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Upon applying Chamseddine’s noncommutative deformation of gravity, we obtain the leading order

noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous

metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the

commutative metric at t ¼ 0 is replaced by a more involved space-time structure in the noncommutative

theory. In a toy model we construct a scenario where there is no singularity at t ¼ 0 at leading order in the

noncommutativity parameter. Although singularities may still be present for nonzero t, they need not be

the source of all timelike geodesics and the result resembles a bouncing cosmology.
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I. INTRODUCTION

Noncommutative deformations of general relativity of-
fer the promise of modeling effects of quantum gravity. A
number of different deformations have been given [1–4].
The approach of Aschieri et al. [2] has the advantage of
preserving the full diffeomorphism symmetry of the com-
mutative theory. As it is technically rather involved, it so
far however has not been very convenient for practical
applications. An older approach of Chamseddine [1] is
based on the noncommutative analogue SOð4; 1Þ gauge
theory and uses the Seiberg-Witten map [5]. It makes
contact with general relativity using a Wigner-Inönü con-
traction. Ideally, one should look for solutions to a non-
commutative deformation of the field equations and map
back to the commutative theory in order to obtain a physi-
cal interpretation. This procedure could be easily carried
out in the case of Uð1Þ gauge theory in order to obtain
noncommutative corrections to the Coulomb solution [6].
However in the case of gravity, a deformation of Einstein
equations which is covariant under a noncommutative
version of local Lorentz transformations remains obscure
within the SOð4; 1Þ gauge theory approach. An alternative
procedure has been adopted recently to obtain noncommu-
tative corrections to black holes [7,8]. (See also [9–13].)
There, rather than solving some noncommutative analogue
of the Einstein equations subject to the appropriate bound-
ary conditions, one maps the known black hole solutions of
general relativity to the noncommutative theory. One then
defines a noncommutative analogue of the metric tensor in
order to give a physical interpretation of the results. As is
typical with noncommutative gravity, the leading order
corrections are second order in noncommutativity parame-
ters [14].

Cosmology offers another possible realm of application
of noncommutativity. Previous studies have led to correc-
tions to the cosmic microwave background radiation [15],
and noncommutative scalar fields have been coupled to the
Robertson-Walker metric tensor in order to study effects on
inflation [16–18]. Noncommutativity could also potentially
resolve the big bang singularity. With this in mind we apply

the procedure discussed above to obtain leading order
corrections to the Robertson-Walker metric tensor. We
get an isotropic inhomogenous metric tensor (with respect
to one world line) after making a specific choice of the
noncommutativity parameters. Isotropic inhomogenous
cosmologies have been studied previously [19], and some
specific models have been proposed in order to explain the
cosmological acceleration [20–26]. For an arbitrary expan-
sion, the second order corrections to the Robertson-Walker
metric tensor which we obtain are rather involved. They
simplify considerably for the special case of a linear ex-
pansion which allows for an analysis at small time t
(associated with the noncommutativity scale). In this toy
model we can construct a scenario where the noncommu-
tative metric tensor is everywhere well defined at t ¼ 0 to
leading order in the noncommutativity scale. New singu-
larities do appear at nonzero t in this case, but these
singularities are not the source of all timelike geodesics.
Instead, geodesics can be extended through the t ¼ 0 time
slice, and range from t! �1 to t! þ1. The noncom-
mutative metric tensor is invariant under t! �t and de-
scribes a bouncing universe.
This article is organized as follows. We review the gauge

theory formalism for gravity in Sec. II and the noncommu-
tative generalization obtained by Chamseddine in Sec. III.
There we introduce a recursion relation found recently in
[27] for the second order potentials. It is employed in
obtaining the leading noncommutative corrections to the
Robertson-Walker metric in Sec. IV. There we analyze the
resulting space-time structure near t ¼ 0 for the case of a
linear expansion. We briefly remark on a slightly more
realistic expansion associated with a flat radiation domi-
nated universe in Sec. V.

II. COMMUTATIVE THEORY

The gauge theory formalism for gravity [28] is ex-
pressed in terms of spin connection and vierbein one-
forms, !ab ¼ �!ba and ea, respectively. a; b; . . . ¼
0; 1; 2; 3 are Lorentz indices which are raised and lowered
with the flat metric tensor � ¼ diagð�1; 1; 1; 1Þ, while the
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space-time metric is

g�� ¼ ea�e
b
��ab: (2.1)

Infinitesimal variations of !ab and ea induced from local
ISOð3; 1Þ transformations are given by

�!ab ¼ d�ab þ ½!;��ab
�ea ¼ d�a þ!a

c�
c � �a

ce
c;

(2.2)

for infinitesimal parameters �ab ¼ ��ba and �a, and
where ½!;��ab ¼ !a

c�
cb � �a

c!
cb. The spin curvature

and torsion two-forms, Rab ¼ �Rba and Ta, respectively,
are constructed from !ab and ea according to

Rab ¼ d!ab þ!a
c ^!cb Ta ¼ dea þ!a

b ^ eb;

(2.3)

and they satisfy the Bianchi identities

dRab ¼ Ra
c ^!cb � Rb

c ^!ca

dTa ¼ Ra
b ^ eb �!a

c ^ Tc:
(2.4)

The field action

S ¼ 1

4

Z
�abcdR

ab ^ ec ^ ed; (2.5)

describing pure gravity is invariant under local Lorentz
transformations (and the full set of local Poincaré trans-
formations when the torsion vanishes). The field equations
obtained from arbitrary variations of !ab and ea are

T½a ^ eb� ¼ 0 (2.6)

R½ab ^ ec� ¼ 0; (2.7)

where the brackets indicate antisymmetrization of indices.
Provided that the vierbeins have an inverse, (2.6) implies a
vanishing torsion, while (2.7) implies a vanishing Ricci
curvature R�� ¼R���

�, where the Riemann curvature

R���
� is given in terms of the spin curvature by

R ���
� ¼ �Rab

��eb�½e�1��a; (2.8)

where eb�½e�1��a ¼ �b
a.

The above ISOð3; 1Þ gauge theory is obtained from a
Wigner-Inönü contraction of SOð4; 1Þ gauge theory.
Denote the potential one-forms and the infinitesimal gauge
parameters of SOð4; 1Þ gauge theory by AAB ¼ �ABA and
�AB ¼ ��BA, respectively, with indices A; B; . . . ¼
0; 1; 2; 3; 4 which are raised and lowered with the metric

tensor diagð�1; 1; 1; 1; 1Þ. An SOð4; 1Þ gauge variation is
given by

�AAB ¼ D�AB ¼ d�AB þ ½A;��AB; (2.9)

where ½A;��AB ¼ AA
C�

CB ��A
CA

CB, and the curvature

two-forms FAB ¼ �FBA are

FAB ¼ dAAB þ AA
C ^ ACB: (2.10)

The contraction to ISOð3; 1Þ gauge theory is obtained by
setting

�ab ¼ �ab �a4 ¼ 	�a Aab ¼ !ab

Aa4 ¼ 	ea Fab ¼ Rab Fa4 ¼ 	Ta;
(2.11)

and taking the limit 	! 0.

III. NONCOMMUTATIVE THEORY

The noncommutative generalization for gauge theories
based on nonunitary groups was obtained in [29,30]. For

the case of SOð4; 1Þ gauge theory, denote by ÂAB and �̂AB,
respectively, the noncommutative analogues of the
SOð4; 1Þ connection one-forms and infinitesimal gauge
parameters. The noncommutative analogue of (2.9) is
given by

�ÂAB ¼ D?�̂
AB ¼ d�̂AB þ ½Â; �̂�AB? ; (3.1)

where ½Â; �̂�AB? ¼ ÂA
C ? �̂CB � �̂A

C ? ÂCB; and the ?
denotes the Groenewold-Moyal star product. Acting be-
tween two functions the latter is given by

? ¼ exp

�
i

2
���@

 
�
~@�

�
; (3.2)

where ��� ¼ ���� are constant matrix elements denot-

ing the noncommutativity parameters and @
 
� and ~@� are

left and right derivatives, respectively, with respect to some
coordinates x�. The noncommutative analogue of the
SOð4; 1Þ curvature two-form is

F̂ AB ¼ dÂAB þ ÂA
C^
�
ÂCB: (3.3)

^� denotes an exterior product where the usual pointwise
product between components of the forms is replaced by
the Groenewold-Moyal star product. The noncommutative
spin connection, vierbein, curvature, and torsion forms,

denoted, respectively, by !̂ab, êa, R̂ab, and T̂a, can be

extracted from ÂAB as in the commutative case, i.e.,

Â ab ¼ !̂ab Âa4 ¼ 	êa F̂ab ¼ R̂ab

F̂a4 ¼ 	T̂a; as 	! 0:
(3.4)
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It is known [29,30] that Â, F̂, and �̂, unlike their
commutative analogues, are not valued in the SOð4; 1Þ
Lie algebra, since ðÂAB; �̂ABÞ ! ð�ÂBA;��̂BAÞ is not an
isomorphism of the gauge algebra (3.1). Moreover, ÂAB,

F̂AB, and �̂AB cannot be restricted to real-valued forms,
although one can impose anti-Hermiticity

ðÂABÞ� ¼ �ÂBA ðF̂ABÞ� ¼ �F̂BA

ð�̂ABÞ� ¼ ��̂BA;
(3.5)

and the diagonal components are purely imaginary. It was

observed in [30] that, if one enlarges the domain of ÂAB,

F̂AB, and �̂AB to the product of the space-time manifold
(with local coordinates x�) with the space of all noncom-
mutativity parameters ���, then the following conditions
can be imposed consistent with the gauge algebra:

ÂABðx;�Þ ¼ �ÂBAðx;��Þ
F̂ABðx;�Þ ¼ �F̂BAðx;��Þ
�̂ABðx;�Þ ¼ ��̂BAðx;��Þ:

(3.6)

ÂABðx;�Þ, F̂ABðx;�Þ, and �̂ABðx;�Þ can be expanded in
terms of a power series in ���:

ÂAB
� ðx;�Þ ¼ AAB

� ðxÞ þ AAB
�

ð1Þ
ðxÞ þ AAB

�

ð2Þ
ðxÞ þ � � �

F̂AB
��ðx;�Þ ¼ FAB

��ðxÞ þ FAB
��

ð1Þ
ðxÞ þ FAB

��

ð2Þ
ðxÞ þ � � �

�̂ABðx;�Þ ¼ �ABðxÞ þ�AB

ð1Þ
ðxÞ þ�AB

ð2Þ
ðxÞ þ � � � ;

(3.7)

where the ðnÞ subscript indicates the nth order in ���,

MAB

ðnÞ
ðxÞ ¼ MAB

�1�1�2�2����n�n
ðxÞ��1�1��2�2 � � ���n�n :

(3.8)

Then (3.6) implies that the coefficients MAB
�1�1�2�2����n�n

ðxÞ
are (anti)symmetric under interchange of the A and B
indices for n odd (even). Equation (3.5) then implies that
the coefficients are imaginary (real) for n odd (even).

The power series (3.7) have been defined using the
Seiberg-Witten map from the commutative gauge theory
[29,30]:

Â � ¼ Â�ðAÞ F̂�� ¼ F̂��ðAÞ �̂ ¼ �̂ðA;�Þ;
(3.9)

where A, F, and � again denote the commutative poten-
tials, curvatures, and infinitesimal gauge parameters, re-
spectively. Since the latter are valued in the SOð4; 1Þ Lie

algebra, this puts restrictions on the allowable Â, F̂, and �̂.

The Seiberg-Witten map [5] then defines the space Â of

allowable noncommutative potentials Â. The map is re-
quired to satisfy

Â �ðAþ @�þ ½A;��Þ � Â�ðAÞ
¼ @��̂ð�; AÞ þ ½Â�ðAÞ; �̂ð�; AÞ�?; (3.10)

for infinitesimal �. The zeroth order in the expansion (3.7)
agrees with the commutative theory. Up to homogeneous
terms, the first order expressions for the noncommutative
potentials and infinitesimal gauge parameters are

A�

ð1Þ
¼ � i

4
���fA�; @�A� þ F��g

�
ð1Þ
¼ � i

4
���fA�; @��g;

(3.11)

where the parentheses denote the anticommutator
fA; BgAB ¼ AACBC

B þ BACAC
B. Recently, a relatively sim-

ple recursion relation was found for the higher order po-
tentials and gauge parameters [27]. At second order one
gets

A�

ð2Þ
¼ � i

8
���ðfA�

ð1Þ
; @�A� þ F��g þ fA�; @�A�

ð1Þ
þ F��

ð1Þ
g

þ fA�; @�A� þ F��g?ð1Þ Þ

�
ð2Þ
¼ � i

8
���ðfA�

ð1Þ
; @��g þ fA�; @��

ð1Þ
g þ fA�; @��g?ð1Þ Þ;

(3.12)

where the subscript ?ðnÞ on the bracket indicates the nth
order term in the � expansion of the star-anticommutator
fA; BgAB? ¼ AAC ? BC

B þ BAC ? AC
B.

Using (3.4), one next defines noncommutative vierbeins
and spin connections through a power series expansion in
� [1]:

êa�ðx;�Þ ¼ ea�ðxÞ þ ea�
ð1Þ
ðxÞ þ ea�

ð2Þ
ðxÞ þ � � �

!̂ab
� ðx;�Þ ¼ !ab

� ðxÞ þ!ab
�

ð1Þ
ðxÞ þ!ab

�

ð2Þ
ðxÞ þ � � � ;

(3.13)

which in turn is defined through the Seiberg-Witten map of
the potential one-forms

ê ¼ êðe;!Þ !̂ ¼ !̂ðe;!Þ: (3.14)

The zeroth order again agrees with the commutative the-
ory, while for the first and second orders one gets
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ea�
ð1Þ
¼ � i

4
���ð½!��abð@�eb� þ Tb

��Þ

þ ð@�!� þ R��Þabeb�Þ
!ab

�

ð1Þ
¼ � i

4
���f!�; @�!� þ R��gab;

(3.15)

and

ea�
ð2Þ
¼ � i

8
���ð½!�

ð1Þ
�abð@�eb� þ Tb

��Þ

þ ½!��abð@�eb�
ð1Þ
þ Tb

��

ð1Þ
Þ

þ ½!��ab ?ð1Þ ð@�eb� þ Tb
��Þ þ ð@�!�

ð1Þ
þ R��

ð1Þ
Þabeb�

þ ð@�!� þ R��Þabeb�
ð1Þ
þ ð@�!� þ R��Þab ?ð1Þ eb�Þ

!ab
�

ð2Þ
¼ � i

8
���ðf!�

ð1Þ
; @�!� þ R��gab

þ f!�; @�!�

ð1Þ
þ R��

ð1Þ
gab þ f!�; @�!� þ R��gab?ð1Þ Þ;

(3.16)

where the first order corrections to the curvature and
torsion are defined as

Rab
��

ð1Þ
¼ @�!

ab
�

ð1Þ
� @�!

ab
�

ð1Þ
þ ½!�

ð1Þ
; !��ab þ ½!�;!�

ð1Þ
�ab

þ ½!�;!��ab?ð1Þ
Ta
��

ð1Þ
¼ @�e

a
�

ð1Þ
þ ½!�

ð1Þ
�abeb� þ ½!��abeb�

ð1Þ
þ ½!��ab ?ð1Þ eb�

� ð�Ð �Þ: (3.17)

For the discussion below we follow [7,8] and specialize to
the case of zero torsion in the commutative theory; i.e.,

Ta
�� ¼ 0: (3.18)

Furthermore, in order to make a physical interpretation of
the noncommutative vierbeins we define the real symmet-
ric noncommutative version of the metric tensor according
to

ĝ �� ¼ 1
2�abðêa� ? êb�� þ êb� ? êa�� Þ: (3.19)

IV. ROBERTSON-WALKER METRIC

We now apply the above formalism to the case of the
Robertson-Walker metric. Starting with the usual expres-
sion for the Robertson-Walker invariant measure

ds2 ¼ �dt2 þ aðtÞ2
�

dr2

1� kr2
þ r2ðd
2 þ sin2
d�2Þ

�
;

(4.1)

where aðtÞ is the scale factor, one can assign vierbein one-
forms according to

e0 ¼ dt e1 ¼ aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2
p e2 ¼ aðtÞrd


e3 ¼ aðtÞr sin
d�:

(4.2)

The torsion vanishes upon choosing the following for the
spin connection one-forms:

!01 ¼ �dr !02 ¼ _ard
 !03 ¼ _ar sin
d�

!12 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
d
 !31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
sin
d�

!23 ¼ � cos
d�; (4.3)

where the dot denotes differentiation with respect to t. To
determine � one can compute the curvature scalar R ¼
R��

�� using (2.8), and compare with the known result for

the Robertson-Walker metric; i.e.,

R ¼ 6

�
€a

a
þ

�
_a

a

�
2 þ k

a2

�
: (4.4)

They agree for

� ¼ _affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2
p : (4.5)

Next we compute the second order noncommutative
corrections to the metric tensor. For simplicity we set all
components of ��� equal to zero except for

�tr ¼ ��rt ¼ �: (4.6)

This choice leads to an isotropic inhomogeneous space-
time. Up to second order in �, we find the following
noncommutative vierbein one-forms after substituting
into (3.13), (3.14), (3.15), and (3.16):

ê0 ¼ dtþ i�

4

_a2 þ 2a €a

1� kr2
dr� 5�2ð €a2 þ _aað3ÞÞ

32ð1� kr2Þ dt

þ r�2kð9 _a €a�2aað3ÞÞ
16ð1� kr2Þ2 dr

ê1 ¼ adrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2
p þ i�€adt

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2
p � ir�k _adr

4ð1� kr2Þ3=2

� 3�2ð3 €a _a2 þ 4aað3Þ _aþ 4a €a2Þ
32ð1� kr2Þ3=2 dr

ê2 ¼ �d
 ê3 ¼ �sin
d�;

(4.7)

where

� ¼ ar� i�

4
_a� r�2ð8a €a2 þ ð9 _a2 þ 4kÞ €aþ 4a _aað3ÞÞ

32ð1� kr2Þ ;

(4.8)
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and að3Þ denotes the third time derivative of a. Only one off
diagonal element of ĝ�� (3.19) results in these coordinates:

ĝtt ¼ �1þ�2ð6 €a2 þ 5 _aað3ÞÞ
16ð1� kr2Þ þOð�4Þ

ĝrr ¼ a2

1� kr2
� �2

16ð1� kr2Þ3
� ðð1� kr2Þð _a4 þ 13a €a _a2 þ 12a2að3Þ _aþ 16ða €aÞ2Þ
þ kð3kr2 þ 4Þ _a2 þ 4a €akðkr2 þ 1ÞÞ þOð�4Þ

ĝ

 ¼ r2a2 þ�2

16

�
�að8a €a2 þ ð9 _a2 þ 4kÞ €aþ 4a _aað3ÞÞr2

1� kr2

þ 5 _a2 þ 4a €a

�
þOð�4Þ

ĝ�� ¼ sin2
ĝ

 ĝtr ¼ � r�2k _a €a

2ð1� kr2Þ2 þOð�4Þ: (4.9)

When interpreted as a metric tensor ĝ�� describes an

inhomogeneous isotropic space-time with respect to the
world line at r ¼ 0.1 We note that there are no second order
corrections when the scale factor is a constant.

We wish to examine ĝ�� for small t (which we define

later). As a general analysis with arbitrary scale factor is
quite involved, we shall limit the discussion to a toy model.
The simplest nontrivial example is the case of aðtÞ ¼ vt,
associated with a linear expansion in the commutative
theory.2 Here we can construct a scenario where there is
no singularity at t ¼ 0 to second order in �. We first note
that the case of aðtÞ ¼ vt implies that the off diagonal
matrix element ĝtr vanishes at second order and that the
diagonal elements are invariant under t! �t. If in the
noncommutative theory we define the analogue of the
invariant measure according to dŝ2 ¼ ĝ��dx

�dx�, it here

has the form

dŝ2 ¼ �dt2 þ arðt; rÞ2dr2
1� kr2

þ r2a�ðt; rÞ2ðd
2 þ sin
2d�2Þ
þOð�4Þ; (4.10)

where

arðt; rÞ2 ¼ aðtÞ2 ��2v2

16

�
v2

1� kr2
þ kð3kr2 þ 4Þ
ð1� kr2Þ2

�

a�ðt; rÞ2 ¼ aðtÞ2 þ 5�2v2

16r2
: (4.11)

The second order correction to a�ðt; rÞ renders ĝ

 and
ĝ�� nonsingular at t ¼ 0. The second order correction to

arðt; rÞ2 is everywhere negative when

� v2

4
< k � 0; (4.12)

which means that ĝrr is also everywhere nonsingular at t ¼
0. Thus when (4.12) holds, the leading corrections imply
that there is no singularity at t ¼ 0. Instead, the noncom-
mutative metric tensor is everywhere well defined on the
t ¼ 0 time slice, which has a three-dimensional
Minkowski signature ð�1; 1; 1Þ. The same result applies
for

k > 0; 0 � r2 <
1

k
: (4.13)

(The metric tensor is ill defined at r2 ¼ 1=k for the case of
k > 0.) On the other hand, the noncommutative metric
tensor is singular for these two cases when

t2 ¼ �2

16

�
v2

1� kr2
þ kð3kr2 þ 4Þ
ð1� kr2Þ2

�
; (4.14)

the solutions of which define two disconnected surfaces,
associated with positive and negative values for t. (For the
choice of a dimensionful radial coordinate,��1, v2, and k
have units of 1=length2.) One can compute the scalar
curvature in order to determine whether the surfaces con-
tain real (as opposed to coordinate) singularities. Treated
as a space-time metric tensor, ĝ�� leads to the following

(commutative) space-time scalar curvature:3

R ¼R��
�� ¼ 6ðv2 þ kÞ

t2v2
��2ðkðv4 þ 8kv2 þ 7k2Þr6 � ðv4 þ 26kv2 þ 2k2Þr4 þ ð11v2 þ 4kÞr2 þ 5Þ

8r4t4v2ð1� r2kÞ2 þOð�4Þ:
(4.15)

It is well behaved everywhere on the surfaces defined by
(4.14) except at the spatial origin. It follows from the

second order analysis that there are (at least) two singular
points on the space-time manifold,

ðt; rÞ ¼
�
��

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p
; 0

�
; (4.16)1This is not the case for generic ���.

2If one further restricts k ¼ �v2, then the commutative theory
corresponds to the Milne universe. In this case, all components
of the Riemann curvature vanish and the commutative metric can
be mapped into a region of Minkowski space using ðt; rÞ ! ðt0 ¼
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2r2
p

; r0 ¼ vtrÞ.

3Alternatively, one can define a noncommutative analogue of
the scalar curvature, as is done in [8]; however, its geometrical
meaning is not obvious.
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which go to the big bang singularity when �! 0.4

[Equation (4.16) can be used to define ‘‘small t’’ in this
case.] Unlike the big bang singularity, the two singular
points in (4.16) are not the source of all timelike geodesics
when � � 0. To see this we next look at the geodesic
equations. Call u� ¼ dx�

d� where � parametrizes the geode-
sic. Because of rotational invariance, we can consistently
set u
 ¼ u� ¼ 0. The geodesic equations for ut and ur

then read

dut

d�
¼ � tðvurÞ2

1� kr2
þOð�4Þ

dur

d�
¼ � krðurÞ2

1� kr2
� 2utur

t

� �2

16t3ðkr2 � 1Þ3 frtkðð1� kr2Þv2

þ kð3kr2 þ 11ÞÞðurÞ2 � 2ð1� kr2Þðð1� kr2Þv2

þ kð3kr2 þ 4ÞÞuturg þOð�4Þ: (4.17)

The comoving world lines ut ¼ 1, ur ¼ 0 of the commu-
tative theory are unaffected by the second order corrections
in �. Consequently, all of them, except for the central one
at r ¼ 0 which intersects the singular points (4.16), can be
extended through the t ¼ 0 time slice, and range from t!

�1 to t! þ1. Therefore, although cosmic singularities
are still present at leading order in�, they are no longer the
source of all timelike geodesics. This result also holds
when (4.12) or (4.13) are no longer true, as is the case
with the Milne universe. Then there are singularities on the
t ¼ 0 time slice on the surface of a sphere of radius5

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

kðv2 � 3kÞ

s
; (4.18)

but they are not the source of all timelike geodesics.

V. CONCLUDING REMARKS

It is of course of interest to go beyond the toy model
considered in the previous section and consider more
realistic functions for the scale parameter. Unfortunately,
the analysis then becomes quite a bit more involved, and so
we only briefly comment on a couple of examples here.

For the example of aðtÞ ¼ Ct1=2, which is standardly
associated with a flat radiation dominated universe, the
noncommutative metric tensor (4.9) is no longer diagonal
in the coordinates ðt; r; 
; �Þ unless k ¼ 0. From (4.9) we
can compute the volume form for this case:

detĝ�� ¼ �
�
t3 ��2ð83r2ð1� kr2ÞC2 � 4tð�5k2r4 þ 4kr2 þ 2ÞÞ

256r2ð1� kr2Þ2
�
C6r4sin2


1� kr2
: (5.1)

It is well behaved at t ¼ 0 for k � 0 and k > 0, 0 � r2 < 1
k , except for the origin r ¼ 0. The origin appears to be a

singularity in space-time from the expression for the space-time scalar curvature which in this case is

R ¼R��
��

¼ 6k

C2t
þ ð933C

4ðr2k� 1Þr4 � 4C2tð82k2r4 � 284kr2 þ 21Þr2 þ 16t2ð5k3r6 � 22k2r4 � 4kr2 � 1ÞÞ�2

512C2r4t5ð1� kr2Þ2 þOð�4Þ:
(5.2)

More generally, upon setting the parenthesis in (5.1) equal
to zero, one now gets a cubic equation in t, defining
surfaces where the noncommutative metric tensor is sin-
gular. Equation (5.2) may be employed to determine
whether or not points on these surfaces are coordinate
singularities. The geodesic equations for ut and ur now
have �2 terms proportional to ðutÞ2, and so unlike in the
previous case, the comoving world lines ut ¼ 1, ur ¼ 0 of
the commutative theory are not geodesics of the noncom-
mutative metric due to �2 corrections.

Of course it is also of interest to consider the example of

aðtÞ ¼ Ct2=3, which is standardly associated with a matter
dominated universe. One can then try to perform spatial
averages of the second order correction in this case in order
to obtain the best fit for the map of the luminosity distance
of the supernova versus the redshift along the lines of [20–
26]. Since we are not required to make any particular
choice for ���, as in (4.6), a reasonable fit may be
possible.
Lastly, we note that there are limitations to the procedure

of Refs. [7,8] and adopted in this article. It is reasonable to
expect that there could be other second order noncommu-
tative gravitational effects which are not readily accessible
from this procedure, such as:

5The arguent given in the previous footnote suggests that these
are coordinate singularities.

4The scalar curvature given in (4.15) is still singular at t ¼ 0.
However, this is due to the truncation of the expansion in�. The
exact expression for the scalar curvature which follows from the
second order corrected metric tensor is well defined at t ¼ 0 for
(4.12) or (4.13).
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(1) The scale factor aðtÞ may receive corrections due to
some noncommutative aspects of the matter contri-
bution to the Einstein equations.

(2) The geodesic equations for test particles can pick up
noncommutative corrections.

The procedure of Refs. [7,8] was to map known solutions
of general relativity to the noncommutative theory, using
the Seiberg-Witten map, and then to define a noncommu-
tative analogue of the metric tensor in order to give a
physical interpretation of the results. On the other hand,
the computation of both corrections (1) and (2). would
require detailed knowledge of the noncommutative gravi-

tational field equations. [Concerning (2), the noncommu-
tative particle equations of motion can presumably be
obtained by taking some sort of particle limit of the non-
commutative energy momentum conservation law which
follows from the field equations, in a manner similar to
what is done in the commutative theory.] However, as
stated in the Introduction, a deformation of Einstein equa-
tions consistent with the noncommutative analogue of
local Lorentz covariance is problematic in this approach.
In order to know whether or not corrections such as (1) and
(2) can influence physical predictions it is therefore im-
portant to pursue a better understanding of the noncommu-
tative dynamics.
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