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We examine a double trace deformation of SUðNÞ Yang-Mills theory which, for large N and large

volume, is equivalent to unmodified Yang-Mills theory up to Oð1=N2Þ corrections. In contrast to the

unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small

volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which

would otherwise disrupt large N volume independence in small volumes. For small values of N, if the

theory is formulated on R3 � S1 with a sufficiently small compactification size L, then an analytic

treatment of the nonperturbative dynamics of the deformed theory is possible. In this regime, we show that

the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circum-

ference L or number of colors N decreases the separation of scales on which the analytic treatment relies.

However, there are no order parameters which distinguish the small and large radius regimes. Conse-

quently, for small N the deformed theory provides a novel example of a locally four-dimensional pure-

gauge theory in which one has analytic control over confinement, while for large N it provides a simple

fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other

QCD-like theories.
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I. LARGE N VOLUME INDEPENDENCE

The large N limits of SUðNÞ Yang-Mills (YM) theories,
when formulated on toroidal compactifications of Rd, are
independent of volume provided the ðZNÞd center symme-
try is not spontaneously broken [1–3].1 However, above
two dimensions, center symmetry does break spontane-
ously when the (smallest) compactification circumference
L is less than a critical size Lc [4]. (If just one dimen-
sion is compactified, then this center-symmetry breaking
transition is the usual thermally induced deconfinement
transition.) In four dimensions, the critical size Lc is ap-

proximately ��1, where � is the MS strong scale of the
theory [4,5].

Notwithstanding the limitation to L � Lc, the volume
independence of large N Yang-Mills theory (‘‘partial re-
duction’’) has practical utility for lattice studies, because
simulations on lattices of size ðLcÞd are sufficient to extract
infinite volume properties of large N Yang-Mills theory
[4,6–8]. But it would be even more helpful to have a
formulation of the theory in which volume independence
holds for arbitrarily small volumes—since this allows one
to reduce the lattice all the way down to a single site.

Several schemes for preserving volume independence in
arbitrarily small volumes have been proposed. In so-called

quenched reduced models, one constrains the eigenvalues
of link variables (or Wilson lines) in a manner which pre-
vents Wilson lines from acquiring expectation values [3].2

In the N ! 1 limit, quenched reduced models correctly
reproduce properties of infinite volume Yang-Mills theory.
However, corrections to the N ¼ 1 limit scale as 1=N, not
1=N2, in quenched reduced models. This makes extracting
largeN properties from numerical simulations of quenched
reduced models quite challenging. An alternative proposal,
known as twisted reduced models, involves modifying the
Wilson action of a single-site model so that the action
explicitly disfavors configurations in which Wilson lines
in different directions mutually commute [10,11]. Unfor-
tunately, this clever scheme fails to work sufficiently close
to the continuum limit [12,13]. In essence, the penalty im-
posed by the twisting of the action is insufficient to over-
come entropic effects which favor breaking of the center
symmetry.
If light adjoint representation fermions are added to an

SUðNÞ Yang-Mills theory, and periodic (not antiperiodic)
boundary conditions imposed on the fermions, then the
fermion contribution to the Wilson line effective poten-
tial stabilizes the unbroken center-symmetry phase. Hence
these QCD-like theories satisfy large N volume indepen-
dence for arbitrarily small volumes [14]. (Moreover, in
the large N limit, charge-conjugation even observables
coincide between these theories and corresponding theo-
ries, in sufficiently large volume, with fermions in the rank-
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1Center-symmetry transformations are gauge transformations

which are periodic only up to an element of the center of the
gauge group. Volume independence applies to the leading large
N behavior of expectation values and connected correlators of
topologically trivial Wilson loops.

2See Ref. [9] for an extended discussion of quenched and
twisted reduced models.
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two symmetric or antisymmetric tensor representations
[15–17].)

Motivated by this fermion-induced stabilization of cen-
ter symmetry, in this paper we introduce a simple scheme
for preserving volume independence in pure Yang-Mills
theory. We add double trace terms to the action which pre-
vent spontaneous breaking of the center symmetry, while
simultaneously perturbing the dynamics of the unbroken
symmetry phase only by Oð1=N2Þ corrections. This leads
to a ‘‘stabilized reduced model’’ which reproduces the dy-
namics of infinite volume Yang-Mills theory up to relative
corrections which scale as 1=N2. The construction may be
easily generalized to other QCD-like theories with matter
fields in rank-one or rank-two representations.

In addition to providing a simple largeN reduced model,
the deformed Yang-Mills theory is interesting in its own
right when N is not large [compared to ð�LÞ�1].3 When
formulated on R3 � S1, we show that the large distance
dynamics of the theory are analytically tractable provided
N�L � 1. In this regime, a semiclassical analysis [closely
related to Polyakov’s classic treatment of 3d SUð2Þ adjoint
Higgs theory [24] ] reveals the existence of a mass gap and
area law behavior of spatial Wilson loops. It is noteworthy
that our compactified, deformed Yang-Mills theory is an
analytically tractable confining theory with no fundamen-
tal scalar fields or supersymmetry, in contrast to other in-
structive models of confinement [24–27]. The confinement
mechanism involves the formation of a dilute plasma of
magnetic monopoles (and antimonopoles) carrying topo-
logical charge �1=N.4

Large N volume independence of our stabilized reduced
model holds in the N ! 1 limit for any fixed compactifi-
cation radius L. The existence of the analytically tractable
volume dependent regime, NL� � 1, in which one has
analytic control over confinement, does not conflict with
large N volume independence since, as N ! 1, one must
scale L / ðN�Þ�1 to remain within this regime. One may,
of course, consider a double scaling limit in which NL� is
held fixed as N ! 1. We find that the low-lying mass
spectrum has a smooth large N limit when NL� is fixed
at some value small compared to one. But large N volume
independence does not apply to this double scaling limit
with small N�L.

II. DEFORMED YANG-MILLS THEORY

We consider pure Yang-Mills theory with gauge group
SUðNÞ defined on the four manifold R3 � S1, with the S1

having circumference L. The extension to multiple com-
pactified dimensions will be discussed below, but we begin
with a single compactified dimension to simplify the ex-
position. We start with the usual continuum action,

SYM ¼
Z
R3�S1

1

2g2
trF2

��ðxÞ; (2.1)

or a lattice formulation with the Wilson action,

SYM ¼ ��

2

X
p2�4

trðU½@p� þU½@p�yÞ; (2.2)

where the sum is over all oriented plaquettes, �4 is the
four-dimensional spacetime lattice, and U½@p� denotes the
usual product of link matrices around the boundary of
plaquette p. The lattice coupling � � 2=g2. In our dis-
cussion, we will use both continuum and lattice formula-
tions, and benefit from both perspectives. As usual, a key
virtue of the lattice formulation is that it provides an
explicit nonperturbative definition of the theory.

Let �ðxÞ � P ðei
R

dx4A4ðx;x4ÞÞ denote the Wilson line (or
Polyakov loop) operator—the holonomy of the gauge field
around a circle wrapping the S1 and sitting at the point x 2
R3. We will construct a deformation of the Yang-Mills
action on our compactified geometry by adding terms,
respecting all symmetries of the unmodified theory, built
from the Wilson line operator. The deformed action is
given by

Sdeformed ¼ SYM þ�S; (2.3)

with

�S �
Z
R3

1

L3
P½�ðxÞ� (2.4a)

in the continuum, or

�S � 1

N3
t

X
x2�3

P½�ðxÞ� (2.4b)

on the lattice. In the lattice form, Nt � L=a denotes
the size of the lattice in the compactified direction and
�3 � �4 is a three-dimensional sublattice of the four-
dimensional lattice corresponding to a fixed Euclidean
time slice. We want the deformation potential P½�� to
guarantee the stability of the phase with unbroken cen-
ter symmetry (at small volume). It will be chosen to have
the form

P½�� � XbN=2c

n¼1

anjtrð�nÞj2; (2.5)

with positive coefficients fang (and bN=2c denoting the
integer part of N=2). In other words, P½�� is a sum of
the double trace operators trð�nÞ trð�nÞy. When consider-

3See also related recent work in Refs. [18–23].
4Confinement due to such topological objects has been pre-

viously discussed in, for example, Refs. [28,29] and references
therein. What is novel about our deformed theory at small N�L
is that this confinement mechanism operates in a regime in which
one has analytic control over the long-distance dynamics.
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ing the largeN limit, the coefficients fangwill be held fixed
as N ! 1.5

Under a center-symmetry transformation by some ele-
ment z 2 ZN , the Wilson loop trð�pÞ is multiplied by zp.
The value of p mod N, which determines the ZN repre-
sentation, is referred to as the N-ality. It will be important
that the deformation potential (2.5) only contains, by con-
struction, absolute squares of Wilson loops with nonzero
N-ality.

If P½�� were simply proportional to jtr�j2, with a
sufficiently large positive coefficient, then this would pre-
vent breaking of the center symmetry with htrð�Þi as an
order parameter. But if N > 3, then this single term is not
sufficient to prevent any spontaneous breaking of center
symmetry, as this term alone does nothing to prevent trð�2Þ
from developing an expectation value. In other words, a
stabilizing term proportional to jtrð�Þj2 cannot prevent ZN

breaking to Z2 (assuming N is even) with trð�2Þ as an
order parameter.6 Adding an additional stabilizing term
proportional to jtrð�2Þj2 could prevent such a breaking to
Z2, but does not prevent breaking to Z3 (if N mod 3 ¼ 0),
or to any larger discrete subgroup of ZN . This is why we

have allowed P½�� to include terms up to jtr�bN=2cj2.
We will argue that the deformed theory satisfies the

following:
(i) For suitable choices of the deformation parame-

ters an (i.e., each coefficient sufficiently large and
positive) the stabilizing potential (2.5) will prevent
the ZN center symmetry from breaking to any
subgroup.

(ii) In the N ! 1 limit, pure Yang-Mills theory on R4

is equivalent to the deformed theory formulated
on any R3 � S1 (for choices of the fang satisfying
point i). This equivalence applies to expectation
values of Wilson loops (on R4), or the leading large
N behavior of their connected correlators. In the
lattice formulation, the number of sites in the com-
pactified direction may be reduced to one.

(iii) When N�L � 1 limit, the deformed Yang-Mills
theory is solvable in the same sense as the Polyakov
model. The existence of a mass gap and linear con-
finement can be shown analytically. One can regard
this regime as having spontaneous breaking of the
SUðNÞ gauge symmetry down to Uð1ÞN�1, but this
is a perturbative gauge-dependent description with
no well-defined invariant content.

(iv) There exist no order parameters which can dis-
tinguish the N�L � 1 ‘‘Higgs’’ regime from the
N�L 	 1 regime in which gauge symmetry is
‘‘restored.’’

As noted earlier, pure Yang-Mills theory on R3 � S1

satisfies volume independence (in the large N limit) so
long as the ZN center symmetry remains unbroken [2–4].
We will show that this is equally true for the deformed
theory; the additional terms in the action do not affect the
proof that volume independence, at N ¼ 1, is an auto-
matic consequence of unbroken center (and translation)
symmetry. In the undeformed theory, the unbroken center-
symmetry phase is the low temperature confined phase,
L> Lc with Lc 
��1 the inverse deconfinement tem-
perature. But in the deformed Yang-Mills theory, the stabil-
ity of the unbroken center-symmetry phase is enforced by
hand for all values of L.
Large N volume independence, and the large N equiva-

lence between ordinary Yang-Mills theory on R4 and
the deformed theory on R3 � S1, may be demonstrated
by comparing Dyson-Schwinger equations (i.e., Migdal-
Makeenko loop equations) for expectation values and cor-
relators of Wilson loops, or alternatively by comparing the
large N classical dynamics that may be derived by using
appropriate large N coherent states [2,30–32]. Figure 1
summarizes the relation between the large N limits of
ordinary and deformed Yang-Mills theories. As long as the
ZN center symmetry is not spontaneously broken, the
dynamics of the theories defined by SYM and Sdeformed are
indistinguishable at leading order in the 1=N expansion.
In particular, glueball spectra of the two theories can dif-
fer only by order 1=N2 effects. Agreement up to Oð1=N2Þ
terms also applies to the string tension which characterizes
the area law behavior of large Wilson loops.
The large N equivalence between ordinary Yang-Mills

theory and the deformed theory in large volume, combined
with the large N volume independence of the deformed
theory, circumvents the problems with previous formula-
tions of reduced models for pure Yang-Mills theory. Unlike
the original Eguchi-Kawai model [1], its twisted variant
[10,11], and the partial reduction of Refs. [4,5], the equiva-
lence to deformed YM theory remains valid in the limit of
zero compactification radius, irrespective of the value of
the (bare) gauge coupling. And for finite N, corrections to
the large N limit scale as 1=N2, not 1=N as in quenched
reduced models [3]. Consequently, it should be possible to
study the deformed theory, for relatively modest values of

5Since Wilson loop traces divided by N areOð1Þ in the large N
limit, this scaling of the coefficients makes each term in defor-
mation potential OðN2Þ as N ! 1. This OðN2Þ scaling is the
same as the Wilson action, provided the ’t Hooft coupling � �
g2N is held fixed as N ! 1. In terms of N counting, the sum
over winding numbers in the deformation potential is innocuous
and should be regarded as analogous to a character expansion of
a class function on a group manifold. As will be seen explicitly
below, the coefficients an may be chosen so that the sum over
winding numbers remains finite and bounded even if the sum
extends to infinity. It should be noted that since the deformation
to the action isOðN2Þ, large N factorization does not apply to the
exponential of these double trace terms, limN!1hexpð�SÞi �
limN!1 exph�Si.

6Properties of such unusual phases with partially broken center
symmetry have been recently studied in Refs. [20–22]. Although
interesting in their own right, our goal is to craft deformations of
the action which prevent the appearance of these exotic phases.
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N and vanishingly small volume, and obtain accurate re-
sults for properties of ordinary Yang-Mills theory, in the
large N limit, on R4. As we discuss below, it is also in-
structive to study the deformed theory for small values of
N. In this regime, it will be seen to provide a novel example
of a confining theory, only involving an SUðNÞ gauge field,
which is analytically soluble.

A. Stabilization of center symmetry

The possibility of preventing spontaneous breaking of
center symmetry through the addition of a deformation po-
tential of the form (2.5) is largely self-evident. A positive
coefficient an suppresses configurations in which trð�nÞ is
nonzero. Although the pure-gauge dynamics of the unde-
formed theory, in small volume, lead to an effective po-
tential for the Wilson line which is minimized when � is
an element of ZN , adding the deformation potential P½��
changes the shape of the Wilson line effective potential.
For sufficiently large values of the coefficients fang, the
effective potential will be minimized by configurations in
which trð�nÞ ¼ 0 for 1 � n � bN=2c. This implies that
trð�nÞ ¼ 0 for any integer n which is nonzero modulo N
because, for SUðNÞ-valued matrices, trð�nÞ is not inde-
pendent of lower order traces when n > bN=2c. Vanishing
of these traces implies that the eigenvalues of � are uni-
formly spaced around the unit circle, so that the set of
eigenvalues is invariant under ZN transformations (which

multiply every eigenvalue by e2�i=N). This shows that the
center symmetry is not spontaneously broken. Henceforth,
we assume that the coefficients fang of the deformation
potential P½�� are suitably chosen so as to enforce un-
broken center symmetry for all compactification radii.
This argument may be made much more explicit if

one considers small compactifications, L � ��1, so that
(due to asymptotic freedom) the gauge coupling at the
scale of the compactification is small and the theory is
amenable to a perturbative treatment. Quantum fluctua-
tions generate a nontrivial potential for the Wilson line
[33]. In ordinary Yang-Mills theory, integrating out the
gauge field (and Faddeev-Popov ghosts) produces the func-
tional determinants

½detþð�D2
adj���Þ��1=2½detþð�D2

adjÞ� ¼ ½detþð�D2
adjÞ��1;

(2.6)

where detþ denotes a determinant in the space of periodic
functions with period L. Therefore, the effective potential
for the Wilson line is

V½�� ¼ L�1 ln detþð�D2
adjÞ: (2.7)

For constant (or slowly varying) configurations, the evalu-
ation of the functional determinant is straightforward and
yields [33]

orbifold
equivalence

deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

deformation−orbifold
equivalence

combined

∞

0

L

0

L

∞

c

FIG. 1 (color online). LargeN equivalences relating ordinary and deformed SUðNÞ Yang-Mills theories, as a function of the size L of
the periodic volume in which the theories are defined. In deformed YM volume independence holds for all L, while in ordinary YM
volume independence fails below a critical size, L < Lc, (shaded region) due to spontaneous breaking of center symmetry. This
prevents reduction all the way down to a single-site matrix model for ordinary YM. Large N equivalence holds between ordinary and
deformed YM theories as long as center symmetry is unbroken in ordinary YM. Large N volume independence is a type of orbifold
equivalence, as discussed in Ref. [14]. The combination of volume changing orbifold projections in the deformed theory, along with
the deformation equivalence in sufficiently large volume, provides a useful equivalence between deformed YM in small volume and
ordinary YM in large volumes. In particular, a single-site matrix model of the deformed theory will reproduce properties of ordinary
Yang-Mills theory in infinite volume. The construction can be generalized to QCD, with the deformed theory providing a fully reduced
matrix model for QCD.
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V½�� ¼
Z
R3

1

L4
V ½�ðxÞ�; (2.8)

with

V ½�� � � 2

�2

X1
n¼1

1

n4
jtr�nj2: (2.9)

For sufficiently small L, corrections to this one-loop result
are negligible. The effective potential (2.9) is minimized

when the Wilson line is an element of the center, � ¼
e2�ik=N , k ¼ 0; � � � ; N � 1, demonstrating the spontaneous
breaking of ZN symmetry, in ordinary Yang-Mills theory,
for sufficiently small compactifications.

To force unbroken center symmetry in the deformed
theory, the deformation potential P½�� must overcome
the effect of the one-loop potential (2.9). A simple specific
choice for the deformation coefficients which, in the con-
tinuum limit and for sufficiently largeN, accomplishes this
is an ¼ 4=ð�2n4Þ. For this choice, the deformation poten-
tial

R
R3 L�4P½�� is minus twice the one-loop Wilson line

effective potential (2.9) of the undeformed theory, so the
net effect of the deformation is to flip the sign of the
effective potential for the Wilson line. The resulting com-
bined potential is minimized when tr�n ¼ 0 for all n
which are nonzero modulo N, indicating unbroken center
symmetry.7

It should be noted that in the weak coupling expression
for the induced potential (2.9), and likewise in the stabiliz-
ing potential (2.5), the loops should be interpreted as
renormalized Polyakov loops, which are multiplicatively
renormalized in a perimeter-law fashion, tr�njren ¼
Zntr�njbare, with Z a function of the bare gauge coupling.
In general, in the coefficient space of all the stabilizing
terms, the boundary between the stabilized and nonstabi-
lized regions will depend on the lattice spacing (or lattice

coupling �). The origin (corresponding to no deforma-
tion potential) lies inside the stabilized region for suffi-
ciently large lattice spacing or strong coupling, and we
know from the weak coupling analysis where the boundary
lies near the continuum limit. In between, however, when
the bare coupling is neither very large nor very small, the
precise location of the boundary can only be determined
numerically.

B. Multiple compactified dimensions

Instead of compactifying just one dimension, one may
consider the gauge theory on M � R4�d � Td, where Td

is a d > 1 dimensional torus. For simplicity, we will dis-
cuss the case of a symmetric torus having size L in each
dimension. Two particularly interesting cases are d ¼ 3,
where the L ! 0 limit will reduce to SUðNÞ matrix quan-
tum mechanics, and d ¼ 4, where the zero size limit will
reduce to a matrix model.
With multiple compactified dimensions, the center sym-

metry is ðZNÞd. The preceding discussion generalizes in a
straightforward fashion, but there is one significant change:
with multiple compactified dimensions there is a richer set
of possible symmetry realizations in which the center
symmetry is partially broken. One needs to craft the de-
formation potential in such a fashion that all unwanted
symmetry realizations are suppressed.
With multiple compactified directions, one may define

distinct Wilson line operators �1, �2, . . ., �d, each of
which wraps one elementary cycle of the torus. The clas-
sical Yang-Mills action suppresses configurations in which
Wilson lines in different directions are noncommuting. (In
other words, configurations with vanishing field strength
must have Wilson lines which commute and are covari-
antly constant.) A deformation potential with the form
(2.5), involving just one Wilson line �i, can prevent sym-
metry realizations in which the ZN center symmetry asso-
ciated with direction i spontaneously breaks in a manner
which is independent of the ZN symmetries associated with
other directions. However, it is also possible for the center
symmetry to break in a manner which leaves an unbroken
subgroup involving correlated symmetry transformations
in different directions. (This phenomenon has been studied
in the context of quenched large N reduction in the recent
paper [34].) With, for example, d ¼ 2, suppose that the
ðZNÞ2 symmetry breaks to the diagonal ZN subgroup. Such
a symmetry realization does not allow expectations of tr�k

1

or tr�k
2 to be nonvanishing (for any k which is nonzero

modulo N). But this realization does allow tr�1�
y
2 to have

a nonzero expectation value. To prevent such a symmetry

realization, it may be necessary to add a jtr�1�
y
2 j2 term to

the deformation potential.
To see that this concern is not moot, it is instructive to

examine the one-loop effective potential for Wilson lines
when there are multiple compactified directions. Once
again, if the physical size of the d torus is much smaller

7One might wonder if the need for stabilizing terms involving
loops wrapping the torus multiple times could be avoided by
simply restricting attention to prime values of N. After all, one
can choose to use an infinite sequence of primes to define the
N ! 1, and for N prime the ZN symmetry must be either
unbroken or completely broken. However, this strategy does
not work. To have volume independence at N ¼ 1, one needs
stabilizing terms which have the effect of preventing breaking of
the center symmetry for all possible values of N. One way to see
this is to note that, for large N, expectation values of Wilson
loops are smooth in N. Although one could take a large N limit
via a sequence of primes, one is also free to use a sequence
involving values of N which are composite. A valid stabilizing
deformation must work for either choice. More concretely, for
large but prime values of N if one omits stabilizing terms
involving N-ality k loops, then for sufficiently small values of
L the Wilson line eigenvalue distribution will develop k clumps,
with some clumps having one more eigenvalue than other
clumps. This will not reproduce the desired large volume phys-
ics. To keep the eigenvalue distribution uniform and prevent such
eigenvalue clumping, all the terms in the stabilizing potential
(2.5) are needed.
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than the inverse strong scale ��1, then ‘‘Kaluza-Klein’’
modes with momenta at and above the compactification
scale can be integrated out perturbatively. This produces
a one-loop effective potential for mutually commuting
Wilson lines given by [35,36]

V ½�1; � � � ;�d�

� � 1

�2

X1
ðn1;���;ndÞ2ðZd�0Þ

jtrð�n1
1 � � ��nd

d Þj2
ðn21 þ � � � þ n2dÞ2

: (2.10)

This effective potential has Nd degenerate global minima
at which each Wilson line is an independent element of the
center. This demonstrates the spontaneous breaking of
ðZNÞd symmetry (down to the identity) in ordinary Yang-
Mills theory on M ¼ R4�d � Td for sufficiently small
compactifications.8 Adding a deformation to the Yang-
Mills action which is the direct generalization of the pre-
viously discussed deformation (2.4), namely,

�S ¼ X
i

Z
M

1

L4
P½�i�; (2.11)

with P½�� having the form (2.5), will deform the effective
potential and can prevent this symmetry realization in
which the ðZNÞd symmetry breaks down to nothing.

However, the fact that all terms in the effective potential
(2.10) have negative coefficients demonstrates that the
center symmetry will partially break spontaneously even
in the presence of stabilizing terms of the form (2.11). In
particular, even when all traces wrapping a single compac-
tified direction vanish, the potential (2.10) favors configu-
rations in which traces wrapping multiple cycles (such as

tr�1�
y
2 ) are nonzero relative to the center-symmetry pre-

serving configuration we are trying to stabilize (for which
tr�n1

1 � � ��nd
d ¼ 0 for all ni that are nonzero modulo N).

Therefore, to prevent any spontaneous breaking of the
center symmetry when there are multiple compactified
directions, one must allow the deformation of the action

to include absolute squares of order parameters which
wrap multiple cycles of the torus. In other words, we
need to have

�S ¼
Z
M

1

L4
P½�1; � � � ;�d�; (2.12)

where the deformation potential has the form

P½�1; � � � ;�d� ¼
XbN=2c

n1;���;nd¼�bN=2c
an1���nd jtrð�n1

1 � � ��nd
d Þj2;

(2.13)

with coefficients an1���nd which are sufficiently large and

positive.
A simple specific choice for the coefficients which, in

the continuum limit and for sufficiently large N, accom-
plishes this is an1���nd ¼ 2

�2 ðn21 þ � � � þ n2dÞ�2. For this

choice, the deformation potential is minus twice the one-
loop effective potential (2.10) of the undeformed theory,
so once again the net effect of the deformation is to flip
the sign of the effective potential for the Wilson line.
The resulting combined potential has a unique center-
symmetry preserving minimum.9

In the following sections we will, for simplicity, largely
focus on the case of just one compactified direction.

C. Large N equivalence between ordinary
and deformed YM

The most direct way to demonstrate equivalence be-
tween ordinary Yang-Mills theory and our deformed theory
is to compare the Schwinger-Dyson (or loop) equations for
gauge invariant observables. As usual, for a rigorous treat-
ment it is appropriate (and convenient) to work with lattice
regulated formulations of both theories. It is also conve-

8More precisely, this demonstrates the spontaneous breaking
of ðZNÞd symmetry down to the identity when d ¼ 1 or 2. If d >
2, then there are fewer than two noncompactified directions. In
this case, the center symmetry cannot break spontaneously for
any finite value of N, due to the nonzero probability of fluctua-
tions (or tunneling events) which effectively average over all
degenerate minima of the Wilson line effective potential.
However, the probability of such fluctuations vanishes exponen-
tially with increasing N. Consequently, in the N ! 1 limit one
can have spontaneous breaking of the ðZNÞd center symmetry
even when all directions are compactified. In order to have a
large N equivalence between the compactified theory and Yang-
Mills theory on R4, one must prevent spontaneous breaking of
the center symmetry in the large N limit. Therefore, the more
complicated form of the stabilizing potential discussed below is
necessary for all d > 1.

9In the case of R� T3, the undeformed theory was studied in
detail by Lüscher, van Baal, and others in the mid 1980s. (See
the reviews [37,38] and references therein.) The goal of this
‘‘QCD in a box’’ program was to use asymptotic freedom
combined with the absence of the phase transitions in finite
volumes to extract lessons about QCD on R4. This approach
confines the theory to its short distance perturbative regime
where it is perturbatively solvable. However, features of this
small universe are very different from QCD on R4. In particular,
when the physical box size becomes comparable to the inverse
strong scale ��1, there is a crossover from a world of hadrons to
a world of quarks and gluons. As noted in footnote 8, this
crossover becomes a sharp phase transition in the large N limit.
In our deformed Yang-Mills theory, as will be discussed below,
there are no phase transitions as a function of box size even in the
N ¼ 1 limit. For the deformed theory we will find that it is not
1=L which acts as an infrared cutoff, but rather 1=LN. If
LN� 	 1 then the deformed theory reproduces the dynamics
of Yang-Mills theory on R4.
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nient to consider UðNÞ gauge theories instead of SUðNÞ;
the difference in gauge groups only affects subleading
Oð1=N2Þ relative corrections to Wilson loop expectation
values or connected correlators.

Let �a
‘ denote an operator which varies individual

link fields according to �a
‘ðU½‘0�Þ � �‘‘0t

aU½‘�, where ftag
is a set of UðNÞ Lie algebra basis matrices satisfying
trtatb ¼ 1

2�
ab. Invariance of the Haar measure implies

that the integral of any variation vanishes,

Z
d�0�

a
‘ðanythingÞ ¼ 0; (2.14)

where d�0 � Q
‘0dU½‘0�. Choose (anything) to be

e�S�a
‘W½C�, where W½C� � 1

N trU½C� is the Wilson loop

around some closed contour C. Summing over the Lie
algebra index a and the link ‘ yields

Z
d�0e

�Sð��S � �W½C� þ �2W½C�Þ ¼ 0; (2.15)

where the dot product is shorthand for the sum over a and
‘. Dividing by the partition function Z � R

d�0e
�S yields

relations among expectation values,

� h�S � �W½C�i þ h�2W½C�i ¼ 0: (2.16)

These are Schwinger-Dyson equations for Wilson loop
expectation values.

After working out the action of the variations, the result
may be expressed in a purely geometric form. For lattice
gauge theory with the Wilson action one finds [39]

1

2
jCjhW½C�i ¼ X

‘�C

X
pj‘�@p

�

4N
½hW½ð@ �pÞC�i � hW½ð@pÞC�i�

þ X
self-intersections

 hW½C0�W½C00�i: (2.17)

Here jCj is the length of the loop C (i.e., the number of
links in the loop), W½ð@pÞC� denotes a Wilson loop which
goes around the boundary of plaquette p (which contains a
link contained in the contour C) and then around the con-
tour C, and @ �p denotes the oppositely oriented plaquette
boundary. The sum over self-intersections runs over all
ways of decomposing a loop C which multiply traverses
some link ‘ into two separate loops, C ¼ C0C00, with the
associated sign determined by whether C0 and C00 traverse
the link ‘ in the same or opposite directions. See Ref. [40]
for more detailed discussion.

In the large N limit, with ~� � �
N ¼ 2

� held fixed (where

� � g2N is the ’t Hooft coupling), all N dependence dis-

appears. Fluctuations in the values of Wilson loops vanish
in this limit (their distributions become arbitrarily sharply
peaked). This is a reflection of the classical nature of the
largeN limit [2], and implies that the expectation value of a
product of loops factorizes, up to 1=N2 corrections,

hW½C0�W½C00�i ¼ hW½C0�ihW½C00�i þOð1=N2Þ: (2.18)

[TheOð1=N2Þ remainder is the connected correlator.] Con-
sequently, in the large N limit Wilson loop expectation
values satisfy a closed set of nonlinear algebraic equations,

1

2
jCjhW½C�i ¼ X

‘�C

X
pj‘�@p

~�

4
½hW½ð@ �pÞC�i � hW½ð@pÞC�i�

þ X
self-intersections

 hW½C0�ihW½C00�i: (2.19)

The loop equations in the concise form (2.16) are
equally valid for the deformed theory. The only difference
is that S now includes the double trace deformation �S,
and this generates new terms in the loop equations given by
h�ð�SÞ � �W½C�i. Just as the usual Wilson action leads to
terms in which a plaquette is inserted into the loop C, the
piece of �S proportional to jtr�kj2 generates terms in the
loop equation in which the topologically nontrivial loop
�k (or its inverse) is ‘‘sewn’’ into the loop C (if C contains
links pointing in the compactified direction). But because
�S contains absolute squares of traces, each such term is
multiplied by the complex conjugate of the trace of the
inserted loop. Hence,

h�ð�SÞ � �W½C�i ¼ X
k�0

bk½C�hW½�kC�W½��k�i; (2.20)

where �kC denotes a loop obtained by concatenating �k

and C at their intersection links, and the coefficients bk½C�
are proportional to ajkj but also depend on the number

of links in C which point in the compactified direction.
The essential point is that the variation acts on one of the
two traces comprising the double trace deformation, leav-
ing the other trace unchanged. In the large N limit, due to
factorization,

hW½�kC�W½��k�i ¼ hW½�kC�ihW½��k�i þOð1=N2Þ:
(2.21)

But for any k which is nonzero modulo N, W½��k� trans-
forms nontrivially (acquiring a phase e�2�ik=N) under a
ZN center-symmetry transformation. Hence its expectation
value is an order parameter for the center symmetry and
hW½��k�i must vanish in any phase with unbroken center
symmetry. As discussed above, the deformed theory is
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constructed so as to ensure unbroken center symmetry for
all compactification radii. Consequently, all additional
terms in the loop equations generated by the deformation
of the action vanish in the large N limit,

h�ð�SÞ � �W½C�i ¼ Oð1=N2Þ; (2.22)

implying that Wilson loops in the original and deformed
Yang-Mills theory satisfy identical large N Schwinger-
Dyson equations.

Ordinary Yang-Mills theory has unbroken center sym-
metry only for sufficiently large compactifications, L >
Lc. The coinciding large N loop equations in ordinary and
deformed Yang-Mills theories imply that Wilson loop ex-
pectation values in these two theories have identical large
N limits when L > Lc.

10

The same approach may be used to compare the
Schwinger-Dyson equations satisfied by connected corre-
lators of two or more Wilson loops, with exactly the same
conclusion: the leading large N behavior of connected cor-
relators coincides between ordinary and deformed Yang-
Mills theories, provided L > Lc. Thus, in sufficiently large
volume the net effect of the double trace deformation on
the dynamics of the theory isOð1=N2Þ, and vanishes in the
large N limit. In other words, the physics of the deformed
Yang-Mills theory depends on the deformation parameters
faig only in the combination ai=N

2 which vanishes at N ¼
1. This demonstrates the nonperturbative equivalence of
ordinary Yang-Mills theory and the deformed YM theory,
formulated on R3 � S1 (or more generally, on any toroidal
compactification of flat space), provided the compactifica-
tion size is above the critical size for center symmetry
breaking in the undeformed theory.

D. Large N volume independence of
deformed YM theory

Unbroken center symmetry is necessary and sufficient
for the validity of the large N volume independence of
Yang-Mills theory (or more general gauge theories con-
taining adjoint representation matter fields). This may be
demonstrated by comparing large N loop equations, or the
N ¼ 1 classical dynamics generated by suitable coherent

states [14]. Corrections to this equivalence for finite-N
scale as 1=N2. The loop equation analysis is very similar
to that sketched above. In the large N loop equations for
topologically trivial Wilson loops, one finds that the only
volume-dependent terms (arising from self-intersections)
automatically vanish as long as the center symmetry is not
spontaneously broken.
The analysis of large N volume independence in

Ref. [14] applies equally well to the deformed theory
which, by construction, has unbroken center symmetry for
any compactification radius. Because the double trace op-
erators in P½�� are squares of loops with nonzero N-ality,
the presence of the deformation potential P½�� has no ef-
fect on the large N classical dynamics of center-symmetry
symmetric states. Consequently, deformed Yang-Mills
theory, in the large N limit, is completely volume
independent.
In the lattice formulation, if one compactifies all direc-

tions then one may reduce the lattice size all the way down
to a single site, in which case the theory becomes a simple
matrix model of Wilson lines f�ig running in each lattice
direction with action,

Sdeformed
single-site ¼ ��

2

Xd
i>j¼1

trð�i�j�
y
i �

y
j þ�j�i�

y
j�

y
i Þ

þ P½�1; � � � ;�d�: (2.23)

The large N limit of this matrix model will reproduce the
leading large N behavior of expectation values and con-
nected correlators of Wilson loops in uncompactified
Yang-Mills theory. As discussed in Sec. I, the single-site
deformed Yang-Mills theory (2.23) provides a simple gen-
eralization of Eguchi-Kawai reduction which is valid for
any value of the lattice coupling �.11,12

E. Addition of matter fields

Consider adding Nf species of matter fields (either fer-
mions or scalars) in the fundamental representation to
SUðNÞ Yang-Mills theory, either ordinary or deformed,
with one dimension compactified. The addition of funda-

10This argument, that coinciding loop equations imply coincid-
ing expectation values, glosses over the possibility that the
infinite set of loop equations may have multiple solutions which
respect center symmetry, with different theories potentially
corresponding to different solutions of the same set of equations.
The alternative approach of comparing the N ¼ 1 classical
dynamics generated by appropriate large N coherent states,
discussed in Ref. [30], eliminates this loophole and demonstrates
equivalence in any phase of the theories which satisfy the
necessary and sufficient symmetry realization conditions.

11We recently learned that the idea of adding stabilizing terms
to the action of the single-site Eguchi-Kawai model, to prevent
unwanted spontaneous symmetry breaking, was previously sug-
gested (back in 1982) in Ref. [41].
12For a fixed finite value of N, the single-site model (2.23) can,
and will, have nonzero expectation values for loops whose
winding numbers are multiples of N. This does not mean that
this finite-N reduced model reproduces properties of a normal
lattice gauge theory on a periodic lattice of size Nd. (Suggestions
to this effect appear in some discussions of quenched and twisted
large N reductions.) Rather, the reduced model reproduces
properties of a larger volume SUðNÞ gauge theory only in the
N ! 1 limit.
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mental representation matter explicitly breaks the ZN cen-
ter symmetry. However, if Nf is held fixed as N ! 1, then
the fundamental representation matter fields have only a
subleading OðNf=NÞ effect on the gauge field dynamics.
As a result, everything discussed above remains valid. That
is, the leading large N behavior of expectation values or
connected correlators of Wilson loops in the undeformed
theory, in sufficiently large volume, coincide with the cor-
responding observables in the theory, in arbitrary volume,
deformed by the addition of the stabilizing potential P½��.
In addition, one may also show that the same equivalence
applies to the leading large N behavior of mesonic expec-
tation values and connected correlators.13 Note, however,
that these large N equivalences cease to apply if Nf=N is
held fixed as N ! 1 [14].

If adjoint representation matter fields are added to the
theory (ordinary or deformed), then the large N equivalen-
ces discussed above also remain valid. Adding adjoint rep-
resentation fields enlarges the natural set of gauge invariant
observables from simple Wilson loops to Wilson loops
decorated by arbitrary numbers of insertions of adjoint
matter fields. But the presence of adjoint matter fields pre-
serves the center symmetry of the underlying Yang-Mills
theory. As a result, the above-described comparison of
large N loop equations (or large N classical dynamics)
between the ordinary and deformed theories immediately
generalizes to the case of Yang-Mills theories with adjoint
matter, with exactly the same conclusions.14

Finally, one may also consider the addition of matter
fields in rank-two antisymmetric or symmetric tensor rep-
resentations [yielding theories wewill refer to as QCD(AS)
or QCD(S), respectively]. The presence of fields in these
representations reduces the Uð1Þ center symmetry of UðNÞ
Yang-Mills theory down to Z2. Given the central role the
center symmetry played in the above large N equivalences,
one might think this reduction in center symmetry would
destroy these large N equivalences. This is not the case.
One way to see this is to note, as discussed in Ref. [14], that
volume-dependent terms in the N ¼ 1 loop equations
only appear if loops with nonzero winding number around
the compactified direction acquire nonzero expectation
values. The addition of the deformation potential P½��
prevents topologically nontrivial Wilson loops from ac-
quiring nonzero large N expectation values, even in small
volumes. Consequently, the situation is analogous to the
pure-gauge case: the leading large N behavior of expecta-
tion values or connected correlators of single trace observ-
ables in QCD(AS/S) in sufficiently large volume coincides

with the corresponding observables in the theory modified
by the addition of the deformation potential in arbitrary
volume, as depicted in Fig. 1.15

III. CONFINEMENTAT SMALL
RADIUS AND FIXED N

When compactified on a small circle, L � ��1, the
gauge coupling of the deformed SUðNÞ theory is small at
the compactification scale, g2ð1=LÞ � 1. As discussed
earlier, the combined potential V ½�� þ P½�� is mini-
mized when

� ¼ Diagð1; e2�i=N; e4�i=N; � � � ; e2�iðN�1Þ=NÞ; (3.1)

up to conjugation by an arbitrary SUðNÞ matrix. Working
in a gauge in which� is diagonal, and using (temporarily)
gauge-dependent language, this configuration may be re-
garded as breaking the gauge symmetry down to the maxi-
mal Abelian subgroup,16

SUðNÞ ! Uð1ÞðN�1Þ: (3.2)

Modes of the diagonal components of the SUðNÞ gauge
field with no momentum along the compactified x̂4 direc-

13This is easiest to understand by considering the equivalent
gluonic observables produced by integrating out the matter
fields. For the case of large N volume independence in the
undeformed theory, see Ref. [14] for details. The presence of
the deformation potential does not affect this analysis.
14For a detailed discussion of loop equations in theories with
adjoint matter, see Ref. [40].

15Another way to understand this is to note the existence of a
large N equivalence (so-called orientifold equivalence) between
theories with rank-two symmetric or antisymmetric representa-
tion matter and corresponding theories with adjoint representa-
tion matter [‘‘QCD(adj)’’] [15–17]. This large N equivalence
applies to the charge-conjugation even sectors of the two theo-
ries, and only holds if charge-conjugation symmetry is not
spontaneously broken. When, for example, the matter fields
are fermions with periodic boundary conditions, examination
of the Wilson line effective potential shows that QCD(AS/S)
does spontaneously break both charge-conjugation and center
symmetry when compactified with sufficiently small size [15].
But the addition of a deformation potential of the form (2.5)
(with sufficiently positive coefficients) will prevent this sponta-
neous symmetry breaking, just as it does in the pure Yang-Mills
case. Since QCD(adj) satisfies large N volume independence (as
long as its center symmetry is not spontaneously broken), the
same large N volume independence must also apply to QCD(AS/
S) (as long as charge conjugation is not broken). In sufficiently
large volumes, there is no reason to believe that charge-
conjugation symmetry breaks spontaneously in QCD-like theo-
ries with rank-two tensor representation matter. Therefore, large
N orientifold equivalence combines with large N volume inde-
pendence of QCD(adj) to imply volume independence in QCD
(AS/S) as long as center and charge-conjugation symmetries are
not spontaneously broken—which is what the deformation po-
tential ensures.
16The infrared dynamics of the small S1 center-symmetric
gauge theory are very different from those of the undeformed
theory for which a small S1 corresponds to a high temperature T.
In the latter case, eigenvalues of� clump at one of the N minima
of the thermal one-loop potential, spontaneously breaking the
ZN center symmetry, and the dynamics are nonperturbative and
remain non-Abelian on wavelengths larger that the magnetic
scale ð�TÞ�1. No analog of this magnetic scale appears for small
S1 compactifications in center-symmetry respecting theories,
which instead Abelianize at large distances.
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tion describe photons associated with the Cartan subgroup
of SUðNÞ. Modes of the diagonal components of the gauge
field with nonzero momentum in the compactified direc-
tion form a Kaluza-Klein tower and receive masses which
are integer multiples of 2�=L. The off-diagonal compo-
nents of the SUðNÞ gauge field describe Kaluza-Klein
towers of W bosons which are charged under the unbro-
ken Uð1ÞN�1 gauge group. The nonzero value of A4 �
�ði=LÞ ln� shifts the masses of these off-diagonal com-
ponents by multiples of 2�=ðNLÞ. The net effect is that
there are charged W bosons with masses

mWk
¼ 2�k

NL
; k ¼ 1; 2; � � � ; : (3.3)

For later convenience, we define mW to be the mass of the
lightest W bosons,

mW � 2�

NL
: (3.4)

This is the mass scale below which the dynamics are
effectively Abelian.17 Non-Abelian running of the gauge
coupling ceases below this scale—which is why the long-
distance dynamics will be under analytic control. Note
that, at fixed L, the lightest W bosons have masses which
become small when N ! 1. This will be important in
the discussion of the large N behavior of the deformed
YM theory. But first, in this section, we consider the
dynamics of the deformed theory when N is fixed.

The N � 1 photons of the Cartan subgroup do not cou-
ple (directly) to the Wilson line and remain massless to
all orders in perturbation theory. Thus, a strictly pertur-
bative analysis would lead one to expect that the de-
formed theory, for sufficiently small L, would have a
nonconfining Coulomb phase. We will see that this is
incorrect—nonperturbative effects lead to the generation
of a mass gap and produce confining long-distance physics.

The analysis of nonperturbative properties in our com-
pactified deformed Yang-Mills theory is very similar to
Polyakov’s treatment of the 3d Georgi-Glashow model
[24]. But instead of a three-dimensional theory with a
noncompact Higgs field, we have a compactified four-
dimensional theory with the group-valued Wilson line �
serving as a compact Higgs field. For theories involving
massless complex fermions, the difference between com-
pact and noncompact Higgs systems can be major [42].
However, in our case, the differences relative to Polyakov’s
classic discussion are rather minimal.

Because of the SUðNÞ ! Uð1ÞN�1 gauge symmetry
‘‘breaking,’’ there exist topologically stable, semiclassical
field configurations, namely, monopoles [33]. At the cen-
ter of a monopole, one pair of eigenvalues of the Wilson
line become degenerate. For fundamental (i.e., minimal
action) monopoles, this will be a pair of eigenvalues which
are nearest neighbors at infinity. If the adjoint Higgs
field was noncompact, then there would be N � 1 spe-
cies of fundamental monopoles. This follows from the
topological considerations: the second homotopy group
�2½SUðNÞ=Uð1ÞN�1� ¼ �1½Uð1ÞN�1� ¼ ZN�1, implying
that fundamental monopoles come in N � 1 varieties.
However, with a compact Higgs field there is an extra
fundamental (‘‘Kaluza-Klein’’) monopole which arises
due to the fact that the underlying theory is formulated
on a cylinder, R3 � S1, or equivalently that the configura-
tion space of � is compact.
The monopoles may be characterized by their magnetic

charges, topological charge, and action. The magnetic
charges of the N different types of fundamental monopoles
are proportional to the simple roots and affine root of the
Lie algebra of the unbroken Uð1ÞN gauge group.18 The
simple roots are given by19

�1 ¼ ð1;�1; 0; . . . ; 0Þ ¼ ê1 � ê2; (3.5a)

�2 ¼ ð0; 1;�1; . . . ; 0Þ ¼ ê2 � ê3;

..

.

(3.5b)

�N�1 ¼ ð0; . . . ; 0; 1;�1Þ ¼ êN�1 � êN; (3.5c)

and the affine root is

�N � � XN�1

j¼1

�j ¼ ð�1; 0; 0; . . . ; 1Þ ¼ êN � ê1: (3.6)

For later convenience, let �0
aff denote the affine (extended)

root system of the associated Lie algebra,

�0
aff � f�1; �2; . . . ; �N�1; �Ng: (3.7)

It is the affine root system which is relevant for compact
Yang-Mills Higgs systems. The roots �i 2 �0

aff obey

�i � �j ¼ 2�i;j � �i;jþ1 � �i;j�1; i; j ¼ 1; . . .N:

(3.8)

17Fluctuations in the eigenvalues of� away from the minimum
(3.1) correspond to neutral ‘‘Higgs bosons.’’ The masses of these
fluctuations depend on the coefficients fang of the deformation
potential but parametrically are of order

ffiffiffiffi
�

p
=L
 ffiffiffiffi

�
p

NmW . This
scale will be large compared to the mass scale of the non-
perturbative 3d dynamics, and these fluctuations will play no
role in the following discussion.

18Even though the gauge symmetry breaking is SUðNÞ !
Uð1ÞN�1, for ease of presentation it is convenient to add an extra
photon to the original theory and discuss UðNÞ ! Uð1ÞN . This
simplifies the discussion of charge assignments of monopoles,
and the affine roots of the associated Lie algebra. In the con-
tinuum limit of the theory this extra photon completely decou-
ples from the other degrees of freedom and may simply be
ignored. It should not be confused with the N � 1 photons which
have nontrivial nonperturbative dynamics.
19This set of simple roots corresponds to choosing Lie algebra
generators normalized to satisfy trtatb ¼ �ab, instead of 1

2�
ab as

in the previous section.
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The form (3.8) of these inner products will translate into
self- and nearest-neighbor interactions between monopoles
in the Dynkin space. The above choice of basis is natural
due to its visual simplicity, but the inner products (3.8) of
the roots of the associated Lie algebra are basis
independent.

Let F� � 1
2g �

���4F�� denote theUð1ÞN-valued 3dmag-

netic field, with conventional perturbative normalization.
(In a gauge where � is diagonal, F� is just the list of
diagonal elements of the original non-Abelian field
strength, multiplied by 1=g.) The magnetic charges of a
monopole of type i ¼ 1; � � � ; N are given by the root�i (up
to a factor of 2�=g),

Z
S2
d� � F ¼ 2�

g
�i ½type ðiÞmonopole�: (3.9)

(The S2 is an arbitrarily large sphere in R3. The flux is
independent of the value of x4 at which the integral is
performed, as the long-distance monopole fields are inde-
pendent of x4.)

The topological charge is correlated with the magnetic
charge of the monopole. For fundamental monopoles with
magnetic charges �i 2 �0

aff , the topological charge is

� �
Z
R3�S1

1

16�2
trF��

~F�� ¼ 1

N
: (3.10)

For antimonopoles with magnetic charges ��i, the topo-
logical charge � ¼ �1=N.

The electric charges of W bosons may also be simply
expressed in terms of the affine roots �0

aff . The lightest W
bosons, with mass mW , may be labeled by a single root
which gives their electric charges (up to a factor of g),

QW�i
¼ g�i: (3.11)

W bosons in the next heavier multiplet are labeled by a pair
of neighboring roots, and have charges

QW�iþ�iþ1
¼ gð�i þ �iþ1Þ; (3.12)

etc. Dot products of the W-boson charges and monopole
charges obey the Dirac quantization condition,

QW�i
�QM�j

¼ g�i � 2�g �j ¼ 2�ð2�ij � �i;jþ1 � �i;j�1Þ

¼

8>><
>>:
4�; for i ¼ j;

�2�; for i ¼ j� 1;

0; otherwise:

(3.13)

Conjugation by a ZN ‘‘shift’’ matrix, which is part of the
global gauge symmetry, cyclically permutes the Wilson
line eigenvalues and hence cyclically permutes the N
different species of fundamental monopoles. The presence
of this symmetry (which is one of the features which
distinguishes compact and noncompact Higgs systems)
guarantees that theN different types of fundamental mono-

poles have identical values of the action. Monopole solu-
tions are self-dual,

F�� ¼ ~F��; (3.14)

and hence the Yang-Mills action of a fundamental mono-
pole (or antimonopole) is

SYM ¼
Z
R3�S1

1

2g2
trF2

�� ¼
��������
Z
R3�S1

1

2g2
trF��

~F��

��������
¼ 8�2

g2
j�j ¼ 8�2

g2N
: (3.15)

After adding the contributions of the deformation potential
P½�� and the induced one-loop effective potential V ½��,
the complete monopole action will differ from this value.
But the deviation is perturbative in g2, so the monopole
action

S0 � SYM þ�Sþ S1-loop ¼ 8�2

g2N
þOð1Þ: (3.16)

The correct infrared description of the deformed Yang-
Mills theory on R3 � S1 at small radius is generated by a
dilute gas of monopoles (and antimonopoles) of N differ-
ent types, interacting via the species-dependent long range
Coulomb potential,

V�i;�jðrÞ ¼ L

�
2�

g

�
2 ð��iÞ � ð��jÞ

4�jrj
¼ �L

�
2�

g

�
2 2�ij � �i;jþ1 � �i;j�1

4�jrj : (3.17)

(The overall sign is plus for monopole-monopole, and
minus for monopole-antimonopole.) Hence, we are dealing
with a multicomponent classical plasma, with nearest-
neighbor interactions in the Dynkin space. As with any
classical plasma, this system will exhibit Debye screening.
The field due to a static external magnetic charge will fall
exponentially with distance, jFj 
 e�mDr=r2, with m�1

D the
characteristic Debye screening length. This implies that
external fields cannot propagate coherently over distances
large compared to the Debye length, which will be the
longest correlation length in the system. The Debye mass
mD will appear as a dynamically generated photon mass.
This will be shown explicitly.
For momentum scales small compared to the lightest W

mass, the equilibrium dynamics are correctly represented
by a grand canonical ensemble of all types of monopoles
and antimonopoles. Consider a configuration in which, for

each type i ¼ 1; � � � ; N, there is an arbitrary number nðiÞ of
monopoles and �nðiÞ antimonopoles, located at positions rðiÞk ,

k ¼ 1; � � � ; nðiÞ, and �rðiÞl , l ¼ 1; � � � ; �nðiÞ, respectively. The
magnetic field generated by this ensemble of magnetic
charges is
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B ðxÞ ¼ XN
i¼1

2�

g
�i

�XnðiÞ
k¼1

x� rðiÞk
4�jx� rðiÞk j3 �

X�nðiÞ
l¼1

x� �rðiÞl
4�jx� �rðiÞl j3

�
:

(3.18)

The action of such a monopole configuration is the sum of
the monopole self-energies plus their potential energy due
to Coulomb interactions,

Smonopole-gas ¼ S0
XN
i¼1

ðnðiÞ þ �nðiÞÞ þ Sint; (3.19)

with

Sint ¼ 2�2L

g2
XN
i;j¼1

�i � �j

�XnðiÞ
k¼1

XnðjÞ
l¼1

GðrðiÞk � rðjÞl Þ

þ X�nðiÞ
k¼1

X�nðjÞ
l¼1

Gð�rðiÞk � �rðjÞl Þ � 2
XnðiÞ
k¼1

X�nðjÞ
l¼1

GðrðiÞk � �rðjÞl Þ
�
;

(3.20)

and

GðrÞ � 1

4�jrj : (3.21)

The grand canonical partition function of this multicom-
ponent Coulomb gas is

Z ¼ YN
i¼1

� X1
nðiÞ¼0

	n
ðiÞ

nðiÞ!

X1
�nðiÞ¼0

	 �nðiÞ

�nðiÞ!

�
Z
R3

YnðiÞ
k¼1

drðiÞk
Z
R3

Y�nðiÞ
l¼1

d�rðiÞl
�
e�Sint ; (3.22)

where

	 � Ce�S0 ¼ Am3
Wðg2NÞ�2e��Se�8�2=Ng2ðmW Þ (3.23)

is the monopole fugacity. The prefactor C represents the
one-loop functional determinant in the monopole back-
ground. Extracting the zero modes of the small fluctuation
operator via the usual collective coordinate procedure
leads to factors of ðg2NÞ�2m3

W . (See the appendix for de-
tails.) If the coupling is evaluated at the scale mW , which is
natural for this problem, then the nonzero mode part of the
one-loop determinant merely gives rise to an overall di-
mensionless (andN-independent) coefficient A. In the final
form of (3.23), �S denotes the deformation term in the
action (2.4) evaluated in the background of a fundamental
monopole. This is an Oð1Þ number, independent of the
coupling g2, whose explicit value depends, of course, on
the deformation parameters fang. [For largeN,�S scales as
Oð1=NÞ.]

Using the fact that GðrÞ is the Green’s function for
the 3d Laplacian, this partition function can be exactly
transformed into a 3d scalar field theory with an
N-component real scalar field,

Z ¼
Z YN

i¼1

D
ie
�Sdual½��; (3.24)

where

Sdual ¼
Z
R3

�
1

2L

�
g

2�

�
2ðr�Þ2 � 	

XN
i¼1

cosð�i � �Þ
�
:

(3.25)

To verify this, it is easiest to start with the functional
integral (3.24), rewrite the cosines in terms of exponentials
of �, expand the exponential of each of the resulting
interaction terms in a power-series in e�S0e�i�i�� , and
then perform the functional integral over �. The scalar
fields 
i appearing in this representation are dual fields for
the 3dAbelian gauge fields Ai

�. The dual description (3.25)

is valid for distances large compared to m�1
W .20

The fields f
ig should be regarded as compact scalar
fields defined modulo 2�. In addition to invariance under
2� shifts in any component of �, note that the mono-
pole induced interaction vertex has the additional shift
symmetry

� ! � þ 2��i; i ¼ 1; . . . ; N � 1; (3.26)

where f�ig are the N � 1 fundamental weights of the
SUðNÞ algebra. These are defined by the reciprocity rela-
tion with the simple roots

�i � �j ¼ 1

2
�ij�

2
j ¼ �ij (3.27)

for i ¼ 1; � � � ; N � 1, which implies that the fundamental
weights f�ig form a basis which is dual to the fundamental
roots f�jg. The presence of the symmetry (3.26) is related

to the fact that the vacuum of the original theory can be

20In three dimensions, Abelian duality relates a photon to a
compact scalar. With 
jðxÞ the compact scalar dual to the photon
AðjÞ
� ðxÞ of the jthUð1Þ subgroup, the Abelian duality relations are

� d
j ¼ 1

2
LImð�ÞFðjÞ; �ðL�1Þ ¼ 4�i

g2
þ �

2�
;

FðjÞ
�� ¼ g2

2�L
���@


j:

The 3d Maxwell action becomes L
4g2

ðFðjÞ
��Þ2 ¼ LImð�Þ

16� ðFðjÞ
��Þ2 ¼

1
2�LImð�Þ ð@�
jÞ2. The path integral of the Abelian gauge theory in
the presence of a monopole with charge ��j located at position

x is equivalent to the insertion of e�i�j�
ðxÞ into the path integral

over the dual scalar fields [24,27]. The complete partition

function of the long-distance effective theory is a sum over all

topological sectors, each of which may contain an arbitrary

number of monopoles and antimonopoles (whose charges sum

to give the appropriate topological class). Summing over all

numbers and locations of monopoles (and antimonopoles),

weighted with the appropriate fugacity, directly yields the result

(3.25).
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probed by N � 1 different types of external charges, dis-
tinguished by their (nonzero) values of N-ality. This will
be discussed below.

Including a nonzero theta parameter in the original
Yang-Mills action,

SYM ! SYM þ i�
Z
R3�S1

1

16�2
trF��

~F��; (3.28)

has the effect, in the grand canonical partition function

(3.22), of multiplying the monopole fugacity by ei�=N and

antimonopole fugacity by e�i�=N . In the dual representa-
tion (3.25), this amounts to shifting the argument of the
cosine by �=N, so that the interaction becomes

� 	
XN
i¼1

cosð�i � � þ i�=NÞ: (3.29)

In this form, 2� periodicity of the theory with respect to �
is not manifest. However, a shift of the dual scalar fields,
� ! � þ ð�=NÞ�with� � ð0; 1; 2; � � � ; N � 1Þ, converts
the interaction term to the manifestly 2� periodic form

� 	

�XN�1

i¼1

cosð�i � �Þ þ cosð�N � � þ �Þ
�
; (3.30)

in which theta dependence only appears in the term in-
volving the affine root. For simplicity, in the following
subsections we will focus on the case of � ¼ 0.

A. Mass gap

The cosine potential in the dual action (3.25) generates a
mass term for the photons. Rescaling � to put the kinetic
term into canonical form and expanding the potential to
quadratic order around the minimum at � ¼ 0 gives

Vð
iÞ ¼ ðconstÞ þ 1

2
m2

�

XN
i¼1

ð
iþ1 � 
iÞ2; (3.31)

with 
Nþ1 � 
1 and

m2
� � ð2�Þ2

g2
L	 ¼ Am2

W

�
2�

g2N

�
3
e��Se�8�2=ðNg2ðmW ÞÞ:

(3.32)

A ZN Fourier transform,

~
p � 1ffiffiffiffi
N

p XN
j¼1

e�2�ipj=N
j; p ¼ 0; � � � ; N � 1;

(3.33)

diagonalizes this mass term and yields

Vð
iÞ ¼ ðconstÞ þ 1

2

XN�1

p¼0

m2
pj~
pj2; (3.34)

with

mp � m� sin
�p

N
: (3.35)

Expressing m� in terms of the renormalization group in-

variant scale �, defined by

�b0 ¼ �b0ðNg2ð�ÞÞ�b1=b0e�8�2=ðNg2ð�ÞÞ (3.36)

(with b0 ¼ 11=3 and b1 ¼ 17=3), yields

m� ¼ ~A�ð�NLÞ5=6j lnN�Lj9=11; (3.37)

where ~A is an Oð1Þ coefficient. Relative corrections sup-
pressed by powers of g2ðmWÞ 
 1=j lnN�Lj have, of
course, been neglected. The result (3.35), for p ¼
1; � � � ; N � 1, shows that the N � 1 photons of the ‘‘un-
broken’’Uð1ÞN�1 gauge group receive nonzero masses due
to nonperturbative effects.21

B. String tensions

Let us first examine the vacuum structure of the dual
theory in more detail. The dual scalars are defined to be
periodic with period 2�. This implies that shifting� by 2�
times any root vector is an identity, � � � þ 2��i for all
�i 2 �0

aff . As noted earlier, the dual action (3.25) is also

invariant under � ! � þ 2��i, where f�ig are the fun-
damental weights of the SUðNÞ gauge group, defined by
the reciprocity relations (3.27). The simple roots f�ig gen-
erate the root lattice �r. Its dual, the weight lattice �w, is
generated by the fundamental weights f�ig. The root lattice
is a sublattice of the weight lattice and their quotient is

�w=�r ¼ ZN: (3.38)

This implies that the dual theory potential, Vð�Þ �
�	

P
i cosð�i � �Þ, has N isolated minima lying within

the unit cell of�r. These minima are located at � ¼ 0 and

� ¼ 2��j; j ¼ 1; � � � ; N � 1: (3.39)

(Equivalently, one may describe the minima as lying at
2�j�1, for j ¼ 0; 1; � � � ; N, since�j ¼ j�1 þ � for some

� 2 �r.)
Let R be some chosen irreducible representation of

SUðNÞ. The expectation value of the Wilson loop WRðCÞ
characterizes the response of the system to external test
charges in the representation R. In a confining phase with
a nonzero mass gap, if external charges in representation
R cannot be screened by gluons, then expectation values
of large Wilson loops in this representation are expected to
decrease exponentially with the area of the minimal span-
ning surface,

hWRðCÞi 
 e�TðRÞAreað�Þ: (3.40)

Here � denotes the minimal surface with boundary C, and

21The vanishing p ¼ 0mass corresponds to the extra decoupled
photon which was added to simplify the duality transformation
but is not present in the original theory. It should be ignored.

CENTER-STABILIZED YANG-MILLS THEORY: . . . PHYSICAL REVIEW D 78, 065035 (2008)

065035-13



TðRÞ is the string tension for representation R. Such area
law behavior implies the presence of an asymptotically
linear confining potential between static charges in repre-

sentationR and anticharges in representation �R, VRðxÞ 

TðRÞjxj as jxj ! 1.

The irreducible representation R may be associated
with its highest weight vector w 2 �w. Identifying weight
vectors which differ by elements of the root lattice pro-
duces a ZN grading of representations which corresponds
to their N-ality (the charge of the representation under the
ZN center). In particular, if this equivalence associates the
highest weight vector w with k times the fundamental
weight �1,

w ¼ k�1 þ �; for some� 2 �r; (3.41)

then the representation R has N-ality k.22

As discussed in Refs. [24,27], the insertion of a Wilson
loop WRðCÞ in a representation R with nonzero N-ality k
corresponds, in the low-energy dual theory, to the require-
ment that the dual scalar fields have nontrivial monodromy,

Z
C0
d� ¼ 2��k; (3.42)

where C0 is any closed curve whose linking number with C
is one. In other words, in the presence of the Wilson loop
WRðCÞ the dual scalar fields must have a discontinuity of
2��k across some surface � which spans the loop C. One
way to see this is to go back to the duality relation. For
simplicity, consider the case of a large planar loop lying in
the xy plane. As the size of the loop grows, the spanning
surface � approaches an infinite flat plane. In the presence
of theWilson loop, the Abelian duality relation F
 �d
 is
replaced by F
 �d
þ�k�ðzÞdx ^ dy. Therefore the
dual scalars � must be discontinuous across � in order
for the field strength F to be continuous.

The fact that dual low-energy theory depends on the
representation R of the Wilson loop only through its
N-ality k shows that there are only N � 1 distinct string
tensions, referred to as k-string tensions, fTkg. (Charge-
conjugation symmetry implies that Tk ¼ TN�k.) The dual
theory representation of Wilson loops also shows that
external charges in representations with zero N-ality will
not be confined. These are precisely the representations
which can be screened by adjoint representation gluons.

To evaluate a Wilson loop expectation value, one must
minimize the dual action in the space of field configura-
tions satisfying the monodromy condition (3.42). To ex-
tract the string tension,

Tk � � lim
areað�Þ!1

lnhWRðCÞi
areað�Þ ; (3.43)

it is sufficient to consider the limit where � fills the xy
plane. In this case, the field �ðxÞ will only depend on z.
It must approach some minimum of the dual potential
at infinity, limz!�1�ðzÞ ¼ 2��l, and must be discon-
tinuous across z ¼ 0 with a jump given by the prescribed
fundamental weight, limz!0þ�ðzÞ � limz!0��ðzÞ ¼
2��kðmod 2�Þ. Because shifts by 2��k are an invariance
of the dual potential Vð�Þ, one may equally well minimize
the action for field configurations �ðzÞ which are continu-
ous but whose asymptotic values differ,

Tk ¼ min
�ðzÞ

�Sð
Þ
areaðR2Þ

����������¼2��kðmod2�Þ
; (3.44)

where �� � �ð1Þ � �ð�1Þ, and �Sð
Þ is the dual ac-
tion minus its vacuum value. Explicitly,

Tk ¼ min
�ðzÞ

Z
dz

�
1

2L

�
g

2�

�
2
�
@�

@z

�
2

þ 	
X
i

½1� cosð
i � 
iþ1Þ�
�����������¼2��kðmod2�Þ

:

(3.45)

In other words, the k-string tension Tk equals the action of
a kink solution with topological charge k in this one-
dimensional theory.
The width of the kink solution must be of order of the

inverse photon mass m�1
� . Consequently, the k-string ten-

sion will have the form Tk ¼ fkT, where

T � 	=m� 
�2ð�LNÞ�1=6j logð�LNÞj�3=11; (3.46)

and fk is an Oð1Þ coefficient. Even without finding the
minimizing kink solutions explicitly, it is apparent that the
resulting k-string tension Tk will be nonzero (for k ¼
1; � � � ; N � 1), and must satisfy the convexity relation
Tkþl � Tk þ Tl.
We were unable to solve the kink equations of motions

analytically for general N, but when N ¼ 2 the equations
of motion reduce to the Sine-Gordon model. In this case,
one finds

T � T1 ¼ 4
ffiffiffi
2

p
	=m�: (3.47)

C. Larger size or larger N

The above semiclassical analysis of the deformed Yang-
Mills theory is reliable provided there is a parametrically
large separation of scales between the lightest W-boson
mass, mW ¼ 2�=ðNLÞ, and the nonperturbatively induced
dual photon mass m�. Their ratio scales as

mW

m�

 ðLN�Þ�11=6j logðLN�Þj�9=11; (3.48)

and hence there is a large separation of mass scales pro-

22Representations contained in the product of m powers of the
fundamental representation with n powers of the antifundamen-
tal have N-ality m� n.
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vided LN� � 1. In this regime, the monopole gas is
highly dilute and a semiclassical analysis is justified.
Increasing LN�, by increasing N, L, or both, decreases
the separation of scales; the heaviest photon mass, m�,

grows while the lightest W mass, mW , drops. When
LN� � 1, the scale separation is entirely lost, the effective
’t Hooft coupling � � g2N at the scale of mW ceases to be
small, and the long-distance dynamics can no longer be
described by a weakly coupled Uð1ÞN�1 effective theory.

One can consider sending N to infinity while staying
within the analytically tractable regime. This is a double
scaling limit in which g2N and LN� both are held fixed
(and both are much less than unity) as N ! 1. Taking a
large N limit in this fashion allows monopole effects to
survive and to continue dictating the nonperturbative phys-
ics of the deformed Yang-Mills theory. However, this
region shrinks to a vanishingly small window in the large
N limit, since the double scaling implies that 0<L �
Lmax with Lmax�
 1=N. For any fixed compactification
size L, if one sends N ! 1 then the deformed YM theory
ceases to possess a monopole dominated, Abelian long-
distance regime.23

D. Connection to integrable Toda theory

The ZN symmetric model (3.25) is a deformation of a
complex affine Toda theory with action

Saffine Toda ¼
Z
R3

�
1

2L

�
g

2�

�
2ðr�Þ2 � 	

XN
i¼1

eið
i�
iþ1Þ
�
:

(3.49)

This complex (CPT noninvariant) action describes a
plasma which is composed solely of monopoles with no
antimonopoles. (Because of the existence of the affine root,
one can have a neutral plasma composed solely of mono-
poles!) Interestingly, the soliton spectrum of the affine
Toda theory is exactly computable. When reduced to one
dimension, this theory is an integrable system as shown by
Hollowood [43], using techniques due to Hirota [44,45].

As discussed above, the k-string tension Tk is equal to
the action of the kink solution with topological charge k.
Borrowing the exact soliton spectrum from Ref. [43], one
finds that the k-string tensions in the affine Toda theory are
given by

TaffineToda
k ¼ TN sin

�k

N
; k ¼ 1; N � 1; (3.50)

with T given above in Eq. (3.46).
The long-distance effective theory (3.25) for our de-

formed Yang-Mills theory (when LN� � 1) is a deforma-
tion of the affine Toda system by complex conjugation.
Unfortunately, unlike the integrable affine Toda system,
when N > 2 the resulting CPT invariant system is no
longer exactly integrable according to Hirota’s criteria.24

Consequently, we do not expect k-string tensions in the
deformed Yang-Mills theory to have the sine-law form
(3.50).
Recently, there have been attempts [46], to model the

strongly coupled confined regime of Yang-Mills theory
assuming the Wilson line has the center-symmetric form
(3.1). (See also earlier related work in Refs. [47–50].) A
few remarks concerning the connection with Ref. [46] may
be in order. First, our results for the k-string tensions do not
support the claim of Ref. [46], which asserts that k-string
tensions will have the sine-law form (3.50). As just noted,
sine-law string tensions are a property of the affine Toda
subsystem, whereas the center-stabilized Yang-Mills in a
weak coupling regime is dual to a real deformation of the
affine Toda theory. We see no reason to believe that the k
dependence of the string tensions will be unaffected by the
deformation. Second, it should be emphasized that the
deformation (2.5) stabilizes the center-symmetric vacuum
in the weakly coupled regime, and thereby provides a
window in which a semiclassical analysis is reliable.
Many earlier discussions of center-symmetric backgrounds
do not clearly distinguish the weakly coupled ‘‘Higgs’’
regime, in which fluctuations of the Wilson line eigenval-
ues are small, from the strong coupling regime in which the
eigenvalues have large fluctuations and are essentially
randomized over the unit circle. In our deformed Yang-
Mills theory, both regimes exist. As the compactification
size L increases, the theory moves from the weakly
coupled regime to the strongly coupled regime. These
two regimes are expected to be smoothly connected—no
physical order parameter sharply distinguishes the two
regimes. Nevertheless, the long-distance physics of the
weak coupling Higgs regime is effectively Abelian, while
in the strong coupling regime there is no length scale

23An analog of this double scaled limit was previously dis-
cussed by Douglas and Shenker in mass deformed SUðNÞ N ¼
2 supersymmetric Yang-Mills theory on R4 [26]. This deformed
N ¼ 1 supersymmetric theory, just like our deformed Yang-
Mills theory, possesses a regime in which the long-distance
gauge dynamics reduce to the Abelian subgroup Uð1ÞN�1.
Reference [26] shows that in the N ! 1 limit of the mass
deformed theory, the Abelian long-distance regime is preserved
only if the mass deformation m is sent to zero in a correlated
fashion, m=�
 1=N4. In particular, at any fixed nonzero m, if
one takes N ! 1 first then there is no regime of the super-
symmetric gauge theory in which the long-distance dynamics
remain Abelian. Although this phenomenon only appeared pre-
viously in the context of supersymmetric gauge theories, it is
generic in deformed Yang-Mills and other deformed QCD-like
theories.

24In the absence of the complex conjugate term in the potential,
there is a change of variables which converts the soliton equation
of motion into ‘‘Hirota bilinear type,’’ which is synonymous with
solvability [43]. The presence of the complex conjugate term
spoils the bilinearity.
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beyond which the dynamics can be described accurately in
terms of Abelian degrees of freedom.
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APPENDIX: MONOPOLE MEASURE

The appropriate one-loop measure for integrating over
configurations of a single monopole (of any type) may be
expressed as25

d�monopole ¼ �4e�ðSYMþ�SÞ d3a

ð2�Þ3=2 Ja
d�

ð2�Þ1=2
� J�½det0ð�D2

adjÞ��1; (A1)

where a 2 R3 is the monopole position, � 2 ½��;�� is
the internal Uð1Þ angle of the monopole, and � is the
(Pauli-Villars) renormalization scale. Global Uð1Þ gauge
transformations [in the Uð1Þ subgroup associated with the
given type of monopole] shift the angle �. Fluctuations in
the position and Uð1Þ angle of the monopole represent the

four zero modes in the monopole small fluctuation opera-
tor;26 the factor of�4 can be viewed as the contributions of
the Pauli-Villars regulator fields associated with these bo-
sonic zero modes. The exponential factor is, of course, the
exponential of minus the classical action of the monopole.
The collective coordinate Jacobians are given by [49]

Ja ¼ S3=2YM; J� ¼ 2�S1=2YM

�j � � ¼ NLS1=2YM; (A2)

where � ¼ f0; 2�; 4�; � � � ; 2�ðN � 1Þg=ðNLÞ are the ei-
genvalues of �i ln�. The primed determinant represents
the result of Gaussian integrals over all fluctuations other
than zero modes; the prime on the determinant denotes
omission of the zero modes. The contributions from gauge
bosons and ghosts,

½det0ð�D2��� � 2F��Þadj��1=2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gaugebosons

� detðD2Þadj|fflfflfflfflffl{zfflfflfflfflffl}
ghosts

; (A3)

combine to give this simple form because

½det0ð�D2��� � 2F��Þadj��1=2 ¼ ½detð�D2Þadj��2 (A4)

in any self-dual background. These functional determi-
nants may be regularized using the Pauli-Villars scheme.
The fields of fundamental monopoles reside entirely

within an SUð2Þ subgroup of SUðNÞ, and the characteristic
size of these monopoles is given by the inverse of the
lightest W-boson mass, m�1

W 
 NL. (This is the only scale
which appears in the classical equations for the monopole.)
The regularized scalar determinant depends on the cube

root of the renormalization scale, detð�D2Þ 
�1=3. Since
the determinant is dimensionless, it must have the form

½detð�D2Þ��1 ¼ 2�Cð�NLÞ�1=3; (A5)

where C is a pure number (N independent). Consequently,
the one-loop monopole measure equals

d�monopole ¼ C�11=3ðNLÞ2=3ðSYMÞ2e�SYMþ�Sd3ad�:

(A6)

Performing the trivial integral over the angle �, the result
is the 	d3a, with 	 the monopole fugacity. Choosing to use
mW as the value of the renormalization point yields the
expression (3.23) for the fugacity.
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[15] M. Ünsal and L.G. Yaffe, Phys. Rev. D 74, 105019 (2006).
[16] A. Armoni, M. Shifman, and G. Veneziano, Phys. Rev.

Lett. 91, 191601 (2003).
[17] A. Armoni, M. Shifman, and G. Veneziano, Phys. Rev. D

71, 045015 (2005).
[18] M. Schaden, Phys. Rev. D 71, 105012 (2005).
[19] R. D. Pisarski, Phys. Rev. D 74, 121703 (2006).
[20] J. C. Myers and M.C. Ogilvie, Phys. Rev. D 77, 125030

(2008).
[21] M. C. Ogilvie, P. N. Meisinger, and J. C. Myers, Proc. Sci.,

LAT2007 (2007) 213 [arXiv:hep-lat/0710.0649].
[22] J. C. Myers and M. C. Ogilvie, Proc. Sci., LAT2007

(2007) 211 [arXiv:hep-lat/0710.0674].
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