of �� ¼ 0:1, �T ¼ 0:01. The 2 curves at
very small � are taken from the GL analysis [21] and belong to
� ¼ 0:01 and 0.0001, respectively. The fat line crossing the 2nd
order sheet is the tricritical curve.
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largest Fourier components S1, P1. At the tricritical point,
these are expected to vanish with some power law�ðTc �
TÞ
. In order to find the relevant critical exponent 
, we
went back to the GL approach near � ¼ 0 [18] and per-
formed a similar analysis there. This has the advantage that
we can work with a much higher numerical precision in
this regime. Let us first recall that to take advantage of
simple scaling properties near the tricritical point, the
variables�, T have been replaced by the rescaled variables

� ¼ 2��1=3�; � ¼
ffiffiffiffiffi
a

Tc

s
��1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
(51)

with a ¼ 6:032, Tc ¼ 0:5669 in Ref. [18]. We now move
along the perturbative phase boundary plotted in Fig. 6 of
[18] between � ¼ 1:4 and 1.6 enclosing the tricritical
point. Along this trajectory the effective action is mini-
mized with respect to the Fourier components of S‘, P‘
(‘ 	 4) and the period. The resulting grand canonical
potential is compared to the homogeneous calculation in
Fig. 12. Figure 13 then shows clearly that the Fourier

components S1, P1 vanish like �1=2 � ðTc � TÞ1=4.
(Notice that the grand canonical potential and the Fourier
components in Figs. 12 and 13 have been rescaled by the

factors 2�a=� and ��1=3, respectively; cf. Ref. [18].) As a
by-product, we have determined in this way a more accu-
rate value of the tricritical point near � ¼ 0 than in
Ref. [18], namely �t ¼ 1:464, �t ¼ 3:039. Coming back
to the full HF calculation, we have located the point where
S1, P1 vanish along the 2nd order instability curve assum-
ing the same critical exponent 
 ¼ 1=4 for all �. Because
of numerical limitations, the extrapolation is not as quan-
titative as in Fig. 13, but still fairly straightforward. The
result is the tricritical curve drawn in Fig. 11.

IV. SUMMARYAND CONCLUSIONS

To summarize, we have redrawn the phase diagram of
Fig. 11 in a way which shows more clearly the shape of the
2 critical sheets, see Fig. 14. Here, we hide the ‘‘engineer-
ing details’’ of the underlying construction still visible in
Fig. 11. Whereas the vertical (1st order) lines have actually
been computed via HF, the horizontal lines are composed
of straight line segments joining neighboring points to
guide the eye. The tricritical line separates 1st and 2nd
order sheets. It is not completely smooth since this par-
ticular curve is the most difficult part of the whole calcu-
lation, exceptionally sensitive to numerical inaccuracies.
It is interesting to compare this newly determined phase

diagram of the massive chiral GN model to other related
phase diagrams. For this purpose, we have taken the results
for the discrete chiral GN model from Ref. [24] and plotted
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1.4 1.45 1.5 1.55 1.6

S2
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FIG. 13. Square of rescaled Fourier amplitudes S1 (solid line)
and P1 (dashed line) vs � for the calculation corresponding to
Fig. 12. The linear behavior shows that S1; P1 � ðTc � TÞ1=4 and
locates the tricritical point precisely at � ¼ 1:464.
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FIG. 14. Phase diagram of the massive chiral GN model. The
crystal phase with complex order parameter is separated from the
massive Fermi gas phase by 1st (dark shaded) and 2nd (light
shaded) order critical sheets joined at a tricritical line.
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FIG. 12. Difference in grand canonical potential between 2
phases near the tricritical point, using GL theory near � ¼ 0.
The rescaled potential difference is plotted vs �� ðTc � TÞ1=2
along the 2nd order critical line.
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them at the same scale and under the same viewing angle as
in Fig. 14; cf. Fig. 15. Here the 2 critical sheets are both 2nd
order and joined in a cusp rather than tangentially. The
qualitative differences between Figs. 14 and 15 are due to
the difference between continuous and discrete chiral sym-
metries of the two GN-type models, reflecting the corre-
sponding universality classes. If one would only admit
homogeneous phases as was done in the early works on
these phase diagrams, the 2 models would give identical
results. This is illustrated in Fig. 16 adapted from Ref. [24].
Here, the dark shaded sheet is 1st order, and there is only a
single massive Fermi gas phase at � > 0.

Let us finally comment on some open questions. As
pointed out above, to determine the tricritical line of the
chiral GN model requires some extrapolation of numerical
results. The minimization becomes difficult close to the
tricritical line where the effective potential is flat.
Independent analytical work on the tricritical line and the
critical exponent 
 discussed above would therefore be
useful. Onewould also like to know the universality classes
to which the different variants of GN models belong.

Another issue where further work is needed is related to
the possibility of chiral twist in the massless case, recently
discovered in Ref. [12]. From the symmetry point of view,
the situation in the chiral limit may be characterized as
follows: The Hamiltonian commutes with the generators
(P, Q, Q5) of translations and vector/axial vector phase
transformations of the fermions. A mass term (like in the
vacuum or any homogeneous phase) breaks Q5, reducing
chiral symmetry to U(1) vector transformations with the
appearance of a massless Goldstone boson, the pion, and
leaves P unbroken. The chiral spiral solution breaks P and

Q5, but leaves the linear combination Pþ�Q5 unbroken.
Since one unbroken, continuous symmetry is left, one
expects only one gapless excitation, a mixture of a phonon
and a pion. If the twisted kink crystal is realized, the
symmetry will be further broken down to one discrete
combination of translation and �5 phase rotation;
cf. Eq. (11). Such crystals should feature two different
gapless excitations, the phonon and the pion. In view of
these different physics implications, it is important to
reconsider the phase diagram in the chiral limit once again
and establish the thermodynamically most stable phases.
In the massive chiral GN model, chiral symmetry is

explicitly broken by the bare mass term, and Q5 does not
commute with H anymore. It is therefore unlikely that the
Q5 operator appears in a residual discrete symmetry of the
condensates, as in the chirally twisted kink crystal. The
only remaining issue is then the fate of translational sym-
metry and its generator P. So far, we have tacitly assumed
that translational invariance breaks down to a discrete
subgroup with concomitant periodic potentials, as is com-
mon in condensed matter systems. If this assumption
would turn out to be wrong, the present calculation should
be regarded as a variational calculation rather than the
exact solution of the model in the large N limit, but such
a scenario does not seem very likely to us.
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